
SoftwareX 20 (2022) 101211

a

b

c

a
n
a
n
s
a
t
e
b

t

g
(

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

The StaDyn programming language
Francisco Ortin a,b,∗, Miguel Garcia a, Baltasar Garcia Perez-Schofield c, Jose Quiroga a

University of Oviedo, Computer Science Department, Federico Garcia Lorca 18, 33007, Oviedo, Spain
Munster Technological University, Department of Computer Science, Rossa Avenue, Bishopstown, Cork, Ireland
University of Vigo, Computer Science Department, As Lagoas s/n, 32004 Ourense, Spain

a r t i c l e i n f o

Article history:
Received 20 May 2022
Received in revised form 3 August 2022
Accepted 18 September 2022

Keywords:
Hybrid static and dynamic typing
Compiler optimizations
.net platform
Programming language
StaDyn

a b s t r a c t

Hybrid static and dynamic typing languages are aimed at combining the benefits of both kinds of lan-
guages: the early type error detection and compile-time optimizations of static typing, together with
the runtime adaptability of dynamically typed languages. The StaDyn programming language is a
hybrid typing language, whose main contribution is the utilization of the type information gathered
by the compiler to improve compile-time error detection and runtime performance. StaDyn has been
evaluated as the hybrid typing language for the .Net platform with the highest runtime performance
and the lowest memory consumption. Although most optimizations are performed statically by the
compiler, compilation time is yet lower than the existing hybrid languages implemented on the .Net
platform.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version 2.1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00121
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used C# 5.0
Compilation requirements, operating environments & dependencies .Net Framework 4.8
If available Link to developer documentation/manual https://reflection.uniovi.es/stadyn/
Support email for questions ortin@uniovi.es
1. Motivation and significance

Dynamically typed languages commonly support runtime-
daptable features such as reflection, metaprogramming, dy-
amic code generation, duck typing, and dynamic reconfiguration
nd distribution. The great runtime flexibility provided by dy-
amic languages has made them suitable for different scenarios
uch as runtime adaptable systems, rapid prototyping, dynamic
spect-oriented programming, and data processing and integra-
ion systems [1]. Taking the web development scenario as an
xample, Ruby [2] is used for the rapid development of database-
acked web applications with the Ruby on Rails framework [3].

∗ Corresponding author at: University of Oviedo, Computer Science Depar-
ment, Federico Garcia Lorca 18, 33007, Oviedo, Spain.

E-mail addresses: ortin@uniovi.es (Francisco Ortin),
arciarmiguel@uniovi.es (Miguel Garcia), jbgarcia@uvigo.es
Baltasar Garcia Perez-Schofield), quirogajose@uniovi.es (Jose Quiroga).
ttps://doi.org/10.1016/j.softx.2022.101211
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
This framework has confirmed the simplicity of implementing
the DRY (Do not Repeat Yourself) [4] and the Convention over
Configuration [3] principles in a dynamically typed language.
JavaScript [5] is being widely employed to create both front- and
back-end modules of web applications [6]. Python [7] is used for
many different purposes including web development with nu-
merous frameworks (e.g., Django, CherryPy, Pyramid and Flask).

The great flexibility of dynamic languages is, however, coun-
teracted by limitations derived from the lack of static type check-
ing. The type information gathered by statically typed languages
is commonly used to perform different optimizations and to
provide the early detection of type errors [1]. Statically typed
languages offer the programmer the detection of type errors at
compile time, making it possible to fix them immediately rather
than discovering them at runtime [8]. Moreover, avoiding the
runtime type inspection and type checking performed by dynam-
ically typed languages commonly involve a runtime performance
improvement [9,10].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101211
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101211&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00121
https://reflection.uniovi.es/stadyn/
mailto:ortin@uniovi.es
mailto:ortin@uniovi.es
mailto:garciarmiguel@uniovi.es
mailto:jbgarcia@uvigo.es
mailto:quirogajose@uniovi.es
https://doi.org/10.1016/j.softx.2022.101211
http://creativecommons.org/licenses/by/4.0/


Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

t
b
p
r
t
a
t
i
i
w

t
c
g
F
s
s
l
t
J

i
v
m
l
t
p
b
o

e
p
a
d

2

a
r
i
t
i
T
m
t

i

t
p

c
n
t
o
t

n
t

Since both dynamic and static typing offer important benefits,
here have been approaches aimed at obtaining the advantages of
oth approaches, following the philosophy of static typing where
ossible, dynamic typing when needed [1]. Out of all the theoretical
esearch works, gradual typing has probably been the one with
he highest impact [11]—soft typing [12], quasi-static typing [13]
nd hybrid typing [14] are other well-known works. Gradual
yping defines a consistency relation that formally defines the
nteraction between static and dynamic types [15]. Ever since
ts conception, gradual typing has been an active research topic,
hich we detail in Section 5.
The research work in gradual and hybrid dynamic and static

yping has influenced the design and implementation of some
ommercial programming languages. Different hybrid typing lan-
uages were created, such as Visual Basic, Objective-C, Dylan, Boo,
antom and Cobra. Likewise, some dynamically typed languages,
uch as Groovy and PHP, became gradually typed after including
tatic type annotations [16,17]. Moreover, the statically typed C#
anguage included the dynamic type [18] to indicate the compiler
o postpone type checks until runtime. Kotlin, when compiled to
avaScript, follows a similar approach with its dynamic type [19].

The StaDyn programming language presented in this article
s a full-fledged object-oriented programming language that pro-
ides hybrid static and dynamic typing for the .Net platform. The
ain contribution of StaDyn compared with the existing hybrid

anguages is that it gathers type information from dynamically
yped code and uses it for two main purposes: detecting at com-
ile time type errors of dynamically typed code; and providing
etter runtime performance by reducing dynamic type-checking
perations.
The rest of this article is structured as follows. An illustrative

xample is presented in Section 2. Section 3 describes the StaDyn
rogramming language. An evaluation of the efficiency of StaDyn
nd some use case scenarios are presented in Section 4. Section 5
epicts the related work and conclusions are drawn in Section 6.

