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Abstract
Suppose that 𝐵 is a Brauer 𝑝-block of a finite group with
defect group 𝐷. If 𝐵 exactly contains four ordinary irre-
ducible characters, then we show that 𝐷 has order four
or five, assuming the Alperin–McKay conjecture holds
for 𝐵.
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1 INTRODUCTION

Suppose that 𝐺 is a finite group, 𝑝 is a prime, and 𝐵 is a Brauer 𝑝-block with defect group 𝐷. The
classification of blocks with a small number 𝑘(𝐵) of irreducible complex characters in 𝐵 is a hard
problem. It is well known that if 𝑛 = 1 or 2, then 𝑘(𝐵) = 𝑛 if and only if |𝐷| = 𝑛 (see [15, Theorem
3.18] and [1]); for 𝑛 = 3, this is known to be a consequence of the Alperin–McKay conjecture,
but no proof is yet available. Although the cases where 𝐵 is a principal block and 𝑘(𝐵) = 4 or 5
have been recently solved in [9] and [19], the non-principal block cases remain open. It is well
known that many blocks with 𝑘(𝐵) = 4 have defect groups with |𝐷| = 4 or 5 (for instance 2.𝖠5 for

© 2022 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

658 wileyonlinelibrary.com/journal/blms Bull. London Math. Soc. 2023;55:658–667.

mailto:rizonoelia@uniovi.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12747&domain=pdf&date_stamp=2022-11-05


THE BLOCKS WITH FOUR IRREDUCIBLE CHARACTERS 659

𝑝 = 5, or 2.𝖲5 for 𝑝 = 2), but it is not known if these are the only possibilities, even assuming the
Alperin–McKay conjecture. The following is the main result of this paper.

Theorem A. Suppose that 𝐵 is a Brauer 𝑝-block of a finite group 𝐺 with defect group 𝐷. Assume
that 𝑘(𝐵) = 4. If the Alperin–McKay conjecture holds for 𝐵, then |𝐷| = 4 or |𝐷| = 5.
We prove TheoremA by studying finite groups with a small number of projective characters (in

the sense of Schur), a problem of interest on its own. This constitutes the main part of this paper.
Finally, we would like to remark that our result can be seen as a contribution to Brauer’s Prob-

lem 21, which asks whether or not, for a fixed integer 𝑛 there are finitely many isomorphism
classes of groups of prime-power order that can occur as a defect group of blocks containing
exactly 𝑛 irreducible ordinary characters. We care to remark that for 𝑝-solvable groups, this prob-
lem was already solved by Külshammer in [11] but without giving the exact bound on |𝐷|. In this
paper, we give this bound for 𝑛 = 4.

2 THE THEOREM

We denote by Lin(𝐺), the group of linear characters of a finite group 𝐺. If 𝑁 ⊲ 𝐺 and 𝜆 ∈ Irr(𝑁),
we denote by Irr(𝐺|𝜆) the set of characters𝜒 ∈ Irr(𝐺) such that 𝜆 is a constituent of the restriction
𝜒𝑁 . If 𝛼 ∈ Irr(𝑁) then IBr(𝐺|𝛼) denotes the set of Brauer characters 𝜑 ∈ IBr(𝐺) such that 𝛼 is a
constituent of the restriction 𝜑𝑁 .

Lemma 1. Let 𝐺 be a finite group. Suppose that𝑁 ⊲ 𝐺 and assume 𝜆 ∈ Irr(𝑁) is 𝐺-invariant and
linear. Let 𝑜(𝜆) be the order of 𝜆 as an element of Lin(𝑁). If every Sylow 𝑝-subgroup of 𝐺∕𝑁 has
trivial Schur multiplier whenever 𝑝 divides 𝑜(𝜆) then 𝜆 extends to 𝐺.

Proof. This is [7, Theorems 6.26 and 11.7]. □

Lemma 2 (Higgs). Let 𝐺 be a finite group, 𝑁 ⊲ 𝐺 and let 𝜃 ∈ Irr(𝑁) be 𝐺-invariant. If Irr(𝐺|𝜃) =
{𝛼, 𝛽} then 𝛼(1) = 𝛽(1) and 𝐺∕𝑁 is solvable.

Proof. See [6]. □

It is worth mentioning that Lemma 2 depends on the Classification of Finite Simple Groups.

Lemma 3. Let 𝑍 ⊲ 𝐺 and let 𝜆 ∈ Irr(𝑍) be 𝐺-invariant. Suppose that 𝜆𝐺 = 𝑒1𝜒1 + 𝑒2𝜒2 for some
𝜒1, 𝜒2 ∈ Irr(𝐺)and 𝑒1, 𝑒2 ∈ ℕ. If𝑝 is an oddprimedividing the order of𝐺∕𝑍 and𝑄∕𝑍 ∈ Syl𝑝(𝐺∕𝑍),
then 𝜆𝑄 = 𝑑𝜂 for some 𝜂 ∈ Irr(𝑄) and 𝑑 ∈ ℕ. In particular, 𝑄 is non-abelian.

