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Abstract: The determination of plywood bonding quality by shear testing is one of the most com-
monly used and informative tests, alongside bending strength, to characterise this compound material.
Two types of birch plywood were studied: indoor use (class 1), thickness 18 mm, urea-formaldehyde
glue; and exposed outdoor use (class 3), thickness 15 mm, phenolic formaldehyde glue. The corre-
sponding pre-treatments indicated in standards UNE-EN 314-1 and -2 were applied to each type. To
test the suitability of the method, the technique of digital image correlation (DIC) was used to obtain
information about the complex modes of fracture present in compound materials such as plywood.
Assessing the results based on the statistical extreme value theory provided more reliable and robust
information about the failure strength values for low failure probabilities. The results confirm that
DIC can be used to determine the true distribution of the deformations during the fracture process
and, therefore, it provides greater knowledge of the details of the failure process. Statistical evaluation
of the experimental data obtained with DIC indicates that test results exceeding the time limit of
30 ± 10 s should be evaluated, contrary to the operating procedure in standard UNE-EN 314-1, which
states that they are invalid.

Keywords: quality; plywood; digital image correlation; DIC; bonding

1. Introduction

From 2015 to 2019, the mean annual production of plywood worldwide was around
110 million m3 (Mm3). With a production of 55.5 Mm3 in 2019, China is the world’s primary
producer, followed by the United States (9.9 Mm3). In Spain, plywood production in 2019
was 0.5 Mm3 [1–3]. Used mainly in construction, packaging and furniture manufactur-
ing, plywood is mechanically characterised in the factory through in-house monitoring
and at external laboratories, in both cases following the test protocols and specifications
in force [4–10]. Bonding strength tests on compound materials (glue + wood) and the
orthotropic nature of these materials provide information about board quality.

The mechanical characterisation of materials in general, and of plywood in particular,
is a decisive factor in choosing an appropriate construction material. Characterisation
consists of determining the parameters that define the mechanical behaviour of the material
through tests in which the material is subjected to various loads. Tests are generally
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performed to experimentally determine the relationship the material exhibits between
applied forces and displacements or between applied stresses and strains.

Among the optical measuring solutions available, digital image correlation (DIC)
applications are experiencing spectacular advances in the experimental determination of
displacements and deformations, both as an additional technique applicable to material
characterisation and for measuring these magnitudes in all kinds of tests and processes,
including farming and industry [11–13].

The DIC technique has been applied in wood to determine deformation under physical
or mechanical loading. For physical loading, Kang et al. [14,15], Peng et al. [16], Lanver-
mann et al. [17] and García et al. [18] used it to measure moisture-induced and shrinkage
deformations in drying wood, while Oscarsson et al. [19] applied it to assess the distribu-
tion of deformations around knots after consecutive load/unload cycles. For mechanical
loading, Villarino et al. [20] correlated the Young’s modulus evolution of Pinus halepensis
wood under compression with the microstructural behaviour observed after breakage,
and Li et al. [21] analysed the influence of wood type (early- and latewood) and relative
humidity on the bonding strength and strain distribution of glued wood, observing either
glue line or early wood failures.

Using the photogrammetry-based method of DIC, the evolution of full-field 3D dis-
placements and deformations in the space observed throughout the test chosen for the
test piece or component can be recorded, unlike the limited information about in-plane
deformation obtained by extensometry [22–24]. The required displacement and strain
information can therefore be selected as necessary when analysing the test results, making
DIC an exceptionally versatile technique. The superiority of DIC over other techniques
is obvious. It incorporates the basic concept of speckle interferometry [25,26], ensuring
a sufficiently high level of accuracy typical of optical techniques, in accordance with the
phenomenon and the size of the component observed.

Applying photogrammetric DIC is simpler than working with interferometric tech-
niques, in particular using the GOM Aramis software [27]. This makes DIC a very attractive
tool both in laboratory research applications and industry, at any scale, from micrometres
to metres. These attributes are particularly useful for analysing fractures in composite
materials such as plywood panels, whose complex forms of failure are difficult, if not
impossible, to view and quantify.