. Illustrative example

Fig. 1 shows an illustrative example of StaDyn code with static
nd dynamic typing. The DistanceToOrigin method in Fig. 1
eceives a Circumference, so the DistanceToOrigin(cir)
nvocation in line 26 is accepted by the compiler. On the con-
rary, the compiler rejects the next DistanceToOrigin(rec)
nvocation because rec is a Rectangle, not a Circumference.
hat invocation is rejected even though rec implements the two
essages passed to the figure parameter (GetX and GetY). If

he figure parameter had been dynamically typed, it would
have produced neither a compiler nor a runtime error, because
rec provides valid implementations of both GetX and GetY—that
s the so-called duck typing feature of dynamic languages.
Distance provides an example of the dynamic typing ap-

proach, since its two parameters are declared as dynamic. In
he invocation in line 28, a rectangle and a circumference are
assed to Distance. That function call produces no runtime error

because both objects provide GetX and GetY. That is not the
case with the following Distance(cir, tri) invocation, since
triangles do not provide GetX and GetY. In C#, the invocation
is compiled and it throws an error at runtime, just like most
dynamic languages do. However, the StaDyn compiler manages
to show an error in line 29. That is because StaDyn performs type
hecking of dynamically typed code and knows that tri does
ot provide the implementation of GetX and GetY. Moreover,
he type information gathered by the compiler is also used to
ptimize the code generated (see Section 4.1). This compile-
ime type inference and type checking of dynamically typed
 T

2

code is the main difference between StaDyn and the rest of the
dynamically typed languages.

3. Software description

StaDyn is a hybrid static and dynamic typing object-oriented
language for the .Net framework. It was created as an extension
of C# 3 in 2007 by the Computational Reflection research group
of the University of Oviedo, as a research project partially funded
by Microsoft Research. StaDyn enhances the behavior of the C#
implicitly typed local references (i.e., the var keyword) and the
dynamic type that was later included in C# 4.

In StaDyn, the var keyword can be used to declare implic-
itly typed references. This means that var is a valid type for
declaring fields, parameters, return values and local variables—
in C#, var can only be used to define initialized local variables.
In the example code in Fig. 1, all the dynamic references used
(line 19) can be replaced with var. The main difference between
var and dynamic is that the compiler is more lenient with
dynamic references. With var, the compiler performs classical
static typing, making sure that every possible execution flow is
safe. However, with dynamic it allows constructs with at least
one valid execution flow1 (details are given in Section 3.4).

The StaDyn compiler is implemented in C# [20]. For lexical and
syntactic analysis, we use the ANTLR LL(*) parser generator. The
compiler generates assembly code in the intermediate language
(IL) for the .Net platform. Finally, the IL assembler is used to
generate the .Net binaries.

3.1. Variables holding different types at runtime

In dynamic languages, it is very common to use one unique
variable to hold different types in the same scope. For example,
the code on the left-hand side of Fig. 2 uses the value variable
to hold the same value with different types. First, value stores
the string representation of a real number (line 3) passed to the
program from the command line prompt. In that case, the Length
message can be passed to value, because Length is a property
provided by String. Then, line 5 converts the String into a
double number, so it can be passed to Sqrt (line 6). The Length
property is no longer provided by value, so the StaDyn compiler
produces a compile-time error in line 7 (unlike C#, which shows
the error at runtime).

Common statically typed platforms such as Java and .Net do
not allow variables to have different types in the same scope.
So, if the Object type is used as the assembly translation of
dynamic and var, the required casts or the use of reflection will
slow down the execution of the application [21]. To avoid this
runtime performance penalty, the StaDyn compiler transforms
the program (its abstract syntax tree, AST) into another one
where each dynamically typed reference is (statically) assigned
at most once. That is, programs are transformed into Static Single
Assignment (SSA) form [22].

The SSA transformation is shown in Fig. 2. The AST of the
program on the left is translated into the AST of the program on
the right [23]—the same occurs with var references. In this way,
the type-checking phase of the StaDyn compiler infers a unique
type for the value 0 (string) and value 1 (double) variables.
Besides the robustness of detecting the error in line 7, the gener-
ated code provides significantly higher runtime performance by
avoiding unnecessary casts and reflection (Section 4.1).

1 The first version of StaDyn only supported our extension of the var type,
ot dynamic. Afterwards, C# 4.0 was launched and included the new dynamic
ype. We then created StaDyn 2.0 to include a new interpretation of dynamic.
he exact differences between var and dynamic are detailed in Section 3.4



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

Fig. 1. Example StaDyn program with hybrid static and dynamic typing (class constructors are obviated).

Fig. 2. Left-hand side: StaDyn source code where value holds two different types. Right-hand side: the transformed program produced by the SSA algorithm.

3



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211
Fig. 3. Flow-sensitive types in StaDyn.
3.2. Flow-sensitive types

As in dynamic languages, StaDyn allows variables whose type
depends on the execution flow. In the source code of Fig. 3,
the type of figure (line 10) depends on the dynamic value of
args[0]. It may be Circumference or Rectangle.

StaDyn models flow-sensitive types through union types [24].
The type of the figure variable is the Circumference∨
Rectangle union type. A union type T1∨T2 denotes the ordinary
union of the set of values belonging to T1 and T2 [25], representing
the least upper bound of T1 and T2 [26]. Therefore, the set of
operations (e.g., addition, field access, assignment, invocation
and indexing) that can be applied to a union type are those
accepted by every type in the union type. For this reason, it is
safe to call the GetX method of figure in line 11 of Fig. 3 (both
Circumference and Rectangle provide GetX). This is what
is called duck typing in the dynamic language community [27].
An important benefit of StaDyn is that duck typing is statically
typed [28].

The behavior of var and dynamic references are not the
same when it comes to type-check union types. For var, the
type system checks, for a given operation, that such operation
is supported by all the types in the union type. In our exam-
ple, figure.GetX() is safe because both Circumference and
Rectangle provide that method. However, the GetRadiusmes-
sage cannot be passed to figure (line 12) because it is not
implemented by Rectangle. This is the classical interpretation
of union types [29].

StaDyn provides a new interpretation of union types for dy-
namic Refs. [30]. In this case, the compiler is more lenient to
follow the flavor of dynamic languages, but static typing is still
performed. An operation is allowed when at least one of the
types in the union type supports that operation. For example,
if figure is declared as dynamic in Fig. 3 (line 10), the fig-
ure.GetRadius() statement in line 12 will be accepted by the
compiler, because GetRadius is implemented by Circumfer-
ence. On the other hand, figure.GetArea() is detected as a
compiler error, even if figure is dynamic, because neither Cir-
cumference nor Rectangle supports that message. A formal
description can be consulted in [31].

