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Abstract – We analyze the aggregation of a two-component system with a product kernel,
to determine its evolution in time during a progressive mixing. The evolution is governed by
the Smoluchowski equation, yielding gelation from a certain time. In the past, equilibrium (or
asymptotic) solutions have been used to study mixing of bi-component mixtures for non-gelling
kernels. In this letter we show that asymptotic solutions are invalid to describe the mixing behavior
for the product kernel case (even before gelation). Besides, an equilibrium concentration is not
reached. On the contrary, particles with any composition exist all time.

Copyright c© EPLA, 2010

Introduction. – Particle aggregation is present in
many Physics fields: colloid studies, powders agglomera-
tion, polymerization, aerosols, cloud formation, etc. It is
controlled by the multicomponent Smoluchowski equation
(see, v.g., [1] for its derivation for aerosols).
Recently, mixing behavior in pharmaceutical agglomer-

ation has been studied by Matsoukas et al. [2] and Lee
et al. [3]. These papers analyze the compositional distrib-
ution of the active component as a function of time and
particle size, how long does it take to reach a certain blend-
ing level, etc., leading to an interesting knowledge of prac-
tical interest.
Vigil and Ziff [4] postulated a general scaling law

for two-component aggregation with non-gelling kernels.
Matsoukas et al. [2] based their findings on the bi-
component coagulation equation. The latter showed that
this equation accepts a Gaussian as the solution to the
compositional part of the distribution for non-gelling
kernels. If such solution is feasible, the bivariate distri-
bution must be of the form postulated by the asymptotic
solutions (AS) of Vigil and Ziff, i.e., an equilibrium solu-
tion exists.
Matsoukas et al., identified several cases that conform to

this behavior. They also affirm that the degree of mixing
between components is controlled by the variance of excess
solute, X2.

(a)E-mail: julio@uniovi.es

A main hypothesis of the previous cited analysis is the
existence of an equilibrium concentration: the system have
to accumulate around this concentration. Besides, this fact
is tied to the particle size distribution (PSD) form: the
number of particles with a given concentration, C, of the
first component (solute) must tend to a Dirac δ as t→∞.
For conservative mass kernels the equilibrium concen-

tration is Co, the overall (global) concentration. The use
of an equilibrium solution to analyze long time behavior
is adequate for some kernels, as the constant one, but it is
not always justified. For the additive kernel case, as shown
in [5], the mass PSD fulfills the cited conditions, but the
number PSD does not: an asymptote exists at Co, but the
curve is not a Dirac δ.
For cases with negligible values of the kernel for small

particles the asymptotic solution is not valid to describe
the overall number PSD, because for large times minute
particles (grit) remain in the system. Gelling kernels
present more difficulties, due to the lack of mass conser-
vation for time after gelation.
In [2] and [3] gelling kernels are not considered. Can we

extend their useful methods for non-gelling cases to gelling
cases, even before gelation when mass is still conserved?
Does an equilibrium concentration (or some similar) exist?
What does the mass and number distribution as a function
of solute concentration look like?
Asymptotic solutions for several kernels (v.g., constant,

additive and product ones) are known for the discrete
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multicomponent case, but we shall see that these cannot
be used in general to obtain the mixing state.
For the continuous multicomponent case, asymptotic

solutions for constant and additive kernels are known.
However, for gelling kernels (as the product one) they are
not known. Nevertheless, for the product kernel, the posed
problem can be treated directly from the exact solution [6].
The structure of this paper is as follows. First, we

present the Smoluchowski equation, which governs this
problem. After that, we demonstrate that the mixing
behavior of a discrete bi-component mixture for product
kernel cannot be obtained by using asymptotic solutions.
Then, using the exact solution of a bi-component expo-
nential initial PSD case, we derive the correct expres-
sions for the total number and mass that correspond to
a given value of solute concentration (already used by
Lushnikov [7]). Finally, we analyze the mixing state, both
before and after gelation, comparing it with the constant
and additive kernel cases.

