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Abstract

We consider the homogeneous Dirichlet problem for the anisotropic parabolic equation

ut −
N∑

i=1

Dxi

(
|Dxi u|pi(x,t)−2Dxi u

)
= f (x, t)

in the cylinder � × (0, T ), where � ⊂ RN , N ≥ 2, is a parallelepiped. The exponents of nonlinearity pi

are given Lipschitz-continuous functions. It is shown that if pi(x, t) > 2N
N+2 ,

μ = sup
QT

maxi pi(x, t)

mini pi(x, t)
< 1 + 1

N
, |Dxi u0|max{pi(·,0),2} ∈ L1(�), f ∈ L2(0, T ;W1,2

0 (�)),

then the problem has a unique solution u ∈ C([0, T ]; L2(�)) with |Dxi u|pi ∈ L∞(0, T ; L1(�)), ut ∈
L2(QT ). Moreover,

|Dxi u|pi+r ∈ L1(QT ) with some r = r(μ,N) > 0, |Dxi u| pi−2
2 Dxi u ∈ W1,2(QT ).

The assertions remain true for a smooth domain � if pi = 2 on the lateral boundary of QT .
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1. Introduction

We consider the Dirichlet problem for the model anisotropic parabolic equation

ut −
N∑

j=1

Dj

(
|Dju|pj (z)−2Dju

)
= f (z) in QT ,

u = 0 on ∂� × (0, T ), u(x,0) = u0(x) in �.

(1.1)

Throughout the text we denote by z = (x, t) the points of the cylinder QT = � × (0, T ) with the 
base �. The domain � ⊂RN , N ≥ 2, is either a parallelepiped

K�a =
{
x ∈ RN : xi ∈ (−ai, ai), i = 1,N

}
with the faces parallel to the coordinate planes and the edge lengths 2ai , or a domain with the 
smooth boundary ∂� ∈ Ck , where k ≥ 2 is a sufficiently large natural number. The assumptions 
on the exponents pi(z) differ according to the choice of the domain. The exponents of nonlinear-
ity pi and the right-hand side f are given functions whose properties will be specified later. The 
notation Dju is used for the partial derivative with respect to xj , D2

ij u = Di

(
Dju

)
, i, j = 1,N .

Equation (1.1) with pi = p is sometimes called the equation of orthotropic diffusion [9,22]. 
It appears in the mathematical modeling of the diffusion processes where the diffusion rates are 
proportional to |Dju|p−2. In the present work, we are interested in the anisotropic case where 
the diffusion rates differ according to the directions xj . The exponents pj > 2 correspond to 
the directions of slow diffusion, while pj < 2 means that the diffusion is fast. Since we allow 
pj to be functions of the variables (x, t), it is possible that the character of diffusion in the j th 
direction changes from point to point.

At the points where Dju = 0 for some j ∈ {1, 2, . . . , N}, equation (1.1) degenerates if pj > 2
or becomes singular if pj < 2. Despite the resemblance with the celebrated evolution p-Laplace 
equation

ut = div
(
|∇u|p−2∇u

)
= f, 1 < p < ∞, (1.2)

which degenerates or becomes singular at the points where |∇u| = 0, the properties of the so-
lutions to equation (1.1) are in striking contrast with the properties of the classical p-Laplacian
(1.2). Unlike equation (1.2), it may happen that the solutions of problem (1.1) vanish in a fi-
nite time if the equation includes only one direction of fast diffusion with pi < 2. Conversely, 
the speed of propagation of disturbances may be finite or even zero in the direction of slow 
diffusion, see [17,4]. The difficulties brought in by the anisotropy and the nonhomogeneity of 
the diffusion operator are illustrated by the analysis of the self-similar solutions of Barenblatt 
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type [15,22]. Unlike the isotropic case where the typical geometry is defined in terms of balls in 
RN , in the anisotropic case it is defined by parallelepipeds with the edge lengths related to the 
exponents pi .

In recent years, parabolic equations with anisotropic nonlinearity have been studied very ac-
tively. The theory of such equations, with constant or variable exponents pi , includes theorems 
of existence and uniqueness of weak solutions, properties of propagation of solutions in space 
and time, as well as certain regularity properties of solutions. For the existence results for equa-
tion (1.1), as well as more general equations with the anisotropic principal part, nonlinear terms 
of lower order with variable nonlinearity, and under different regularity assumptions on the data, 
see, e.g., [3,28,4,26,6,24,8,1,11,12,30] and further references therein. The methods of proof in 
these works vary in dependence on the assumptions about the data and the exponents of nonlin-
earity.

The regularity of local solutions to equation (1.1) has been studied by several authors. We 
refer, e.g., to [20,19] for results on local continuity of solutions to equation (1.1). In [18,25,14,13]
the Harnack inequality and Hölder continuity of local solutions is established. It was recently 
proven in [9] that the spatial gradient of the local solution of equation (1.1) is bounded. The 
above results refer to the local solutions of equation (1.1) and do not depend on the geometry of 
the boundary of the space domain �. One of the key tools of the proofs are inequalities of the 
Caccippoli type, which prevents one from a straightforward extension of the regularity results to 
the whole of the cylinder QT .

In the present work, we are interested in the global regularity properties of solutions to prob-
lem (1.1). This issue has been recently studied in several works. It is shown in [29] that problem 
(1.1) with constant pi > 1 admits Lipschitz-continuous solutions. This is true if the domain � is 
either a parallelepiped, or is convex, C2-smooth, and satisfies some geometric restrictions. The 
results of [29] are obtained under the following assumptions:

f ≡ 0, u0 ∈ C2(�), max
�

N∑
i=1

|Di(|Diu0|pi−2Diu0)| < ∞.

Moreover, it is shown that D2
ij u ∈ L2(QT ), provided that pi < 2. The key ingredient of the proof 

is the technique of “doubling the space variables”, which allows one to estimate the Lipschitz 
constant of the solution without differentiating the equation. Problem (1.1) with the variable 
exponents pi ∈ Cα[0, T ], α ∈ (0, 1), and the nonlinear source f = f (x, t, u, ∇u) is considered 
in [31]. Under the same assumptions on the geometry and smoothness of the space domain � as 
in [29], the authors prove that if f (x, t, u, ∇u) satisfies certain growth conditions with respect to 
u and ∇u, u0 is Lipschitz-continuous, and for every i = 1,N either pi(t) ≥ 2, or pi(t) ∈ (1, 2]
for all t ∈ [0, T ], then the problem has a unique solution which is Lipschitz-continuous in the 
space variables. Moreover, if pi(t) ≥ 2 for all i = 1,N , then u(x, ·, ) ∈ C

1
2 [0, T ].

Apart from these works, we are unaware of results on the global regularity for parabolic prob-
lems driven by the anisotropic operators, whilst the results for equations with the nonlinearity 
depending upon both space and time variables seem to be completely missing. Addressing this 
issue, we establish global higher integrability and second-order regularity of solutions to the 
anisotropic parabolic equation (1.1). For problems of this type, an extension of previous contri-
butions is particularly delicate due to varying anisotropy in both space and time variables. Let us 
describe the results of the present work. First we consider problem (1.1) in a rectangular domain 
� with the data satisfying the conditions
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f ∈ L2(0, T ;W 1,2
0 (�)),

N∑
i=1

∫
�

|Diu0|max{2,pi (x,0)} dx < ∞.

The exponents pi are Lipschitz continuous functions and satisfy conditions (2.3), (2.9). The latter 
condition means that at every point z ∈ QT the maximum and minimum of pi(z) are sufficiently 
close. The following is a brief account of the results in the case when � is a parallelepiped:

• problem (1.1) has a unique solution u ∈ C([0, T ]; L2(�)) such that

ut ∈ L2(QT ), u ∈ L∞(0, T ;W 1,2
0 (�)), Diu ∈ L∞(0, T ;Lp(·)(�)), i = 1,N;

• the solution possesses the property of global higher integrability of the partial derivatives:

∫
QT

|Diu|pi(z)+r dz < ∞, r ∈ (0, r∗), i = 1,N,

with some r∗ depending on the space dimension N and the number supQT

maxi pi(z)

mini pi(z)
;

• there exist the second-order derivatives

|Dju|
pj (z)−2

2 Dju ∈ W 1,2(QT ), j = 1,N;

• the same existence and regularity results hold for the regularized anisotropic equation

ut −
N∑

j=1

Dj

(
(ε2 + |Dju|2)

pj (z)−2
2 Dju

)
= f, ε ∈ (0,1); (1.3)

• it is not required that any of the exponents pi(z) belongs to the range corresponding to fast or 

slow diffusion; each of pi(z) may vary within the interval 
(

2N
N+2 ,p∗

h(z)
)

, where the critical 

exponent p∗
h(z) is defined in (2.2).

The results are extended to the solutions of the problem posed in a smooth domain. However, 
in this case we additionally assume that pi(z) = 2 on ∂� × [0, T ].

2. Assumptions and main results

To formulate the results we have to introduce the function spaces the solution of problem 
(1.1) belongs to. For a given vector �p(z) = (p1(z), . . . , pN(z)) with measurable and bounded 
components defined on QT , pi(z) > 1 in QT , we define the functions

ph(z) = N∑N
i=1

1
pi(z)

, the harmonic mean of p1(z), . . . , pN(z), (2.1)

and
86



R. Arora and S. Shmarev Journal of Differential Equations 349 (2023) 83–124
p∗
h(z) =

⎧⎨
⎩

Nph(z)

N − ph(z)
if N > ph(z),

any number from (1,∞) if N ≤ ph(z).

(2.2)

Assume that

pi : QT �→ (1,∞),
2N

N + 2
< pi(z) < p∗

h(z) in QT , i = 1,N. (2.3)

Given a measurable function q : � �→ (1, ∞), let Lq(·)(�) be the linear space

Lq(·)(�) =
⎧⎨
⎩u is measurable on � : ρq(·)(u) ≡

∫
�

|u|q(x) dx < ∞
⎫⎬
⎭ . (2.4)

The space Lq(·)(�) equipped with the norm

‖u‖q(·),� = inf
{
λ > 0 : ρq(·)

(u

λ

)
≤ 1

}

is a Banach space. For a vector �q(x) = (q1(x), . . . , qN(x)) with the components satisfying con-
ditions (2.3) in �, we define the variable anisotropic Sobolev space

W
1,�q(·)
0 (�) =

{
the closure of C∞

0 (�) w.r.t. the norm ‖u‖
W

1,�q(·)
0 (�)

=
N∑

i=1

‖Diu‖pi(·),�

}
.

(2.5)

The equivalent definitions of these spaces and the main properties of their elements are discussed 
in Section 3. To deal with the functions defined on the cylinder QT , we introduce the spaces of 
functions depending on x and t . For a vector �p : � × (0, T ) = QT �→ RN with the components 
satisfying conditions (2.3)

Vt (�) = W
1, �p(·,t)
0 (�), for a.e. in t ∈ (0, T ),

W (QT ) =
{
u : (0, T ) �→ Vt (�) : u ∈ L2(QT ), |Diu|pi(z) ∈ L1(QT ), i = 1,N

}
.

(2.6)

The space W (QT ) is equipped with the norm

‖u‖W = ‖u‖2,QT
+

N∑
i=1

‖Diu‖pi(·),QT
.

We will also need the following functions:

p∨(z) = max{p1(z), . . . , pN(z)}, p∧(z) = min{p1(z), . . . , pN(z)}. (2.7)

Definition 2.1. A function u is called weak solution of problem (1.1) if
87
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(i) u ∈ C0([0, T ]; L2(�)) ∩W (QT ), ut ∈ L2(QT ),
(ii) for every φ ∈W (QT )

∫
QT

(
utφ +

N∑
i=1

|Diu|pi(z)−2DiuDiφ

)
dz =

∫
QT

f φ dz, (2.8)

(iii) for every φ ∈ L2(�) (u(x, t) − u0(x), φ)2,� → 0 as t → 0+.

The main results of the work are given in the following assertions.