For both dynamic and var union types, StaDyn adds runtime
type checks in the generated code [31]. As the number of types in
the union type grows, those type checks consume more execution
4

time [32]. Although the method specialization technique imple-
mented (Section 3.5) significantly reduces this cost, union types
holding a massive number of types are better avoided by defining
a common supertype. Otherwise, the StaDyn compiler uses the
type cache of the Dynamic Language Runtime (DLR) (Section 3.6)
when a union type holds 126 types or more—from this value on,
the DLR provides better performance.

3.3. Dynamically typed parameters

The type of both dynamic and var variables are inferred
with a unification algorithm [33]. The StaDyn compiler models
the type of dynamic and var variables as type variables that
can be unified (i.e., instantiated or substituted) with any other
type [34]. This unification is performed on method invocation,
object construction and assignments.

Fig. 4 shows a StaDyn program excerpt with gray type anno-
tations on the right. Type variables are represented as Xi, where
i is a unique identifier. The type of cir (line 15) is the type
variable X6 that, initially, is not instantiated (a substitution has
not been found for it). The assignment in line 15 unifies the type
of cir (X6) to Circumference. The SSA algorithm assures that
one dynamically typed local variable is assigned once and hence
has a unique type.

var and dynamic parameters cannot be unified with a single
type. Since they represent the type of all the possible arguments
to be passed, they cannot be inferred in the same way as local
variables. This is the case of the figure parameter in line 2.
In the first invocation to Distance (line 17), the parameter
type variable (X1) is unified to Circumference but, in the next
invocation (line 18), X1 will be Rectangle. Thus, the type of
the parameter (X1) varies depending on the invocation—the same
happens for methods returning var or dynamic.

To support the type inference of var and dynamic param-
eters and return values, StaDyn includes constraints in its type
system [35]. For example, the type of Distance is a method
receiving X1 and returning X2, with the following constraints: X1
must provide the GetX() and GetY() messages (X1 ≤ {GetX():
X3}, X1 ≤ {GetY(): X4}), since they are called in the method
body; likewise, the two values returned by GetX and GetY (X3
and X4) must be subtypes of double, because they are passed
to Math.Pow; and, finally, the type returned by Distance is
double, since that is the type returned by Math.Sqrt.



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

u
c
i
t
r
t
a

3

p
u
t
i
a

e
a
a
b
H
c
i
l
p

t
A
m

Fig. 4. Dynamically typed parameters.
t
(
o

3

t
e
t
p
c
t
m
b
t
t
o
p

n
r
v
c

At every invocation, the type variables of the parameters are
nified with the type of the arguments, and constraints are
hecked. If the constraints are fulfilled, the returning type is then
nferred. Otherwise, a compiler error is shown. The three invoca-
ions in lines 17, 18 and 20 fulfill the constraints of Distance and
eturn double. However, the invocation in line 21 does not meet
he constraints because Triangle does not implement GetX()
nd GetY()—a compiler error is shown.

.4. Static and dynamic typing

One of the development scenarios of gradual typing is rapid
rototyping. In such a scenario, dynamically typed variables are
sed to implement prototypes. If the language also supports static
yping, dynamically typed variables can be gradually converted
nto statically typed ones to make the application more robust
nd efficient.
StaDyn supports the gradual modification of dynamically typ-

d code with different compiler options. As mentioned, the langu-
ge provides var as a new type. By default, var is statically typed
nd shows a compiler error when an operation is not supported
y all the types in a flow-sensitive union type (Section 3.2).
owever, if the everythingDynamic option is passed to the
ompiler, all the var references are treated as dynamic, mak-
ng the type system to be more lenient. That option would no
onger be used when we want to convert a prototype into a safe
rogram [28].
StaDyn also provides a Visual Studio plug-in that facilitates

he conversion of rapid prototypes into safe applications [36].
mong other functionalities, it performs the automatic replace-
ent of var and dynamic references with the types inferred by
5

he compiler, when they are inferred to one single static type
flow-sensitive union types are not replaced) [37]. It supports this
ption for a single variable, one file and the whole application.

.5. Method specialization

The StaDyn type inference system combines constraints, union
ypes, unification and SSA transformations to detect compile-time
rrors of dynamically typed code. Moreover, the type informa-
ion gathered by the compiler is used to improve the runtime
erformance of the generated code. One of the most signifi-
ant optimizations performed by StaDyn is method specializa-
ion [28]. The type information inferred for the arguments in a
ethod invocation is used to specialize the code of the method
eing called. var and dynamic parameters are replaced with
he inferred types of the arguments, and a new implementa-
ion for the invoked method is generated. In that new version
f the method, no dynamic typing is performed, so runtime
erformance is significantly increased (Section 4.1).
Fig. 5 shows an example of the method specialization tech-

ique (the left-hand side shows the original code, while the
ight-hand side depicts its specialized version). For the first in-
ocation to Distance (line 7), a new Distance_1 method is
reated, replacing the dynamic type of the parameter (line 2)
with the type of the argument (Circumference); the same spe-
cialization is performed for the return type. Therefore, when the
specialized invocation calls Distance_1, runtime performance
will be increased because dynamic typing is avoided.

The same specialization takes place if the argument is a flow-
sensitive union type (e.g., figure argument in line 9). In this
case, a new Distance_3 method is created. The only runtime



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

t
p
s
t

n
s

Fig. 5. Original StaDyn code (left-hand side) and its specialized version (right-hand side).
ype check performed in Distance_3 is knowing whether the
arameter is Circumference or Rectangle. No other type
hould be checked because the type of the argument is inferred
o Circumference∨Rectangle. Distance_3 calls either Dis-
tance_1 or Distance_2, where no dynamic type checking is
performed.

3.6. Runtime type cache optimization

Although method specialization is performed for each invoca-
tion, the original Distancemethod with the dynamic parameter
and return type is maintained in the generated code. This is
because the compiled assembly can be used as a .Net compo-
ent from another application and, in that case, it would not be
pecialized.
For that particular case scenario, the StaDyn compiler provides

another optimization. For those unspecialized methods with dy-
namically typed parameters, a runtime type cache is used [38]. In
that case, the code generated by the compiler uses the services
of the Dynamic Language Runtime (DLR). The DLR implements
different cache levels for the typical operations of dynamically
typed code [39]. The use of the runtime cache provides signifi-
cant performance benefits when methods are repeatedly called
with the same argument types (a common scenario in most
applications) [38].