The technique is of special interest because it can be used to determine the suitability
of results when calculating stresses and strains using advanced numerical simulation
methods, such as finite element programmes, especially in situations where numerical
modelling is complex.

The objectives of this study are: (i) To use DIC and its practical application in defor-
mation measurement for shear fracture characterisation of class 1 (indoor use) and class
3 (outdoor use) birch plywood according to UNE-EN 314 standards [4,5], with regard to
bonding quality. (ii) To assess the use of this technique to characterise wood properties and
its potential in determining and interpreting the fracture phenomena that occur in stan-
dard wood tests. In particular, the aim is to increase understanding of the technique and
improve possible fracture models, beyond simple non-critical application of standards, and
to discuss the possible limitations of the standards in their current wording, especially with
regard to the test time limit. (iii) To evaluate photogrammetric DIC as a complementary or
alternative experimental technique to numerical techniques.

2. Materials and Methods
2.1. Bonding Quality Tests

For the bonding quality tests, the standards UNE-EN 314-1 and -2 were applied [4,5].
A sample of 70 test pieces of each panel was used; i.e., 70 for the 15 mm outdoor panel and
70 for the 18 mm indoor panel, grouped in lots of 10 test pieces.

Density and moisture content of the test pieces were determined using standards
UNE-EN 323 [10] and UNE-EN 322 [9], respectively. Six test pieces were taken from the
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total sample and conditioned in a hygrothermal chamber at 20 ± 2 ◦C and 65 ± 5% relative
humidity to constant weight, providing the results shown in Table 1.

Table 1. Panel moisture content and density after conditioning.

Panel Type Humidity (%) Density (kg/m3)

15 mm panel, class 3 (outdoor) 11.46 711.71

18 mm panel, class 1 (indoor) 11.68 748.33

The other test pieces were kept aside until the required test pre-treatments, following
standard UNE-EN 314-1 [4].

The number of test pieces chosen corresponds to the minimum of 10 valid results
required at the end of the process for each panel type and treatment, following standard
UNE-EN 314-1 [4].

2.2. Types of Pre-Treatment

The test requires a series of pre-treatments, in accordance with standard UNE-EN
314-2 [5]. Pre-treatment A was applied to the plywood for indoor use, and pre-treatments
A and B were applied to the plywood for exposed outdoor use. Pre-treatment A, according
to standard UNE-EN 314-1, Section 5.1.1, comprises immersion of test pieces in water
at 20 ± 3 ◦C for 24 h. This pre-treatment was applied to all class 1 test pieces, but only
a few lots of pre-treated class 3 test pieces were tested. Pre-treatment B, according to
standard UNE-EN 314-1, Section 5.1.3, comprises initial immersion of test pieces in boiling
water for 4 h, drying in a forced ventilation oven for 16 h to 20 h at 60 ± 3 ◦C, a second
immersion in boiling water for 4 h and finally cooling in water at 20 ± 3 ◦C for at least 1 h.
This pre-treatment was applied to three lots of class 3 test pieces. The types and number
of tests performed for each panel type are shown in Table 2. The terms “No fracture”
and “Exceed time” refer, respectively, to the number of pieces showing no failure and the
number exceeding the time limit of 30 ± 10 s specified in UNE-EN 314-1, according to
which these test results are invalid.

Table 2. Pre-treatment applied, according to standard UNE-EN 314-1, and number of tests performed
for each panel type.

Panel Type
Pre-Treatment

Performed
Total Number of

Pieces Tested
Number of Rejected Tests Number of Valid

TestsNo Fracture Exceed Time

15 mm panel, class 3
(outdoor)

A 22 0 12 10

B 23 1 11 11

18 mm panel, class 1
(indoor) A 28 6 9 13

Total 73 7 32 34

In both pre-treatments with immersion in water, the test pieces were placed in a metal
basket to ensure that all pieces remained submerged in the water throughout the test and
were well separated.