Smoluchowski equation. – In this paper we work
only with the bi-component case (the conclusions for
multicomponent ones are similar). Then, the PSD is
defined through the concentration c(m,n), such that
c(m,n) dmdn is the number of particles with masses of
each component in the bi-dimensional region [m,m+
dm)∩ [n, n+dn).
Bi-component Smoluchowski equation gives us the

evolution of c(m,n, t) with time:

∂c(m,n, t)

∂t
=
1

2

∫ m
0

∫ n
0

K(m− m′, n−n′|m′, n′)
× c(m−m′, n−n′, t)c(m′, n′, t) dm′dn′

− c(m,n, t)
∫ ∞
0

∫ ∞
0

K(m,n|m′, n′)
× c(m′, n′, t) dm′dn′ . (1)

K is the coagulation coefficient or kernel, which in the
present case is

K(m,n|m′, n′) = b2(m+n)(m′+n′), (2)

being b2 a constant. This kernel appears, i.e., in branched-
chain polymerization of RAf type (in the large f limit) [8].
The product kernel gives gelation: particles with sizes

approaching infinity pass to other phase (gel), which can
or cannot interact with other particles (sol phase) [9]. In
this letter we assume there is no interaction —model S of
Stockmayer. This phenomenon leads to a decrease of the
total mass present in sol phase.
For homogeneous kernel fulfilling K(am|am′) =

aλK(m|m′)|, gelation is produced for homogeneity
constant λ> 1 (see, v.g., [9]). In our case it is λprod = 2.
The additive kernel is just at the boundary: λadd = 1.
Lushnikov [7] introduces two interesting macroscopical

magnitudes that characterize the time evolution of the

aggregating mixture. Naming C ′ =m/(m+n) the solute
concentration in a generic particle, then

N(C, t) =

∫ ∞
0

dm

∫ ∞
0

dnc(m,n, t)× δ(C −C ′)

is the total number of particles with solute concentration
C. On the other hand

M(C, t) =

∫ ∞
0

dm

∫ ∞
0

dn(m+n)c(m,n, t)× δ(C −C ′)

is the total mass of particles with solute concentration C.
With the change of variables:

m= χC, n= χ(1−C) = χC̃, (3)

being χ=m+n the total mass in the particle, the Jaco-
bian is |J |= χ, and we obtain

N(C, t) =

∫ ∞
0

χc(m(χ,C), n(χ,C), t) dχ, (4)

M(C, t) =

∫ ∞
0

χ2c(m(χ,C), n(χ,C), t) dχ. (5)

These expressions will be used in what follows.

Mixing state from asymptotic solutions. – Let
us start from the discrete case. We assume an initial
PSD formed by two types of monomers, with an initial
numberM10 for the first andM01 for the second. We name
MT =M10+M01.
In general, the PSD is described through the concen-

tration, c, of particles that contain m type-1 monomers
and n type-2 monomers. For large times and large parti-
cles, for non-gelling kernels, Vigil and Ziff [4] conjecture
that c(m,n, t) is expressed as the product of a Gaussian
times the scaling solution of the homogeneous case (both
monomers would be indistinguishable), regardless of the
initial condition.
Following [7], for the discrete case and kernels indepen-

dent of the composition, the temporal evolution is

c(m,n, t) = P (m,n)chomo(m+n, t),

being chomo the concentration corresponding to the homo-
geneous case, and

P (m,n)≈ MT√
2πM10M01

exp

(
− M2

T

2M10M01
(C −Co)2χ

)
,

being C =m/(m+n) the solute concentration in a particle
and Co =M10/MT the mean concentration of the solute
in the whole system. This approximation, which is a
Gaussian (continuous) is obtained in the limit from a
binomial distribution (discrete), and it is accordingly the
Vigil and Ziff conjecture.
Time is normally transformed into other equivalent vari-

able, a critical particle size (named sometimes maximum
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cluster size) that increases with time, and depends on the
initial PSD and on the kernel parameters.
As a starting point we take the AS obtained by Vigil

and Ziff [4] for constant kernel for the discrete case. For
constant K = b0 the critical size is σ= b0t/2. With the
known asymptotic solution of the homogeneous case [10]
we set

ccons(χ,C, σ)≈ M2
T√

2πM10M01
σ−2χ−1/2 exp(−χE0(C, σ)),

being the exponent term:

E0(C, σ) =
M2
T

2M10M01
(C −Co)2+ log

(
1+
1

σ

)
.