4. Impact

StaDyn is a suitable programming language for scenarios
where both dynamic and static typing are appropriate to build a
.Net component or application. The main contribution of StaDyn
is the static type checking performed by the compiler for the
dynamically typed code. So far, we have described how that in-
formation is used to produce safer programs with fewer runtime
errors (Section 3). We now evaluate how that type information
is used to generate more efficient code (Section 4.1). Finally,
we describe some scenarios where the StaDyn programming
language has been used (Section 4.2).
 s

6

4.1. Runtime performance and memory consumption

We compare the efficiency of StaDynwith the following hybrid
typing languages for the .Net platform: C# 7.3, Visual Basic 15,
Boo 0.9.7, Fantom 1.0.77 and Cobra 0.9.6. We also include the
IronPython 2.7.7 implementation of Python for the .Net platform
due to its good performance. All the source code has no type
annotations (everything is dynamic). For C#, we also measure
the code with all the type annotations to see how close the
implemented optimizations are to fully type-annotated C#.

There exist some other dynamic languages that implement
state-of-the-art optimizations to improve the runtime perfor-
mance of dynamically typed code. Although they do not generate
code for the .Net platform, we include them in our analysis to
compare their optimizations with the ones provided by StaDyn.
For Python, we measure PyPy 2.7, evaluated as the fastest Python
implementation [40], and the CPython 2.7.14 reference imple-
mentation. The JavaScript engines V8 8.7 and SpiderMonkey 24.4
(with and without IonMonkey) are also included in the evaluation
because of their excellent performance [20]. We also include the
JavaScript GraalVM implementations over the high-performance
GraalVM polyglot virtual machine (both native image and JVM
runtimes) [41].

We measure different applications and benchmarks. First,
we take the Pybench and Pystone well-known dynamically typed
benchmarks. Second, we include Section 2 (kernels) and Sec-
tion 3 (large-scale applications) of the statically typed Java Grande
benchmark. The Points hybrid static and dynamic benchmark
is also measured [31]. We translate all the programs into the
different languages to be evaluated, and all the type annotations
are replaced with dynamically typed references.

We follow the two methodologies proposed by Georges
et al. [42]: (1) startup performance is how quickly a system
can run a relatively short-running application; (2) steady-state
performance concerns long-running applications, where runtime
optimizations have been executed. For startup, each program is
executed 30 times, computing the average result and the stu-
dent’s t 95% confidence interval of the total execution time. As for
tartup, steady-state programs are executed 30 times. However,



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

e
a
t
l
d

o
o
s
t
R
p

s
W

p
a
c
t
b
s
t
u
w

w
p
w
t
V

Fig. 6. Average startup execution times relative to StaDyn (whiskers represent 95% confidence intervals).
m
k
t
p

ach program execution in steady-state runs the benchmark in
loop, and it returns the average value of the last 10 itera-

ions when the coefficient of variation of those 10 iterations is
ower than 2% (i.e., a steady state is reached)—a more detailed
escription can be consulted in [42].
Memory consumption is evaluated with the startup methodol-

gy. For each program execution, we measure the maximum size
f working set memory employed by each process ever since it
tarted (i.e., PeakWorkingSet). The working set of a process is
he set of memory pages currently visible to a process in physical
AM memory, which is available to be used without triggering a
age fault.
All the programs are measured on a 2.5 GHz Intel Core i7

ystem with 8 GB of RAM, running an updated 64-bit version of
indows 10 and .Net Framework 4.8.
Fig. 6 shows the startup execution times, where StaDyn out-

erforms the rest of the languages measured but C# with full type
nnotations. The optimizations implemented by StaDyn make
ode with all dynamic variables to be 1.8% slower than fully
ype-annotated C#, but there are no significant differences since
oth confidence intervals overlap [42]. When comparing the same
ource code – C# and StaDyn with all dynamic variables – run-
ime performance is 12.1 times higher than C#. This value grows
p to 74.9 factors when compared to Cobra, the .Net language
ith the lowest runtime performance.
When compared to PyPy, a Python implementation optimized

ith a tracing JIT compiler [43], StaDyn provides a 272.8% runtime
erformance benefit for startup. The JavaScript engine evaluated
ith the best startup performance is V8, which implements run-
ime adaptive optimizations [44]. In the applications measured,
8 requires 93.4% more execution time than StaDyn.
 d

7

For the steady-state methodology (Fig. 7), the dynamic opti-
izations implemented by the tracing JIT compilers of IonMon-
ey and GraalVM for JVM show important benefits compared
o the startup approach. IonMonkey shows the best JavaScript
erformance with 127.7% more execution time than StaDyn. Sta-

Dyn keeps showing the second best steady-state performance,
consuming 5.1% more execution time than C# with all the type
annotations. All these data show that our optimizations make
dynamic code in StaDyn to be very close to type-annotated code,
and provide significantly higher runtime performance than the
existing approaches to optimize dynamically typed code.

Fig. 8 shows the average runtime memory consumed by the
different languages. StaDyn is the programming language that
requires fewer memory resources at runtime. This is because
the method specialization optimization implemented by StaDyn
is performed statically by the compiler.2 On the contrary, highly
optimized implementations, such as PyPy, IonMonkey, V8 and
GraalVM, perform all the optimizations dynamically, consuming
additional memory resources. C# with dynamic and IronPython
use the runtime cache of the DLR, and Fantom implements its
own cache, causing significantly higher memory consumption.

As mentioned, most of the optimizations provided by Sta-
Dyn take place statically, at compile time. That provides lower
execution times and memory consumption than the existing ap-
proaches, but requires additional compilation time. Thus, we
compare the compilation time of the selected programs with
different compilers. The .Net Foundation supports two C# and

2 Fully type-annotated C# consumes 2.4% more memory than StaDyn because
of the DLR used in the Points benchmark. StaDyn does not make use of the DLR,
ue to the method specialization technique implemented [28].



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

V
a
t
9
n
B
S
6
o

Fig. 7. Average steady-state execution times relative to StaDyn (whiskers represent 95% confidence intervals).
isual Basic compilers implemented on the .Net platform (known
s Roslyn compilers), similar to StaDyn. The average compilation
imes of these C# and Visual Basic compilers are, respectively,
2.9% and 101% higher than StaDyn. Compared to the Microsoft
ative implementations (i.e., binary compilers), C# and Visual
asic use 15.9% and 24.6% of the compilation time consumed by
taDyn. StaDyn compiles the selected programs 4.5%, 12.4% and
3.4% faster than, respectively, Fantom, Boo and Cobra, the rest
f the hybrid typing languages for the .Net platform.

4.2. Usages of StaDyn

The StaDyn programming language was used in the develop-
ment of the OneRate credit risk analysis system [45]. OneRate
was built as a highly adaptable framework that supports the com-
mon features of credit risk analysis systems, while allowing their
customization to the particular requirements of each customer.
These two objectives are achieved with the combination of static
and dynamic typing.