The immersion and boiling pre-treatments were performed in a stainless steel heated
container with an accuracy of ±1 ◦C (Figure 1).
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Figure 1. (a) Test piece; (b) water bath; (c) immersion cage; (d) test pieces in the water bath; (e) oven.

2.3. DIC Device

The DIC measurements were made using the Aramis 3D 5M device by the company
GOM (Carl Zeiss GOM Metrology GmbH, Braunschweig, Germany) (Figure 2). Used in
full-field and local measurements, this high-resolution 3D camera system is equipped with
two 5-megapixel cameras that provide high spatial resolution for determining the strain
distribution and local stress effects in large measuring areas using strain measurements.

The basic principle of DIC is identifying the same points (or pixels) between two images
captured before and after the load process to deduce the strain generated (see Sutton
et al. [28]). After defining the area of interest or test area, divided in turn into evenly
distributed virtual grids or subsets, the displacement map of each point of the subsets is
plotted to obtain the full-field of strains (see Pan et al. [11]).

50 mm lenses were used based on the dimensions of the recording zone on the test
pieces and the areas of interest; i.e., the areas where the stresses and strains caused by the
fracture are generated.

The calibration panel chosen was CQ/CP20 90 × 72, which has a grid of 525 points
in a 21 × 25 matrix. The central area has 17 main calibration markers (Figure 2b). The
measurements between these points, known as D1 and D2, have an accuracy of microns
with a 95% uncertainty of measurement of:

U(D1) = 1.50 µm + 4 × L × 10−6 µm = 1.50 + 4 × 83.155 × 10−6 = 1.50033262 µm
U(D2) = 1.50 µm + 4 × L × 10−6 µm = 1.50 + 4 × 83.156 × 10−6 = 1.500332624 µm

L, length (D1 or D2) measurement in metres

Therefore, the measurements expressed according to the GOM Aramis User Man-
ual [25] are:

D1 = 83.155 ± 1.5 µm
D2 = 83.156 ± 1.5 µm
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The calibration markers are recognised by the software during the calibration process,
enabling recognition of the theoretical positions of the other points in the panel.
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Oviedo, used for the study: (a) 50 mm lenses; (b) 90 × 72 calibration panel; (c) specifications of the
calibration panel; (d) camera system; (e) mask used in the DIC measurements.

After defining the test area and matching the field of observation to the area of the test
piece, masks were applied to exclude conflictive areas such as edges or holes that could
lead to error due to the different perspective relative to the cameras (Figure 2d).

A start point was defined, representing the start point of the coordinates relative to
the test piece, on which the software establishes the bases for calculating the 3D model.
This point is indicated in the first image taken on the left, and the programme can locate it
through DUC in the image on the right. The programme then automatically identifies the
other points. Because the piece is fractured in this type of testing, breaking into two parts,
it was necessary to define two start points (one in each sector) to ensure image correlation
in the whole piece throughout the test.

The recording speed was one image per second, which allows the magnitude to be
recorded without loss of quality in the measurement of local deformations.

2.4. Test Equipment

The test pieces were tested using an MTS SYNERGIE testing machine (MTS System
Corporation, Eden Prairie, MN, USA), by Material Test Systems (MTS), with a load capacity
of 5 kN (Figure 3).

To improve the clamping of the water-saturated test pieces during testing, pieces of
40 grain sandpaper were attached to the clamp grips with cyanoacrylate adhesive.
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2.5. Statistical Analysis

The statistical extreme value theory [29,30] was applied. This theory states that be-
haviour in the tails of any type of distribution tends asymptotically to three unique types of
distributions—Weibull, Gumbel and Fréchet—which, depending on the nature of the prob-
lem in hand, can be identified by their characteristics as maximum or minimum phenomena.
When material strengths are concerned, minimum functions are the suitable option, but
when studying load actions, the corresponding maximum families must be chosen.