Proof. Since character triple isomorphisms preserve the number | Irr(𝐺|𝜆)| and the structure of
𝐺∕𝑁, using [16, Corollary 5.9], there is no loss in assuming 𝑍 central. Since 𝜒1(1) = 𝜒2(1) by
Lemma 2 and (𝜒𝑖)𝑍 = 𝑒𝑖𝜆we have that 𝑒1 = 𝜒1(1) = 𝜒2(1) = 𝑒2 so 𝜆𝐺 = 𝑒1(𝜒1 + 𝜒2). Also observe
that |𝐺 ∶ 𝑍| = 𝜆𝐺(1) = 2𝑒1𝜒1(1) = 2𝜒1(1)2. Now, write 𝜓 = 𝜒1 + 𝜒2. Since 𝜓 vanishes on 𝐺 ⧵ 𝑍
we have that 𝜓𝑄 = 𝑑𝜆𝑄 where

𝑑 =
2𝜒1(1)

|𝑄 ∶ 𝑍| .
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660 MARTÍNEZ et al.

If 𝜂 ∈ Irr(𝑄|𝜆) then
[𝜓𝑄, 𝜂] = [𝑑𝜆

𝑄, 𝜂] = 𝑑𝜂(1) ∈ ℤ,

so 𝑑2𝜂(1)2 ∈ ℤ. Now,

𝑑2𝜂(1)2 =
4𝜒1(1)

2

|𝑄 ∶ 𝑍|2 𝜂(1)
2 =

2|𝐺 ∶ 𝑄|𝜂(1)2
|𝑄 ∶ 𝑍| ∈ ℤ

and we conclude that |𝑄 ∶ 𝑍| divides 𝜂(1)2. By [7, Corollary 2.30] we have that 𝜂(1)2 ⩽ |𝑄 ∶ 𝑍| so
𝜂(1)2 = |𝑄 ∶ 𝑍|, and this implies that Irr(𝑄|𝜆) = {𝜂} as wanted. □

Let 𝑉 be the Galois field 𝔽𝑞𝑚 for some prime power 𝑞. Then 𝑉 is a vector space over 𝔽𝑞 of
dimension𝑚. The semilinear group Γ(𝑉) is defined by

Γ(𝑉) = {𝑥 ↦ 𝑎𝑥𝜎 ∣ 𝑎 ∈ 𝑉 ⧵ {0}, 𝜎 ∈ Gal(𝔽𝑞𝑚∕𝔽𝑞)}.

Note that Γ(𝑉) is a metacyclic group. Indeed, it contains the normal subgroup

Γ0(𝑉) = {𝑥 ↦ 𝑎𝑥 ∣ 𝑎 ∈ 𝑉 ⧵ {0}},

which is cyclic and isomorphic to the multiplicative group of 𝑉, and

Γ(𝑉)∕Γ0(𝑉) ≅ Gal(𝔽𝑞𝑚∕𝔽𝑞)

is cyclic of order𝑚.
Whenever 𝑉 is a 𝔽𝑝-vector space of dimension 𝑎 for some prime 𝑝, we may use the notation

Γ(𝑝𝑎) = Γ(𝑉).
Recall that a prime 𝑡 is called a primitive prime divisor for (𝑝, 𝑎) if 𝑡 divides 𝑝𝑎 − 1 but 𝑡 does

not divide 𝑝𝑗 − 1 for 1 ⩽ 𝑗 < 𝑎. By a well-known result by Zsigmondy (see [14, Theorem 6.2] for
instance), such a prime always exists except when 𝑎 = 6 and 𝑝 = 2, or 𝑎 = 2 and 𝑝 + 1 is a power
of 2.

Lemma 4. Let 𝐾 be a finite group and let 𝑍 ⊆ 𝐙(𝐾). Suppose that there exist 𝐻∕𝑍 ⩽ 𝐾∕𝑍 with
|𝐾 ∶ 𝐻| = 2 and𝐴∕𝑍 ⩽ 𝐾∕𝑍 isomorphic to a subgroup of a semilinear group Γ(𝑉), where𝑉 is a 𝔽𝑝-
vector space (𝑝 ∉ {2, 3} prime) of dimension 𝑎, such that𝐻∕𝑍 = 𝐴∕𝑍 × 𝐵∕𝑍 and (𝐴∕𝑍)g = 𝐵∕𝑍 for
every g ∈ 𝐾 ⧵ 𝐻. Suppose further that 𝐴∕𝑍 acts transitively on 𝑉 ⧵ {0}. Then there is an odd prime
divisor 𝑡 of 𝑝𝑎 − 1 such that 𝐾 has abelian Sylow 𝑡-subgroups.

Proof. We use the bar notation, so write𝐾 = 𝐾∕𝑍,𝐴 = 𝐴∕𝑍, 𝐵 = 𝐵∕𝑍, and so on. Note that since
𝐴 acts transitively on 𝑉 ⧵ {0}, we have that 𝑝𝑎 − 1 divides |𝐴|, and so does every prime divisor of
𝑝𝑎 − 1.
Suppose there is a primitive prime divisor 𝑡 of 𝑝𝑎 − 1. Let 𝑇1 be a Sylow 𝑡-subgroup of 𝐴 and

let 𝑧 ∈ 𝐙(𝑇1) of order 𝑡. Let 𝑇0 = ⟨𝑧⟩. By [2, Lemma 3.7] we have that 𝑇1 ⩽ 𝐂𝐴(𝑇0) = 𝐴 ∩ Γ0(𝑉) =
𝐅(𝐴), where𝐅(𝐴) denotes the Fitting subgroup of𝐴. Since Γ0(𝑉) is cyclic, we have that𝑇1 is cyclic
and normal in 𝐴.
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THE BLOCKS WITH FOUR IRREDUCIBLE CHARACTERS 661