StaDyn was also used in the development of part of DIMAG, a
framework for the declarative implementation of native mobile
applications [46]. The code generation module of DIMAG was
implemented in StaDyn, due to its adequacy to add new target de-
vices using duck typing. The same approach was used to develop
the Lizard native view generation system [47].

We used StaDyn in the implementation of statically typed mul-
timethods for the .Net platform [9]. A multimethod dispatcher
uses dynamic as the type of its polymorphic arguments. Those
arguments are passed to statically typed overloaded methods
implementing each multimethod [48]. The type system of StaDyn
allows detecting errors statically, while obtaining high runtime
performance. StaDyn was also used to implement part of the dy-
namic weaving module of the DSAW aspect weaver platform [49].
8

Besides software development, StaDyn has also been utilized
in different academic scenarios. Our language is used to teach the
differences between dynamic and static typing in a Programming
Paradigms and Technologies course [50]. Likewise, its source code
is employed to teach the different parts of a compiler in a Pro-
gramming Language Design and Implementation module [51].
Finally, we use StaDyn to teach its different optimizations in
a Programming Languages and Platforms research course of a
software engineering master’s degree.

5. Related work

There have been many works aimed at obtaining the advan-
tages of static and dynamic typing in the very same programming
language. Soft typing applies static typing to the Scheme dy-
namically typed language [12]. In soft typing, the static type
checker inserts runtime type checks in dynamically typed op-
erations that may be erroneous. Abadi et al. add a Dynamic
type to lambda calculus, including two conversion operations:
dynamic to construct values of Dynamic type and typecase for
inspecting them, producing verbose code deeply dependent on its
dynamism [52].

The works of quasi-static typing [13] and hybrid typing [14]
perform implicit conversions between dynamic and static code
via subtyping relations. Gradual typing is based on the consis-
tency relation, first defined in the λ?

→
functional calculus [15]. Un-

like subtyping, the consistent subtyping relation is not transitive.
Consistency was later combined with subtyping (≲) and included
in object-oriented abstractions [11]. Gradual typing has also been
integrated with ownership types [53], refinement types [54],
session types [55] and type inference [56].



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211
Fig. 8. Average runtime memory consumption relative to StaDyn (whiskers represent 95% confidence intervals).
Garcia et al. propose a new foundation for gradual typing
called Abstract Gradual Typing (AGT) [57]. AGT derives consis-
tent predicates and gradual typing judgements by using abstract
interpretation to give gradual types a semantics in terms of
pre-existing static types. Gradual types are interpreted as sets
of possible static types. AGT yields a formal account of consis-
tency that subsumes and generalizes the traditional notions of
consistency. AGT includes a systematic approach to developing
dynamic semantics for gradual programs as proof reductions over
source-language typing derivations.

Inspired by the AGT work on using abstract interpretation to
understand gradual typing [57], Toro and Tanter define gradual
union types. Gradual union types combine the traditional static
approach of untagged (T1 + T2) and tagged (T1 ∨ T2) unions,
viewing a union type as a kind of gradual type [58]. Thus, T1

⨁
T2

is a union gradual type that represents both T1 and T2, meaning
that the use of a value type T1

⨁
T2 is accepted if the operations

make sense for either T1 or T2. If such operations are valid for
one of the types (T1 or T2), a runtime check is introduced that
may cause a dynamic cast error. No runtime check is necessary
if the operation is valid for both T1 and T2. If the operation is
valid for neither T1 nor T2, the program is rejected statically. Since
gradual union types do not allow full dynamic type checking, the
unknown type ? is also included in the meta-theory of gradual
union types.

Castagna and Lanvin enrich gradual type systems with union
and intersection types, making the transition between dynamic
and static typing smoother and finer grained [59]. Union and
intersection types can be used by programmers to instruct the
system to perform fewer runtime checks. They use the name of
set-theoretic types because, interpreting types as sets of values,
9

union and intersection types are interpreted as the correspond-
ing set-theoretic operations. Likewise, the subtyping relation is
defined as set containment. Castagna and Lanvin define the static
and dynamic semantics of a language with gradual typing and
set-theoretic type connectives, and prove its soundness.

Muehlboeck and Tate present a calculus, called MonNom,
that allows mixing untyped structural code with typed nominal
code in gradually typed object-oriented languages [60]. Their
system allows programs to transition between untyped struc-
tural and typed nominal approaches, while still ensuring gradual
guarantee [61] and soundness. MonNom was implemented with
an ahead-of-time compiler using LLVM, extending their calculus
with a standard library, generics and new primitives. The evalua-
tion showed that the worst-case overhead of the implementation
stays under 25%.

Sound gradually typed languages insert runtime checks to
provide type soundness for the overall program. Therefore, the
programmer can rely on the language implementation to pro-
vide meaningful error messages at runtime. However, these run-
time type checks imply a significant performance overhead [62].
Rastogi et al. measured the runtime performance of the sound
gradual type system provided by Safe TypeScript, reporting that
the average performance cost for dynamic code with no type
annotations was 22 factors [63].

Due to the runtime performance cost of sound gradually typed
languages, there have been many works focused on their op-
timization. Siek et al. propose monotonic references to avoid
the runtime overhead of dynamic typing in statically typed re-
gions [64]. The work of Herman et al. aims at reducing the
type checking operations by combining adjacent type coercions,
providing potential optimizations in space and time [65].



Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211

i
i
t
t
t
a
T
t
i

p
t
c
s
c
c
P
w
c
c
C

t
h
a
[
s
p
9
e

6

s
t
t
c
o
t
i
o
t
i
u
d

u
a

a

D

r
i
b
O
P

D

t
b

t
a
p
e
I
t
A
S

R

Rastogi et al. design a sound type inference algorithm to
mprove the performance of gradually typed programs, without
ntroducing any new runtime failures [66]. In this way, static
ypes can often be inferred, thereby removing unnecessary run-
ime checks. The algorithm performs an asymmetric treatment of
ypes that flow in and out to an unknown type, and an escape
nalysis is performed to decide which types are safe to infer.
heir type inference algorithm was included in an implementa-
ion of ActionScript, showing an average runtime performance
mprovement of 60% [66].