Theorem 2.1. Let � = K�a be a parallelepiped. Assume that the vector �p(z) satisfies conditions 
(2.3) and

pi ∈ C0,1(QT ), μ = sup
QT

p∨(z)

p∧(z)
< 1 + 1

N
. (2.9)

Then for every u0 ∈ W
1,2
0 (�) ∩ W

1, �p(·,0)
0 (�) and f ∈ L2(0, T ; W 1,2

0 (�)) problem (1.1) has a 
unique weak solution u ∈W (QT ). Moreover,

u ∈ L∞(0, T ;W 1,2
0 (�) ∩ W

1, �p(·)
0 (�)), ut ∈ L2(QT )

with

‖ut‖2,QT
+ ess sup

(0,T )

‖u‖
W

1,2
0 (�)

+ ess sup
(0,T )

‖u‖
W

1, �p(·,t)
0 (�)

≤ C
(

1 + ‖f ‖
L2(0,T ;W 1,2

0 (�))
+ ‖u0‖W

1,2
0 (�)

+ ‖u0‖W
1, �p(·,0)
0 (�)

)
.

(2.10)

Remark 2.1. The conditions of Theorem 2.1 allow the exponents pj (z) to vary within the in-

terval 
(

2N
N+2 ,p∗

h

)
. This means that the diffusion rate in the j th direction depends on the point 

z ∈ QT and may be slow on a part of the domain, i.e. pj (z) ≥ 2, and fast on its complement 
where pj (z) < 2. The second condition in (2.9) can be relaxed if the diffusion type in each di-
rection does not change on the whole of the domain. Relabeling the directions, we may assume 
pi(z) ≥ 2 in QT for i = 1,K (slow diffusion) and pi(z) ≤ 2 − σ for i = K + 1,N with some 
σ > 0 (fast diffusion). In this case, Theorem 2.1 can be proven under the weaker gap condition 
in (2.9) (see Remarks 6.2, 7.1, 7.2):

μ = sup
QT

p∨(z)

p∧(z)
< 1 + 2

N
.

Remark 2.2. In case of fast diffusion in j th direction, i.e. pj (z) < 2 in QT , we have the follow-
ing inclusion:

D2
ij u ∈ Lpj (·)(QT ) for all i = 1,N

- see Remarks 8.1 and 8.2
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Theorem 2.2. Let the conditions of Theorem 2.1 be fulfilled and u be the weak solution of prob-
lem (1.1).

(i) The solution has the property of global higher integrability: for every i = 1,N

∫
QT

|Diu|pi(z)+r dz < ∞ for every r ∈ (0, r∗), r∗ = 4 − 2N(μ − 1)

N + 2
. (2.11)

(ii) The solution has the second-order derivatives in the following sense:

|Diu| pi (z)−2
2 Diu ∈ W 1,2(QT ), i = 1,N. (2.12)

Remark 2.3. The assertions of Theorem 2.2 remain true if pi(z) ≥ 2 for all i = 1,N in QT and 

μ < 1 + 2

N
- see Remarks 7.1 and 7.2.

Remark 2.4. The property of higher integrability of the gradient is well-known for the solutions 
of the isotropic parabolic equations with (p, q)-growth, see, e.g., [7,5]. Let pi(z) = p(z) for all 
i = 1,N . In this special case p∨(z) = p∧(z) = p(z), μ = 1, and Theorem 5.2 (i) recovers the 
maximal possible gap between the exponents p and q found in [7] for the case of isotropic slow 
diffusion: 2 ≤ p ≤ q < p + 4

N+2 .

Remark 2.5. The assertions of Theorems 2.1 and 2.2 hold true for the solutions of the regularized 
equation (1.3). Moreover, the study of the regularized equation constitutes the bulk of the rest of 
the work. The conclusions of Theorems 2.1, 2.2 follow by passing to the limit as ε → 0 in the 
corresponding results for the solutions of the regularized problem given in Theorems 5.1, 5.2.

The next result addresses the situation where the domain � is smooth. Following the same 
scheme of arguments, we show that the assertions of Theorems 2.1 and 2.2 remain true but under 
additional restrictions on the anisotropy of the diffusion operator.

Theorem 2.3. Let � be a bounded domain with ∂� ∈ Ck ,

k ≥ 1 + N

(
1

2
− 1

p+

)
, p+ = sup

QT

p∨(z).

Assume that pi(z) = 2 on ∂� × [0, T ]. If �p(z) satisfies conditions (2.3), pi ∈ C0,1(QT ), and

μ = sup
QT

p∨(z)

p∧(z)
< 1 + 1

N
, or pi(z) ≥ 2 in QT and μ < 1 + 2

N
,

then for every u0 ∈ W
1,2
0 (�) ∩ W

1, �p(·,0)
0 (�) and f ∈ L2(0, T ; W 1,2

0 (�)) problem (1.1) has a 
unique weak solution u ∈W (QT ) such that

u ∈ L∞(0, T ;W 1,2
(�) ∩ W

1, �p(·)
(�)), ut ∈ L2(QT ).
0 0
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The solution u satisfies estimate (2.10). Moreover, the solution possesses the property of higher 
integrability of the gradient (2.11), and inclusions (2.12) hold.

Let us outline the contents of the work. In Section 3 we introduce the variable Lebesgue 
and Sobolev spaces and collect the known results on the anisotropic Sobolev spaces used in the 
rest of the work. The rectangular domains are natural for the anisotropic spaces because they 
allow one to extend a given function to a broader domain or the whole space by a function 
from the same anisotropic space. This is not always possible in a smooth domain because the 
standard procedure based on rectifying the boundary portion mixes the partial derivatives, which 
have different orders of integrability. This difficulty may be overcome by considering the class of 
domains with “p(·)-extension property”, i.e., the domains for which such an extension is possible 
without altering the anisotropic space, see [8]. A parallelepiped is one of the known examples of 
anisotropic �p(·)-extension domains, although the complete characterization of this class is not 
available thus far.

In Section 4 we construct the basis for the anisotropic variable Sobolev space in the rectan-
gular and smooth domains. In both cases we take for the basis the set of eigenfunctions of the 
Dirichlet problem for the Laplace operator and show that it is dense in the anisotropic variable 
Sobolev space.

In Section 5 the regularized nondegenerate problems for equation (1.3) in a rectangular do-
main are formulated. The regularized problems are solved with the method of Galerkin in the 
basis constructed in Section 4. Section 6 is entirely devoted to deriving a priori estimates for 
the solutions of the finite-dimensional approximate problems. The global regularity of the ba-
sis functions allows one to obtain global uniform estimates on the higher-order derivatives of 
the approximate solutions. These estimates entail the regularity of the sought solution, which is 
obtained later as the limit of the sequence of approximations.

It is proven in Section 7 that the partial derivatives of the finite-dimensional approximations 
are integrable in QT with the orders pi(z) + δ with some δ > 0, instead of the orders pi(z)

prompted by the equation. The integrals are bounded by a constant that does not depend of ε
and the number of the approximation. To derive these estimates we prove a special anisotropic 
interpolation inequality and combine it with the uniform a priori estimates on the second-order 
derivatives obtained in Section 6.

The main results are proven in Section 8. We prove first the existence and regularity results 
for the solution of the regularized problem (1.3). The proof of the existence theorem relies on the 
weak and strong compactness of the sequence of the approximate solutions, which follow from 
the uniform a priori estimates. The limits of the nonlinear terms are identified by monotonicity. 
Moreover, the property of higher integrability of the spatial derivatives allows one to prove the 
strong and pointwise convergence of the gradients, which is used then in the proof of the second-
order regularity of the obtained solution. The proofs of Theorems 2.1, 2.2 follows the same 
scheme with the difference that now we have to pass to the limit as ε → 0 in the family of 
solutions of equation (1.3), which requires an additional step in the arguments.

In Section 9 the results are extended to the case of a smooth domain with the boundary ∂� ∈
Ck . It turns out that such an extension is possible if at every point of the lateral boundary of the 
cylinder QT the flux vector with the components |Diu|pi(z)−2Diu either equals zero, or points 
in the direction of the normal to the boundary. The latter is true either if all pi(z) = 2 on the 
boundary, or if the normal vector has only one nonzero component, which means that � is a 
rectangular domain. In the isotropic equation (1.2) this restriction does not appear because the 
flux |∇u|p(z)−2∇u is always proportional to ∇u.
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3. The function spaces

3.1. Variable Lebesgue spaces

A thorough insight into the theory of variable Lebegue and Sobolev space can be found in the 
monograph [16]. Here we confine ourselves to presenting only the properties of the Lebesgue 
spaces (2.4) needed in this work. Let � ⊂ RN be a bounded Lipschitz domain, and p : � �→ R
be a measurable function with values in an interval [p−, p+] ⊂ (1, ∞), p± = const . The space 
Lp(·)(�) is defined by the modular

ρp(·)(u) =
∫
�

|u|p(x) dx

The dual space of Lp(·)(�) is the space Lp′(·)(�) with the conjugate exponent p′(x) = p(x)
p(x)−1 .

The generalized Hölder inequality holds: for every f ∈ Lp(·)(�) and g ∈ Lp′(·)(�)

∫
�

|fg|dx ≤ 2‖f ‖p(·),�‖g‖p′(·),�. (3.1)

If p, q are measurable functions in � and 1 < p(x) ≤ q(x) < ∞ a.e. in �, then the embedding 
Lq(·)(�) ⊂ Lp(·)(�) is continuous and

‖u‖p(·),� ≤ C‖u‖q(·),�.

The relation between the modular and the norm of Lp(·)(�) is given by the following inequalities:

min
{
‖u‖p−

p(·),�,‖u‖p+
p(·),�

}
≤ ρp(·)(u) ≤ max

{
‖u‖p−

p(·),�,‖u‖p+
p(·),�

}
. (3.2)

The set C∞
0 (�) is dense in Lp(·)(�).

3.2. Anisotropic variable Sobolev spaces

Let p0, p1, . . . , pN be measurable functions defined on � and �p(x) = (p1(x), . . . , pN(x)) be 
a vector. By Clog(�) we denote the set of functions continuous in � with a logarithmic modulus 
of continuity:

|q(x) − q(y)| ≤ ω(|x − y|), ∀x, y ∈ �, |x − y| < 1

2
, (3.3)

where ω is a nonnegative function such that

lim sup
s→0+

ω(s) ln
1

s
= C, C = const.

Let us assume that
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pi ∈ Clog(�), pi(x) ∈ [
p−,p+]⊂ (1,∞), i = 1,N.

Let ph, p∗
h, p∨, p∧ be the functions defined in (2.1), (2.2), (2.7). Apart from the space W 1, �p(·)

0 (�)

introduced in (2.5), we consider the following spaces:

(i)

{
W 1,(p0(·), �p(·))(�) = {

u ∈ Lp0(·)(�) : Diu ∈ Lpi(·)(�), i = 1,N
}
,

‖u‖
W 1,(p0, �p)(�)

= ‖u‖p0(·),� +∑N
i=1 ‖Diu‖pi(·),�,

(ii)

{
W 1,(p∨, �p(·))(�) = {u ∈ Lp∨(·)(�) : Diu ∈ Lpi(·)(�), i = 1,N},
‖u‖

W 1,(p∨(·), �p(·))(�)
= ‖u‖p∨(·),� +∑N

i=1 ‖Diu‖pi(·),�,

(iii)
◦

W
1,(p0(·), �p(·))

(�) = W 1,(p0(·), �p(·))(�) ∩ W
1,1
0 (�),

◦
W

1,(p∨(·), �p(·))
(�) = W 1,(p∨(·), �p(·))(�) ∩ W

1,1
0 (�),

(iv) W
1,(p∨(·), �p(·))
0 (�) = 

{
the closure of C∞

0 (�) w.r.t. the norm of W 1,(p∨(·), �p(·))(�)
}

.

3.3. Preliminaries

By a rectangular domain � we mean a parallelepiped K�a . The boundary of a rectangular 
domain � is represented in the form ∂� = �0 ∪ �, where

1. � is composed of (N − 1)-dimensional open sets �i , which are the faces of � and lay in the 
coordinate planes xi = ±ai ,

2. �0 contains the edges and vertices and has the surface measure zero.

Proposition 3.1 ([21], Th.2.4 and [32], Sec.13). Let � ⊂ RN be a bounded domain with Lips-
chitz boundary. If pi ∈ Clog(�), then

1. C∞
0 (�) is dense in 

◦
W

1,(p∨(·), �p(·))
(�) and, thus, 

◦
W

1,(p∨(·), �p(·))
(�) = W

1,(p∨(·), �p(·))
0 (�);

2. C∞(�) is dense in W 1,(p∨(·), �p(·))(�) if � is a rectangular domain.

Proposition 3.2 ([21], Th.2.5). Let � be a rectangular domain and �p ∈ C0(�)N . If q ∈ C0(�)

and

q(x) < max
{
p∨(x),p∗

h(x)
}

for all x ∈ �,

then

W 1,(p∨(·), �p(·))(�) ↪→ Lq(·)(�) (compact embedding).

