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Abstract: Adulterations of olive oil are performed by adding seed oils to this high-quality product,
which are cheaper than olive oils. Food safety controls have been established by the European Union
to avoid these episodes. Most of these methodologies require expensive equipment, time-consuming
procedures, and expert personnel to execute. Near-infrared spectroscopy (NIRS) technology has many
applications in the food processing industry. It analyzes food safety and quality parameters along the
food chain. Using principal component analysis (PCA), the differences and similarities between olive
oil and seed oils (sesame, sunflower, and flax oil) have been evaluated. To quantify the percentage of
adulterated seed oil in olive oils, partial least squares (PLS) have been employed. A total of 96 samples
of olive oil adulterated with seed oils were prepared. These samples were used to build a spectra
library covering various mixtures containing seed oils and olive oil contents. Eighteen chemometric
models were developed by combining the first and second derivatives with Standard Normal Variable
(SNV) for scatter correction to classify and quantify seed oil adulteration and percentage. The results
obtained for all seed oils show excellent coefficients of determination for calibration higher than 0.80.
Because the instrumental aspects are not generally sufficiently addressed in the articles, we include
a specific section on some key aspects of developing a high-performance and cost-effective NIR
spectroscopy solution for fraud detection in olive oil. First, spectroscopy architectures are introduced,
especially the Texas Instruments Digital Light Processing (DLP) technology for spectroscopy that
has been used in this work. These results demonstrate that the portable prototype can be used as an
effective tool to detect food fraud in liquid samples.

Keywords: instrumentation; Digital Light Processing (DLP); Digital Micromirror Device (DMD);
Near-Infrared Spectroscopy (NIRS); olive oil; Partial Least Squares (PLS); Principal Component
Analysis (PCA); spectroscopic

1. Introduction

Economically motivated food adulteration, also known as food fraud, is carried out to
minimize production prices and increase benefits. The adulterated product loses quality
or may even become harmful. Adulteration with lower costs alternatives is common in
high-demand products such as milk and in products of high economic value whose price
has been increasing in recent years, such as olive oil.

The limited production and high cost of the highly desirable olive oil make the olive
oil susceptible to deliberated adulteration with low-cost and low-quality vegetable oils.
The fat contained in such low-cost vegetable oils allows for conventional results to be
performed to obtain satisfactory saponification values or refractive indexes, among others.
This adulteration of olive oils with low-quality vegetable oils is a commercial fraud that
can be focused on from two different points of view due to the quality of the product and
a health and safety problem that is increased when the olive oil is consumed because of
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its nutritional benefits. Moreover, there are registered food safety occurrences in which
oil adulteration was a major public health problem, such as in Spain in 1981. That year in
Spain, several people died, and others suffered illnesses due to poisoning with adulterated
oil [1,2]. The development of models for the authenticity of oils is thus of particular interest
from an economic perspective and safety reasons.

The European Union has established food safety controls to avoid these episodes.
Mostly, they are laboratory methodologies requiring expensive instruments, time-consuming
and expert personnel to be carried out. Moreover, conventional methods cannot measure oil
quality and safety analyses during certain processes, such as extraction or pressing. Some
examples are high-performance liquid chromatography (HPLC) or gas chromatography
(GC) with different detectors depending on the target analyte [3,4]. Therefore, a non-
invasive, fast, or, if possible, real-time detection and affordable technique is required to
determine the quality and safety parameters of the oil. Near-Infrared Spectroscopy (NIRS)
technology has many applications in the food industry sector; it is used to analyze food
safety and quality parameters along the food chain. Many studies have developed models
that make it possible to discriminate between different types of oils or even between pure
and adulterated oils. These studies allow us to establish a correlation between NIR profiles
and safety parameters in oils, i.e., this technology can be applied for the detection of
adulterations in oils [5-8].

Nevertheless, controlling impurity is a challenge involving authorities and the olive
oil industry, requiring analytical alternatives based on real-time analysis that can be carried
out onsite by non-expert personnel. An analytical alternative is those strategies based on
portable instrumentation, such as NIR procedures. However, this standard instrumentation
sometimes does not have the required instrumental characteristics to successfully solve
this trouble, which is necessary for developing new portable instrumentation adapted to
olive oil analysis. In this research, we focused our work on the development of a NIR
prototype, a portable sensor, cheap, easy to use and adapted to olive oils analysis. To test
our instrumental proposal, we have developed qualitative and quantitative chemometric
models to detect adulteration of olive oils with low-quality vegetable oils.