Designing components based on the theory of ultimate limit states requires deter-
mination of low probabilities of failure. Consequently, the usual procedure, focusing on
central failure probability values derived from the mean value and standard deviation
of the distributions, is not recommended. Instead, a non-standard, more realistic and
rigorous assessment is proposed, based on statistical extreme value theory. The design of
real mechanical and structural components must ensure low probabilities of failure, e.g.,
5 or 1% or even lower. However, the estimation of low probabilities cannot be guaranteed
if the available number of tests is limited, which means that the low tail failure percentiles
must be obtained by extrapolation from the central values of the distribution. Therefore,
an assessment to the method recommended by the UNE-EN 314 standards [4,5] including
results from tests exceeding time limit value was also performed.

The suitability of the Weibull minimum distribution is ensured when applied to
evaluate the minimum strength of wood regardless of the theoretical distribution of the
minimum strengths in the wood, because it represents the domain of attraction for minima
when the distribution (as here, when the strength is involved) must have a lower limit,
although not necessarily zero.

Obviously, it is not logical to disregard the fact that strengths also present a finite upper
limit, which would justify, alternatively, the choice of a maximum Weibull distribution.
Nevertheless, a possible better definition of the upper tail of the failure distribution is irrel-
evant because, from the design viewpoint, only the lower tail of the strength distribution is
of interest. Adopting a two-parameter Gumbel distribution allows the restrictions about the
lower and upper bounds to be disregarded in the definition of the three-parameter Weibull
strength distribution. This is justified when the shape Weibull parameter has a value higher
than 6 (see Castillo et al. [29,30]).

3. Results

The results obtained by the Aramis equipment were stored in .txt format and com-
prised time, force, strain and displacement values.
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In all samples, the apparent cohesive wood failure percentage was determined, and
the mean value (RMv,med) was calculated. The shear strength of each test was calculated
(fv) from the arithmetic mean fv,med and the recorded minimum value fv,min, which together
define the lower range of the variations. Tables 3–5, present the results obtained with
the Aramis equipment, the statistical values and the apparent cohesive wood failure
percentages in the shear tests, respectively, for the 15 mm panel, class 3 (outdoor), pre-
treatment A. The outcomes for the 15 mm panel, class 3 (outdoor), pre-treatment B, are
shown in Tables 6–8. Finally, Tables 9–11 summarize the corresponding outcomes for the
18 mm panel, class 1 (indoor), pre-treatment A. The results were stored in .txt format and
comprised time, force, strain and displacement values.

Table 3. Results for the 15 mm panel, class 3 (outdoor), pre-treatment A.

Test Piece
Dimension

(mm) Test Time (s)
Load

Load F
(N)

Failure

Apparent Cohesive
Wood Failure
Percentage (%)

fv =
F

l1 × b1

(N/mm2)l1 b1

P27 26.00 26.27 31 1477.74 40 2.16

P28 26.38 26.06 27 1277.78 70 1.86

P30 25.88 25.95 33 1337.57 40 1.99

P31 26.06 25.62 23 1238.84 80 1.86

P32 24.62 25.40 20 1116.64 70 1.80

P41 26.18 25.80 27 1542.74 90 2.16

P42 26.34 25.52 20 1207.03 20 1.80

P47 26.20 26.18 23 1483.19 70 2.16

P49 26.00 26.42 36 1630.77 90 2.30

P50 24.52 25.26 28 1191.48 90 1.92

P72 25.84 26.55 25 1411.08 50 2.06

P24 24.46 25.28 15 1073.73 30 1.74

P25 26.13 25.70 45 1599.18 60 2.38

P26 25.77 26.60 66 1776.28 30 2.59

P29 25.94 26.59 51 1635.11 50 2.37

P43 26.52 25.53 17 1077.34 10 1.59

P44 26.35 25.52 17 1063.08 30 1.58

P45 24.24 25.10 15 1008.99 50 1.66

P46 25.11 25.60 19 1266.28 20 1.97

P48 26.35 25.46 17 1098.83 20 1.64

P71 25.88 25.44 18 1223.13 20 1.86

P73 25.30 25.47 15 898.44 10 1.39

Table 4. Statistical values for the 15 mm panel, class 3 (outdoor), pre-treatment A.