By using expression (5) we obtain

Mcons(C, σ)≈ 3MT

4
√
2M10M01

σ−2[E0(C, σ)]−5/2. (6)

This equation (and the similar one for N not present for
briefness) has the proper form, which matches with the
obtained in [5] directly from the exact solution given in [7]:
both are Dirac δ as time goes to infinity.
For the additive kernel case, we start with the AS

obtained by Vigil and Ziff [4] from the discrete case. In
this case the critical size is σ= exp(2tb1MT ) (being b1
the proportionality constant in the kernel). The known
solution of the homogeneous case [4] leads us to

Maddi(C, σ)≈ MT

2π
√
M10M01

σ−1/2[E1(C, σ)]−1, (7)

being

E1(C, σ) =
M2
T

2M10M01
(C −Co)2+ 1

2σ
.

This equation has also the proper form (see [5]): For C =
Co a maximum with value proportional to σ

1/2 appears.
However, by using (4) an improper integral appears for

N . Therefore, with asymptotic tools it is impossible to
obtain N with this method for the additive kernel. The
exact solution must be used (see [5]). Even with better
approximations for the asymptotic solution we cannot
obtain N in this case, because that solution does not
describe well the solution for large times in the small-size
particles region.
For product kernel, before gelation, the critical size is

σ= (1− b2MT t)−2. The known AS of the homogeneous
case [6] leads to

Mpre-gel
prod (C, σ)≈

MT

8
√
πM10M01

[E1(C, σ)]
−1/2. (8)

This equation does not make sense physically, because it
encloses an infinite area under the curve between abscissae
0 and 1 when σ→∞. The equation corresponding to N
is increasing towards 0 and 1 (without physical sense).

We believe that asymptotic solutions are good enough
to substitute the exact PSD in the cases in which aggrega-
tion eliminates small particles with time (i.e., Brownian
kernel). However, obtaining the mixing behavior for the
product kernel needs an exact solution, as we shall show
now.

Analysis of the bi-component exponential PSD
for product kernel. – In what follows, back in the
continuous case, we name m the solute mass and n the
solvent mass in a particle. We take an initial exponential
PSD:

c(m,n, 0) = ab exp(−am− bn),
already used by Lushnikov [7] to analyze the mixing state
of bi-component mixtures for the constant kernel case.
This PSD has first- and second-order moments:

ϕ=
1

a
+
1

b
, ψ=

2

a2
+
2

ab
+
2

b2
, (9)

respectively. Then, the unitary mass to make dimension-
less the Smoluchowski equation is (see [6]):

ω=
ψ

ϕ
=
2(a2+ ab+ b2)

ab(a+ b)
. (10)

The initial amount of the solute is 1/a and of the solvent
is 1/b, values that must be conserved until gelation. The
total initial number of particles is 1.
By applying the method shown in [6] the solution is

c(m,n, τ) =
ab

m+n
exp

(
−am− bn− m+n

ω
T

)

×
∞∑
k=0

(
a3b3mn(m+n)τ

2(a2+ ab+ b2)

)k

×
k+1∑
j

mjnk+1−j

j!(k+1− j)!(k+ j)!(2k+1− j)! ,

being

τ = b2ψt, T =

∫ τ
0

M(τ)dτ.

M(τ) is the total dimensionless mass present, which after
gelation (for τ = 1) diminishes with time.
Without loss of generality, we assume that a� b, and

we name η0 = b/a, then 0� η0 � 1.
For each time, τ , the total dimensionless mass,M, the

modified time, T , and the total dimensionless number of
particles, N , should be known.
For τ � 1 we have

T = τ, M(τ) = 1, N (τ) = 2(η
2
0 + η0+1)

(η0+1)
2 − 1

2
τ.