Proposition 3.3 ([21], Th.2.6). Let � be a bounded domain and pi ∈ C0(�), i = 1,N . If

p∨(x) < p∗(x) for all x ∈ �, (3.4)
h
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then

‖u‖p∨(·),� ≤ C

N∑
i=1

‖Diu‖pi(·),� for all u ∈ W
1,(p∨(·), �p(·))
0 (�) (3.5)

with a constant C independent of u. Hence, under condition (3.4) the functional∑N
i=1 ‖Diu‖pi(·),� defines an equivalent norm of W 1,(p∨(·), �p(·))

0 (�).

Proposition 3.4 ([21], Th.2.7).

1. Let � be a rectangular domain and pi ∈ C0(�), i = 1,N . If (3.4) holds, then

W 1,(p∨(·), �p(·))(�) = W 1,(p0(·), �p(·))(�)

for any p0 ∈ C0(�) satisfying p0(x) < p∗
h(x) everywhere in �.

2. Let � be a bounded domain, pi ∈ C0(�), i = 1,N . If (3.4) holds, then

W
1,(p∨(·), �p(·))
0 (�) = W

1,(1, �p(·))
0 (�), and

◦
W

1,(p∨(·), �p(·))
(�) = ◦

W
1,(1, �p(·))

(�).

Proposition 3.5 ([21], Th.2.8). Let � be a bounded domain, pi ∈ C0(�), i = 1,N . If (3.4) is 
fulfilled, then

W
1, �p(·)
0 (�) = W

1,(p∨(·), �p(·))
0 (�).

4. Dense sets in anisotropic Sobolev spaces

We distinguish between the cases where � is a rectangular domain, or has the smooth bound-
ary.

4.1. The rectangular domain K�a

Let us consider first the case � = K�a . The eigenfunctions of the Dirichlet problem for the 
Laplace operator

�ψk + λkψk = 0 in K�a, ψk = 0 on �, (4.1)

form an orthogonal basis of L2(K�a). The solutions of problem (4.1) have the form

ψk(x) = C

N∏
i=1

sin

(
πkixi

ai

)
, λk = π2

N∑
i=1

k2
i

a2
i

, (4.2)

where k = (k1, . . . , kN), ki ∈ N , C = const > 0 is the normalizing constant. It follows that 
�ψk = 0 on � = ∂� \ �0. For all k ∈NN and s ∈ N

�sψk + (−λk)sψk = 0 in �, �s−1ψk = 0 on � = ∂� \ �0.
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The set of eigenpairs (ψk, λk) can be reordered and presented in the form

{ψi}∞i=1, 0 < λ1 ≤ λ2 ≤ . . . ≤ λi → ∞ as i → ∞,

where ψi corresponding to different λi are orthogonal in L2(�), but the same eigenvalue λi may 
correspond to various ψi . The eigenfunctions are normalized by the condition ‖ψi‖2,� = 1.

Fix m = 1, 2, . . .. For every multi-index α ∈RN and any vector k, ki = 1, 2, . . .,

∣∣Dαψk
∣∣= Cπ2m

N∏
i=1

(
ki

ai

)αi

�i(xi),

where

�i(s) =
⎧⎨
⎩
∣∣∣sin

(
πkis
ai

)∣∣∣ if αi = 0 or αi is an even number,∣∣∣cos
(

πkis
ai

)∣∣∣ if αi is an odd number.

It is straightforward to check that for |α| = 2m

‖Dαψk‖2
2,� = C2π4m

N∏
i=1

(
ki

ai

)2αi

‖�i‖2
2,(−ai ,ai )

= π4m

N∏
i=1

(
ki

ai

)2αi

.

Let us denote k+ = maxi ki , a+ = maxi ai , a− = mini ai . Then

N∏
i=1

(
ki

ai

)2αi

≤ a4m+
a4m−

(
N∑

i=1

k2
i

a2
i

)2m

= 1

π4m

a4m+
a4m−

(
π2

N∑
i=1

k2
i

a2
i

)2m

=
(

a+
πa−

)4m

‖�mψk‖2
2,�.

Thus, for every m = 0, 1, 2, . . . there exists a constant C = C(a±, N, M, m) such that

‖Dαψk‖2
2,� ≤ C‖�mψk‖2

2,�, |α| = 2m. (4.3)

Let |α| = 2m − 1, m = 1, 2, . . ., be an odd number. Since k+ ≥ 1, in this case we have

N∏
i=1

(
k2
i

a2
i

)αi

≤ k
2(2m−1)
+

a
2(2m−1)
−

≤ a2−
(

a+
a−

)4m k4m+
a4m+

≤ a2−
(

a+
πa−

)4m
(

π2
N∑

i=1

k2
i

a2
i

)2m

= C(a±,m)‖�mψk‖2
2,�,

whence

‖Dαψk‖2 ≤ C′‖�mψk‖2 , |α| = 2m − 1. (4.4)
2,� 2,�
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4.2. Density of {ψi}∞i=1 in W 1, �p(·)
0 (�)

Consider the Hilbert space

Hm(�) = {u : Dαu ∈ L2(�), α = (α1, . . . , αN), |α| =
∑

αi ≤ m}

equipped with the usual norm

‖u‖Hm(�) =
∑

0≤|α|≤m

‖Dαu‖2,�.

Proposition 4.1. Let � be a rectangular domain. For every v ∈ C∞
0 (�)

∫
�

|�v|2 dx =
N∑

i,j=1

∫
�

|D2
ij v|2 dx.

Proof. Integrating by parts two times we obtain

∫
�

|�v|2 dx =
∫
�

div(∇v)�v dx =
N∑

i=1

∫
�i

(�ν · ∇v)�v dS −
N∑

i=1

∫
�

Div div(∇(Div)) dx

=
N∑

i=1

∫
�i

(�ν · ∇v)�v dS −
N∑

j=1

N∑
i=1

∫
�j

Div(�ν · ∇(Div)) dS +
∫
�

N∑
i,j=1

∣∣∣D2
ij v

∣∣∣2 dx,

where �ν is the outer normal to �i . Since suppv � �, the boundary integrals vanish. �
Proposition 4.2. For every v ∈ C∞

0 (�)

c‖v‖2
H 2(�)

≤ ‖�v‖2
2,� ≤ ‖v‖2

H 2(�)
(4.5)

with an independent of v constant c, and ‖�v‖2,� is an equivalent norm of C∞
0 (�) ∩ H 2(�).

Proof. The second inequality is obvious. To prove the first one we represent v ∈ C∞
0 (�) by the 

Fourier series in the basis {ψi}: v =∑∞
i=1 viψi , vi = (v, ψi)2,�,

v(k) =
k∑

i=1

viψi → v in L2(�).

By inequality (3.5) with pi = 2 we have ‖v‖2,� ≤ C‖∇v‖2,� with a constant C which does not 
depend on v. Since v ∈ C∞

0 (�), then �v ∈ L2(�) and using the fact that {ψi} are orthonormal, 
we get
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‖�v‖2
2,� =

∞∑
i=1

λ2
i v

2
i < ∞.

For every k ∈N

‖∇v(k)‖2
2,� = (∇v(k),∇v(k))2,� = −(�v(k), v(k))2,� =

k∑
i=1

λiv
2
i

≤
(

k∑
i=1

λ2
i v

2
i

) 1
2
(

k∑
i=1

v2
i

) 1
2

≤ ‖�v‖2,�‖v(k)‖2,�.

(4.6)

Hence, ‖∇v(k)‖2,� ≤ C‖�v‖2,� where the constant C is from (3.5). Repeating these estimates 
for the function ∇(v(k) − v(m)) we obtain

‖∇(v(k) − v(m))‖2
2,� ≤ 2‖�v‖2,�‖v(k) − v(m)‖2,� → 0 as k,m → ∞.

By the Cauchy inequality and due to monotonicity of the sequence {λi}

‖v(k)‖2
2,� =

k∑
i=1

v2
i =

k∑
i=1

|vi |√
λi

(√
λi |vi |

)
≤ 1

λ1
‖v(k)‖2,�‖∇v(k)‖2,�.

Inequality (4.6) entails the uniform estimate ‖∇v(k)‖2,� ≤ C‖�v‖2,�. It follows that ∇v(k) →
∇v in L2(�) and

‖v‖2,� + ‖∇v‖2,� ≤ C′‖∇v‖2,� ≤ C′′‖�v‖2,�

with independent of v constant C′′. By Proposition 4.1, 
∑N

i,j=1 ‖D2
ij v‖2

2,� = ‖�v‖2
2,�. Gather-

ing these estimates we conclude that there is a constant C > 0 such that for every v ∈ C∞
0 (�)

C
∑

0≤|α|≤2

‖Dαv‖2
2,� ≤ ‖�v‖2

2,�. �

Proposition 4.3. Let m ≥ 2 be an even number. There is a constant C′′ > 1 such that for every 
v ∈ C∞

0 (�)

1

C′′ ‖�
m
2 v‖2,� ≤ ‖v‖Hm(�) ≤ C′′‖�m

2 v‖2,�.

Proof. The first inequality immediately follows from the definition of the norm in Hm(�). To 
prove the second one we argue by induction. For m = 2 the required inequality coincides with 
(4.5). Assume that ‖v‖H 2k(�) ≤ C‖�kv‖2,� for some k > 1. Set g = �v. By the induction con-
jecture

‖g‖H 2k(�) ≤ C‖�kg‖2,� = C‖�k+1v‖2,�.
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Set Fα = Dαv, |α| = 2k. Since Fα ∈ C∞
0 (�), it follows from Proposition 4.2 that

∑
|α|=2k

‖Dαg‖2
2,� =

∑
|α|=2k

‖�Fα‖2
2,� =

∑
|α|=2k

N∑
i,j=1

‖D2
ijFα‖2

2,� =
∑

|α|=2(k+1)

‖Dαv‖2
2,�.

Gathering the last two lines and using the induction conjecture we conclude that

‖v‖H 2(k+1)(�) ≤ C‖�k+1v‖2,�. �
Corollary 4.1. By virtue of (4.3), (4.4) the assertion of Proposition 4.3 is true for the eigenfunc-
tions of problem (4.1): there is a constant C = C(a, N, m) such that

‖ψk‖2
H 2m(�)

=
∑

0≤|α|≤2m

‖Dαψk‖2
2,� ≤ C

m∑
s=0

‖�sψk‖2
2,� ≤ C‖ψk‖2

H 2m(�)
.

Given a function f ∈ L2(�), let

f (k) =
k∑

i=1

fiψi, fi = (f,ψi)2,�,

denote the partial sum of the Fourier series of f in the basis {ψi}, f (k) → f in L2(�).

Proposition 4.4. Let m be a positive even integer. For every f ∈ C∞
0 (�) and ε > 0 there is 

l0 ∈N such that

‖f − f (l)‖Hm(�) < ε for all l ≥ l0.

Proof. Set m = 2k and denote by Fi and fi the Fourier coefficients of the functions �kf and f
in the basis {ψi} of L2(�). The Fourier coefficients of �kf are defined by

Fi = (�kf,ψi)2,� = −(∇(�k−1f ),∇ψi)2,� = −λi(�
k−1f,ψi)2,�

= . . . = (−1)kλk
i (f,ψi)2,� = (−1)kλk

i fi, ∀i ∈ N.

Since f ∈ C∞
0 (�), it follows from Proposition 4.3 that there exists a constant C such that

1

C
‖f ‖2

Hm(�) ≤ ‖�kf ‖2
2,� =

∞∑
i=1

F 2
i =

∞∑
i=1

λ2k
i f 2

i =
∞∑
i=1

λm
i f 2

i < ∞.

The convergence of this series means that the sequence of partial sums {f (s)} is a Cauchy se-
quence in Hm(�). Since f (r) are linear combinations of {ψi}si=1, it follows from Corollary 4.1
that for l < s and m = 2k

‖f (s) − f (l)‖H 2k(�) ≤ C

s∑
λm

i f 2
i → 0 as l → ∞.
i=l+1
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Hence, f (s) → f in Hm(�). �
Lemma 4.1. The system of eigenfunctions {ψi} is dense in W 1, �p(·)

0 (�).