Pre-Treatment Panel Type
fv,med

(N) fv,med
(N)

σ C.V. (%)
RMv,med (%)

Valid Tests All Tests Valid Tests All Tests

A
15 mm panel,

class 3
(outdoor)

2.02 1.95 1.78 0.20 9.95 60 55.5
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Table 5. Apparent cohesive wood failure percentage after shear test on the 15 mm panel, class 3
(outdoor), pre-treatment A.

Test Piece (%) Test Piece (%)

P27 40
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P22 25.96 26.74 47 1430.23 30 2.06 

P23 25.61 25.55 16 986.83 10 1.51 
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Table 7. Statistical values for the 15 mm panel, class 3 (outdoor), pre-treatment B.

Pre-Treatment Panel Type
Fv,med

(N) Fv,med
(N) σ C.V. (%)

RMv,med (%)

Valid Tests All Tests Valid Tests All Tests

B
15 mm panel,

class 3
(outdoor)

1.47 1.61 1.16 0.26 17.95 40.91 42.27

Table 8. Apparent cohesive wood failure percentage after shear test on the 15 mm panel, class 3
(outdoor), pre-treatment B.

Test Piece (%) Test Piece (%)
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Table 9. Results for the 18 mm panel, class 1 (indoor), pre-treatment A.

Test Piece

Dimension
(mm) Test Time

(s)
Load F

(N)
Apparent Cohesive Wood

Failure Percentage (%)
fv =

F
l1 × b1

(N/mm2)l1 b1

P33 25.43 25.53 22 1273.88 90 1.96

P36 25.92 25.36 30 2147.73 100 3.27

P38 25.98 25.81 36 1899.72 100 2.83

P39 26.09 25.78 34 2014.62 90 3.00

P51 25.33 25.37 20 1358.08 100 2.11

P55 25.80 25.48 20 1660.82 100 2.53

P56 25.97 25.62 34 1700.75 100 2.55

P58 25.89 25.34 39 1809.26 90 2.76

P60 25.61 25.32 31 1937.87 100 2.99

P63 26.02 26.61 21 1995.52 100 2.88

P64 25.80 25.44 24 1972.62 100 3.01

P65 25.50 25.42 39 1839.77 100 2.84

P70 25.51 25.18 32 2099.87 100 3.27

P37 26.02 25.84 57 2093.97 100 3.11

P40 25.82 25.22 57 2038.77 90 3.13

P57 25.62 25.49 41 1715.17 100 2.63

P59 26.82 25.50 45 1923.09 90 2.81

P61 25.50 25.70 140 1529.93 100 2.30

P62 25.79 25.18 46 1640.42 100 2.56

P67 25.95 25.60 17 1851.92 100 2.88

P68 25.32 25.26 51 2190.62 100 3.34

P69 25.46 25.17 52 2259.43 100 3.48
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Table 9. Cont.

Test Piece

Dimension
(mm) Test Time

(s)
Load F

(N)
Apparent Cohesive Wood

Failure Percentage (%)
fv =

F
l1 × b1

(N/mm2)l1 b1

P34 No fracture

P35 No fracture

P52 No fracture

P53 No fracture

P54 No fracture

P66 No fracture

Table 10. Statistical values for the 18 mm panel, class 1 (interior), pre-treatment A.

Pre-Treatment Panel Type
fv,med

(N) fv,med
(N)

σ C.V. (%)
RMv,med (%)

Valid Tests All Tests Valid Tests All Tests

A Class 1
panel 2.77 2.84 1.96 0.39 14.22 97.69 97.72

Table 11. Apparent cohesive wood failure percentage after shear test on the 18 mm panel, class 1
(indoor), pre-treatment A.