The development of portable, small NIR spectrometers has advanced significantly
over the past few years. These units operate using different optical diffraction grating
properties, such as Fourier transform (Si-Ware NeoSpectra), linear variable filter (Viavi
microNIR), and diffraction (Texas Instruments NIRscan Nano). Pasquini reviewed such
instruments in a comprehensive review [9]. An extensive review by Crocombe [10] outlined
the technologies used in portable spectroscopy and discussed their applications. Yan and
Siesler [11] demonstrated the use of these low-cost FT-NIR, linear variable filters (LVFs),
and diffraction NIR systems for both classification and measurement. Wolfrum et al. [12]
compared the performance of low-cost NIRS to a conventional laboratory spectrometer.
In Section 3, spectroscopy architectures are introduced, especially the Texas Instruments
Digital Light Processing (DLP) technology for spectroscopy that has been used in this
work [13].

2. Materials and Methods
2.1. Oil Samples

This study used three different types of olive oil: extra virgin olive oil, virgin olive oil,
and olive oil. Three varieties of seed oil adulterants, sesame oil, sunflower oil, and flax oil,
were used for the mixture preparation. Figure 1 shows a scheme of samples employed in
this study. As can be seen, three pure olive oils and 93 different binary and ternary mixtures
of oil samples were made in this study.

As can be seen in Table 1, adulterated samples were prepared by adding uniformly
different seed oils (flax, sesame and/or sunflower oil) to each olive oil. All the procedure
was carried out as follows: each sample of olive oil was mixed with an adulterant oil varying
the proportions of olive and adulterant oil, and the range of percentage of adulterant oil, in
this case, is between 2 and 30% adulteration. Firstly, 36 binary samples were mixed. After
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that, 57 ternary mixtures were made by mixing each olive oil with two oils of the three
possible adulterants in different proportions; the range of adulterant oils varied between 3
and 16%.

OLIVE OIL
3 OLIVE OILS ADULTERATION
' ™~ Y
12 OLIVE OIL SAMPLES
ADULTERATED WITH 2% - 30%
FLAX OIL
_
' ™ e
12 OLIVE OIL
ADULTERATED WITH 2% - 30%
SESAME OIL
- _
' ™ —
12 OLIVE OIL
ADULTERATED WITH 2% - 30%
SUNFLOWER OIL
) | —
r N —
57 OLIVE OILS
ADULTERATED WITH TWO
DIFFERENT OILS: SESAME. 3%-16%
FLAX OR SUNFLOWER
S

A J

Figure 1. Sample preparation scheme (N = 96). Three pure olive oils, 12 samples of olive oil (4 samples
of extra virgin olive oil, 4 samples of virgin olive oil and 4 samples of olive oil) adulterated with
flax oil, 12 samples of olive oil adulterated with sesame oil, 12 samples of olive oil adulterated with
sunflower oil, and 57 samples of olive oil adulterated with two of the selected adulterant oils.

Table 1. Percentage distribution of binary (olive oil and one adulterant oil) and ternary (olive oil and
two adulterant oils) mixtures.

Binary Mixtures Ternary Mixtures
% Olive Oil * % Adulterant Oil % Olive Oil * % Adulterant Oil % Adulterant Oil
98 2 90 5 5
90 10 80 10 10
80 20 70 15 15
70 30 88 9 3
76 8 16
92 5 3
86 11 3
82 10 8

Adulterant oil—Flax, sesame, or sunflower oil; *—extra virgin olive oil, virgin olive oil or olive oil.

2.2. NIRS Analysis

The oil mixtures were analyzed without pretreatment at room temperature (19 °C) in
a standard quartz cuvette, 10 x 10 mm optical path, and a volume of 3500 mL (Hellma
Analytics, Miillheim, Germany). The measurements were carried out in transmittance
mode, as depicted in Figure 2. NIRscan is connected to the computer by a USB connection.
The wavelength range was 901-1700 nm, and the path length was around 3 nm. A total of
228 points of different wavelengths were collected in each NIR analysis.