For τ > 1, from eq. (63) of [6] we have
( 1

a
s
ωa
+1
+

1
b

s
ωb
+1

)2
+

1
a2(
s
ωa
+1
)2 +

1
b2(

s
ωb
+1
)2 =

(a+ b)2+ a2+ b2

a2b2τ

( s

ωa
+1
)( s

ωb
+1
)
. (11)
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By setting

η=
s+ωb

s+ωa
, (12)

we get

(
1

η
− 1
)3
(1− η3) =

(
1

η 0
− 1
)3
(1− η30)

1

τ
. (13)

By solving numerically this equation for η, we can obtain
M(τ) by using:

M(τ(η)) = (1+ η)(1− η)3η20
(1+ η0)(1− η0)3η2 .

From this equation we can calculate N (τ) by numerical
integration and T (τ) taking into account that [6]:

T = s+Mτ =
aη− b
1− η ω+Mτ.

Analysis of the number and mass of particles
with a given concentration of solute. – From expres-
sions (4) and (5), after making the integrals, by setting
C̃ = 1−C, and naming:

A= aC + bC̃ +
T

ω
, D=

a3b3CC̃τ

2(a2+ ab+ b2)
, (14)

we have

N(C, τ) =
ab

A2

∞∑
k=0

(4k+1)!

(
D

A4

)k
v(C, C̃, k), (15)

M(C, τ) =
ab

A3

∞∑
k=0

(4k+2)!

(
D

A4

)k
v(C, C̃, k), (16)

being v the function:

v(x, y, k) =

k+1∑
j

xjyk+1−j

j!(k+1− j)!(k+ j)!(2k+1− j)! . (17)

Except for η0 = 0 and η0 = 1, N and M must be obtained
numerically.
In the previous equations, D/A4 is invariant up to a

global change in the time scale (it does not change when
a and b are both multiplied by the same constant).
As shown in [5] for the additive kernel, it is better to

work with N divided by the total number of particles
present at each time, and the same with M divided by
the total mass at each time. In that case the area under
the curves that represent these new functions in [0, 1] must
be unity. Therefore, the new magnitudes are

N∗(C, τ) =
ωN(C, τ)

ϕN (τ) , (18)

M∗(C, τ) =
M(C, τ)

ϕM(τ) , (19)

as functions of C for each τ value.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
*

C

τ = 0
τ = 1

τ = 10
τ = 100

τ = 1000
τ = ∞

Fig. 1: Evolution of N∗(C, τ) for several values of τ , a= 3,
b= 1. For τ →∞ this function tends to the solution when a= b
(continuous line).

For τ → 1 we can use the critical size instead of τ .
Following Ziff et al. [11] that size is defined from the initial
second- and third-order moments and the gelation time.
Its dimensionless value, σ, is related to τ :

τ = 1−σ−1/2. (20)

In the gelation σ→∞, and after it σ is infinite forever [11].
Then, σ cannot be used instead of the time after gelation.
The form of N∗ and M∗ is general for any values of a

and b. As an example, a case with a= 3, b= 1, is used in
the figures.
In fig. 1 the particle number evolution is shown. Inde-

pendently of the specific values of a and b, finite values for
N∗ always appear. The curve tends to the curve obtained
for a= b (symmetric case) as time goes on (continuous
curve in the fig. 1). Therefore, for product kernel an equi-
librium concentration does not exist, but a maximum at
Cm = 0.5 for τ →∞ exists. This signifies that the main
component (solvent in the present case) passes preferably
to the gel phase with time, tending to a sol phase with
equal amount of both components.
Figure 2a shows the evolution of M∗ for the same case

a= 3, b= 1, for time until gelation. Here, an asymptote
for τ = 1 appears at Ci ≈ 0.192.
Figure 2b shows the evolution ofM∗ after gelation. The

asymptote is present but it displaces towards Cm = 0.5
with time.
We have analyzed the place Ci where the asymptote

appears for τ = 1 as a function of η0. In fig. 3 the results
for several values of η0 are shown. If a and b are similar
the value of Ci approaches 0.5. On the other hand when
a→∞ we have Ci = 0 (the solute does not exist).
It is important to determine Ci as a function of η0 when

