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Abstract—A novel strategy to define a high-dimensionality
parallelotope-shaped domain is proposed to train surrogate mod-
els of reflectarray unit cells. The concept is based on the definition
of a region or rectangle of stability where sharp resonances
are avoided as much as possible. Then, a 4-D parallelotope is
defined around the rectangle of stability, controlling its size in
order to avoid new resonances that appear as a consequence of
increasing the dimensionality of the domain. This methodology
is applied to generate surrogate models of a multi-resonant unit
cell based on support vector regression. Results show a high
degree of agreement between the obtained surrogate models and
simulations based on the method of moments based on local
periodicity tool that was used to generate the training samples.
Furthermore, the proposed method performs better than lower
dimensionality methods for wideband optimization.

Index Terms—Surrogate modelling, machine learning, support
vector regression, reflectarray unit cell, method of moments

I. INTRODUCTION

The electromagnetic response of reflectarray unit cells is
obtained by means of a full-wave analysis tool assuming
local periodicity (LP) [1]. This tool may be implemented
with different techniques, although the most common is the
method of moments (MoM) [1], [2]. This approach of analysis
provides a good trade-off between accuracy in the predictions
of the radiation patterns and computing time when compared
to a full-wave analysis of the whole antenna [3]. However,
when applied to the optimization of large arrays, it is still slow
[4]. Thus, it is interesting to employ other techniques to further
improve computing efficiency without sacrificing accuracy.

Surrogate modelling of unit cell has already been proposed
for some time using a number of machine learning techniques
such as artificial neural networks [5], support vector regression
(SVR) [6] or ordinary kriging [7]. However, high accuracy
models rely on avoiding the appearance of sharp resonances
in the training domain [8]. For low-dimensionality models,
this may be easy to achieve. However, multi-resonant unit cells
with several degrees of freedom (DoF), employed in advanced
reflectarray optimization, produce a multitude of resonances
when the dimension of the input space is increased, which may
cause a severe degradation of the surrogate model accuracy.

In order to overcome the limitations of new resonances
when the dimensionality of the surrogate model is increased,
this work proposes the definition of a novel 4-D parallelotope1

1A parallelotope is the generalization in 𝑁 dimensions of a parallelepiped,
while an orthotope is the generalization of the rectangle in 𝑁 dimensions.

domain around a rectangle of stability where the surrogate
models may be trained. The methodology to define such
training domain is general and consists in several steps. First,
the geometrical DoF of the unit cell are first reduced to
two by means of scaling factors. Then, the value of the
scaling factors, as well as the periodicity of the unit cell, is
adjusted in such a way that the plane defined by the reduced
DoF avoids sharps resonances as much as possible. Then, a
rectangle of stability is chosen within this plane by limiting
the range of these two DoF. Next, two new DoF are added,
defining a 4-D parallelotope around the rectangle of stability.
These two new DoF allow to control the size of the 4-D
parallelotope in such a way as to avoid new sharp resonances
that appear outside the rectangle of stability in the new extra
dimensions. This methodology is applied to a multi-resonant
unit cell [9], for which SVR surrogate models are obtained
at several frequencies and applied to a wideband reflectarray
optimization. Results show a net improvement of reflectarray
performance in the whole frequency band as well as superior
performance when compared to the use of low-dimensionality
models.

II. DEFINITION OF THE PARALLELOTOPE DOMAIN

A. Unit Cell Definition and Reflectarray Specifications

Although the methodology to define the 4-D parallelotope
is general and can be applied to any unit cell that provides
at least four DoF, it will be exemplified with the unit cell
shown in Figure 1 and studied in detail elsewhere [9]. This
unit cell is comprised of two sets of four parallel and coplanar
dipoles in two layers of metallization. Each set of four dipoles
is used to control the phase-shift for each linear polarization
by means of varying the lengths of the dipoles. Since the
lengths of the dipoles constitute the design DoF, the rest
of the parameters will be kept constant (substrate, dipole
widths, etc.). In the following sections, results were obtained
employing a substrate with ℎ𝐴 = 2.363 mm of thickness,
Y𝑟𝐴 = 2.55 and tan 𝛿𝐴 = 0.0009 for the bottom layer, and
a substrate with ℎ𝐵 = 1.5 mm of thickness, Y𝑟𝐵 = 2.17 and
tan 𝛿𝐵 = 0.0009 for the top layer (see Figure 1). In addition,
the width of the dipoles is 0.5 mm and the separation centre
to centre between parallel dipoles is 3.9 mm.