Proof. Take a function v ∈ W
1, �p(·)
0 (�) and fix an arbitrary ε > 0. By density of C∞

0 (�) in 

W
1, �p(·)
0 (�), there exists vε ∈ C∞

0 (�) such that ‖v − vε‖W
1, �p(·)
0 (�)

< ε. By the definition of the 

norm in W 1, �p(·)
0 (�) and the generalized Hölder inequality, for every w ∈ W

1, �p(·)
0 (�)

‖w‖
W

1, �p(·)
0 (�)

=
N∑

i=1

‖Diw‖pi(·),� ≤
N∑

i=1

Ci(p
±
i , |�|)‖Diw‖p+,� ≤ C‖∇w‖p+,�.

By the Sobolev embedding theorem, for every w ∈ C∞
0 (�)

‖w‖
W 1,p+

(�)
≤ C‖∇w‖p+,� ≤ C′‖w‖Hm(�),

where p+ > 2N
N+2 and m ≥ 1 + N

(
1
2 − 1

p+
)

is an even integer. By Proposition 4.4, there is 

k0 ∈N such that v(k)
ε =∑k

i=1 vεiψi satisfies the inequality ‖vε − v
(k)
ε ‖Hm(�) < ε, ∀ k ≥ k0, and

‖v − v(k)
ε ‖

W
1, �p(·)
0 (�)

≤ ‖v − vε‖W
1, �p(·)
0 (�)

+ C′‖vε − v(k)
ε ‖Hm(�) < (1 + C′)ε. �

4.3. Domains with smooth boundary

If ∂� ∈ Ck with k ≥ 2, we take for the basis of L2(�) the set of eigenfunctions of the Dirichlet 
problem for the Laplace operator

(∇φi,∇ψ)2,� = λi(∇φi,ψ) ∀ψ ∈ H 1
0 (�). (4.7)

It follows from the classical elliptic theory that ψi ∈ Hk(�). Define the closed subspace of 
Hk(�)

Hk
D(�) =

{
u ∈ Hk(�) : �su = 0 on ∂� \ �0, s = 0,1, . . . ,

[
k − 1

2

]}
, H 0

D(�) = L2(�).

The relations

[f,g]k =
{

(�
k
2 f,�

k
2 g)2,� if k is even,

(�
k−1

2 f,�
k−1

2 g)H 1(�) if k is odd

define an equivalent inner product on Hk
D(�): [f, g]k =

∞∑
i=1

λk
i figi , where fi , gi are the Fourier 

coefficients of f , g in the basis {φi} of L2(�). The corresponding equivalent norm of Hk
D(�) is 

defined by ‖f ‖2
Hk
D(�)

= [f, f ]k . Let f (m) =∑m
i=1 fiφi be the partial sums of the Fourier series 

of f ∈ L2(�). The following assertion is well-known.
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Lemma 4.2. Let ∂� ∈ Ck , k ≥ 1. A function f can be represented by the Fourier series in the 
system {φi}, convergent in the norm of Hk(�), if and only if f ∈ Hk

D(�). If f ∈ Hk
D(�), then 

the series 
∑∞

i=1 λk
i f

2
i is convergent, its sum is bounded by C‖f ‖Hk(�) with an independent of f

constant C, and ‖f (m) − f ‖Hk(�) → 0 as m → ∞.

Let u ∈ W
1, �p(·)
0 (�) and ε > 0 be an arbitrary number. By Proposition 3.1 the set C∞

0 (�) is 

dense in W 1, �p(·)
0 (�), therefore there exists vε ∈ C∞

0 (�) ⊂ Hk
D(�) such that ‖u − vε‖W

1, �p(·)
0 (�)

<

ε. By Lemma 4.2 one may find m ∈N and wε ∈ span{φ1, . . . , ψm} such that ‖vε − wm‖Hk(�) <

ε. Following the proof of Lemma 4.1 we arrive at the following assertion.

Lemma 4.3. Set Pm = span{φ1, . . . , φm}. If ∂� ∈ Ck with k ≥ 1 + N
(

1
2 − 1

p+
)

, and pi ∈
Clog(�), then ∪∞

m=1Pm is dense in W 1, �p(·)
0 (�).

4.4. Spaces of functions depending on z = (x, t)

Let �p : � × (0, T ) = QT �→ RN be a vector-valued function,

2N

N + 2
< pi(z) < p∗

h(z), pi ∈ C0,1(QT ).

The space W (QT ) defined in (2.6) is the closure of C∞([0, T ]; C∞
0 (�)) in the norm of W (QT ). 

Let

Sm =
{

u : u =
m∑

k=1

dk(t)ψk(x), dk ∈ C0,1[0, T ]
}

.

Then, 
⋃

m≥1 Sm is dense in W (QT ) (see [4, Lemma 1.17]).

4.5. The interpolation inequality

Let �p ∈ RN be a given constant vector such that

2N

N + 2
< p∧ ≤ p∨ < p∗

h. (4.8)

Proposition 4.5 (Lemma 2.1, [2]). Let K�a be a rectangular domain. If �p satisfies condition (4.8), 
there exists a constant C such that for every u ∈ W 1,(1, �p)(K�a)

‖u‖p∗
h,K�a ≤ C

(
N∑

i=1

‖Diu‖pi,K�a + ‖u‖1,K�a

)
. (4.9)

Inequality (4.9) remains valid if the norm ‖u‖1,K�a is substituted by ‖u‖2,K�a It is well-known 
(see, e.g., [10, p.133]) that for every constant s, q satisfying 2 < s < q
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‖u‖s ≤ ‖u‖θ
q‖u‖1−θ

2 with
1

s
= θ

q
+ 1 − θ

2
. (4.10)

Gathering (4.10) with (4.9) we obtain the following interpolation inequality.

Lemma 4.4. Let �p satisfy (4.8). There exists a constant C = C(N, a) such that for u ∈
W 1,(2, �p)(K�a)

‖u‖s,K�a ≤ ‖u‖θ
p∗

h,K�a‖u‖1−θ
2,K�a ≤ C

N∑
i=1

(‖Diu‖pi,K�a + ‖u‖2,K�a
)θ ‖u‖1−θ

2,K�a , (4.11)

for every 2 < s < p∗
h and

θ =
1
2 − 1

s
N+2
2N

− 1
ph

∈ (0,1).

The interpolation inequality (4.11) can be adapted to the case of variable exponents pi . Given 
a vector �p(x) defined on K�a , set

p−
i = min

K �a
pi(x), p+

i = max
K �a

pi(x), p−
h = N∑N

i=1
1

p−
i

. (4.12)

Lemma 4.5. Assume that pi ∈ C0(K �a) for all i = 1,N , and

2N

N + 2
< p−

i ≤ pi(x) ≤ p+
i < (p−

h )∗ =
⎧⎨
⎩

Np−
h

N−p−
h

if p−
h < N

any finite number if p−
h ≥ N.

Then there exists a constant C = C(N, �a) such that for every u ∈ W 1,(2, �p(·))(K�a)

‖u‖s(·),K�a ≤ C‖u‖s+,K�a ≤ ‖u‖θ
p∗

h,K�a‖u‖1−θ
2,K�a

≤ C

N∑
i=1

(
‖Diu‖p−

i ,K�a + ‖u‖2,K�a

)θ ‖u‖1−θ
2,K�a ,

(4.13)

where s ∈ C0(K �a),

2 < s+ = max
K �a

s(x) < (p−
h )∗, θ =

1
2 − 1

s+
N+2
2N

− 1
p−

h

∈ (0,1). (4.14)

Corollary 4.2. Let the conditions of Lemma 4.5 be fulfilled and ‖u‖2,� = M0 be a known con-
stant. Then

‖u‖s+,K�a ≤ C

N∑
‖Diu‖θ

p−
i ,K�a

+ C′ (4.15)

i=1
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with constants C, C′ depending on a, N , and M0.

5. Regularization. The approximate problems

The solution of the problem (1.1) is obtained as the limit of the family {uε}ε>0 of solutions to 
the regularized nondegenerate problems

ut −
N∑

j=1

Dj

(
(ε2 + |Dju|2)

pj (z)−2
2 Dju

)
= f in QT ,

u = 0 on ∂� × (0, T ), u(x,0) = u0(x) in �, ε ∈ (0,1).

(5.1)

The solution of the problem (5.1) with ε ∈ (0, 1) is a function satisfying the following conditions

(i) uε ∈ C0([0, T ]; L2(�)) ∩W (QT ), uεt ∈ L2(QT ),
(ii) for every φ ∈W (QT )

∫
QT

(
uεtφ +

N∑
i=1

(ε2 + |Diuε |2)
pi (z)−2

2 DiuεDiφ

)
dz =

∫
QT

f φ dz, (5.2)

(iii) for every φ ∈ L2(�) (uε(·, t) − u0, φ)2,� → 0 as t → 0+.

Theorem 5.1. Let � = K�a and �p(z) satisfy the conditions of Theorem 2.1. Then for every ε ∈
(0, 1) and every u0 ∈ W

1,2
0 (�) ∩ W

1, �p(·,0)
0 (�) and f ∈ L2(0, T ; W 1,2

0 (�)), problem (5.1) has a 
unique weak solution

uε ∈W (QT ) ∩ L∞(0, T ;W 1,2
0 (�) ∩ W

1, �p(·)
0 (�)),

with

‖uεt‖2,QT
+ ess sup

(0,T )

‖uε‖W
1,2
0 (�)

+ ess sup
(0,T )

‖uε‖W
1, �p(·,t)
0 (�)

≤ C
(

1 + ‖f ‖L2(0,T ;W 1,2(�)) + ‖u0‖W
1,2
0 (�)

+ ‖u0‖W
1, �p(x,0)
0 (�)

) (5.3)

with an independent of ε constant C. Moreover,

N∑
i=1

∫
QT

|Diuε |pi(z)+r dz ≤ C for every r ∈
(

0,
2N(1 − μ) + 4

N + 2

)
(5.4)

with a constant C independent of ε, and the constant μ defined in (2.9).

A solution of problem (5.1) is constructed as the limit of the sequence of finite-dimensional 
Galerkin’s approximations in the basis {ψi}. Let u(m) = ∑m

i=1 cm,i(t)ψi(x) where the coeffi-
cients �cm = (cm,1, . . . , cm,m) are defined from the system of ordinary differential equations
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c′
m,i(t) = −

N∑
j=1

(
F (ε)

j (z,Dju
(m)
ε ),Djψi

)
2,�

+ (f (·, t),ψi)2,�,

cm,i(0) = (u
(m)
0 ,ψi)2,�, i = 1,m,

F (ε)
j (z,Dju

(m)
ε ) := (ε2 + |Dju

(m)
ε |2)

pj (z)−2
2 Dju

(m)
ε .

(5.5)

By Lemma 4.1, the sequence {cm,i(0)} can be chosen so that

u
(m)
0 (x) =

m∑
i=1

cm,i(0)ψi → u0 in W
1,�q(·)
0 , qi(x) = max{pi(x,0),2}.

By the Carathéodory existence theorem, for every u0 ∈ W
1,�q(·)
0 (�), f ∈ L2(0, T ; W 1,2

0 (�)) and 
m ∈ N problem (5.5) has a solution �cm = (cm,1, cm,2, . . . , cm,m) on an interval [0, Tm]. The pos-
sibility of continuation of each of cm,i to the interval [0, T ] will follow from the uniform a priori 
estimates on u(m)

ε derived in the next section.
The global second-order differentiability for the solution to (5.1) is given in the following 

theorem.

Theorem 5.2. Under the conditions of Theorem 5.1

(ε2 + |Diuε |2)
pi (z)−2

4 Diuε ∈ W 1,2(QT ), i = 1,N.

6. A priori estimates

Fix a number m ∈ N and consider the function u(m)
ε . For the sake of presentation, when 

deriving the a priori estimates for the solutions of the regularized problem (5.1) we omit the 
indexes ε and m and write u ≡ u

(m)
ε . Multiplying the ith equation of (5.5) by cm,i and summing 

up for i = 1,m, we arrive at the relation

1

2

d

dt
‖u(·, t)‖2

2,� +
∫
�

N∑
i=1

(ε2 + |Diu|2) pi (z)−2
2 |Diu|2 dx

=
∫
�

f udx ≤ 1

2
‖f (·, t)‖2

2,� + 1

2
‖u(·, t)‖2

2,�.

(6.1)

Lemma 6.1. The approximate solutions u ≡ u
(m)
ε satisfy the uniform estimate

sup
(0,T )

‖u(t)‖2
2,� + C

N∑
i=1

∫
QT

(ε2 + |Diu|2) pi (z)−2
2 |Diu|2 dz ≤ C′ (‖f ‖2

2,QT
+ ‖u0‖2

2,�

)
(6.2)

with independent of m and ε constants C = C(T ), C′ = C′(T ).