Let 𝑥 ∈ 𝑇1 such that ⟨𝑥⟩ = 𝑇1 and let g ∈ 𝐾 −𝐻, so g is an involution. Let 𝑦 = 𝑥g
∈ 𝐵 and

note that ⟨𝑦⟩ = 𝑇2 is the Sylow 𝑡-subgroup of 𝐵. Now, 𝑇 = 𝑇1 × 𝑇2, the Sylow 𝑡-subgroup of 𝐻, is
abelian. Write 𝑇 = 𝑇∕𝑍, so 𝑇′ ⊆ 𝑍. We note that it is enough to show that 𝑇 is abelian. Suppose
to the contrary that 𝑇 is not abelian. We have 1 ≠ [𝑥, 𝑦] ∈ 𝑇′ ⊆ 𝑍, but since g is an involution and
𝑥g = 𝑦𝑧1, 𝑦g = 𝑥𝑧2 for some 𝑧1, 𝑧2 ∈ 𝑍, then

[𝑥, 𝑦]g = [𝑥g , 𝑦g ] = [𝑦, 𝑥] = [𝑥, 𝑦]−1 ≠ [𝑥, 𝑦],

a contradiction. Thus, we may assume that there does not exist a primitive prime divisor for
𝑝𝑎 − 1. Since 𝑝 ∉ {2, 3}, we have that (𝑝, 𝑎) = (2𝑚 − 1, 2) for some integer𝑚 > 2. Then

𝑝2 − 1 = (𝑝 + 1)(𝑝 − 1) = 2𝑚+1(2𝑚−1 − 1)

and hence there is an odd prime 𝑞 dividing 𝑝2 − 1. Since |𝐴 ∶ 𝐴 ∩ Γ0(𝑉)| ⩽ 2, we have that 𝑡
divides |𝐴 ∩ Γ0(𝑉)|. And hence 𝐴 has a normal and cyclic Sylow 𝑡-subgroup. Now, we proceed
as above. □

Given a finite group 𝐺, we denote by Bl(𝐺) its set of 𝑝-blocks. If 𝐵 ∈ Bl(𝐺), we denote by 𝑙(𝐵)
the number of irreducible Brauer characters in 𝐵.

Lemma 5 (Brauer’s formula). Suppose that 𝑥1, … , 𝑥𝑘 are representatives of the noncentral
conjugacy classes of 𝑝-elements in 𝐺. Let 𝐵 be a 𝑝-block of 𝐺. Then

𝑘(𝐵) = |𝐙(𝐺)|𝑝 𝑙(𝐵) +
𝑘∑
𝑖=1

∑
𝑏∈Bl(𝐂𝐺(𝑥𝑖))𝑏

𝐺=𝐵

𝑙(𝑏).

Proof. See [15, Theorem 5.12]. □

In the following proof, we say that a primitive group 𝐺 is affine if its socle 𝑉 is 𝑝-elementary
abelian. If 𝐻 ⩽ 𝐺 is the stabilizer of the zero vector of 𝑉 (viewed as an 𝔽𝑝-vector space), then the
number of orbits of𝐻 on𝑉 is the rank of𝐺. Note that if the rank of𝐺 is 2 then𝐺 is doubly-transitive
on 𝑉 (see [8, Lemma 8.2]).

Theorem 6. Let 𝐺 be a finite group, 𝐵 a 𝑝-block of 𝐺 with 𝑘(𝐵) = 4. Let 𝐷 be a defect group of 𝐵
and assume 𝐷 ⊲ 𝐺. Then 𝐷 is isomorphic to 𝖢4, 𝖢2 × 𝖢2 or 𝖢5.

Proof. We divide the proof in steps.
Step 0. If there exists 1 < 𝑁 < 𝐷 with𝑁 ⊲ 𝐺, then 𝑝 = 2, 3; and if 𝐵 is a block of 𝐺∕𝑁 dominated

by 𝐵, then 𝑘(𝐵) = 2, 3
Let 𝑁 ⊲ 𝐺, with 𝑁 < 𝐷 and let 𝐵 be a block of 𝐺∕𝑁 dominated by 𝐵 with defect group 𝐷∕𝑁

([15, Theorem 9.9]). Then 𝑘(𝐵) ⩽ 4. If 𝑘(𝐵) = 1 then 𝑁 = 𝐷 by [15, Theorem 3.18]. If 𝑘(𝐵) = 4,
then [15, Theorem 6.10] implies 𝑁 = 1. Hence, if 1 < 𝑁 < 𝐷, it is necessary that 𝑘(𝐵) ∈ {2, 3}. By
[1, Theorem A] and [12, Theorem 4.1], this forces 𝑝 = 2, 3.
Step 1. We may assume that 𝐷 ∈ Syl𝑝(𝐺) and that 𝐷 is 𝑝-elementary abelian. In particular, 𝐺 is

𝑝-solvable. Furthermore, we may assume 𝑝 ≠ 2, 3.
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662 MARTÍNEZ et al.