Test Piece (%) Test Piece (%)
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4. Discussion
4.1. 15 mm Panel, Class 3 (Outdoor), with Pre-Treatment A

Figure 4a shows the resulting distribution in linear scale, including the values of the
Weibull parameters (location λ, scale ∆ and shape β), and Figure 4b shows this distribution
in log–log scale (Gumbel paper), in both cases including only the valid results—that is,
excluding the results that did not meet the test time limit of 30 ± 10 s indicated in standard
UNE-EN 314-1 (Section 4) [4].
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In contrast, Figure 5a,b show the distribution of the results in linear and log–log scale
without excluding those that did not meet the test time limit.
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From the values obtained in the assessment and shown in Figures 4 and 5, it follows
that:

The Weibull distributions estimated for the samples, excluding and including the test
results that must be declared invalid according to standard UNE-EN 314-1 (Section 6) [4],
show no notable difference. In particular, virtually the same values were observed for low
fracture probabilities. It is therefore concluded that in this case the determination of the
time limit is not totally justified.

The location parameter λ, representing the failure load threshold for a null probability,
is the same for both distribution functions, with a value notably higher than zero. Therefore,
under no circumstances would it be advisable to use a Weibull two-parameter function,
implicitly involving the use of λ = 0, which would be overly conservative.

The values of the Weibull distribution parameters resulting from the assessment of the
shear results for the 15 mm panel with pre-treatment A are not habitual. This appears to be
due to the multiplicity of the types of fracture obtained, indicating notable heterogeneity in
the sample, and to its unjustified consideration as a single homogeneous sample.

4.2. 15 mm Panel, Class 3 (Outdoor), with Pre-Treatment B

Conducting the same assessment of the results as in Section 4.1. with pre-treatment B,
Figures 6 and 7 include the distributions of results, in linear and log–log scale, using only
valid values that fall within the test time limit (Figure 6a,b) and all the values obtained,
both within and exceeding the test time limit (Figure 7a,b).

From the values obtained in the assessment shown in Figures 6 and 7, it follows that:
The Weibull distributions estimated for the samples, excluding and including the test

results that should be declared invalid according to standard UNE-EN 314-1 (Section 6) [2],
show no remarkable difference. It is concluded that the determination of the time limit in
this case is fully justified.

The location parameter λ is not the same for the two distribution functions, confirming
this conclusion.

The values of the Weibull distribution parameters resulting from the assessment of the
shear results for the 15 mm panel with pre-treatment A are not habitual. This appears to
be due to the multiplicity of the types of fracture, indicating notable heterogeneity in the
sample and its unjustified consideration as a single homogeneous sample.
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4.3. 18 mm Panel, Class 3 (Outdoor), with Pre-Treatment A

Applying the same assessment process as in the previous sections, the results obtained
are shown in Figures 8 and 9.

From the values obtained in the assessment shown in Figures 8 and 9, it follows that:
The Weibull distributions estimated for the samples, excluding and including the test

results that must be declared invalid according to standard UNE-EN 314-1 (Section 6) [4],
are practically the same, even for low fracture probabilities. From this, it is concluded that
the time limit values of the test are not justified.

The location parameter λ is practically null. Therefore, in this case a Weibull two-parameter
function could be used with a realistic criterion.

The values of the Weibull distribution parameters resulting from assessing the shear
results for the thin panel are habitual but high. The failure criteria are more consis-
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tent and, therefore, the test results are more homogeneous, resulting in more credible
Weibull parameters.
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With regard to the analysis of the load–displacement curves (Figures S1–S3 of the Sup-
plementary Material), for the 15 mm panel (pre-treatment A) the curves show a consistent
value in the gradients and a spread that was considered low in the failure strength values,
with a mean value of Fv,med = 2.02 MPa and a coefficient of variation of 9.95%, which is,
effectively, low.

For the 15 mm panel (pre-treatment B), the load–displacement curves show consider-
able variation in the gradients and the failure strength values, with a low mean value of
Fv,med =1.47 MPa and a high coefficient of variation of 17.95%.