Proof. Estimate (6.2) follows after multiplication of (6.1) by e−t and integration in t . �
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Multiplying the ith equation of (5.5) by c′
m,i(t), summing the results over i = 1,m, integrating 

in t and taking into account the identities

(ε2 + |Diu|2) pi−2
2 DiuDiut = 1

2
(ε2 + |Diu|2) pi−2

2

(
|Diu|2

)
t

= ∂

∂t

(
1

pi

(ε2 + |Diu|2) pi
2

)
+ pit

p2
i

(ε2 + |Diu|2) pi
2 − pit

pi

(ε2 + |Diu|2) pi
2 ln(ε2 + |Diu|2)

we arrive at the inequality

‖ut‖2
2,QT

+
N∑

i=1

∫
�

1

pi

(ε2 + |Diu|2) pi (z)

2 dx ≤ 1

2
‖ut‖2

2,QT
+ 1

2
‖f ‖2

2,QT

+
N∑

i=1

∫
�

1

pi(x,0)
(ε2 + |Diu0|2)

pi (x,0)

2 dx

−
N∑

i=1

∫
QT

(
pit

p2
i

(ε2 + |Diu|2) pi (z)

2 + pit

pi

(ε2 + |Diu|2) pi (z)

2 ln(ε2 + |Diu|2)
)

dz.

The estimate on the first integral in the last line follows from (6.2). The second integral is bounded 
by

Cμ

N∑
i=1

∫
QT

(
1 + |Diu|2) pi (z)+ρ

2

)
dz

with any constant ρ > 0 by virtue of the following elementary inequalities: for every ρ > 0, there 
is a constant Cρ such that

ln2 s ≤ Cρ

{
sρ if s ≥ 1,

s−ρ if s ∈ (0,1),
(6.3)

and

(ε2 + |�ξ |2) pi+ρ

2 ≤
{

(
√

2ε)pi+ρ ≤ 1 if |�ξ | < ε,

(
√

2|�ξ |)pi+ρ if |�ξ | ≥ ε
≤ C

(
1 + |�ξ |pi+ρ

)
, ε ∈ (0,1).

Lemma 6.2. If |pit | ≤ L a.e. in QT , then for every constant ρ ∈ (0, 1) the functions u ≡ u
(m)
ε

satisfy the estimates
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‖ut‖2
2,QT

+
N∑

i=1

sup
(0,T )

∫
�

1

pi

(ε2 + |Diu|2) pi (z)

2 dx

≤ C

⎛
⎝1 + ‖f ‖2

2,QT
+

N∑
i=1

∫
�

|Diu0|pi(x,0) dx

⎞
⎠+ C′

∫
QT

|Diu|pi(z)+ρ dz

(6.4)

with constants C, C′ depending on ρ but independent of m and ε.

Let us multiply the nonlinear flux term in the kth equation of (5.5) by λkcm,k(t), and sum up 
the results for k = 1,m. Recall the convention to denote u ≡ u

(m)
ε . For every i = 1,N

−
(
F (ε)

i (z,Diu),

m∑
k=1

λkcm,k(t)Diψk

)
2,�

=
∫
�

Di((ε
2 + |Diu|2) pi (z)−2

2 Diu)�udx

=
∫
∂�

(ε2 + |Diu|2) pi (z)−2
2 Diu cos(�ν, xi)�udS −

∫
�

(ε2 + |Diu|2) pi (z)−2
2 Diu

N∑
j=1

Dj(D
2
ij u) dx

=
∫
∂�

(ε2 + |Diu|2) pi (z)−2
2 Diu

⎛
⎝cos(�ν, xi)�u −

N∑
j=1

cos(�ν, xj )D
2
ij u

⎞
⎠ dS

+
N∑

j=1

∫
�

Dj

(
(ε2 + |Diu|2) pi (z)−2

2 Diu

)
D2

ij u dx,

(6.5)

where �ν is the exterior normal to ∂�. In the first line of (6.5) we integrated by parts and used the 
fact that ψk = 0 on ∂�. By splitting the integrals over ∂� into �i and using the fact that for the 
rectangular domain cos(�ν, xj )|�i

= 0 if i �= j , we obtain

∫
�

Di((ε
2 + |Diu|2) pi (z)−2

2 Diu)�udx =
N∑

j=1

∫
�

Dj ((ε
2 + |Diu|2) pi (z)−2

2 Diu)D2
ij u dx := Ii .

The straightforward computation shows that

Ii =
N∑

j=1

∫
�

(pi − 1)(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dx

+
N∑

j=1

∫
�

(ε2 + |Diu|2) pi (z)−2
2 DiuDjpi ln(ε2 + |Diu|2)D2

ij u dx ≡ J1 +J2.

The second term is bounded by Young’s inequality: for every δ > 0
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|J2| ≤ δ

N∑
j=1

∫
�

(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dx

+ Cδ

N∑
j=1

∫
�

(ε2 + |Diu|2) pi (z)

2 ln2(ε2 + |Diu|2) dx.

Applying (6.3) we find that

J2 ≤ δ

N∑
j=1

∫
�

(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dx + C

⎛
⎝1 +

∫
�

|Diu|pi(z)+ρ dx

⎞
⎠ .

Choose δ so small that mini p
−
i > 1 + δ. For every ρ ∈ (0, 1), we obtain the inequality

1

2

d

dt

(
‖∇u‖2

2,�

)
+

N∑
i,j=1

∫
�

(pi − 1 − δ)(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dx

≤ C

⎛
⎝1 +

N∑
i=1

∫
�

|Diu|pi(z)+ρ dx

⎞
⎠+

∫
�

∇f · ∇udx.

(6.6)

The last term is estimated by

(∇f,∇u)2,� ≤ 1

2
‖∇f ‖2

2,� + 1

2
‖∇u‖2

2,�.

Arguing as in the proof of Lemma 6.1 we obtain

Lemma 6.3. If |∇pi | ≤ L a.e. in QT , then the functions u ≡ u
(m)
ε satisfy the estimates

sup
(0,T )

‖∇u(t)‖2
2,� +

N∑
i,j=1

∫
QT

(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dz

≤ C

⎛
⎜⎝1 +

N∑
i=1

∫
QT

|Diu|pi(z)+ρ dz + ‖∇u0‖2
2,� + ‖∇f ‖2

2,QT

⎞
⎟⎠

(6.7)

with any ρ ∈ (0, 1) and a constant C independent of m, ε.

Remark 6.1. An analogue of estimate (6.7) holds true if |pt | + |∇pi | ≤ L a.e. in QT and f ∈
L2(QT ) ∩ W

1,�q(·)′
0 (�) with qi(z) = max{pi(z), 2}. In this case we apply the Young inequality to 

obtain
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x

(∇f,∇u)2,� ≤
N∑

i=1

∫
�

1

p′
i (z)

|Dif |q ′
i (z) dx +

N∑
i=1

∫
�

1

qi(z)
|Diu|qi (z) dx

≤
N∑

i=1

∫
�

|Dif |q ′
i (z) dx + C

⎛
⎝‖∇u‖2

2,� +
N∑

i=1

∫
�

|Diu|pi(z) dx

⎞
⎠

and use Lemma 6.2 to estimate the last term.

Remark 6.2. Let us assume that xi is the direction of fast diffusion: there exists σ > 0 such that 
pi(z) + σ ≤ 2 in QT . Then the integral of |Diu|pi(z)+ρ on the right-hand side of (6.6) can be 
estimated by Young’s inequality, provided 0 < ρ < σ :

∫
�

|Diu|pi(z)+ρ dx ≤ C

⎛
⎝1 +

∫
�

|∇u|2 dx

⎞
⎠ .

Multiplying (6.6) by e−Ct we absorb these terms in the derivative of ‖∇u‖2
2,�e−Ct on the left-

hand side and integrate the result in t . It follows that the right-hand side of (6.7) does not include 
the integrals of |Diu|pi(z)+ρ corresponding to the directions of fast diffusion. The integrals of 
|Diu|pi(z)+ρ with maxpi(z) ≥ 2 require special estimating.

7. Higher integrability of the gradients

Let us fix the index m ∈ N and consider the function u ≡ u
(m)
ε . Integrating by parts we find 

that for every constant r > 0

∫
�

(ε2 + |Diu|2) pi+r−2
2 (Diu)2 dx =

∫
�

(ε2 + |Diu|2) pi+r−2
2 DiuDiudx

=
∫
∂�

u cos(�ν, xi)Diu(ε2 + |Diu|2) pi+r−2
2 dS −

∫
�

u(ε2 + |Diu|2) pi+r−2
2 D2

iiu dx

− 1

2

∫
�

uDiu(ε2 + |Diu|2) pi+r−2
2 ln((ε2 + |Diu|2)Dipi dx

−
∫
�

u(pi + r − 2)(ε2 + |Diu|2) pi+r−4
2 |Diu|2D2

iiu dx

≤ C

∫
�

|u|(ε2 + |Diu|2) pi+r−2
2 |Diu|| ln((ε2 + |Diu|2)|dx + C0

∫
�

|u|(ε2 + |Diu|2) pi+r−2
2 |D2

iiu|d

≡ I1 + I2.

(7.1)
The integral over ∂� on the right-hand side of (7.1) vanishes because u = 0 on �i . The integrals 
Ii are estimated separately.
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Estimate for I1. For the sake of simplicity of notation, we assume first that the exponents pi are 
independent of t . For every ν ∈ (0, 1) and λ > 0

I1 ≤ C1

∫
�

|u|(ε2 + |Diu|2) pi+r−1+ν

2 dx + C2(1 + ‖u‖2
2,�)

≤ C + λ

∫
�

(ε2 + |Diu|2) pi+r−2
2 |Diu|2 dx + Cλ

∫
�

|u| pi+r

1−ν dx,

which allows one to choose λ so small that the first term can be absorbed in the left-hand side 
of (7.1). To study the second term, we cover � = K�a by a finite number of cubes K�a,bk

with the 
edge length bk ≤ β such that

K�a =
�⋃

k=1

K�a,bk
.

The cubes from the cover {K�a,bk
}�k=1 may overlap. It is sufficient to derive the needed estimates 

for each of K�a,bk
and then sum up the results. The number of cubes K�a,bk

in the chosen cover 
depends on ai and on the modules of continuity of pi(x). For the sake of simplicity of notation 
we will denote K�a,bk

= Kbk
. Take a cube Kbk

, a vector �r = (r, r, . . . , r) ∈ RN , r ∈ (0, 1), and set

p−
i = min

Kbk

pi(x), p+
i = max

Kbk

pi(x),

�q = �p + �r, �q− = (q−
1 , . . . , q−

N),

q−
h = N∑N

i=1
1

q−
i

- the harmonic mean of �q−.

(7.2)

To estimate the integrals of |u|
pj +r

1−ν , j = 1,N , we want to apply (4.15) in the cube Kbk
to a 

function u ∈ W 1,(2,�q−)(Kbk
) with the exponent

sj = p+
j + r

1 − ν
≡ q+

j

1 − ν
, j = 1,N, ν ∈ (0,1).

If the parameters satisfy the conditions

(a)
2N

N + 2
< q−

i ≤ q+
i < (q−

h )∗ =
⎧⎨
⎩

Nq−
h

N−q−
h

if N > q−
h ,

any number from [1,∞) if N ≤ q−
h ,

(b) sj < (q−
h )∗,

(c)
sj θj

q−
i

< 1, θj =
1
2 − 1

sj

N+2
2N

− 1
−

∈ (0,1),

(7.3)
qh
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then for every j = 1,N

∫
Kbk

|u|sj dx ≤ C

N∑
i=1

⎛
⎜⎝∫

Kbk

|Diu|q−
i dx

⎞
⎟⎠

sj θj

q
−
i

+ C′

with constants C, C′ depending on p±
j , a, N and ‖u‖2,Kbk

. The extra condition (7.3) (c) will 
provide the possibility to extend this estimate to functions defined on the cylinder with the base 
Kbk

. Condition (7.3) (c) can be written as follows: for all i, j = 1,N

sj θj

q−
i

< 1 ⇔ sj

2
−1 < q−

i

(
N + 2

2N
− 1

q−
h

)
⇔ sj = q+

j

1 − ν
<

N + 2

N
q−
i +2

(
1 − q−

i

q−
h

)
.