Before proceeding with the spectra collection, the instrumental conditions were opti-
mized. The scanning mode Column or Hadamard and the number of scans to be averaged
were evaluated and compared to select NIR experimental conditions. Each sample was
divided into five portions, scanning each one separately. After optimizing experimental
NIRS collection conditions, the final spectrum was the average of all the spectra of the same
sample. In order to optimize the number of spectra to the average for each sub-sample,
an olive oil sample was collected by averaging 1, 5, 10, 15, 20, 30, and 50 scans in both
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scanning modes. Once the data were collected, the values of these five different spectra’
root mean square error (RMS) statistic were calculated [14,15]. This statistic indicates the
similarity between different spectra of the same sample analyzed in two different modes.
The RMS value was used to select and compare repeatability and reproducibility conditions,
allowing the selection of the scan model and the number of scans to be averaged [16,17].
The lower the RMS value, the more reproducible and repeatable the model. The value of
the statistic for a sample is given by the following Equation (1):

D2
RMS = 10° x Zn ; D=1y, —yp (1)
Ya = absorbance to A for the average spectrum resulting from averaging several scans.
Yp = absorbance to A for the average spectrum resulting from averaging b number
of scans.

n = number of spectral data.

Light source

(a)

Figure 2. Transmittance measurement setup: (a) DLP NIRscan Nano EVM, (b) Graphical User
Interface (GUI). Section 3.4 describes the GUI.

2.3. Spectra Data Processing

The NIRS spectra collected with the prototype were transformed into a data matrix
with X and Y variables defined as wavelength (X) and absorbance data (Y). Chemometric
strategies were developed with Unscrambler X software (The Unscrambler X, CAMO
Analytics AS, Oslo, Norway). Different strategies were developed to identify fraud in olive
oil. One of them used categorical variables to identify the presence of seed oils in the olive
oil samples, and the other one with the percentage of seed oil in the mixture to quantify
the adulteration.

Principal component analysis (PCA) and partial least squares (PLS) were the chemo-
metric approaches tested to attempt these qualitative and quantitative strategies. PCA was
employed to detect potential spectral outliers and classify the adulteration type. PLS was
the regression procedure employed to build the calibration models using the global spec-
trum (all the wavelengths 901-1700 nm) [18]. All the developed models were optimized
using a random cross-validation method included in the software package, with 20 seg-
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ments and five samples per segment. The optimal number of PLS factors was established
considering the minimum residual variance.

Before PCA and PLS analysis, to minimize the light scattering phenomenon, the
standard normal variation (SNV) mathematical treatment was applied to the spectra data
matrix, on the raw data, and the data after applying different Savitzky—-Golay (SG) deriva-
tive pre-treatments. To establish the successful model combination of pre-treatments (SNV,
1st and 2nd SG derivatives) were tested in this study. The pre-treatment code used in
this study can be summarized using a four-digit notation (a b c d), where the first digit
(a) refers to the order of magnitude of the Savitzky—Golay derivative (SG) (0 = underived
spectrum, 1 = 1st derivative, 2 = 2nd derivative, etc.); the second digit (b) indicates the
polynomial order of the derivate; and the third (c and d) digits indicate the size of the left
and right intervals respectively, used for the derivative smoothing calculation. A total of
18 different calibration models (3 parameters x 6 chemometric strategies) were developed
using different pre-treatments of the olive oils samples and PLS as the regression approach.
The pre-treatments employed were as follows: SG1244,5G2244,5G1244+SNV,
5G2244+SNV,SNV +1244,and SNV + 224 4. And the effect of applying scattering
correction, SNV before and after derivation was also tested.

The best mathematical pre-treatments were selected based on the statistical criteria for
each adulterant oil. This selection was based on the lowest calibration standard error (SEC)
and cross-validation standard error (SECV), as well as the highest calibration determination
coefficient (R?), cross-validation determination coefficient (r%) values, and Range error Ratio
(SECV/Range). For the choice of the best-fitting equation, it was also considered that the
values of the calibration determination coefficient and the cross-validation coefficient did
not have values particularly different from each other [19,20].

3. Instrumentation
3.1. Spectroscopy Architectures

Hand-held NIR spectrometers can also be classified based on the type of detector: array
detectors and single-detector instruments. Figure 3a shows the traditional architecture
of a spectrometer using an array detector [21]. Due to its high cost, large volume, and
complicated operation, the conventional spectroscopy system is generally suitable for
laboratory environments.

Sample
| Focusing
Focusing Source (. | - Mirror
Mirror 12 |SI‘|1
Diffraction
Grating

DMD

Array of micromirrors

.. ? F
== e ocusing
— } Mirror
Focusing - P : '
Mirror .~ Digital Micromirror \
Device (DMD) )
\ Detector
: ‘_@

Figure 3. Spectroscopy architectures: (a) traditional (b) digital light processing (DLP).