For the practical application of the surrogate models, a
large reflectarray is considered, comprised of 7052 elements
in a regular grid of 86 × 82 elements and with a feed
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Figure 1. Sketch of the unit cell employed in this work, with several parallel
and coplanar dipoles that provide several degrees of freedom.

placed at (−358, 0, 1070) mm with regard to the reflectarray
center, generating an average edge illumination taper that
varies between −14.8 dB and −25.3 dB in the frequency range
10.95 GHz—12.75 GHz. The antenna is placed on a satellite
in geostationary orbit with a footprint providing European
coverage, defined by the French national space agency CNES
[10], with a minimum copolar gain requirement of 28 dBi in
the coverage zone.

B. Definition of the Rectangle of Stability

The unit cell in Figure 1 provides up to eight DoF for
the design and optimization of reflectarray antennas (the
dipole lengths). Thus, the first step in the definition of a 4-
D parallelotope is to reduced the total number of DoF from
eight to two. To that end, the lengths of each set of four dipoles
will be scaled with regard to one variable, 𝑇𝑥 for the dipoles
oriented in 𝑥, and 𝑇𝑦 for the dipoles oriented in �̂�:

𝐿𝑎1 = 𝛼𝑎1𝑇𝑦 ; 𝐿𝑎2 = 𝛼𝑎2𝑇𝑦 ; 𝐿𝑎3 = 𝛼𝑎3𝑇𝑦 ; 𝐿𝑎4 = 𝛼𝑎4𝑇𝑥

𝐿𝑏1 = 𝛼𝑏1𝑇𝑥 ; 𝐿𝑏2 = 𝛼𝑏2𝑇𝑥 ; 𝐿𝑏3 = 𝛼𝑏3𝑇𝑥 ; 𝐿𝑏4 = 𝛼𝑏4𝑇𝑦 .
(1)

The values of the scaling factors 𝛼𝑎 and 𝛼𝑏 should be selected
such that sharp resonances are avoided as much as possible
in the (𝑇𝑥 , 𝑇𝑦) plane while achieving a sufficiently large and
smooth phase response of the direct reflection coefficients.
In addition, it could also be interesting to enforce symmetry
between the lateral dipoles (i.e., 𝛼𝑎1 = 𝛼𝑎3 and 𝛼𝑏1 = 𝛼𝑏3 )
since this helps to reduce the cross-polarization introduced by
the unit cell [9]. Finally, the periodicity of the unit cell, 𝑝𝑥

and 𝑝𝑦 , as well as the range where 𝑇𝑥 and 𝑇𝑦 vary must be
chosen. When choosing the unit cell periodicity, in addition
to try to avoid sharp resonances, it is convenient to also avoid
the appearance of grating lobes [1]. Regarding the range of
variation of 𝑇𝑥 and 𝑇𝑦 , physical constraints must be met,
such as considering only positive values, since these variables
encode the length of dipoles; avoiding overlapping between
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Figure 2. Magnitude of the (a) direct coefficient 𝜌𝑦𝑦 and (b) cross-coefficient
𝜌𝑦𝑥 in the (𝑇𝑥 , 𝑇𝑦 ) plane for oblique incidence with (\ = 29°, 𝜑 = 35°) ,
a periodicity 𝑝𝑥 = 𝑝𝑦 = 14 mm, and 𝛼𝑎1 = 𝛼𝑎3 = 0.58, 𝛼𝑎2 = 𝛼𝑎4 = 1,
𝛼𝑏1 = 𝛼𝑏3 = 0.63, 𝛼𝑏2 = 0.93, 𝛼𝑏4 = 0.95 at 11.85 GHz.

adjacent dipoles; and complying with the maximum length
imposed by the unit cell periodicity.

An example is shown in Figure 2, where the magnitude of
reflection coefficients 𝜌𝑦𝑦 and 𝜌𝑦𝑥 is shown in a subset of
the (𝑇𝑥 , 𝑇𝑦) plane for oblique incidence (\ = 29°, 𝜑 = 35°) at
11.85 GHz. For this case, the chosen scaling parameters are
the same as the ones suggested in [9], while the periodicity is
𝑝𝑥 = 𝑝𝑦 = 14 mm. As can be seen, a sharp resonance appears
for high values of 𝑇𝑥 and 𝑇𝑦 that transfers energy from the
direct coefficient 𝜌𝑦𝑦 to the cross-coefficient 𝜌𝑦𝑥 . However,
for values of 𝑇𝑥 and 𝑇𝑦 lower than 11 mm an area with low
ripples and no sharp resonances appears. Although not shown,
the total phase-shift achieved in that area for 𝜌𝑦𝑦 is larger than
500°, which is suitable for reflectarray design [1]. In this way,
a stability region has been found for 𝑇𝑥 , 𝑇𝑦 ∈ [0.1, 11]mm.
The maximum value shown in Figure 2 for 𝑇𝑥 and 𝑇𝑦 was
chosen such that adjacent dipoles do not overlap each other.
If the periodicity is reduced from 14 mm to 12 mm, no sharp
resonances appear in the maximum allowable subset in the
(𝑇𝑥 , 𝑇𝑦) plane, and it will be used for the remaining of the
paper, with 𝑇𝑥 , 𝑇𝑦 ∈ [4, 10]mm to limit those variables to a
region where the phase-shift varies with the lengths of the
dipoles [8].