(7.4)
By continuity of �q(x), (7.4) is true for a sufficiently small cube Kbk

and small ν, provided that 
the following strict inequality is fulfilled:

q+
j <

N + 2

N
q−
i + 2

(
1 − q−

i

q−
h

)
≡ 2 + 2q−

i

(
N + 2

2N
− 1

q−
h

)
, i, j = 1,N. (7.5)

Note that the indexes on the right and the left-hand sides of (7.5) are not related. Accept the 
notation

σ+ = max
j

q+
j , σ− = min

j
q−
j . (7.6)

Since 1
q−
h

< N+2
2N

, inequality (7.5) is fulfilled for all i, j if

0 ≤ σ+ − σ− < 2 + 2σ−
(

N + 2

2N
− 1

2
− 1

q−
h

)
= 2 + 2σ−

(
1

N
− 1

q−
h

)
. (7.7)

Proposition 7.1. Let maxj ‖∇pj‖∞,� = L and

μ ≡ sup
�

p∨(x)

p∧(x)
< 1 + 2

N
. (7.8)

Then condition (7.7) is fulfilled in every cube Kbk
with the parameter

ν ≤ 1 − (μ + γ )
N

N + 2
,

if bk ≤ β = β(a, L, N, p±
j ) for all k = 1, 2, . . . , � with β so small that

γ = 2βL
√

N
(N + 2)2

2 (maxp+
j + minp−

j + 2) < 1 + 2 − μ. (7.9)

4N j j N
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Proof. Take an arbitrary cube Kbk
and assume that at least one of pj(x) is nonconstant. The 

case of the constant �p is a simple corollary. By convention we use notation (7.2). Since the value 
p+

j is attained at some point x0 ∈ Kbk
, by the Lagrange mean value theorem

pj (x) = p+
j +

1∫
0

∇pj (sx + (1 − s)x0) ds · (x − x0) ≥ p+
j − δ, δ = 2β

√
NL,

and pj (x) ≤ p−
j + δ. Assume β is so small that 2βL

√
N < maxj p+

j − minj p−
j . For every 

x ∈ Kbk

μ ≥ p∨(x)

p∧(x)
≥ max{p+

j + r − δ, j = 1,N}
min{p−

j + r + δ, j = 1,N} ≥ σ+ − δ

σ− + δ
≥ −γ + σ+

σ− (7.10)

with γ > δ(σ+ + σ−)(σ−)−2. The last inequality follows from the definition (7.9) of γ :

γ = 2βL
√

N
(N + 2)2

4N2 (max
j

p+
j + min

j
p−

j + 2)

≥ 2βL
√

N
(N + 2)2

4N2 (σ+ + σ−) > δ(σ+ + σ−)(σ−)−2.

According to (7.4), ν should be chosen from the inequality

q+
j

1 − ν
< 2 + 2q−

i

(
N + 2

2N
− 1

q−
h

)
, i, j = 1,N.

Such a choice of ν is possible if

σ+

1 − ν
< 2 + 2σ−

(
N + 2

2N
− 1

q−
h

)
.

Since

1

q−
h

= 1

N

N∑
i=1

1

q−
i

<
1

N

N∑
i=1

1

σ− = 1

σ− ,

it is sufficient to claim that

σ+

1 − ν
≤ N + 2

N
σ− = 2 + 2σ−

(
N + 2

2N
− 1

σ−

)
< 2 + 2σ−

(
N + 2

2N
− 1

q−
h

)
.

Solving the first inequality for ν we obtain ν ≤ 1 − σ+
−

N . Plugging (7.10) we obtain

σ N+2
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ν ≤ 1 − (μ + γ )
N

N + 2
.

The case of a constant vector �p follows from the considered one because in this case δ = γ =
0. �
Proposition 7.2. Let the conditions of Proposition 7.1 be fulfilled.

1. Let xi be a fixed direction. If pi(x) + r − 2 > 0 in �, or

p∨(x)

p∧(x)
< 1 + 1

N
, (7.11)

then (7.3) (a) holds true.
2. Condition (7.3) (a) implies condition (7.3) (b).

Proof. To prove (7.3) (a), it is enough to claim that

qi(x) < q∗
h(x) for x ∈ � and ∀ i ∈ 1,N.

Suppose pi(x) + r > 2 for x ∈ �. By using (7.8), we obtain the following chain of relations:

qi(x) < q∗
h(x) = N∑N

i=1
1

qi (x)
− 1

⇐ q∨(x)

(
N

q∧(x)
− 1

)
< N

⇐ N
p∨(x)

p∧(x)
− (p∨ + r) < N ⇐ N

(
1 + 2

N

)
− (p∨ + r) < N ⇐ 2 < p∨(x) + r.

If (7.11) holds, then

qi(x) < q∗
h(x) = N∑N

i=1
1

qi (x)
− 1

⇐ N
p∨(x)

p∧(x)
− (p∨ + r) < N

⇐ N

(
1 + 1

N

)
− (p∨ + r) < N ⇐ 1 < p∨(x) + r,

where the last inequality holds trivially. If q−
h ≥ N , we may take for sj an arbitrary positive num-

ber. Let q−
h < N . Then, (q−

h )∗ > 2 because q−
j = p−

j + r > 2N
N+2 . By virtue of Proposition 7.1

sj ≤ σ+

1 − ν
≤ σ− N + 2

N
= 2 + 2σ−

(
N + 2

2N
− 1

σ−

)
< 2 + 2σ−

(
N + 2

2N
− 1

q−
h

)
.

≤ 2 + 2q−
i

(
N + 2

2N
− 1

q−
h

)
= 2 + q−

i

(
1 − 2

(q−
h )∗

)
.

Since (q−)∗ > 2, condition (7.3) (b) follows from the inequality
h
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2 + q−
i

(
1 − 2

(q−
h )∗

)
< (q−

h )∗ ⇔ q−
i < (q−

h )∗,

which coincides with (7.3) (a). �
Summarizing the above arguments we can formulate the following assertion.

Lemma 7.1. Assume that �p(x) satisfies the conditions of Proposition 7.2 (1). Then, β can be 
chosen so small that for every u ∈ W 1,(2,�q(·))(Kbk

) with bk ≤ β , and every λ > 0

∫
Kbk

|u|sj dx ≤ λ

N∑
i=1

∫
Kbk

|Diu|q−
i dx + C′, sj = q+

j

1 − ν
, (7.12)

with a constant C depending on ‖u‖2,Kbk
, λ, and ν defined in Proposition 7.1.

Corollary 7.1. If �p is a constant vector, then in Proposition 7.1 γ = 0. It follows that the asser-
tion of Lemma 7.1 is true for every �q, qi = pi + r with r ∈ (0, 1), provided that

μ = p∨

p∧ < 1 + 1

N
, or qi ≥ 2 and μ < 1 + 2

N
.

Estimate for I2. By Young’s inequality, for every δ ∈ (0, 1)

I2 ≤ δ

∫
�

(ε2 + |Diu|2) pi−2
2 (D2

iiu)2 dx + Cδ

∫
�

u2(ε2 + |Diu|2) pi+2(r−1)

2 dx,

so that the first term of these estimates can be absorbed in the left-hand side of (6.7). Let us take a 
finite cover of � = K�a composed of cubes K�a,bk

. Denote Kbk
≡ K�a,bk

and consider the integral

J =
∫

Kbk

u2(ε2 + |Dju|2)
pj +2(r−1)

2 dx ≡
∫

Kbk

u2(ε2 + |Dju|2)
qj +(r−2)

2 dx.

We assume that the conditions of Lemma 7.1 are fulfilled, and qj + r − 2 > 0, which is true for 

r >
2

N + 2
. By Young’s inequality, for every λ > 0

J ≤ C(λ)

∫
Kbk

|u|sj dx + λ

∫
Kbk

(ε2 + |Dju|2)
κj
2 dx

with

κj

2
= qj + r − 2

2

sj

sj − 2
.

The first integral is already estimated in Lemma 7.1. The second integral is bounded if κ+ ≤ q−:
j j
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q+
j + r − 2 ≤ q−

j

sj

(
sj − 2

)= q−
j − 2

q−
j

sj
,

which is equivalent to

0 ≤ q+
j − q−

j < 2 − r − 2
q−
j

sj
= 2 − r − 2

q−
j

q+
j

(1 − ν).

Since q+
j − q−

j → 0+ as bk → 0, to fulfill this condition suffices to claim that the right-hand side 
is strictly positive:

r < 2ν ≤ 2

(
1 − q−

j

q+
j

(1 − ν)

)
.

This inequality gives the admissible value of r . By Proposition 7.1

r < 2ν ≤ 2 − (μ + γ )
2N

N + 2
.

Comparing the lower bound r >
2

N + 2
with the above upper bound, we obtain:

r ∈
(

2

N + 2
,2 − (μ + γ )

2N

N + 2

)
, provided μ + γ < 1 + 1

N
. (7.13)

Remark 7.1. Let us assume that the diffusion in the direction xj is slow or linear: pj (z) ≥ 2 in 
QT . Then the inequality pj + 2(r − 1) > 0 holds trivially and the admissible value of r is given 
by

r ∈
(

0,2 − (μ + γ )
2N

N + 2

)
, provided μ + γ < 1 + 2

N
.

Lemma 7.2. Let the conditions of Lemma 7.1 be fulfilled and μ < 1 + 1
N

. Then for every cube 
Kbk

with the edge length bk ≤ β and β so small that

μ + γ < 1 + 1

N

with γ defined in (7.9), every u ∈ W 1,(2,�q(·))(Kbk
) with qi(x) = pi(x) + r and r satisfying (7.13), 

and for every λ > 0

J ≤ λ

N∑
j=1

∫
Kbk

|Diu|q−
i dx + C

with a constant C depending on ‖u‖2,K and λ.
�a
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Corollary 7.2. If �p is a constant vector, Lemma 7.2 is true if

μ = maxj pj

minj pj

< 1 + 1

N
and r ∈

(
2

N + 2
,2 − μ

2N

N + 2

)
.

Moreover, if pi = p, then μ = 1 and the assertion of Lemma 7.2 holds for q = p + r with every

r ∈
(

2

N + 2
,

4

N + 2

)
.

Gathering the estimates of Lemmas 7.1, 7.2, we arrive at the following assertion.

Lemma 7.3. Let ‖∇pi‖∞,� ≤ L for all i = 1,N ,

μ = sup
�

p∨(x)

p∧(x)
< 1 + 1

N
.

Assume β is so small that μ +γ < 1 + 1

N
with γ defined in (7.9). Then for every smooth function 

u, every

r ∈
(

2

N + 2
,2 − (μ + γ )

2N

N + 2

)

and any δ ∈ (0, 1) the following inequality holds:

∫
�

(ε2 + |Diu|2) pi+r−2
2 |Diu|2 dx ≤ δ

N∑
j=1

∫
�

(ε2 + |Diu|2) pi−2
2 (D2

ij u)2 dx + C (7.14)

with a constant C depending on δ, β , and ‖u‖2,�.

Let us consider the case pi ≡ pi(x, t). Accept the notation

Sbk,h,τ = Kbk
× (τ, τ + h).

As before, Kbk
are cubes from the finite cover of the domain K�a . Divide the interval (0, T ) into 

m sub-intervals (tj , tj +h), and represent QT = � × (0, T ) as the union of the cylinders Sbk,h,tl . 
Let

p+
j = max

Sbk,h,tl

pj (z), p−
j = min

Sbk,h,tl

pj (z).

p∨(z) = max{p1(z), . . . , pN(z)}, p∧(z) = min{p1(z), . . . , pN(z)}, z ∈ QT .

(7.15)

Theorem 7.1. Assume that |pit | + |∇pi | ≤ L a.e. in QT for all i = 1,N , and

μ = sup
p∨(z)

p∧(z)
< 1 + 1

N
.

QT
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Then, for every smooth function u, every number

r ∈
(

0,
2N(1 − μ) + 4

N + 2

)
,

and every δ ∈ (0, 1)

∫
QT

(ε2 + |Diu|2) pi (z)+r−2
2 |Diu|2 dz ≤ δ

N∑
j=1

∫
QT

(ε2 + |Diu|2) pi (z)−2
2 (D2

ij u)2 dz + C (7.16)

with a constant C depending on δ, L, and ess sup(0,T ) ‖u‖2,�.