The first part is [18, Theorem6]. LetΦ(𝐷) ⊲ 𝐺 be the Frattini subgroup of𝐷 and assumeΦ(𝐷) >
1. Let 𝐵 be the unique block of 𝐺∕Φ(𝐷) dominated by 𝐵. By Step 0 we have 𝑝 ∈ {2, 3} and 𝑘(𝐵) ∈
{2, 3}. By [1, TheoremA] and [12, Theorem4.1]we have that |𝐷∕Φ(𝐷)| = 𝑝 and hence𝐷 is cyclic [8,
Problem 1D.9]. Now the result follows easily by applying [3, Theorem 1]. Hence, we may assume
Φ(𝐷) = 1 so 𝐷 is 𝑝-elementary abelian.
Suppose that 𝑝 = 2. Again by Theorem A of [1] we know that |𝐷| > 2 and by Corollary 1.3 (iii)

of [13] we obtain that |𝐷| = 4 and then 𝐷 = 𝖢2 × 𝖢2, and we are done. Now, suppose that 𝑝 = 3.
In this case, by [13, Corollary 1.6] we would have a contradiction.
Step 2. 𝐷 is a minimal normal subgroup of 𝐺.
If there exists a minimal normal subgroup of 𝐺 strictly contained in 𝐷, then by Step 0 we have

that 𝑝 = 2, 3, contradicting Step 1. Hence, 𝐷 is a minimal normal subgroup of 𝐺.
Step 3. We may assume that 𝐙(𝐺) = 𝐎𝑝′(𝐺).
Let𝑁 = 𝐎𝑝′(𝐺) and let 𝜆 ∈ Irr(𝑁) be such that if 𝑏 = {𝜆} ∈ Bl(𝑁) then𝐵 covers 𝑏. By the Fong–

Reynolds correspondence [15, Theorem 9.14], we may assume that 𝑏 is 𝐺-invariant, and hence
𝜆 is 𝐺-invariant. Now (𝐺,𝑁, 𝜆) is an ordinary-modular character triple (see [15, Problem 8.10]).
By [15, Problem 8.13], we know that there exists an isomorphic ordinary-modular character triple
(𝐻,𝑀, 𝜑)with𝑀 a 𝑝′-group and 𝜑 linear and faithful (in particular,𝑀 is central). Moreover, since
𝐺∕𝑁 ≅ 𝐻∕𝑀, we have that𝑀 = 𝐎𝑝′(𝐻) and that𝐻 is also 𝑝-solvable. Now let 𝐵1 be a 𝑝-block of
𝐻 covering 𝑏1 = {𝜑}. By [15, Theorem 10.20], we have that

|Irr(𝐵)| = |Irr(𝐺|𝜆)| = |Irr(𝐻|𝜑)| = |Irr(𝐵1)|
and if 𝐷1 is a defect group of 𝐵1 then 𝐷1 ∈ Syl𝑝(𝐻). We claim that if 𝐷1 is one of 𝖢4, 𝖢5, 𝖢2 ×
𝖢2, then so is 𝐷. Indeed, if 𝑄∕𝑀 ∈ Syl𝑝(𝐻∕𝑀) then 𝑄 = 𝐷1 ×𝑀. Since 𝐺∕𝑁 ≅ 𝐻∕𝑀, we have
that 𝐷 ≅ 𝐷𝑁∕𝑁 ≅ 𝐷1𝑀∕𝑀 ≅ 𝐷1 and 𝐷 has one of the desired structures. Thus, by working with
(𝐻,𝑀, 𝜑), we may assume that 𝜆 is linear, faithful, and 𝑁 is central.
Write 𝑍 = 𝐙(𝐺). Next we prove that 𝑁 = 𝑍. To do so, since 𝑁 ⊆ 𝑍, we just need to show that

|𝑍|𝑝 = 1. Assume by way of contradiction that |𝑍|𝑝 > 1. It follows from Brauer’s formula (see
Lemma 5) that 𝑘(𝐵) ⩾ |𝑍|𝑝𝑙(𝐵). Since 𝑘(𝐵) = 4 this forces 𝑝 = 2, 3, contradicting Step 1. Thus,
𝑁 = 𝑍.
Step 4. Let {𝑥1, … , 𝑥𝑡} be a set of representatives of the𝐺-conjugacy classes of 𝑝-elements of𝐺.Then

𝑡 = 2 or 𝑡 = 3.
We may assume that 𝑥1 = 1, so {𝑥2, … , 𝑥𝑡} are a set of representatives of the non-trivial 𝐺-

conjugacy classes of 𝑝-elements of 𝐺. By Brauer’s formula (Lemma 5) and Step 3 we have

𝑘(𝐵) = 𝑙(𝐵) +

𝑡∑
𝑖=2

∑
𝑏∈Bl(𝐂𝐺(𝑥𝑖)),𝑏

𝐺=𝐵

𝑙(𝑏). (2.1)

The case where 𝑙(𝐵) = 1 is done in [10] (in a wider context), so we may assume 𝑙(𝐵) ⩾ 2.
Since 𝑏𝐺 = 𝐵 for some 𝑏 ∈ Bl(𝐂𝐺(𝑥𝑖)) (see [15, Theorem 4.14]), we have that either 𝑡 = 2 or 𝑡 = 3,
as desired.
By [15, Theorem 10.20] we have that Irr(𝐵) = Irr(𝐺|𝜆), where 𝜆 ∈ Irr(𝑍) is the character from