C. Extending the Rectangle of Stability to a 4-D Parallelotope

The next step it to extend the model to include more geo-
metrical DoF. In order to extend the model to four dimensions,
we define the hyper-plane (𝑇𝑥1 , 𝑇𝑥2 , 𝑇𝑦1 , 𝑇𝑦2 ), whose variable
are related to the dipole lengths of Figure 1 as follows:

𝐿𝑎1 = 𝛼′
𝑎1𝑇𝑦1 ; 𝐿𝑎2 = 𝛼′

𝑎2𝑇𝑦2 ; 𝐿𝑎3 = 𝛼′
𝑎3𝑇𝑦1 ; 𝐿𝑎4 = 𝛼′

𝑎4𝑇𝑥2

𝐿𝑏1 = 𝛼′
𝑏1
𝑇𝑥1 ; 𝐿𝑏2 = 𝛼′

𝑏2
𝑇𝑥2 ; 𝐿𝑏3 = 𝛼′

𝑏3
𝑇𝑥1 ; 𝐿𝑏4 = 𝛼′

𝑏4
𝑇𝑦2 .

(2)

However, when training in the whole hyper-plane, the accu-
racy of the obtained models is not high enough even when
considerably increasing the number of training samples. More-
over, training times increase substantially due to the higher
dimensionality and number of training samples, deeming this
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Figure 3. Relative error in dB of the real part of the estimated direct coefficient
𝜌𝑥𝑥 at the stability rectangle for oblique incidence with (\ = 29°, 𝜑 = 35°)
and a periodicity 𝑝𝑥 = 𝑝𝑦 = 12 mm when the SVR is trained using 2500
random samples placed at (a) the stability rectangle and (b) the most fitted
orthotope containing the stability rectangle. The frequency is 11.85 GHz.

approach unsuitable. The loss of accuracy can be seen in
Figure 3. On the one hand, Figure 3(a) shows the relative
error of the SVR surrogate model for the real part of direct
coefficient 𝜌𝑥𝑥 in the stability rectangle. The error is lower
than −30 dB in most of the rectangle, with an average value
of −37.2 dB in the whole rectangle. On the other hand,
Figure 3(b) shows the relative error when the training domain
is the fittest orthotope containing the rectangle of stability
(shown in blue in Figure 4(a) and Figure 4(b)). Now, the error
is close to 0 dB for a non-negligible number of considered
points, and the average error in the orthotope is −16.5 dB.
Similar results were obtained for other reflection coefficients
and angles of incidence.

To improve the accuracy of the 4-D SVR models without
increasing the number of training samples, it is proposed to
perform the training in a restricted domain around the rect-
angle of stability. To that end, we define a 4-D parallelotope
with variables (𝑇𝑥2 , 𝑇𝑦2 ,Δ𝑥 ,Δ𝑦) as:

𝑇𝑥1 = 𝛼𝑏1𝑇𝑥2 ± Δ𝑥 ,

𝑇𝑦1 = 𝛼𝑎1𝑇𝑦2 ± Δ𝑦 .
(3)

and:

𝛼′
𝑎1 = 𝛼′

𝑎3 = 1 ; 𝛼′
𝑎2 = 𝛼𝑎2 ; 𝛼′

𝑎4 = 𝛼𝑎4

𝛼′
𝑏1

= 𝛼′
𝑏3

= 1 ; 𝛼′
𝑏2

= 𝛼𝑏2 ; 𝛼′
𝑏4

= 𝛼𝑏4

(4)

The two new variables Δ𝑥 and Δ𝑦 define, respectively, the
size of the parallelotope in the 𝑇𝑥1 and 𝑇𝑦1 dimensions (see
Figure 4). In this way, Δ𝑥 and Δ𝑦 allow to control how far
from the rectangle of stability the models are trained. Please
note that when Δ𝑥 = Δ𝑦 = 0 the model is reduced to the
2-D case of (1), with 𝑇𝑥2 = 𝑇𝑥 , 𝑇𝑦2 = 𝑇𝑦 , 𝛼𝑎1 = 𝛼𝑎3 and
𝛼𝑏1 = 𝛼𝑏3 , preserving the symmetry of the lateral dipoles.
Figure 4 shows a representation of different projections of the
4-D parallelotope in 2-D and 3-D subspaces, illustrating, in
red color, the rectangle of stability as well.