Although excellent results can be obtained with array detectors, to develop a low-cost,
portable, and user-friendly spectral detection system, which can be adapted to the on-site
scenario, we chose the DLP architecture from Texas Instruments, depicted in Figure 3b.
The main difference is using a digital micromirror device (DMD) inserted into the optical
path to select specific wavelength regions for measuring by a single detector. The selection
of individual wavelengths is accomplished by selectively turning columns of mirrors
on or off to reflect or transmit only the desired wavelengths to the detector. The NIR
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wavelength region allows using a high-performance, cost-effective single-element detector
while providing wavelength selection agility, speed, and mechanical stability.

The DLP NIRscan Nano spectrometer evaluation module (EVM, Texas Instruments
Incorporated, Dallas, TX, USA, $999) is equipped in origin with a diffuse reflectance
illumination module as shown in Figure 4a. To detect the presence of target compounds in
olive oil, we designed a transmittance module shown in Figure 4b using a 3D printer.

g

|
U

R /B13814 &

s

Transmittance

module
Reflectance module

(a) (b)
Figure 4. DLP NIRscan Nano EVM with (a) reflective module and (b) transmittance module.

3.2. Optical Considerations

Figure 5 displays the optical elements of the DLP NIRscan nano reflectance mod-
ule [22]. It is mounted on the top of the electronics subsystem. The reflective mode collects
light reflected by the sample and passes it through a slit. The slit width is chosen to bal-
ance wavelength resolution with a signal-to-noise ratio (SNR) depending on the desired
specifications of the system. The DMD selects specific wavelengths and directs them to a
single-point photodetector. The DMD accomplishes wavelength selection through a set of
patterns applied to the micromirrors. The sequence of patterns forms a scan configuration.
Thus, the slit width, DMD array, scan configuration, and DMD column width influence the
resolution and maximum amount of light on the photodetector. Table 2 shows the main
specifications of the NIRscan Nano EVM [22].

3.3. Hardware Considerations

Figure 6 shows a basic block diagram of the DLP spectrometer with the transmissive
illumination module. An exhaustive description of these components can be found in [23].

e  Light source: It consists of two lens-end Tungsten filaments. They are designated as
lens-end lamps because the front end of the glass bulb is formed into a lens to direct
more light from the filament to the sample test region. Tungsten halogen lamps are
well suited as spectrometer light sources due to their broadband infrared radiation.
The transmission module was equipped with two ILT 1088-1 lens-end lamps from
International Light Technologies [24]. Figure 8 shows the lamp driver. It provides
a constant current of 280 mA at 5 V. The light output of this lamp is sufficient for
cuvettes with path lengths of 2-13 mm.

e  Slit: The input slit specifications affect the ability to couple light into the spectrometer
and its spectral resolution. The slit width should be chosen to create an image width
at the DMD corresponding to a desired spectral resolution. In addition, the slit length
should be large enough to illuminate the full extent of the DMD panel, maximizing the
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system’s light throughput. Narrowing the slit width increases the spectral resolution
of the system but requires a higher-performance optical system to sharply image the
smaller slit onto the DMD [25].

DMD array: The size of this component determines the maximum light collection
area and the resolution of the system. The resolution of the system depends on the
wavelength spectrum that is spread across one dimension of the DMD (for example,
width), the slit width, and the DMD pattern width. The other dimensions of the DMD
(for example, height) and the optical transfer function of the system determine the
amount of light collected.

Photodetector: For NIRS between 900 and 2500 nm, an InGaAs photodiode is the
preferred photodetector due to its high quantum efficiency and responsivity. Typically,
the photodiode produces a very small current signal proportional to its photosensitive
area. A large photosensitive area produces more current in response to light at the
expense of higher terminal capacitance. The higher capacitance will result in a slower
response to light or lower bandwidth. This capacitance will also affect the capacitive
feedback compensation (Cf in Figure 7) of the transimpedance amplifier (TIA). The
photodetector also has a dark current when no light is incident. Thus, photodiode
selection is a trade-off between cost, wavelength range, photosensitivity, capacitance,
and dark current. DLP NIRscan Nano uses the Hamamatsu InGaAs G12183-120K
photodiode [26].

Amplifier: Once the light is converted into a current at the photodetector, a TIA is used
to convert the current signal into a voltage. The TIA architecture is best suited for
photodiodes that produce higher input currents, achieve wide analog bandwidth, offer
high flexibility with simple changes of feedback elements, and handle the high-speed
conversion. For noise immunity, the TIA employs a differential signal, with a gain
double the feedback resistance, Rf, in Figure 7.