Step 3. From now on, we denote by 𝑏 the unique block of 𝑍𝐷 covered by 𝐵 and note that 1𝐷 × 𝜆 =
�̂� ∈ Irr(𝑏) is 𝐺-invariant (by Step 3) so 𝑏 is 𝐺-invariant.
Step 5. Suppose that |𝐷| = 𝑝2. Then 𝑙(𝐵) = 2 and 𝐺 acts on 𝐷 ⧵ {1} transitively.
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THE BLOCKS WITH FOUR IRREDUCIBLE CHARACTERS 663

Let 𝑢 ∈ 𝐷, 𝑢 ≠ 1. Let 𝐶 = 𝐂𝐺(𝑢) and let 𝑏𝑢 ∈ Bl(𝐶|𝐷)with 𝑏𝐺 = 𝐵 by [15, Theorem 4.14]. Since
𝑘(𝐵) = 4 and 1 < 𝑙(𝐵) < 4, Equation (2.1) forces either 𝑙(𝑏𝑢) = 1 or 𝑙(𝑏𝑢) = 2.
Suppose that 𝑙(𝑏𝑢) = 1. Note that since 𝐷 ⊲ 𝐺 and 𝐷 ⊆ 𝐶, we have that 𝐷 is a defect group of

𝑏𝑢 by [15, Theorem 4.8]. By [15, Theorem 9.10], 𝑏𝑢 dominates a unique block 𝑏𝑢 ∈ Bl(𝐶∕⟨𝑢⟩)with
defect group 𝐷∕⟨𝑢⟩, which is cyclic since |𝐷| = 𝑝2. By [15, Theorem 9.10] we have 𝑙(𝑏𝑢) = 𝑙(𝑏𝑢).
By [15, Theorem 11.13], 𝑏𝑢 has inertial index 𝑙(𝑏𝑢), and so does 𝑏𝑢. Note that 𝑏 ∈ Bl(𝐂𝐺(𝐷)) is a
root of 𝑏𝑢, so that 𝑏𝐶 = 𝑏𝑢. Recall that 𝑏 is 𝐺-invariant because 𝜆 is 𝐺-invariant. In particular, 𝑏
is 𝐶-invariant and we have |𝐶 ∶ 𝐂𝐺(𝐷)| = 𝑙(𝑏𝑢) = 1. Hence the action of 𝐺∕𝑍𝐷 is Frobenius on
𝐷. This implies that the Sylow subgroups of 𝐺∕𝑍𝐷 are cyclic or generalized quaternion, by [8,
Theorems 6.10 and 6.11], so they have trivial Schur multiplier. By Lemma 1, �̂� extends to 𝐺 and
so does 𝜆. By Gallagher’s theorem, | Irr(𝐺|𝜆)| = | Irr(𝐺∕𝑍)| so 𝐺∕𝑍 has exactly four conjugacy
classes. Using that 𝑝 ≠ 2, 3 by Step 1, we get that 𝐺∕𝑍 is isomorphic to the dihedral group of order
10, and 𝐷 ≅ 𝖢5 as desired.
Then we may assume that 𝑙(𝑏𝑢) = 2 and hence, by Brauer’s formula 2.1 we have that 𝑡 = 2 and

𝑙(𝐵) = 2.
Step 6. We have that 𝐺∕𝑍 is an affine primitive permutation group of rank 2 or 3.
By the Schur–Zassenhaus theorem there is 𝐾 ⩽ 𝐺 such that 𝐺 = 𝐾𝐷 and 𝐾 ∩ 𝐷 = 1. Write

𝐺 = 𝐺∕𝑍, 𝐷 = 𝐷𝑍∕𝑍 and 𝐾 = 𝐾∕𝑍. We have that 𝐺 acts onΩ = {𝐾𝑑 ∣ 𝑑 ∈ 𝐷} transitively via the
action of right multiplication. Note that 𝐾 is the stabilizer of the trivial class in Ω. If 𝐾 < 𝐿 < 𝐺,
then 𝐿 = 𝐾𝑈 where𝑈 = 𝐿 ∩ 𝐷. Since𝐷 ⊲ 𝐺, we have𝑈 ⊲ 𝐿 so𝐾 normalizes𝑈 and then𝑈 ⊲ 𝐺,
a contradiction with Step 2. Thus, 𝐾 is maximal in 𝐺, we have that this action is primitive (see [8,
Corollary 8.14], for instance) and 𝐺 is a primitive permutation group with socle 𝐷.
Since the action of 𝐾 on Ω has the same number of orbits as the action by conjugation of 𝐺 on

𝐷, by Step 4 it has 2 or 3 orbits. Hence, the rank of 𝐺 is 2 or 3, as wanted.
Step 7. We may assume the rank of 𝐺 is 3.
Suppose that 𝐺, and hence𝐾, has rank 2, so that 𝑡 = 2. By the main result of [17] and using that

𝑝 ≠ 2, 3 by Step 1, either 𝐾 is isomorphic to a subgroup of the semilinear group Γ(𝑝𝑑) or