τ = 1. This is a difficult task in an analytical form (due to
the series character of our solutions). Therefore, we opted
for a heuristic method: calculating M∗ as a function of C
by summing the series for several values of η0 for τ = 1,
and determining by inspecting the place of the asymptote.
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0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
*

C

(b) τ = 0
τ = 1

τ = 10
τ = 100

τ = 1000
τ = ∞

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
*

C

(a) τ = 0.00
τ = 0.25
τ = 0.50
τ = 0.75
τ = 0.90
τ = 0.95
τ = 1.00

Fig. 2: Evolution of M∗(C, τ) for several values of τ , a= 3,
b= 1. (a) Before gelation. At this time the function has a
logarithmic singularity at Ci (see its definition in the text).
(b) After gelation. The function tends with time to the solution
for the symmetrical case a= b, with a displacement of the
asymptote towards Cm = 0.5.

After that, we fitted the solution with rational functions,
by searching integer coefficients. The solution

Ci(η0) =
η20 + η0/2

η20 + η0+1
=

2b2+ ab

2(a2+ ab+ b2)
, (21)

fits very well, and this is drawn with the “experimental”
points in fig. 3.
Not only the integral character of the obtained coeffi-

cients, but also the term a2+ ab+ b2 (already present in
other analytical parameters of the problem) support the
goodness of expression (21). The previous function also
verifies the symmetry condition:

Ci(a, b) = 1−Ci(b, a),

as theoretically should be. Therefore, although the validity
of (21) is not rigorously proved, we think it is correct.
After we know the vertical asymptote location for any

value of η0 we can determine the asymptotical behavior
of M∗(τ = 1) at Ci. The problem is difficult because
v(Ci, C̃i, k) cannot be easily obtained. However, we can
determine its asymptotic value for k→∞.

0.00

0.10

0.20

0.30

0.40

0.50

0.0 0.2 0.4 0.6 0.8 1.0

C
i

η0

Fig. 3: Maxima ofM∗(C, τ = 1). Marks are the “experimental”
locations of the vertical asymptote for τ = 1. The curve shows
Ci(η0) = (η

2
0 + η0/2)/(η

2
0 + η0+1).

Starting with (16), (17) and (19), in the limit when
σ→∞, we arrive at

M∗(Ci, σ→∞) = (a
2+ ab+ b2)3

8ab(a+ b)4

×
∞∑
k=0

(4k+2)!

(
1− 3
8σ

)k

× dkv(Ci, C̃i, k), (22)

with

d= (2a2+5ab+2b2)(a2+ ab+ b2)/(a+ b)4/128.

We can assume that, in the limit when k→∞,
v(Ci, C̃i, k)≈ v(C#, C#, k)

is fulfilled, being C# an auxiliary “concentration” to be
determined (expected not much different from 0.5). The
calculation of v(C#, C#, k) is straightforward:

v(C#, C#, k) =
Ck+1# (4k+2)!

(k+1)![(2k+1)!]2(3k+1)!
.

In this case, approximating the factorials we get

v(Ci, C̃i, k)≈ 64

π
√
27(4k+2)!k

(
4096

27

)k
Ck+1# . (23)

By taking into account the logarithmic series, we have

M∗(Ci, σ→∞) = − (a2+ ab+ b2)3

ab(2a2+5ab+2b2)

× log
[
1−G

(
1− 3
8σ

)]
, (24)

being

G=
32(2a2+5ab+2b2)(a2+ ab+ b2)C#

27(a+ b)4
.
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G cannot be greater than unity, because in this case
the logarithm is complex. If G< 1 then we have not an
asymptote (we should have a finite value). Therefore, the
unique possibility is G= 1, which leads to

C# =
27(a+ b)4

32(2a2+5ab+2b2)(a2+ ab+ b2)
. (25)