(a) (b)

(c)

}

(d)

Figure 4. Low-dimensionality illustration of the region where the SVR
models are trained depending on the variables from (2) (in green) and (3)
(in gray). (a) Parallelogram (rectangle) yielded by the orthogonal projection
of the parallelotope (orthotope) SVR domain over the (𝑇𝑥1 , 𝑇𝑥2 ) subspace.
(b) Parallelogram (rectangle) produced by the orthogonal projection of the
parallelotope (orthotope) SVR domain over the (𝑇𝑦1 , 𝑇𝑦2 ) subspace. (c) Par-
allelepiped yielded by the orthogonal projection of the parallelotope SVR
domain over the (𝑇𝑥1 , 𝑇𝑥2 , 𝑇𝑦2 ) subspace. (d) Parallelepiped that results from
the cut of the parallelotope SVR domain along the hyperplane 𝑇𝑦2 = 𝑇 . For
the sake of clarity, only the orthogonal projections of the fittest orthotope
are depicted (beneath the parallelotope projections). In all cases, the stability
region is plotted in red.

III. APPLICATION TO WIDEBAND OPTIMIZATION

A. SVR Model Training Specifications

A set of SVR models in a 4-D parallelotope with Δ𝑥 ,Δ𝑦 ∈
[0, 0.5] mm will be trained at five equispaced frequencies
in the range 10.95 GHz – 12.75 GHz in order to perform
a wideband reflectarray optimization. The training process
consists on an efficient grid search in the plane defined by
the SVR parameters based on cross-validation. To that end,



Table I
FIGURES OF MERIT OF A EUROPE COVERAGE AFTER A WIDEBAND OPTIMIZATION AT FIVE DIFFERENT FREQUENCIES WITH A 2-D SVR (Δ𝑥 = Δ𝑦 = 0 mm)

AND A 4-D SVR (Δ𝑥 , Δ𝑦 ∈ [0, 0.5] MM). OPTIMIZED LAYOUTS WERE SIMULATED WITH MOM-LP. CPMIN IS IN DBI AND XPI IS IN DB.

10.95 GHz 11.40 GHz 11.85 GHz 12.30 GHz 12.75 GHz

CPmin XPI CPmin XPI CPmin XPI CPmin XPI CPmin XPI

Initial layout 23.38 25.86 27.77 30.06 29.89 32.25 26.78 29.01 22.35 23.85
Opt. SVR 2D 27.30 31.95 29.07 34.86 29.36 35.79 29.06 35.70 27.93 34.47
Opt. SVR 4D 28.09 38.48 28.59 39.25 28.95 39.73 28.64 39.21 28.19 38.54

a total of 2500 random samples per angle of incidence and
frequency are generated with the MoM-LP described in [2]
are considered. They are divided into three disjoint sets:
1750 for training, 375 for validation and 375 for test. In
addition, models are generated for 152 different angles of
incidence, since the angles of incidence are not considered
as input variables to the model. Then different models per
angle of incidence and frequency are considered: the real
and imaginary part of each reflection coefficient, plus the
magnitude of the two direct coefficients. More details on the
training process may be found in [6]. In addition, 2-D SVR
models (Δ𝑥 = Δ𝑦 = 0) will also be trained in the same
conditions to compare with the 4-D models.

The achieved average test error, compared with the reference
MoM-LP tool, across all reflection coefficient models, angles
of incidence and frequencies is −29.8 dB for the 4-D models,
while it is −40.1 dB for the 2-D models, guaranteeing a high
degree of accuracy for the prediction of radiation patterns [6].

B. Wideband Optimization

Table I shows the results for the dual-linear wideband
optimization. For each frequency, the worst result between
both linear polarizations is shown. The optimizations were
carried out with the SVR models, but the shown results were
obtained after simulating the initial and optimized layouts with
the MoM-LP [2]. Performance of the initial layout quickly
deteriorates as it is simulated further away from the design
frequency (11.85 GHz). After the optimization with the 2-
D SVR, both copolar and cross-polarization performances
are improved across all frequencies. However, the minimum
copolar gain does not comply with the goal of 28 dBi. The
4-D SVR provides extra DoF to improve the performance of
the antenna. Indeed, in addition to improving the copolar gain,
complying with the goal of achieving at least 28 dBi at all fre-
quencies, cross-polarization performance is further improved,
showing how the 4-D SVR provides an edge when compared
to the 2-D SVR for wideband and dual-band reflectarray direct
optimization.

IV. CONCLUSION

A novel methodology to train surrogate models in a 4-D
parallelotope-shaped domain has been presented. It is based on
defining a rectangle of stability in 2-D that is later extended to
4-D by means of auxiliary DoF. In this way, the 4-D parallelo-
tope domain is able to avoid sharp resonances that appear as a

consequence of increasing the models dimensionality. Follow-
ing this methodology, a set of SVR models were trained for
application in a wideband reflectarray optimization, showing
superior results than their low-dimensionality counterpart.
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