𝑝𝑑 ∈ {52, 72, 112, 192, 232, 292, 592},

where |𝐷| = 𝑝𝑑.
We assume first that 𝐾 is isomorphic to a subgroup of Γ(𝑝𝑑). In this case, we know that there

exists 𝑍 ⩽ 𝐻 < 𝐾 with 𝐻∕𝑍 cyclic (and hence, 𝐻 abelian) with |𝐻 ∶ 𝑍| = 𝑠 ∣ 𝑝𝑑 − 1 and index
|𝐾 ∶ 𝐻| = 𝑡 ∣ 𝑑. Since there are just two orbits of 𝑝-elements in 𝐺, we have that 𝐺∕𝑍𝐷 acts
transitively on 𝐷 ⧵ {1} and 𝑝𝑑 − 1 ∣ |𝐺 ∶ 𝑍𝐷|.
Recall that IBr(𝐵) = IBr(𝐺|𝜆). Since 𝑙(𝐵) ⩽ 3, we have that IBr(𝐻𝐷|𝜆) has at most three orbits,

and each of the orbits is of size at most |𝐺 ∶ 𝐻𝐷| = |𝐾 ∶ 𝐻| = 𝑡 ⩽ 𝑑. Hence |IBr(𝐻𝐷|𝜆)| ⩽ 3𝑑.
Note that IBr(𝐻𝐷) = IBr(𝐻𝐷∕𝐷) = Irr(𝐻𝐷∕𝐷) by [15, Lemma 2.32] and hence IBr(𝐻𝐷|𝜆) =
Irr(𝐻𝐷|�̂�) where again �̂� = 1𝐷 × 𝜆 is the canonical extension of 𝜆 to 𝑍𝐷. Since �̂� is invariant
and 𝐻𝐷∕𝑍𝐷 is cyclic, �̂� extends to 𝐻𝐷 and hence |IBr(𝐻𝐷|𝜆)| = |𝐻𝐷∕𝑍𝐷| = |𝐻 ∶ 𝑍| = 𝑠. Then
𝑠 ⩽ 3𝑑. Now,

𝑝𝑑 − 1 ⩽ |𝐺 ∶ 𝑍𝐷| = 𝑠𝑡 ⩽ 3𝑑𝑡 ⩽ 3𝑑2.
Note that, if 𝑑 ∈ {1, 2, 3}, we would have 𝑝 ∈ {2, 3} that is a contradiction. Hence, we may assume
𝑑 > 3 and 𝑝 > 3. But then we have a contradiction since in this case 3𝑑2 < 𝑝𝑑 − 1.
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664 MARTÍNEZ et al.

Hence, we may assume that we are in one of the exceptions listed above, so in particular |𝐷| =
𝑝2. By Step 5, we have that 𝑙(𝐵) = 2 and 𝐺 acts transitively on 𝐷 ⧵ {1}. Let 𝑢 ∈ 𝐷 ⧵ {1} and let
𝑏𝑢 ∈ Bl(𝐂𝐺(𝑢)|𝐷) inducing 𝐵. By the argument in Step 5, 𝑏𝑢 has inertial index 2, so |𝐂𝐺(𝑢) ∶
𝐂𝐺(𝐷)| = 2, and 𝑙(𝑏𝑢) = 2. Since 𝐺 acts transitively on 𝐷 ⧵ {1}, we have that

|𝐺 ∶ 𝑍𝐷| = |𝐺 ∶ 𝐂𝐺(𝐷)| = 2|𝐺 ∶ 𝐂𝐺(𝑢)| = 2(𝑝2 − 1).
Since we are dealing with the case that 𝐺∕𝑍𝐷 is not a subgroup of the semilinear group, using
[21, Table 15.1] and the fact that |𝐺 ∶ 𝑍𝐷| = 2(𝑝2 − 1), we have that 𝐺∕𝑍 = PrimitiveGroup(𝑟, 𝑖)
with

(𝑟, 𝑖) ∈ {(52, 18), (112, 42), (292, 110)}

in [5]. These groups have a normal subgroup 𝑁∕𝑍 ⊲ 𝐺∕𝑍 of index 2 and such that for 𝑞 ≠ 𝑝, the
Sylow 𝑞-subgroups of 𝑁∕𝑍 are either cyclic or quaternion (in any case they have trivial Schur
multiplier). In particular, �̂� extends to 𝑁 by Lemma 1. Now, | Irr(𝐺|�̂�)| = 4 and the 𝐺-orbits of
Irr(𝑁|�̂�) have size at most |𝐺 ∶ 𝑁| = 2, so we have | Irr(𝑁|�̂�)| ⩽ 8 but by Gallagher’s theorem
| Irr(𝑁|�̂�)| = | Irr(𝑁∕𝑍𝐷)| = 𝑘(𝑁∕𝑍𝐷). If 𝑝 ≠ 5, we have 𝑘(𝑁∕𝑍𝐷) > 8 so these cases are impos-
sible. If 𝑝 = 5 then 𝑁∕𝑍𝐷 ≅ SL(2, 3) and Irr(𝑁|�̂�) contains three characters of degree 1, three
characters of degree 2 and a character of degree 3 by Gallagher’s theorem. Since |𝐺 ∶ 𝑁| = 2,
the 𝐺-orbits in Irr(𝑁|�̂�) have size at most 2. This yields at least 5 𝐺-orbits in Irr(𝑁|�̂�), which is
a contradiction.
Final Step.
By Step 7, the rank of 𝐺 is 3. Note that in this case we have | Irr(𝐾|𝜆)| = 𝑙(𝐵) = 2. By Lemma 2,