Analog-to-Digital Converter (ADC): The ADC converts the voltage into a digital signal
representation. For best results, an extremely low-noise, high linearity, high-resolution
analog-to-digital converter minimizes the noise added by the conversion. To optimize
the system’s digital resolution, the ADC’s dynamic range and reference voltages must
be matched with the maximum photodetector signal. DLP NIRscan Nano uses the
Texas Instruments 24-bit ADS1255.

Detector

: -:Longﬁ'as's

Focusing
Lenses

Lens

Figure 5. Interior view of the DLP NIRscan Nano-optical architecture.
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Table 2. NIRscan Nano EVM design specifications.

Parameter Design Value

Slit f-number 2.5
Slit dimensions 1.8 x 0.025 mm
DMD DLP2010NIR
DMD f-number 3.8
Spectral range 900 to 1700 nm
Spectral resolution 10 nm
Detector diameter 1 mm
Detector type Uncooled InGaAs
Optical engine dimensions 33 X 29 x 10 mm

Light 1 | e DC —

| DMD —» Amplifier —»> A
Source ‘
ke
Sample
DLP

—> —
Controller Hirle e

Figure 6. Basic block diagram of the DLP NIRscan Nano hardware.
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- 301 Q
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+

Vr

InGaAs @b REF5025 47nF Z— T~ 100pF
(2.5V)
+

OPA2376
- 301Q

ADS1255

|

Figure 7. Transimpedance amplifier circuit.

3.4. Software Considerations

A key characteristic of this micro-spectrophotometer is that the relevant software
can be downloaded from the manufacturer’s website, along with extensive hardware
documentation and free access to routines for programming and communicating with it. It
is essential for those who want to develop new applications for the instrument.

Figure 9 displays the spectrum plot and the controls for scan configurations and
parameters of the DLP NIRscan Nano GUI [27]. To create a scan configuration, the first
step is to enter the number of scans to average. Averaging each wavelength point across
multiple scans reduces noise while increasing the total scan time.
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Figure 8. DLP NIRscan Nano lamp driver.
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Figure 9. DLP NIRscan Nano GUI Scan Screen.

The second step is to enter the number of sections of a scan. A scan can be broken up
into 1-5 sections. Scans with the same width and resolution should be done in only one
section. More than one section must be created to create a fast scan with less resolution on
wavelengths with less information and a higher resolution on wavelengths with areas of
interest. Each section can have an individual set of the following parameters:

e Method: This controls the scanning process. The DLP NIRscan Nano comes preloaded
with two scan configurations from the factory: Column or Hadamard. The Column
scan selects one wavelength at a time. The Hadamard scan creates a set with several
wavelengths multiplexed at a time and then decodes the individual wavelengths. The
Hadamard scan collects much lighter and offers a higher SNR than a column scan [28].
However, this is very dependent on the spectrum being measured and the system
used to measure it. To identify adulterations in different olive oils, we consider the
Column method to be more effective because the reproducibility study provided better
results for the Column method, as stated in this work.
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Wavelength range: Start and End wavelengths (in nm) or spectral range of interest
for the scan. The minimum wavelength is 901 nm, and the maximum wavelength is
1700 nm.

Width in nm: This number selects the width of the groups of pixels in the generated
Column or Hadamard patterns. The options displayed correspond to the width of the
dispersed spectrum in nm across the quantized pixel width.

Digital Resolution: This number defines how many wavelength points are captured
across the defined spectral range. This corresponds to the number of patterns dis-
played on the DMD during the scan. By increasing the digital resolution, the spectrum
is oversampled. In general, set this resolution to oversample at least twice the desired
full-width half maximum desired.

Exposure Time: For scan configurations with one section, the exposure time is set to
0.635 ms. For scan configurations with more than one section, the exposure time can
be individually set for each section in the range of 0.635 to 60.960 ms.

Number of scans to average: This determines how many times the pattern set for a scan
will be cycled through on the DMD. The microcontroller collects and averages the
data, which lowers noise as additional scans are averaged. For scans where noise is a
problem, this can be increased.

Scan Reference Select: This button allows the user to choose the reference for the
absorbance or reflectance graph. For transmittance sampling, data are taken with no
sample in the cuvette.

The distribution of SNR across the spectrum is critical (i.e., SNR at each wavelength),

especially for a DMD-based spectrometer where uniform illumination across the mirror
array is important. To test SNR at a particular scan setting, the following procedure was
used [29]:

o G W=

Execute scan k times (we used k = 4) with scan time t and no time between scans.
Compute the difference vector of the intensities at wavelength n.

Compute the average of the intensity measurements at wavelength n.

Compute the standard deviation of point 2.