Reticulated Python is a gradually typed variant of the Python
rogramming language [67]. The transient strategy for gradual
yping in Reticulated Python inserts lightweight constant-time
hecks (type tag inspections) rather than using proxies. However,
uch transient gradual typing still shows a runtime performance
ost linear to the number of type annotations, presenting a worst-
ase overhead of 6 factors compared to CPython [68]. Reticulated
ython was later optimized by removing unnecessary checks
ith a type inference algorithm that uses subtyping and check
onstraints generated by the transient checks [69]. The linear
ost disappeared, showing a 6% average overhead compared to
Python and 1% when run on PyPy.
Pycket implements a tracing JIT compiler for the gradually

yped Racket language [70]. Pycket is implemented in the RPyt-
on meta-tracing framework, originally created for PyPy. RPython
utomatically generates tracing JIT compilers from interpreters
71]. Among other optimizations, Pycket performs runtime type
pecialization of different data structures. The tracing JIT compiler
rovided by RPython has allowed Pycket to eliminate more than
0% of the gradual typing overhead introduced by Typed Rack-
t [72].

. Conclusions

The StaDyn programming language combines the benefits of
tatic and dynamic typing in the very same language. Compared
o the existing hybrid typing languages, its main contribution is
hat it statically gathers type information of dynamically typed
ode. Such type information is used to provide early detection
f type errors of dynamically typed code and a significant run-
ime performance improvement. Dynamic memory consumption
s also reduced due to its compile-time method-specialization
ptimization. Although most optimizations take place at compile
ime, compilation time is lower than the hybrid typing languages
mplemented on the .Net platform. StaDyn has been successfully
sed to implement several software applications and to teach
ifferent topics in university courses.
A virtual machine with all the benchmarks and the software

sed to measure the different language implementations evalu-
ted in this article are available for download at
https://www.reflection.uniovi.es/stadyn/download/2022/softw

rex

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Francisco Ortin reports financial support was provided
y Ministry of Science Technology and Innovations. Francisco
rtin reports financial support was provided by Government of
rincipality of Asturias.

ata availability

The data used in this article is produced by the execution of
he benchmarks described in the paper. The source code of all the

enchmarks is available for download.

10
Acknowledgments

The StaDyn programming language was partially funded by
Microsoft Research, United States with the project entitled Ex-
ending Dynamic Features of the SSCLI , awarded in the Phoenix
nd SSCLI, Compilation and Managed Execution Request for Pro-
osals. It was also funded by the Spanish Department of Sci-
nce, Innovation, and Universities (project RTI2018-099235-B-
00) and the University of Oviedo, Spain (GR-2011-0040). We
hank Cristina González, Daniel Zapico, Francisco Moreno and
nton Morant for their contribution to the implementation of the
taDyn programming language.

eferences

[1] Meijer E, Drayton P. Static typing where possible dynamic typing when
needed: The end of the cold war between programming languages. In:
Proceedings of the OOPSLA workshop on revival of dynamic languages.
Vancouver, Canada: ACM; 2004, p. 1–6.

[2] Thomas D, Fowler C, Hunt A. Programming ruby. second ed.. Addison-
Wesley; 2004.

[3] Thomas D, Hansson DH, Schwarz A, Fuchs T, Breed L, Clark M. Agile web
development with rails. In: A pragmatic guide. Pragmatic Bookshelf; 2005.

[4] Hunt A, Thomas D. The pragmatic programmer: from Journeyman to
master. Addison-Wesley Longman Publishing Co., Inc. 1999.

[5] ECMA-262. ECMAScript 2021 language specification. European Computer
Manufacturers Association; 2021.

[6] Bush E, van der Linden M. Full-stack javascript development: develop, test
and deploy with MongoDB, express, angular and node on AWS. Red Hat
Press; 2016.

[7] van Rossum G, Fred L, Drake J. The python language reference manual.
Network Theory; 2003.

[8] Pierce BC. Types and programming languages. Cambridge, Massachusetts:
The MIT Press; 2002.

[9] Ortin F, Garcia M, Redondo JM, Quiroga J. Combining static and
dynamic typing to achieve multiple dispatch. Inf Int Interdiscip J
2013;16(12):8731–50.

[10] Ortin F, Conde P, Lanvin DF, Izquierdo R. Runtime performance of
invokedynamic: an evaluation with a Java library. IEEE Softw 2014;
31(4):82–90.

[11] Siek JG, Taha W. Gradual typing for objects. In: Proceedings of the 21st
European conference on object-oriented programming. Berlin, Germany:
Springer-Verlag; 2007, p. 2–27.

[12] Cartwright R, Fagan M. Soft typing. In: Proceedings of the conference on
programming language design and implementation. Toronto, Canada: ACM;
1991, p. 278–92.

[13] Thatte S. Quasi-static typing. In: Proceedings of the 17th symposium on
principles of programming languages. San Francisco, California, United
States: ACM; 1990, p. 367–81.

[14] Flanagan C, Freund SN, Tomb A. Hybrid types, invariants, and refinements
for imperative objects. In: Proceedings of the international workshop on
foundations and developments of object-oriented languages. San Antonio,
Texas: ACM; 2006, p. 1–11.

[15] Siek JG, Taha W. Gradual typing for functional languages. In: Scheme and
functional programming workshop. 2006, p. 1–12.

[16] Strachan J. Groovy 2.0 release notes. 2022, http://groovy-lang.org/
releasenotes/groovy-2.0.html.

[17] Zandstra M. PHP objects, patterns, and practice. fifth ed.. A Press; 2016,
p. 488.

[18] Bierman G, Meijer E, Torgersen M. Adding dynamic types to C#.
In: Proceedings of the 24th European conference on object-oriented
programming. ECOOP, Maribor, Slovenia: Springer-Verlag; 2010, p. 76–100.

[19] JetBrains. Kotlin dynamic type. 2022, https://kotlinlang.org/docs/dynamic-
type.html.

[20] Garcia M, Ortin F, Quiroga J. Design and implementation of an effi-
cient hybrid dynamic and static typing language. Softw - Pract Exp
2015;46(2):199–226.

[21] Ortin F, Redondo JM, Garcia Perez-Schofield JB. Efficient virtual ma-
chine support of runtime structural reflection. Sci Comput Program
2009;70(10):836–60.

[22] Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK. Efficiently
computing static single assignment form and the control dependence
graph. ACM Trans Program Lang Syst 1991;13(4):451–90.

[23] Quiroga J, Ortin F. SSA transformations to facilitate type inference in
dynamically typed code. Comput J 2017;60(9):1300–15.