Proof. It is sufficient to prove (7.16) for r > 2
N+2 , the case r ∈

(
0, 2

N+2

]
follows then by 

Young’s inequality. The proof imitates the proof of Lemma 7.3. The difference consists in the 
choice of parameters bk and h, which now should be chosen so small that condition (7.7) is 
fulfilled in every cylinder Sbk,h,tl of the partition of QT . For every cylinder Sbk,h,tl we take

γ = L

√
4Nβ2 + h2 (N + 2)2

4N2 (max
j

p+
j + min

j
p−

j + 2)

with p±
j defined in (7.15), and choose β , h as small as is needed to obtain μ + γ < 1 + 1

N
in 

every cylinder Sbk,h,tl . This leads to estimate (7.14) in every cube Kbk
for a fixed t ∈ (tl, tl + h). 

The conclusion follows then upon integration of (7.14) in t over the intervals (tl, tl + h) and 
summation of the results. �
Remark 7.2. The assertions of Lemmas 7.2, 7.3 and Theorem 7.1 remain true if pi(z) ≥ 2 in QT

and μ < 1 + 2

N
- see Remark 7.1.

8. Existence, uniqueness and regularity of solutions

8.1. Proof of Theorem 5.1

Theorem 7.1 allows for the following refinement of the a priori estimates of Lemmas 6.1, 6.2, 
6.3.

Lemma 8.1. Let � = K�a . Assume that �p(z) satisfies the conditions of Theorem 7.1. Then, the 
finite-dimensional approximations u ≡ u

(m)
ε satisfy the following uniform estimate

‖ut‖2
2,QT

+ sup
(0,T )

‖u‖2
2,� + sup

(0,T )

‖∇u‖2
2,� +

N∑
i=1

sup
(0,T )

∫
�

(ε2 + |Diu|2) pi (z)

2 dx

+
N∑

i,j=1

∫
(ε2 + |Diu|2) pi (z)−2

2

(
D2

ij u
)2

dz +
N∑

i=1

∫
|Diu|pi(z)+r dz (8.1)
QT QT
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≤ C

⎛
⎝1 + ‖f ‖2

2,QT
+ ‖∇f ‖2

2,QT
+

N∑
i=1

∫
�

|Diu0|pi(x,0) dx + ‖u0‖2
W

1,2
0 (�)

⎞
⎠

with any

r ∈
(

2

N + 2
,

2N(1 − μ) + 4

N + 2

)
.

The constant C is independent of m and ε.

Estimate (8.1) allows one to find functions uε , ηj , and a subsequence of {u(m)
ε } such that

u(m)
ε → uε ∗-weak in L∞(0, T ;L2(�)),

∇u(m)
ε → ∇uε ∗-weak in L∞(0, T ;L2(�))N ,

u
(m)
εt ⇀ uεt in L2(QT ),

Dju
(m)
ε ⇀ Djuε in Lpj (·)(QT ),

F (j)
ε (z,Dju

(m)
ε ) ⇀ ηj in L

p′
j (·)

(QT ).

(8.2)

Since W
1, �p(·)
0 (�) ⊂ W

1,p∧
0 (�) ↪→ L2(�), the functions u

(m)
ε are uniformly bounded in 

L∞(0, T ; W 1,p−
0 (�)). Since u(m)

εt are uniformly bounded in L2(QT ), the sequence {u(m)
ε } is 

relatively compact in C0([0, T ]; L2(�)), see [27, Sec.8, Cor.4]. Thus, u(m)
ε → uε a.e. in QT .

By the method of construction, for every k ≤ m

∫
QT

⎛
⎝u

(m)
εt φ +

N∑
j=1

F (j)
ε (z,Dju

(m)
ε )Djφ

⎞
⎠ dx =

∫
QT

f φ dz, ∀φ ∈ Sk. (8.3)

Letting m → ∞ we obtain the equality

∫
QT

⎛
⎝uεtφ +

N∑
j=1

ηjDjφ

⎞
⎠ dz =

∫
QT

f φ dz (8.4)

with any φ ∈ Sk with a fixed k. Since W (QT ) = ⋃
k≥1 Sk , the same is true for every φ ∈

W (QT ). The functions F (j)
ε (z, ξ) are monotone: for all ξ, η ∈R

(F (j)
ε (z, ξ) −F (j)

ε (z, η))(ξ − η) ≥ C

{
|ξ − η|p if p ≥ 2,

|ξ − η|2(ε2 + |ξ |2 + |η|2) p−2
2 if p ∈ (1,2)

(8.5)

with an absolute constant C. By using monotonicity and density of 
⋃

k≥1 Sk in W (QT ) we 
identify ηj by the standard arguments (see, e.g., [5, Sec.6]):
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∫
QT

ηjDjφ dz =
∫

QT

F (j)
ε (z,Diuε)Djφ dz ∀φ ∈ W (QT ).

It follows that the limit uε is a solution of problem (5.1). Moreover, the uniform estimate (8.1)
entails the estimate

N∑
i=1

∫
QT

|Diuε |pi(z)+r dz ≤ C (8.6)

with an independent of ε constant C.
Uniqueness of the constructed solution is an immediate byproduct of the monotonicity (8.5): 

testing (5.2) for the solutions uε,1, uε,2 with φ = uε,1 − uε,2 we obtain the inequality ‖uε,1 −
uε,2‖2

2,�(t) ≤ 0 for a.e. t ∈ (0, T ).

8.2. Strong convergence of the gradients

The strong convergence u(m)
ε → uε in L2(QT ), the weak convergence Dju

(m)
ε ⇀ Djuε in 

Lpj (·)(QT ) and the Mazur Lemma (see [10, Ch.3, Cor.3.8]) yield the existence of a sequence 
{v(m)} of convex combinations of {u(k)

ε }mk=1 such that v(m) → uε in W (QT ). Let us define wm ∈
Sm as follows:

‖wm − uε‖W (QT ) = min
{‖w − uε‖W (QT ) : w ∈ Sm

}
.

The functions u(m)
ε , wm ∈ Sm are admissible test-functions in (5.2) and (8.3). Combining these 

equalities with the test-function u(m)
ε we obtain

N∑
i=1

Ki ≡
N∑

i=1

∫
QT

(F (i)
ε (z,Diu

(m)
ε ) −F (i)

ε (z,Diuε))(Diu
(m)
ε − Diuε) dz

= −
∫

QT

(u
(m)
εt − uεt )u

(m)
ε dz −

N∑
i=1

∫
QT

(F (i)
ε (z,Diu

(m)
ε ) −F (i)

ε (z,Diuε))Diuε dz.

Choosing wm for the test-function we have the equality

−
∫

QT

(u
(m)
εt − uεt )wm dz −

N∑
i=1

∫
QT

(F (i)
ε (z,Diu

(m)
ε ) −F (i)

ε (z,Diuε))Diwm dz = 0.

Subtracting the second equality from the first one we find that
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N∑
i=1

Ki ≤ ‖u(m)
εt − uεt‖2,QT

(
‖uε − wm‖2,QT

+ ‖u(m)
ε − uε‖2,QT

)

+
N∑

i=1

(
‖F (i)

ε (z,Diu
(m)
ε )‖p′

i (·),QT
+ ‖F (i)

ε (z,Diuε)‖p′
i (·),QT

)
‖Diuε − Diwm‖pi(·),QT

.

By the choice of {wm} both terms on the right-hand side tend to zero as m → ∞. Fix i = 1,N

and consider Ki . Let us denote Q+
i = QT ∩ {pi(z) ≥ 2} and Q−

i = QT \ Q+
i . By (8.5)

∫
Q+

i

(F (i)
ε (z,Diu

(m)
ε ) −F (i)

ε (z,Diuε))(Diu
(m)
ε − Diuε) dz ≥ C

∫
Q+

i

|Diu
(m)
ε − Diuε |pi(z) dz.

On Q−
i we apply the generalized Hölder inequality (3.1):

∫
Q−

i

|Di(u
(m)
ε − uε)|pi(z) dz ≡

∫
Q−

i

⎛
⎝ (ε2 + |Diu

(m)
ε |2 + |Diuε |2)

pi−2
2 |Di(u

(m)
ε − uε)|2

(ε2 + |Diu
(m)
ε |2 + |Diuε |2)

pi−2
2

⎞
⎠

pi
2

dz

≤ 2

∥∥∥∥∥
(
(ε2 + |Diu

(m)
ε |2 + |Diuε |2)

pi−2
2 |Di(u

(m)
ε − uε)|2

) pi
2

∥∥∥∥∥ 2
pi (·) ,Q

−
i

×
∥∥∥(ε2 + |Diu

(m)
ε |2 + |Diuε |2)pi

2−pi
4

∥∥∥ 2
2−pi (·) ,Q

−
i

.

Due to relation (3.2) between the norm and the modular in the variable Lebesgue space, the 
second factor is bounded by a constant independent of m and ε. Because of (8.5) with p ∈ (1, 2)

and (3.2), the first factor tends to zero as Ki → 0. It follows that ‖Di(u
(m)
ε −uε)‖pi(·),QT

→ 0 as 
m → ∞, which yields the pointwise convergence Diu

(m)
ε → Diuε a.e. in QT . By (8.1) and the 

Vitali convergence theorem Diu
(m)
ε → Diuε in Lpi(·)+r (QT ) with every r from the conditions 

of Lemma 8.1.

8.3. Proof of Theorem 5.2

For all i, j = 1,N

Dj

(
(ε2 + |Diu

(m)
ε |2) pi−2

4 Diu
(m)
ε

)
= (ε2 + |Diu

(m)
ε |2) pi−2

4 D2
ij u

(m)
ε

+ pi − 2

2
(ε2 + |Diu

(m)
ε |2) pi−2

4 −1(Diu
(m)
ε )2D2

ij u
(m)
ε

+ (ε2 + |Diu
(m)
ε |2) pi−2

4 Diu
(m)
ε

1

4
Djpi ln(ε2 + |Diu

(m)
ε |2),

whence, with the use of (6.3),
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∣∣∣Dj

(
F (ε)

i (z,Diu
(m)
ε )

)∣∣∣≤ C(ε2 + |Diu
(m)
ε |2) pi−2

4 |D2
ij u

(m)
ε | + C′(ε2 + |Diu

(m)
ε |2) pi

4 + ρ
2 + C′′.

By virtue of (8.1)

∥∥∥Dj

(
F (ε)

i (z,Diu
(m)
ε )

)∥∥∥
2,QT

≤ C. (8.7)

It follows that there exist ζij ∈ L2(QT ) such that (up to a subsequence)

Dj

(
F (ε)

i (z,Diu
(m)
ε )

)
⇀ ζij in L2(QT ) as m → ∞.

Due to a.e. convergence Diu
(m)
ε → Diuε , for every φ ∈ C∞

0 (QT )

(ζij , φ)2,QT
= lim

m→∞
(
Dj

(
F (ε)

i (z,Diu
(m)
ε )

)
, φ

)
2,QT

= − lim
m→∞(F (ε)

i (z,Diu
(m)
ε ),Djφ)2,QT

= −(F (ε)
i (z,Diuε),Djφ)2,QT

.

Thus, ζij = DjF (ε)
i (z, Diuε), and estimate (8.7) holds for DjF (ε)

i (z, Diuε).

Remark 8.1. Assume that for some pj(z) < 2 in QT for some j . By Young’s inequality,

∫
QT

|D2
ij u

(m)
ε |pj dz =

∫
QT

(ε2 + (Dju
(m)
ε )2)

pj (2−pj )

4

(
(ε2 + (Dju

(m)
ε )2)

pj −2
2 |D2

ij u
(m)
ε |2

) pj
2

dz

≤
∫

QT

(ε2 + (Dju
(m)
ε )2)

pj −2
2 |D2

ij u
(m)
ε |2 dz + C

∫
QT

(ε2 + (Dju
(m)
ε )2)

pj
2 dz.

By virtue of (8.1), the integrals on the right-hand side of this inequality are uniformly bounded 
with respect to m and ε. It follows that there exist ζij ∈ Lpj (·)(QT ) such that D2

ij u
(m)
ε ⇀ ζij

in Lpj (·)(QT ) (up to a subsequence). Since Dju
(m)
ε ⇀ Djuε in L2(QT ), then for every φ ∈

C∞
0 (QT )

(ζij , φ)2,QT
= lim

m→∞
(
D2

ij u
(m)
ε ), φ

)
2,QT

= − lim
m→∞(Dju

(m)
ε ),Diφ)2,QT

= (Djuε,Diφ)2,QT
.