Compute the SNR as the ratio between points 3 and 4.

Repeat points 1 to 5 at other wavelengths between 900 to 1700 nm.

Following the above procedure, Figure 10 shows the SNR of the Column scan as a

function of the wavelength in DLP NIRscan EVM.

SNR

3500

3000

2500

2000

1500

1000

500

0
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Figure 10. SNR of the Column scan as a function of wavelength.

4. Results and Discussion

The success of a NIRS methodology depends on the quality of the collected spectral

information. Taking into account this consideration, the first step carried out in this study



Sensors 2023, 23,1728

11 0f 19

was the selection of the instrumental conditions. The developed prototype allows collecting
spectra using two different scan modes, Column and Hadamard. In both modes, the final
spectrum can be the average of a limited number of individual spectra. As detailed in
Section 2, the scanning mode and the number of spectra to average were optimized by
calculating RMS as spectra reproducibility parameter. Figure 11 shows the obtained results
combining scan mode and the number of spectra to average in a heatmap.

RMS values

4460 % 104
= 50
& 568 x 10*
@ 3 x
w
=
o
4 2676 x 104
2
® 30
i 1784 x 10%
s 204
; 15

8920
£ 10
El
=z 5

1 . ) 0.000
T T T
e o e a B
Number of spectra to be averaged
(a)
RMS values

- 2780 x 10

2.224 = 104

1.668 x 104

1.112 = 10*

5560

Number of spectra to be averaged

= 0.000

- mnm O w o (=] f=}
- = ™ o w

Number of spectra to be averaged
(b)

Figure 11. Heatmap showing the Root Mean Square (RMS) values for each number of scans to be
averaged. (a) Heatmap with the RMS values using the Column scan model; (b) heatmap with the
RMS values using the Hadamard scan model.

As can be seen in Figure 11, in comparing the Column and Hadamard heatmaps, a
more homogeneous color (brown color) indicates lower RMS values and minor differences
between spectra of the same sample collected in reproducibility conditions. The Column
mode was selected as the scanning mode for further studies. Looking at the Column heat
map, it is observed that, for the Column model, we see that even averaging 15 scans, the
value of the RMS statistic is low (homogeneous brown color). To improve the spectra
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quality, minimize the analysis time, and be able to scan as many samples as possible, the
number of spectra to average in each analysis was fixed in 30 scans per measurement of
each spectrum.

All samples were scanned with the proposed prototype using previously detailed
instrumental conditions. Figure 12 shows the raw spectra of pure olive samples, seed oils
(sesame oil, sunflower oil, and flax oil), and the average spectra of all adulterated samples.

11 _ esmmmw Average adulterated population
’3:‘ e SUNflower O
809 A .
o 1====- Sesame oil
()
g : ......... Flax O||
-e 0.7 ]
o ]
[72]
2 ]
<05 ]
34—
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5094 ———_.
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Figure 12. Raw spectra of all pure oils: (a) raw spectra of all mixtures, (b) seed oils and average
spectrum of all adulterated samples, and (c) olive oils spectra.
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In the NIR range of the prototype, there are the following characteristic bands of the
oil’s spectra. The bands observed around 1200 related with C-H (CH;) second overtone
vibration and broadband with a double peak between 1400-1500 nm due to O-H first
overtone and C-H (CH;) combination [20,30]. In Figure 13, the 1st derivative plus SNV
of all samples involved in this study are plotted, as well as the average spectra of all
adulterated oils. As can be seen, comparing Figure 13a—c, some differences are observed at
1160 and 1660 nm. Olive oil spectra, for both wavelengths, show a small shoulder, whereas,
in seed oils and adulterated samples, a clear peak appears at both wavelengths when
plotting spectra data.

After plotting the spectra, principal component analysis (PCA) was carried out for
each type of olive oil with its corresponding mixtures and all sample sets (N = 96) involved
in this study. Different approaches were evaluated for PCA analysis using SG first and
second derivatives. Figure 14 summarizes the best-obtained results.

As can be seen in Figure 14, comparing each olive oil with its mixtures, a clear
difference is observed between adulterated and pure olive oils. For all the olive oils, a
positive correlation is observed for PC1 and a negative for PC2. In Figure 14d, it is possible
to identify the three pure olive oils separated from the rest of the samples. However, it was
observed that the three samples presented a pattern significantly similar to the pure olive
oil samples, as they are parallel points to the three pure samples. Samples 49, 50, and 51
were found to be three blends of virgin olive oil with two adulterant oils. In all cases, the
mixture is composed of 90% virgin olive oil and 5% of one adulterant and 5% of another
adulterant; in the case of sample 49, sesame and flax oil; in sample 50, sunflower and flax
oil; and in 51, sesame and sunflower oil.