[24] Pierce BC. Programming with intersection types and bounded poly-
morphism. Tech. Rep. CMU-CS-91-106, Pittsburgh, PA, USA: School of
Computer Science; 1992.

https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
https://www.reflection.uniovi.es/stadyn/download/2022/softwarex
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb1
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb2
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb2
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb2
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb3
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb3
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb3
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb4
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb4
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb4
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb5
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb5
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb5
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb6
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb6
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb6
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb6
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb6
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb7
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb7
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb7
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb8
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb8
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb8
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb9
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb9
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb9
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb9
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb9
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb10
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb10
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb10
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb10
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb10
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb11
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb11
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb11
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb11
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb11
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb12
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb12
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb12
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb12
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb12
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb13
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb13
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb13
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb13
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb13
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb14
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb15
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb15
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb15
http://groovy-lang.org/releasenotes/groovy-2.0.html
http://groovy-lang.org/releasenotes/groovy-2.0.html
http://groovy-lang.org/releasenotes/groovy-2.0.html
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb17
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb17
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb17
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb18
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb18
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb18
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb18
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb18
https://kotlinlang.org/docs/dynamic-type.html
https://kotlinlang.org/docs/dynamic-type.html
https://kotlinlang.org/docs/dynamic-type.html
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb20
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb20
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb20
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb20
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb20
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb21
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb21
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb21
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb21
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb21
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb22
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb22
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb22
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb22
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb22
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb23
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb23
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb23
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb24
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb24
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb24
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb24
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb24


Francisco Ortin, Miguel Garcia, Baltasar Garcia Perez-Schofield et al. SoftwareX 20 (2022) 101211
[25] Barbanera F, Dezani-Ciancaglini M, De’Liguoro U. Intersection and union
types: syntax and semantics. Inform and Comput 1995;119:202–30.

[26] Aiken A, Wimmers EL. Type inclusion constraints and type inference. In:
Proceedings of the conference on functional programming languages and
computer architecture. Copenhagen, Denmark: ACM; 1993, p. 31–41.

[27] Chugh R, Rondon PM, Jhala R. Nested refinements: a logic for duck typing.
In: Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
principles of programming languages. New York, NY, USA: ACM; 2012,
p. 231–44.

[28] Ortin F, Garcia M, McSweeney S. Rule-based program specialization to
optimize gradually typed code. Knowl-Based Syst 2019;179.

[29] Hüinette F, Hedbor P. The pike programming language. 2022, http://pike.
lysator.liu.se.

[30] Ortin F, Garcia M. Union and intersection types to support both dynamic
and static typing. Inform Process Lett 2011;111(6):278–86.

[31] Ortin F. Type inference to optimize a hybrid statically and dynamically
typed language. Comput J 2011;54(11):1901–24.

[32] Ortin F, Zapico D, Perez-Schofield JBG, Garcia M. Including both static and
dynamic typing in the same programming language. IET Softw 2010;4(4).

[33] Robinson JA. Computational logic: the unification computation. Mach Intell
1971;6:63–72.

[34] Milner R. A theory of type polymorphism in programming. J Comput
System Sci 1978;17:348–75.

[35] Odersky M, Sulzmann M, Wehr M. Type inference with constrained types.
Theory Pract Object Syst 1999;5:35–55.

[36] Ortin F, Moreno F, Morant A. Static type information to improve the IDE
features of hybrid dynamically and statically typed languages. J Vis Lang
Comput 2014;25(4).

[37] Ortin F, Morant A. IDE support to facilitate the transition from rapid
prototyping to robust software production. In: Proceedings - international
conference on software engineering. 2011, p. 40–3.

[38] Quiroga J, Ortin F, Llewellyn-Jones D, Garcia M. Optimizing runtime
performance of hybrid dynamically and statically typed languages for the
.Net platform. J Syst Softw 2016;113.

[39] Chiles B, Turner A. Dynamic language runtime. 2022, https://docs.microso
ft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-languag
e-runtime-overview.

[40] Redondo JM, Ortin F. A comprehensive evaluation of widespread python
implementations. IEEE Softw 2015;34(4):76–84.

[41] Šipek M, Mihaljević B, Radovan A. Exploring aspects of polyglot high-
performance virtual machine graalvm. In: 2019 42nd International
convention on information and communication technology, electronics and
microelectronics. IEEE; 2019, p. 1671–6.

[42] Georges A, Buytaert D, Eeckhout L. Statistically rigorous java performance
evaluation. In: Proceedings of the 22nd annual ACM SIGPLAN conference
on object-oriented programming systems and applications. OOPSLA, New
York, NY, USA: ACM; 2007, p. 57–76.

[43] Rigo A, Fijalkowski M, Bolz CF, Cuni A, Peterson B, Gaynor A. PyPy, a fast,
compliant alternative implementation of the Python language. 2022, http
://pypy.org.

[44] Google Inc. V8, the Google’s high performance, open source, JavaScript
engine. 2022, https://developers.google.com/v8.

[45] Redondo JM, Ortin F. A saas framework for credit risk analysis services.
IEEE Lat Am Trans 2017;15(3).

[46] Miravet P, Marin I, Ortin F, Rodriguez J. Framework for the declarative
implementation of native mobile applications. IET Softw 2014;8(1):19–32.

[47] Marin I, Ortin F, Pedrosa G, Rodriguez J. Generating native user interfaces
for multiple devices by means of model transformation. Front Inform
Technol Electron Eng 2015;16(12).

[48] Ortin F, Quiroga J, Redondo JM, Garcia M. Attaining multiple dispatch in
widespread object-oriented languages. Dyna 2014;182(186):242–50.

[49] Felix J, Ortin F. Efficient aspect weaver for the .NET platform. IEEE Lat Am
Trans 2015;13(5).

[50] Ortin F, Redondo J, Quiroga J. Design and evaluation of an alternative
programming paradigms course. Telemat Inform 2017;34(6).

[51] Ortin F, Quiroga J, Rodriguez-Prieto O, Garcia M. An empirical evaluation
of Lex/Yacc and ANTLR parser generation tools. PLoS One 2022;17(3:
1932-6203).

[52] Abadi M, Cardelli L, Pierce BC, Rémy D. Dynamic typing in polymorphic
languages. J Funct Programming 1995;5(1):111–30.
11
[53] Sergey I, Clarke D. Gradual ownership types. In: Lecture notes in computer
science (including subseries lecture notes in artificial intelligence and
lecture notes in bioinformatics). 7211 LNCS, 2012, p. 579–99.

[54] Jafery KA, Dunfield J. Sums of uncertainty: refinements go gradual. In:
Proceedings of the 44th ACM SIGPLAN symposium on principles of
programming languages. POPL, (1):2017, p. 804–17.