𝐾∕𝑍 is solvable, and so is 𝐺∕𝑍. By Step 5, we may assume that 𝑑 ≠ 2. By the main result of [4]
(and taking into account that 𝐾 = 𝐾∕𝑍 is a 𝑝′-group, 𝑝 ≠ 2, 3 and 𝑑 ≠ 2), we are in one of the
following situations:
Case 1: 𝐾 ⩽ Γ(𝑝𝑑).
In this case, we have a subgroup 𝑍 ⩽ 𝐻 ⩽ 𝐾 with 𝐻∕𝑍 cyclic (and hence, 𝐻 abelian) with

|𝐻 ∶ 𝑍| = 𝑠 ∣ 𝑝𝑑 − 1 and index |𝐾 ∶ 𝐻| = 𝑡 ∣ 𝑑. Since |Irr(𝐾|𝜆)| = 2 and |Irr(𝐻|𝜆)| = |𝐻∕𝑍| = 𝑠
we obtain that

𝑠 = |Irr(𝐻|𝜆)| ⩽ 2𝑡 ⩽ 2𝑑.
Now, 𝐺∕𝑍𝐷 acts on 𝐷 in two nontrivial conjugacy classes. Hence

𝑝𝑑 − 1 ⩽ 2|𝐺 ∶ 𝐷𝑍| = 2𝑠𝑡 ⩽ 4𝑑2.
If 𝑑 = 1, we obtain 𝑝 = 5 and we are done. In the other case, we have 𝑑 > 3 and 𝑝 > 3, but this is
a contradiction.
Case 2: 𝐾 imprimitive.
We have that 𝐾∕𝑍 is an imprimitive linear group with imprimitivity spaces 𝑉1, 𝑉2, where

𝐷 = 𝑉1 ⊕ 𝑉2 and |𝑉1| = |𝑉2| = 𝑝𝑎. Write 𝐻 = 𝐍
𝐾
(𝑉1) = 𝐍𝐾(𝑉2). Then 𝐾 ≅ (𝐴 × 𝐵)⋊ 𝖢2

where 𝐻 ≅ 𝐴 × 𝐵 and 𝐴 ≅ 𝐻∕𝐂
𝐻
(𝑉1) ≅ 𝐵. By part 3 of Theorem 1.1 of [4], we have that 𝐴 is

a solvable linear group transtive on 𝑉1 ⧵ {0}, so by Huppert’s theorem (see [14, Theorem 6.8]
for instance) we have that either 𝐴 ⩽ Γ(𝑝𝑎) or 𝑝𝑎 ∈ {52, 72, 112, 232} (recall that 𝑝 ≠ 3 by Step
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THE BLOCKS WITH FOUR IRREDUCIBLE CHARACTERS 665

1). Since | Irr(𝐾|𝜆)| = 2, by Lemmas 3 and 4 and Step 1 we are in the latter situation. Note that
|Irr(𝐾|𝜆)| = 2 forces |Irr(𝐻|𝜆)| ∈ {1, 4}.
Since we are in one of the exceptions of Huppert’s theorem we have that 𝐴 contains a normal

subgroup 𝑁 isomorphic to SL(2, 3) (see [21, Table 15.1] for more details on the structure of these
groups).Write𝑁∕𝑍 = 𝑁. Then 𝜆 extends to𝑁 by Lemma 1 and byGallagher’s theorem the degrees
of the irreducible characters of Irr(𝑁|𝜆) are {1, 2, 3}, where the degrees 1 and 2 appear three times
each and the degree 3 appears once. Let 𝜉, 𝛾, 𝛿 ∈ Irr(𝑁|𝜆) with 𝜉(1) = 1, 𝛾(1) = 2 and 𝛿(1) = 3.
Observe that 𝛿 is 𝐻-invariant.
Suppose first that |Irr(𝐻|𝛿)| = 1. Then 𝛿 is fully ramified in 𝐻 and hence, |𝐻∕𝑁| is a square,

but this is not possible since in all the possible cases |𝐻∕𝑁|3 ∈ {3, 27}. Therefore, |Irr(𝐻|𝛿)| > 1.
Then |Irr(𝐻|𝜆)| = 4 and by Clifford’s theorem we deduce that 𝜉 and 𝛾 lie under a unique irre-
ducible character in Irr(𝐻|𝜆), so they are fully ramified in their stabilizers 𝐻𝜉 and 𝐻𝛾. Again, by
Clifford’s theorem it follows that |𝐻 ∶ 𝐻𝜉| = |𝐻 ∶ 𝐻𝛾| = 3 and hence |𝐻 ∶ 𝑁|2 = |𝐻𝜉 ∶ 𝑁|2. Now
|𝐻 ∶ 𝑁| = |𝐴|2∕|𝑁|, and since |𝑁|2 = 8 it follows that |𝐻 ∶ 𝑁|2 is never a square. We conclude
that 1 < |𝐻𝜉 ∶ 𝑁|2 is not a square, so |𝐻𝜉 ∶ 𝑁| is not a square, yielding a contradiction with the
fact that 𝜉 is fully ramified in𝐻𝜉 .
Case 3: 𝑝𝑑 = 74.
In this case 𝐺∕𝑍 is a subgroup of one of the groups of part 2(d) of [4, Theorem 1.1], and has

degree 74. By the main result of [20], the primitive permutation groups of degree 74 are classified
and this guarantees that the [5] library of such groups is complete. By using [5] we obtain that
𝐺∕𝑍 is one of the groups 𝐺∕𝑍 = Primitive Group(74, 𝑖) where 𝑖 ∈ {774, 775}.
In the case 𝑖 = 774, we can find a normal subgroup 𝑍 ⊆ 𝑁 ⊲ 𝐺 with |𝐺 ∶ 𝑁| = 4 and all Sylow