After evaluating the classification procedure, the next step was to perform the calibra-
tion models with all the spectra, using the PLS regression model and cross-validation with
random groups. As indicated in Section 2, different mathematical pretreatments were tested
before developing calibration models; 18 models with six mathematical pretreatments were
evaluated for the calibration of three adulterant oils: sesame oil, sunflower oil, and flax oil.
Table 3 summarizes all the results obtained for each treatment and type of adulteration.

As can be seen in Table 3, all coefficients of determination for calibration values (R?)
are higher than 0.74 except for sunflower oil applying SG 2 2 4 4 plus SNV pre-treatment
(0.313). The coefficient of determination for cross-validation values is similar; all values are
greater than 0.6 except for sunflower oil with the SG 2 2 4 4 plus SNV pre-treatment, whose
value is 0.276. The highest R? value is obtained with the SG 12 4 4 plus SNV pre-treatment
for sunflower oil, whose calibration error (SEC) is 2.256.

An overall view of the results shows that the R? values for each oil are quite similar
for sesame oil and flax oil (values between 0.740 and 0.830) by applying the different
pretreatments. Still, the values of the coefficient of determination for the calibration of
sunflower oil vary greatly depending on the pretreatment selected, ranging from the
minimum value obtained 0.313 for SG 2 2 4 4 plus SNV to the maximum value 0.921 for the
pretreatment SG 1 2 4 4 plus SNV. However, these marked differences, observed for R2, are
not so evident for r2.

The best coefficients of determination for calibration were selected, evaluating com-
paratively both coefficients of determination for calibration and cross-validation. As seen
in Table 3, there are no wide differences between one or other math pretreatment nor
related to scatter correction (SNV) before or after derivative pretreatment. All the values
for R? ranged between 0.921 and 0.747, and the 1st derivative plus SNV as mathematical
pre-treatment for adulteration with sunflower oil or with sesame oil, respectively. Values of
coefficients of determination for cross-validation regression models (r?, see Table 3) ranged
between 0.771 for adulteration with sesame oil (pretreatment of the 1st derivative) and
0.695 for adulteration with sunflower oil (pretreatment with SNV plus the 2nd derivative).
Adulteration with sunflower oil, using pretreatment of 2nd derivative and, after that,
SNV for scatter correction showed no satisfactory results for qualitative and quantitative
considerations with values of 0.313 and 0.275 for R? and r?, respectively.
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Figure 13. First-derivative Savitzky—Golay spectra plus Standard Normal Variate (SNV) of all pure
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mixtures of VOO and other seed oils, (¢) olive oil (OO) and mixtures of OO and other seed oils, and
(b,d) all the samples pure and adulterated in the sample set.
Table 3. Calibration and cross-validation statistics of developed models to quantify adulteration of
olive oil with seed oils (N = 96).
Math Parameter N R2 SEC I SECV RER
Pre-Treatment
Sesame oil 57 0.815 3.065 0.672 3.938 7.1
SG1244 Sunflower oil 39 0.886 2.718 0.653 4.958 5.6
Flax oil 42 0.776 2.940 0.771 3.249 8.6
Sesame oil 53 0.805 3.179 0.615 4.326 6.5
SG2244 Sunflower oil 38 0.852 3.014 0.608 5.041 5.6
Flax oil 44 0.772 2.975 0.689 3.266 8.6
Sesame oil 52 0.839 2.821 0.681 4.030 6.9
SG1244+SNV Sunflower oil 37 0.921 2.256 0.681 4.817 5.8
Flax oil 42 0.778 2.921 0.747 3.097 9.0
Sesame oil 56 0.747 3.576 0.685 4.584 6.1
SG2244+SNV Sunflower oil 35 0.313 6.554 0.276 6.792 4.1
Flax oil 41 0.832 2.620 0.699 3.458 8.1
Sesame oil 54 0.771 3.458 0.635 4.204 6.7
SNV +5G1244 Sunflower oil 38 0.852 3.014 0.608 5.041 5.6
Flax oil 44 0.746 3.139 0.746 3.359 8.3
Sesame oil 56 0.769 3.319 0.627 4.325 6.5
SNV +5G2244 Sunflower oil 39 0.848 3.008 0.695 5.051 5.5
Flax oil 43 0.788 2.873 0.717 3.197 8.8

SNV—standard normal variate, NIN2N3N4—Savitzky—Golay derivative order, polynomial order of derivative,
polynomial order, left, and right intervals for the derivative smoothing; R>—coefficient of determination for

calibration, SEC—standard error of calibration, r

standard error of cross-validation.