This further implies that ζij =D2
ij uε and by lower semicontinuity of the modular, ‖D2

ijuε‖pj (·),QT

≤ C.
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8.4. Proof of Theorems 2.1, 2.2

The proofs imitate the proofs of the corresponding assertions for the regularized problem 
(5.1). Let {uε} be the family of solutions of problem (5.1). The uniform estimates (5.3) and (5.4)
allow us to choose a sequence {uεk

} (we simply write uε) which has the convergence properties 
(8.2) with some u ∈ W (QT ) and ηj ∈ Lpj (QT ). To pass to the limit as ε → 0 one may repeat 
the arguments of [5, Sec.7]. The higher integrability of Diu follows from the independent of ε
estimate (8.6).

The strong convergence of the gradients follows from the strong monotonicity of the flux 
functions. Let uε , uδ be two solutions of the regularized problem (5.1). Combining equalities 
(5.2) with the test-function φ = uε − uδ ∈ W (QT ) we write the result in the form

N∑
i=1

∫
QT

(
F (ε)

i (z,Diuε) −F (ε)
i (z,Diuδ)

)
(Diuε − Diuδ) dz =

∫
QT

(uε − uδ)t (uε − uδ) dz

−
N∑

i=1

∫
QT

(
(δ2 + |Diuδ|2)

pi−2
2 − (ε2 + |Diuδ|2)

pi−2
2

)
Diuδ (Diuε − Diuδ) dz.

Due to (8.2), the first term on the right-hand side tends to zero as ε, δ → 0 as the product of the 
weakly convergent sequence, (uε − uδ)t ⇀ 0 in L2(QT ), and the strongly convergent sequence 
uε − uδ → 0 in L2(QT ). The second term tends to zero by the Vitali convergence theorem. On 
the one hand, the integrand tends to zero a.e. in QT as ε − δ → 0. On the other hand, due to (8.6)
it belongs to L1+σ (QT ) with a sufficiently small σ > 0. Indeed: by Young’s inequality

∣∣∣F (δ)
i (z,Diuδ) −F (ε)

i (z,Diuδ)

∣∣∣1+σ |Di(uε − uδ)|1+σ

≤ C
(

1 + |Diuδ|(pi−1)(1+σ)
)(

|Diuε |1+σ + |Diuδ|1+σ
)

≤ C′ (|Diuε |pi(1+σ) + |Diuδ|pi(1+σ)
)

+ C′′ (1 + |Diuδ|pi(1+σ)
)

,

therefore the integrand of the second term belongs to L1+σ (QT ), provided σ is so small that 
σ maxQT

p∨(z) < 2
N+2 . Using (8.5) to estimate the left-hand side from below and then arguing 

as in the proof of the strong convergence of the gradients for the solutions of the regularized 
problems, we conclude that Di(uε −uδ) → 0 in Lpi(·)(QT ) and, thus, a.e. in QT . The inclusions 

|Diu| pi (z)−2
2 Diu ∈ W 1,2(QT ) follow now as in the proof of Theorem 5.2.

Remark 8.2. The assertion of Remark 2.2 follows by repeating the same arguments for uε in 
place of u(m)

ε as in Remark 8.1 and in the proof of Theorem 5.2.

9. Problems (1.1), (5.1) in a smooth domain. Proof of Theorem 2.3

We turn to the problems posed in a cylinder QT = � × (0, T ) with ∂� ∈ Ck , k ≥ 1 +
N
(

1 − 1
+
)

. The proof of Theorem 2.3 is an imitation of the proofs of the corresponding asser-
2 p
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tions in the rectangular domains. For this reason, we omit the details and present the arguments 
where the role of the domain geometry becomes crucial.

The solution of problem (5.1) is sought as the limit of the sequence u(m)
ε ∈ Sm in the basis 

composed of solutions of problem (4.7). For every m ∈ N the coefficients c(m)
i (t) are defined as 

the solutions of problems (5.5), the existence of a sequence u(m)(x, 0) → u0 in W 1,�q(·)
0 (�) with 

qi(x) = max{2, pi(x, 0)} follows from Lemma 4.3. The energy relation (6.1) and the a priori 
estimates (6.2), (6.4) for the approximations u ≡ u

(m)
ε do not change if the rectangular domain 

K�a is substituted by a smooth domain ∂�.

Lemma 9.1. Let ∂� ∈ Ck with k ≥ 1 + N
(

1
2 − 1

p+
)

. If pi(z) satisfy the conditions of Theo-

rem 2.1, then the approximations u ≡ u
(m)
ε satisfy the uniform estimates (6.2), (6.4).

The difference between the cases of rectangular and smooth domains reveals in the derivation 
of the analog of equality (6.7). The boundary integrals, that were vanishing due to the geometry 
of the domain K�a , are now present and lead to new restrictions on the admissible anisotropy 
of the equation. We will follow the proof of [23, Th.3.1.1.1], which allows one to present the 
estimate in the form independent of the particular choice of the parametrization of ∂�. Let us 
take a point ξ ∈ ∂� and choose C2 curves {l1, . . . , lN−1} that are orthogonal at ξ . Denote by 
{�τ1, . . . , �τN−1} the unit vectors tangent to li , and by si the curve length along the curve li . By �ν
we denote the normal vector to ∂�. Given a smooth vector �v, we decompose it on ∂� into the 
sum of the tangent and normal components:

�v = �vτ + vν�ν, �vτ =
N−1∑
j=1

vj �τj , vj = (�v, �τj ).

Let �v and �w be two given smooth vectors. Integrating by parts and literally following the proof 
of [23, Th.3.1.1.1] we arrive at the formula

∫
�

div �v div �w dx =
∫
∂�

(vν div �w − ((�v · ∇) �w) · �ν) dS +
∫
�

N∑
i,j=1

DjviDiwj dx, (9.1)

(cf. with (6.5)), where the boundary integral can be reduced to the form

∫
∂�

(vν div �w − ((�v · ∇) �w) · �ν) dS = −
∫
∂�

(�vτ∇τ ( �w · �ν) + �wτ∇τ (�v · �ν)) dS

−
∫
∂�

B(�vτ ; �wτ )dS −
∫
∂�

vνwν trB dS.

(9.2)

Here B is the matrix of the second quadratic form of the surface ∂�. In the local coordinates {yi}
with the origin ξ the surface ∂� is represented by the equation yN = φ(y1, . . . , yN−1) where 
(y1, . . . , yN−1) belongs to the tangent plane and yN points in the direction of the exterior normal 
�ν. For every two vectors ζ , η tangent to ∂� at the point ξ ∈ ∂�
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B(ζ ;η) =
N−1∑
i,j=1

D2
yiyj

φ(ξ)ζiηj , trB =
N−1∑
i=1

D2
yiyi

φ(ξ).

Lemma 9.2. Let the conditions of Lemma 9.1 be fulfilled and, in addition, pi(z) = 2 of ∂� ×
[0, T ]. Then the functions u ≡ u

(m)
ε satisfy the uniform estimates

sup
(0,T )

‖∇u(t)‖2
2,� +

N∑
i,j=1

∫
QT

(ε2 + |Diu|2) pi (z)−2
2

(
D2

ij u
)2

dz

≤ C

⎛
⎜⎝1 +

N∑
i=1

∫
QT

|Diu|pi(z)+ρ dz + ‖∇u0‖2
2,� + ‖∇f ‖2

2,QT

⎞
⎟⎠

(9.3)

with any ρ ∈ (0, 1) and a constant C independent of ε, m.

Proof. We use the notation u ≡ u
(m)
ε . Multiplying the kth equation in (5.5) by λkcm,k(t), in-

tegrating by parts, and using (9.1), (9.2) with vi = F (ε)
i (z, Diu) and �w = ∇u, we arrive at the 

equality

1

2

d

dt
‖∇u‖2

2,� +
N∑

i,j=1

∫
�

Dj

(
(ε2 + (Diu)2)

pi (z)−2
2

)
D2

ij u dx −
∫
�

∇f · ∇udx

=
∫
∂�

�vτ∇τ ( �w · �ν)dS +
∫
∂�

�wτ∇τ (�v · �ν)dS +
∫
∂�

B(�vτ ; �wτ )dS +
∫
∂�

vνwν trB dS.

(9.4)

The second and the third terms on the right-hand side vanish because �wτ = ∇τ u = 0 on ∂�. To 
eliminate the first term we claim that �vτ = 0, that is, at every point of ∂� the vector with the 
components F (ε)

i (z, Diu) (the flux) either equals zero, or points in the direction of the normal 

�ν to ∂�. Since �ν = ∇u

|∇u| at the points where |∇u| �= 0, this is true if pi(z) = 2 on ∂� for all 

i = 1,N : F (ε)
i (z, Diu) = Diu. The last term is then bounded by

K

∫
∂�

|∇u|2 dS ≤ K

N∑
i=1

∫
∂�

(ε2 + |Diu|2) pi (z)

2 dS

with a constant K depending on the main curvature of ∂�. By [23, Lemma 1.5.1.9] there exists 
a function �μ ∈ C∞(�)N such that �μ · �ν ≥ δ > 0 on ∂� for some constant δ depending on ∂�. 
Then
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δ

∫
∂�

(ε2 + |Diu|2) pi (z)

2 dS ≤
∫
�

div

(
(ε2 + |Diu|2) pi (z)

2 �μ
)

dx

=
∫
�

�μ · ∇
(

(ε2 + |Diu|2) pi (z)

2

)
dx +

∫
�

(ε2 + |Diu|2) pi (z)

2 div �μdx.

The second term on the right-hand side is bounded by

C max
�

|div �μ|
⎛
⎝1 +

∫
�

|Diu|pi(z) dx

⎞
⎠≤ C′ + C′′

∫
�

|Diu|pi(z) dx.

By applying (6.3) and Young’s inequality, we estimate the first term as follows:

C

N∑
j=1

∫
�

pi(z)(ε
2 + |Diu|2) pi (z)−1

2 |D2
ij u|dx + C

∫
�

(ε2 + |Diu|2) pi (z)

2 | ln(ε2 + |Diu|2)||∇pi |dx

≤C′
N∑

j=1

∫
�

(ε2 + |Diu|2) pi (z)

4

(
(ε2 + |Diu|) pi (z)−2

2 (D2
ij u)2

) 1
2

dx + C′
∫
�

(ε2 + |Diu|2) pi (z)+ρ

2 dx

≤λ

N∑
j=1

∫
�

(ε2 + |Diu|) pi (z)−2
2 (D2

ij u)2 dx + C′′
∫
�

|Diu|pi(z)+ρ dx + C′′

with arbitrary constants λ, ρ ∈ (0, 1). Transforming the second term on the left-hand side of (9.4)
as Ii in (6.5), and then plugging into (9.4) the last two inequalities with sufficiently small λ and 
ρ, we arrive at the differential inequality

1

2

d

dt
‖∇u‖2

2,� +
N∑

i,j=1

∫
�

(ε2 + (Diu)2)
pi (z)−2

2 (D2
ij u)2 dx

≤ C + C′‖∇u‖2
2,� + C′′

N∑
i=1

∫
�

|Diu|pi+ρ dx +
∫
�

|∇f |2 dx.

(9.5)

Inequality (9.3) follows after integration in t . �
The proof of higher integrability of the gradient mimics the proof given in the case of a 

rectangular domain. The geometry of the domain � is important in the proof of Proposition 7.1
where the anisotropic interpolation inequality (4.15) is employed. To apply this inequality, we 
take the smallest rectangular domain K�c that contains �, and consider the zero continuation of 
u from � to K�c with pi(z) = 2 in K�c \ �.

Lemma 9.3. Assume that ∂� ∈ Ck , k ≥ 1 + N
(

1
2 − 1

p+
)

, and the exponents pi(z) satisfy the 
conditions of Theorem 2.3. Denote by L the maximal of the Lipschitz constants of pi(z) in QT . 
If
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μ = sup
QT

p∨(z)

p∧(z)
< 1 + 1

N
, or pi(z) ≥ 2 in QT and μ < 1 + 2

N
,

then for every smooth function u, every number

r ∈
(

0,
2N(1 − μ) + 4

N + 2

)
,

and every δ ∈ (0, 1)

∫
QT

(ε2 + |Diu|2) pi (z)+r−2
2 |Diu|2 dz ≤ δ

N∑
j=1

∫
QT

(ε2 + |Diu|2) pi (z)−2
2 (D2

ij u)2 dz + C (9.6)

with a constant C depending on δ, L, and ess sup(0,T ) ‖u‖2,�.

Since the rest of the proof of Theorems 5.1, 5.2, 2.1, 2.2 is independent of the geometry of 
�, the assertions of Theorem 2.3 with ∂� ∈ Ck follow by a literal repetition of the proofs of the 
corresponding assertions in the case of a rectangular domain.
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No data was used for the research described in the article.
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