For the 18 mm panel (pre-treatment A), the load–displacement curves show consid-
erable variability both in the gradients and the failure strength values, with a high mean
value of Fv,med =2.77 MPa and a high coefficient of variation of 14.22%. Lastly, alternating
loading-unloading phases were observed in the failure process, presumably due to the
successive failures of the different bonding layers, a phenomenon commonly observed in
composite materials, possibly, accentuated by their orthotropic construction.This process,
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moreover, is habitual in compound materials, probably accentuated by their orthotropic
construction.

4.4. Interpretation of DIC Results in the Bonding Quality Test

The normal strain εy and the tangential strain εxy were analysed, both throughout the
theoretical failure section, represented by the anti-symmetry axis of the test piece, and in
two nearby parallel sections on each side of the theoretical failure section (Figures S4–S9 of
the Supplementary Material).

The graph of the normal strain εy does not maintain the expected symmetry; instead,
a moderate strain is observed in one half of the test piece, indicating that it is barely affected
by the failure, while the strain occurs almost entirely in the other half and represents the
entire failure process. Depending on the test, either the left or right half is affected. As
expected, a greater concentration of strains was also observed in the corner of the notch
from where the subsequent failure process would begin.

With regard to the shear deformation εxy, the test piece is practically subjected to
a pure shear loading. As a result, throughout the line joining, the two notches at an almost
constant tangential strain would be expected, and this is confirmed during the different
stages of the load process, with small variations at the edges of the recordings; i.e., in the
vicinity of the notches. In the Aramis recordings, the final stage of the failure process is
observed, showing a succession of small failure bridges in the wood, forming an unusual
failure mechanism (Figure 10). To the best of the authors’ knowledge, no studies have
addressed the use of DIC to characterise plywood bonding quality under shear loading
and, therefore, it was not possible to compare the results obtained.
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Figure 10. (a) Re rence image of the plywood structure with the three start points in the reference
image; (b) typical failure mechanism occurring in the shear test using DIC technique.

5. Conclusions

In this work, an extensive experimental programme was carried out to determine
the bonding quality of 15 mm and 18 mm plywood panels under shear loading, for
two different pre-treatments and different humidity conditions, indicated as A and B,
applying the technique of digital image correlation (DIC).
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Using the DIC technique, the failure process and real distribution of the strains through-
out the bonding line of plywood panels can be analysed during and after the failure process.
This enables the study of the response of plywood under shear loads, in particular when
loads are close to failure.

The suitability of the plywood bonding quality test under shear loading, governed by
standard UNE-EN 314-1, was verified for failure characterisation of compound materials of
orthotropic construction such as plywood panels. The results showed that excluding test
results based on the time limit value of 30 ± 10 s indicated in the operating procedure of
standard UNE-EN 314-1 is questionable

Bonding strength is a typical statistical problem of minima. This justifies the appli-
cation of extreme value statistics to evaluate the experimental results, providing a more
reliable procedure to analyse test data and predict the failure results for low probabilities
of failure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13122135/s1, Figure S1: Load-displacement curves for 15 mm
panel, pre-treatment A; Figure S2: Load-displacement curves for 15 mm panel, pre-treatment B;
Figure S3: Load-displacement curves for 18 mm panel, pre-treatment A; Figure S4: εy-strain field for
test piece 41, 15 mm panel, pre-treatment A; Figure S5: εxy -strain field for test piece 41, 15 mm panel,
pre-treatment A; Figure S6: εy-strain field for test piece 16, 15 mm panel, pretreatment B; Figure
S7: εxy-strain field for test piece 16, 15 mm panel, pretreatment B; Figure S8: εy-strain field for test
piece 36, 18 mm panel, pre-treatment A; Figure S9: εxy-strain field for test piece 36, 18 mm panel,
pre-treatment A.
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Abbreviations

DIC Digital image correlation
RMv,med Mean apparent cohesive wood failure percentage value
fv Shear fracture stress (N/mm2)
F Test piece failure load (N)
l1 Length of the shear area (mm)
b1 Width of the shear area (mm)
fv,med Mean shear stress value (N/mm2)
fv,min Minimum shear stress value (N/mm2)
εy Normal strain
εxy Tangential strain
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