[55] Igarashi A, Thiemann P, Vasconcelos V, Wadler P. Gradual session
types. In: Proceedings of the ACM international conference on functional
programming. Vol. 1. Oxford, United Kingdom; 2017, p. 1–38.

[56] Garcia R, Cimini M. Principal type schemes for gradual programs. In:
Proceedings of the 42nd annual ACM SIGPLAN-SIGACT symposium on
principles of programming languages. New York, NY, USA: ACM; 2015,
p. 303–15.

[57] Garcia R, Clark AM, Tanter É. Abstracting gradual typing. In: Proceedings
of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of
programming languages. New York, NY, USA: Association for Computing
Machinery; 2016, p. 429–42.

[58] Toro M, Tanter É. A gradual interpretation of union types. In: Ranzato F,
editor. Static analysis. Cham: Springer International Publishing; 2017,
p. 382–404.

[59] Castagna G, Lanvin V. Gradual typing with union and intersection types.
In: Proceedings of the ACM on programming languages. Vol. 1. (ICFP). New
York, NY, USA: Association for Computing Machinery; 2017.

[60] Muehlboeck F, Tate R. Transitioning from structural to nominal code with
efficient gradual typing. In: Proceedings of the ACM on programming
languages. Vol. 5. (OOPSLA). New York, NY, USA: Association for Computing
Machinery; 2021.

[61] Siek JG, Vitousek MM, Cimini M, Boyland JT. Refined criteria for gradual
typing. In: Ball T, Bodik R, Krishnamurthi S, Lerner BS, Morrisett G, editors.
1st Summit on advances in programming languages. Leibniz international
proceedings in informatics (LIPIcs), vol. 32, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik; 2015, p. 274–93.

[62] Takikawa A, Feltey D, Greenman B, New MS, Vitek J, Felleisen M. Is sound
gradual typing dead? In: Proceedings of the 43rd annual ACM SIGPLAN-
SIGACT symposium on principles of programming languages. POPL 2016,
New York, NY, USA: ACM; 2016, p. 456–68.

[63] Rastogi A, Swamy N, Fournet C, Bierman G, Vekris P. Safe & efficient
gradual typing for type script. In: Conference record of the annual ACM
symposium on principles of programming languages. 2015-Janua. 2015,
p. 167–80.

[64] Siek JG, Vitousek MM, Cimini M, Tobin-Hochstadt S, Garcia R. Monotonic
references for efficient gradual typing. In: Vitek J, editor. Programming
languages and systems. Berlin, Heidelberg: Springer Berlin Heidelberg;
2015, p. 432–56.

[65] Herman D, Tomb A, Flanagan C. Space-efficient gradual typing. In:
Higher-order and symbolic computation. Vol. 23. (2):2010, p. 167–89.

[66] Rastogi A, Chaudhuri A, Hosmer B. The ins and outs of gradual type infer-
ence. In: Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on principles of programming languages. New York, NY, USA: Association
for Computing Machinery; 2012, p. 481–94.

[67] Vitousek MM, Kent AM, Siek JG, Baker J. Design and evaluation of gradual
typing for python. In: Proceedings of the 10th ACM symposium on dynamic
languages. New York, NY, USA: Association for Computing Machinery;
2014, p. 45–56.

[68] Vitousek MM, Swords C, Siek JG. Big types in little runtime: Open-world
soundness and collaborative blame for gradual type systems. In: Proceed-
ings of the 44th ACM SIGPLAN symposium on principles of programming
languages. New York, NY, USA: Association for Computing Machinery;
2017, p. 762–74.

[69] Vitousek MM, Siek JG, Chaudhuri A. Optimizing and evaluating transient
gradual typing. In: Proceedings of the 15th ACM SIGPLAN international
symposium on dynamic languages. DLS 2019, New York, NY, USA:
Association for Computing Machinery; 2019, p. 28–41.

[70] Bauman S, Bolz CF, Hirschfeld R, Kirilichev V, Pape T, Siek JG, et al. Pycket:
A tracing JIT for a functional language. In: Proceedings of the 20th ACM
SIGPLAN international conference on functional programming. ICFP 2015,
New York, NY, USA: Association for Computing Machinery; 2015, p. 22–34.

[71] Ancona D, Ancona M, Cuni A, Matsakis ND. RPython: a step towards
reconciling dynamically and statically typed OO languages. In: Proceedings
of the 2007 symposium on dynamic languages. 2007, p. 53–64.

[72] Bauman S, Friedrich Bolz-Tereick C, Siek J, Tobin S. Sound gradual typing:
Only mostly dead. (OOPSLA):2017, p. 1–24.

http://refhub.elsevier.com/S2352-7110(22)00129-7/sb25
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb25
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb25
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb26
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb26
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb26
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb26
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb26
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb27
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb28
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb28
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb28
http://pike.lysator.liu.se
http://pike.lysator.liu.se
http://pike.lysator.liu.se
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb30
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb30
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb30
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb31
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb31
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb31
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb32
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb32
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb32
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb33
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb33
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb33
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb34
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb34
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb34
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb35
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb35
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb35
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb36
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb36
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb36
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb36
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb36
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb37
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb37
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb37
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb37
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb37
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb38
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb38
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb38
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb38
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb38
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb40
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb40
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb40
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb41
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb42
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
http://pypy.org
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
https://developers.google.com/v8
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb45
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb45
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb45
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb46
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb46
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb46
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb47
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb47
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb47
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb47
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb47
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb48
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb48
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb48
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb49
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb49
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb49
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb50
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb50
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb50
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb51
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb51
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb51
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb51
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb51
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb52
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb52
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb52
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb53
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb53
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb53
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb53
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb53
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb54
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb54
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb54
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb54
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb54
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb55
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb55
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb55
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb55
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb55
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb56
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb57
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb58
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb58
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb58
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb58
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb58
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb59
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb59
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb59
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb59
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb59
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb60
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb61
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb62
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb63
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb64
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb65
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb65
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb65
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb66
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb67
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb68
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb69
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb70
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb71
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb71
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb71
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb71
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb71
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb72
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb72
http://refhub.elsevier.com/S2352-7110(22)00129-7/sb72

	The StaDyn programming language
	Motivation and significance
	Illustrative example
	Software description
	Variables holding different types at runtime
	Flow-sensitive types
	Dynamically typed parameters
	Static and dynamic typing
	Method specialization
	Runtime type cache optimization

	Impact
	Runtime performance and memory consumption
	Usages of StaDyn 

	Related work
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