Then, a logarithmic singularity appears:

M∗(Ci, σ→∞) =
√
27

4π

(a2+ ab+ b2)3

ab(2a2+5ab+2b2)
log σ. (26)

Comparison with the constant and additive
kernels. – In [5] it is shown that the behavior of the
exponential PSD during its time evolution for constant
and additive kernels are somewhat similar: both hold
asymptotic solutions (as Vigil and Ziff [4] conjecture and
also show from some specific cases). However, in [5] it is
shown that the asymptotic solution for additive kernel
has a limited use to study the PSD for large time values.
For constant kernel (see [5]), the maxima of N∗ and

M∗ are proportional to σ1/2 as time goes on. In this
case an equilibrium concentration exists with a value of
Co = b/(a+ b). All particles present tend to have this
concentration as time increases. Also, the number and
mass PSDs have the same shape (see fig. 1 of [5]).
For additive kernel (see fig. 2 of [5]), the maximum of

M∗ is proportional to σ1/2 as time evolves, tending the
M∗ curve to a Dirac δ. However, N∗does not have this
shape, because the maximum of the curve is proportional
to log σ, having the asymptotic PSD an asymptote at Co.
Therefore, the number PSD does not have an equilibrium
concentration.
As we have demonstrated here, for product kernel (see

figs. 1 and 2) equilibrium concentrations do not exist in
any case (a fortiori for the number PSD), even before
gelation. Rather, a “critical concentration”, Ci, appears
for the mass PSD.
We conjecture that mixing behaviors mainly depend on

the homogeneity constant of the kernel, λ, which is 0 for
both the constant kernel and the Brownian one, which is

K(m|m′) = 2+ (m/m′)1/3+(m′/m)1/3 .
The results for constant and Brownian kernels shown by

Matsoukas et al. [2] are very enlightening, regarding the
evolution of the excess variance of solute, X2: both cases
behave similarly, by maintaining X2/M constant.
The case with ‘free molecular regime’ kernel (with

λ= 1/6, a small value) is analyzed numerically in [3]:
its behavior is similar to the other two previous cases,
although X2/M decreases slowly with time.
For gelling cases, the typical handling of the moments

evolution equations are not allowed. For example, the
masses of each component in the system have non-zero
derivatives, and some other moments have infinite values.
Therefore, we think that the use of X2 in cases without

Dirac δ as asymptotic solution is risky and probably
invalid (i.e., gelation cases).

Conclusions. – We have shown that asymptotic solu-
tions cannot be used to analyze the mixing state of a bi-
component mixture as t→∞ in all cases. This also yields
to the non-existence of an equilibrium concentration.
When kernel values are small for minute particles, these

particles remain a long time in the system, invalidating the
asymptotic solutions (obtained for large particle sizes) to
analyze the mixing state. Gelling kernels are of this kind,
and the problem is even worse, due to the lack of mass
conservation for times after gelation.
In the specific case of the product kernel, the number of

particles, N∗, with a given solute concentration, is always
finite (different from the constant and additive kernels:
for infinite time some concentration has N∗→∞ in both
cases). Therefore, an equilibrium concentration, in which
particles “accumulate”, does not exist for product kernel.
The evolution in time of the particles mass, M∗, with a

given solute concentration has an asymptote from gelation
time at a concentration Ci, which depends on initial PSD
parameters. Besides, the shape of the function is not a
Dirac δ because particles with C = 0 and C = 1 always
exist.
After gelation, particles pass to gel phase in an asym-

metrical way: the component in excess passes faster to the
gel phase, tending the sol phase to have the same amount
of both components.
Finally, the conclusions presented in [2] and [3] regard-

ing bi-component mixing behavior for non-gelling kernels
cannot be generalized to kernels with gelation. Nonethe-
less, some of those conclusions could still be approximately
valid.
Obviously, the present conclusions do not invalidate the

interesting analysis of non-gelling cases in [2] and [3].
Besides, the numerical method used there (constant Monte
Carlo method) is very useful to analyze the mixing state
for cases with or without gelation.
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