𝑞-subgroups of𝑁, for 𝑞 ≠ 𝑝, are cyclic, so they have trivial Schur multiplier. In this case, we have
that 𝜆 extends to𝑁 by Lemma 1. Then 𝜆 extends to𝑁 ∩ 𝐾 and |Irr(𝑁 ∩ 𝐾|𝜆)| = |Irr(𝑁 ∩ 𝐾∕𝑍)| =
| Irr(𝑁∕𝐷𝑍)| = 192. However, since | Irr(𝐾|𝜆)| = 𝑙(𝐵) = 2 and using |𝐾 ∶ 𝐾 ∩ 𝑁| = |𝐺 ∶ 𝑁| = 4
we have that | Irr(𝑁 ∩ 𝐾|𝜆)| ⩽ 8, a contradiction.
In the case 𝑖 = 775, we can find a normal subgroup 𝑁∕𝑍 of order 3 ⋅ 74. Again, 𝜆 extends to 𝑁

and if 𝑐 is the unique block of 𝑁 covered by 𝐵 we have that Irr(𝑐) = Irr(𝑁|𝜆). Then there are at
most 4 orbits in Irr(𝑁|𝜆) of size dividing 640 and the sum of the sizes is 803. By an easy counting
argument we exclude the possibility that there are either two or three orbits, and if there are 4
orbits, then they have sizes {1, 2, 160, 640}, in particular there is an orbit of size 1. Let 𝜃 be the
𝐺-invariant irreducible character of 𝑐. Now, since 𝐂𝐺(𝐷) ⊆ 𝑁 we have that 𝐵 is the unique block
of 𝐺 covering 𝑐 ([15, Theorem 9.19 and Lemma 9.20]) and hence there is just one irreducible char-
acter in 𝐺 lying over 𝜃 (the one lying in 𝐵). This means that there exists 𝜃 ∈ Irr(𝑁|𝜆) that is fully
ramified and by [16, Problem 8.3] we have that there is no self-centralizing cyclic subgroup in
𝐺∕𝑁. However, if 𝑃∕𝑁 ∈ Syl5(𝐺∕𝑁) and 𝐶∕𝑁 = 𝐂𝐺∕𝑁(𝑃∕𝑁) then 𝐶∕𝑁 is cyclic of order 10 and
𝐂𝐺∕𝑁(𝐶∕𝑁) = 𝐶∕𝑁. □

In the following, we write 𝑘0(𝐵) for the number of height zero characters in the 𝑝-block 𝐵.

Corollary 7. Let 𝐺 be a finite group, 𝐵 a 𝑝-block with 𝑘(𝐵) = 4 and 𝐷 a defect group of 𝐵.
Assume 𝑘0(𝐵) = 𝑘0(𝑏) where 𝑏 ∈ Bl(𝐍𝐺(𝐷)) is the Brauer correspondent of 𝐵 in 𝐍𝐺(𝐷). Then 𝐷
is isomorphic to 𝖢4, 𝖢2 × 𝖢2, 𝖢5.

Proof. By Theorem 9.9(b) of [15], 𝑏 dominates some block 𝑏 ∈ Bl(𝐍𝐺(𝐷)∕Φ(𝐷))with defect group
𝐷∕Φ(𝐷).We have 𝑘(𝑏) = 𝑘0(𝑏) ⩽ 𝑘0(𝑏) by [18, Theorem6].We explore all the possibilities for 𝑘(𝑏).
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666 MARTÍNEZ et al.

If 𝑘(𝑏) = 1 then 𝐷∕Φ(𝐷) = 1, which is impossible. If 𝑘(𝑏) = 2, then by the main result of [1] we
have |𝐷∕Φ(𝐷)| = 2 and then𝐷 is cyclic and 𝑝 = 2. Using [3, Theorem 1] we conclude that |𝐷| = 4
and we are done. If 𝑘(𝑏) = 3, then by [12, Theorem 4.1] we have 𝐷∕Φ(𝐷) is cyclic of order 3, so
𝐷 is a cyclic 3-group. Then using [3, Theorem 1] we get a contradiction. Finally, if 𝑘(𝑏) = 4 then
𝐷∕Φ(𝐷) is one of the groups from Theorem 6, and it must be elementary abelian. If |𝐷∕Φ(𝐷)| = 5
then 𝐷 is cyclic and then by [3, Theorem 1] we have 𝐷 ≅ 𝖢5. Otherwise, 𝐷∕Φ(𝐷) ≅ 𝖢2 × 𝖢2 and
𝑝 = 2. Since 𝑘(𝑏) ⩽ 𝑘0(𝐵)we have 𝑘(𝐵) = 𝑘0(𝐵) andwe apply Corollary 1.3 (iii) of [13] to conclude
that |𝐷| = 4. □
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