2

—coefficient of determination for cross-validation, SECV—
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Considering the calibration errors and the dimensionless statistic values, Range Error
Ratio (RER = Range/SECYV), as shown in Table 3, the best results were obtained for all
adulterations with RER values of 7.1, 9.0, and 5.6 for sesame oil, flax oil, and sunflower oil
respectively. All these models were developed after applying a 1st-derivative pretreatment
to spectra data. In addition to that, for sunflower and flax adulteration, a SNV scatters
correction prior to or after derivative pretreatment was required to improve statistics results.

Regarding standard error (SEC and SECV), it should be noted that the low range of
the adulteration assayed (2%) is within the detection limit of the proposed method, being
necessary to increase variability in the low range and perhaps to develop a specific model
depending on the adulteration.

After obtaining and processing the spectra, the results shown in Table 3 must be
simply presented to determine whether olive oil is adulterated. To implement this task, a
microcontroller-based circuit should be designed and connected to the NIRscan Nano. The
display can be two LEDs, for instance, a green LED in case there is no fraud and a red LED
in case of fraud. This is the next step we are working on.

Table 4 shows different analytical techniques used to detect olive oil fraud. The discrim-
ination or classification procedure and the most relevant advantages and inconveniences
are included to provide all the information about detecting olive oil adulteration.

Table 4. Analytical techniques proposed to detect olive oil adulteration.

. Discrimination/ .
Technique Classification Procedures Advantages Disadvantages Ref
No sample pretreatment, il;laslzflii:(;;};ation different
Fluorescence PCA and PLS Robustness to detect models for each, [31]
sunflower adulteration .
adulteration type
Lab expensive
Rapid and instrumentation,
MIR SIMCA-PLS-A easy-to-implement method  sometimes unstable [32,33]
mathematical equations
Sample pretreatment with
Rapid analysis, easy to organic solvents. for
UV-VIS and VIS-NIR SIMCA, SOM implement at lab lovel UV-VIS, Expensive [34,35]
p instrumentation for
VIS-NIR
Time-consuming for
NIR PCA No sample pretreatment, calibration development, [36]
non-destructive analysis expensive laboratory
instrumentation
Interferences due to
Non-destructive, minimum fluorescence properties of
Raman PCA sample preparation sample'or ?dulterants, . [37,38]
required, rapid method Expensive instrumentation,
! ’ Unstable mathematical
equations
SPME ~GC-FID or High sensitivity, Tﬁgr(;‘;niae‘;‘f 1:)( ensive
E-nose (Voltammetric) SPME-GC/MS plus PCA or reproducibility, and P , OXp [39,40]
P 1% Y
PLS accuracy. instrumentation, expert
' personnel required
. . Tedious and
Fast DSC Temperature controller Rapid analysis and fime-consurming sample [41,42]

system, Nitrogen supply

easy-to-use technique,

pretreatment required
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Table 4. Cont.

Technique

Discrimination/
Classification Procedures

Advantages

Disadvantages

Ref

GC

Highly polar capillary
column, Flame ionization or
Mass Spectrometer detectors

Traditional method,
accurate and precise, high
reproducibility

Time-consuming sample
pretreatment.

expensive instrumentation,
well-trained analyst

[43-45]

HPLC

C18 Column, Diode array,
photometric of refractive
index detector,
high-pressure pumps

Accurate and precise,
high reproducibility

Tedious and
time-consuming sample
pretreatment, expertise
personnel required

[46,47]

NMR

NMR tube, Superconducting
magnet, deuterated solvent

Short analysis time, easy
sample preparation, good
reproducibility

Expensive instrumentation,
low sensitivity, expert
personnel required

(48]

Portable NIR prototype

PCA and PLS

No sample pretreatment,
on-site and real-time
analysis, easy-to-use,
inexpensive

Large database for
calibration
development models

This work

instrumentation
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5. Conclusions
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Spectroscopic prototype for fraud detection in olive oil. For this purpose, a transmittance
module was developed for the Digital Light Processing NIRscan Nano EVM. Detection
of fraud in liquid samples such as olive oils requires the collection of robust spectra with
relevant information. All classification and calibration models showed satisfactory results.
For all seed oils, the coefficient of calibration determination is greater than 0.80 and for cross-
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also included key instrumental considerations that should be considered in designing a
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