
Citation: Alcalde, I.;

Sánchez-Fernández, C.; Del

Olmo-Aguado, S.; Martín, C.;

Olmiere, C.; Artime, E.; Quirós, L.M.;

Merayo-Lloves, J. Synthetic Heparan

Sulfate Mimetic Polymer Enhances

Corneal Nerve Regeneration and

Wound Healing after Experimental

Laser Ablation Injury in Mice.

Polymers 2022, 14, 4921. https://

doi.org/10.3390/polym14224921

Academic Editors: Chiara Emma

Campiglio, Sílvia J. Bidarra and

Thomas Distler

Received: 21 October 2022

Accepted: 11 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Synthetic Heparan Sulfate Mimetic Polymer Enhances Corneal
Nerve Regeneration and Wound Healing after Experimental
Laser Ablation Injury in Mice
Ignacio Alcalde 1,2,* , Cristina Sánchez-Fernández 1,2, Susana Del Olmo-Aguado 1,2 , Carla Martín 1,2,3 ,
Céline Olmiere 4, Enol Artime 1,2, Luis M. Quirós 1,2,3 and Jesús Merayo-Lloves 1,2

1 Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo,
33012 Oviedo, Spain

2 Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
3 Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
4 Laboratoires Thea S.A.S., 63000 Clermont-Ferrand, France
* Correspondence: nacho.alcalde@fio.as

Abstract: (1) Background: Abnormal corneal wound healing compromises visual acuity and can lead
to neuropathic pain. Conventional treatments usually fail to restore the injured corneal tissue. In
this study, we evaluated the effectiveness of a synthetic heparan sulfate mimetic polymer (HSmP)
in a mouse model of corneal wound healing. (2) Methods: A surgical laser ablation affecting the
central cornea and subbasal nerve plexus of mice was used as a model of the wound-healing assay.
Topical treatment with HSmP was contrasted to its vehicle and a negative control (BSS). Corneal
repair was studied using immunofluorescence to cell proliferation (Ki67), apoptosis (TUNEL assay),
myofibroblast transformation (αSMA), assembly of epithelial cells (E-cadherin) and nerve regenera-
tion (β-tubulin III). (3) Results: At the end of the treatment, normal epithelial cytoarchitecture and
corneal thickness were achieved in HSmP-treated animals. HSmP treatment reduced myofibroblast
occurrence compared to eyes irrigated with vehicle (p < 0.01) or BSS (p < 0.001). The HSmP group
showed 50% more intraepithelial nerves than the BSS or vehicle groups. Only HSmP-treated corneas
improved the visual quality to near transparent. (4) Conclusions: These results suggest that HSmP fa-
cilitates the regeneration of the corneal epithelium and innervation, as well as restoring transparency
and reducing myofibroblast scarring after laser experimental injury.

Keywords: wound healing; nerve regeneration; cornea; transparency; extracellular matrix; heparan
sulfate mimetic polymer

1. Introduction

Corneal injuries may occur due to viral infection, chemical burns, surgical procedures,
corneal dystrophy, diabetes or trigeminal nerve damage and remain difficult to treat [1].
Abnormal wound healing in patients may involve the chronicity of corneal lesions, which
can result in permanent corneal opacification, irregular astigmatism due to corneal scarring,
intense neuropathic pain or even corneal perforation [2]. Corneal opacification is one of the
main causes of blindness worldwide after cataracts [3].

The mechanisms regulating the normal physiological renewal of the corneal tissue
involve proliferation, migration and differentiation of cells [4]. In addition, sensory nerves
play a crucial role in maintaining the cornea in a healthy state, as well as promoting wound
healing [5–7]. After corneal injury, epithelial cells proliferate and migrate to cover the
wound bed before differentiating into a new multilayered epithelium [4]. Keratocytes
beneath the damaged area shift into proliferating activated cells (myofibroblasts), develop
actin contractile elements [8–10] and migrate to the site of injury [11,12]. They are re-
sponsible for wound contraction and extracellular matrix (ECM) deposition [13]. Injury
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of trigeminal nerve fibers innervating the cornea causes neuropathic keratitis, which can
result in permanent lesion of the cornea, perforation and/or stromal melting [7,14]. After
surgical or chemical sensory denervation of the cornea, the process of corneal wound
healing is delayed [14–16]. Thus, regeneration of injured sensory axons is necessary to
recover the full functionality of the cornea [17]. In an injured cornea, ECM produced by
myofibroblasts reduces keratan sulfate proteoglycans (KSPG), which results in reduced
transparency and stromal scarring [18]. It is well-known that heparan sulfate proteoglycans,
such as syndecans, promote axon regeneration by stabilizing growth cone migration [19],
while chondroitin sulfate proteoglycans inhibit nerve regeneration [20].

The biological process of corneal wound healing, the synthesis of new epithelium
and stroma and sensory nerve regeneration are mediated by growth factors, including
epithelial growth factor (EGF), keratinocyte growth factor, hepatocyte growth factor, fi-
broblast growth factor (FGF), transforming growth factor-β (TGF-β) and platelet-derived
growth factors (PDGFs), among others [21–23]. In addition, proteoglycans in the ECM
and on the cell surface are key players for the stabilization of growth factors [24] and cell
communication [25], regulating cell migration and axonal regeneration guidance [19,25].

Artificial tears are the most widely used treatment for the management of ocular
surface damage, with good outcomes regarding lubrication and relief of desiccation symp-
toms [2,3]. However, they lack the biological components of natural tears and often contain
preservatives and other additives that may potentially induce toxic or allergic reactions
and worsen dry eye symptoms [26,27]. Medical treatments usually involve the inhibition
of inflammation and modulation of the immune response and present important side
effects [28]. Alternative topical methods, including autologous serum [29] and autolo-
gous plasma rich in growth factors (PRGF) [30,31], have been shown to enhance ocular
surface wound healing. PRGF has been reported to improve wound healing and corneal
transparency in an experimental animal model [30,31].

New types of matrix therapy agents have provided encouraging results, accelerating,
for example, the healing of chronic skin ulcers of diabetic or vascular origin [1]. Large
polymers have been designed to mimic glycosaminoglycans and are used as regenerating
agents [32]. Regenerating agents (RGTAs) are heparan sulfate mimetic polymers (HSmPs)
that replace destroyed heparan sulfate molecules, creating a cellular microenvironment
favorable to healing [1]. RGTAs are engineered high-sulfated biopolymers (Scheme 1) that
mimic heparan sulfates bound to ECM proteins [33], avoiding their proteolysis and acting
as a protector and stabilizer of the actions of heparin-binding growth factors [34–37], and
they are known to stimulate wound healing under various conditions in different in vivo
systems [38–41]. Manipulation of the extracellular environment by adding high sulfated
synthetic glycosaminoglycan mimetic can improve the regenerative capacity of corneal cells.
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In this study, we evaluated the regenerative effects of RGTA drops on the proliferation,
scarring and nerve regeneration during corneal wound healing in mice cornea after a lesion
induced by laser ablation using an excimer laser.

2. Materials and Methods
2.1. Animals

A total of 105 mice (C57BL/6) aged 3 months and purchased from Charles River Labo-
ratory (L’Arbresle Cedex, France) were used. Animals were handled and housed according
to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, the
applicable guidelines of the EU (2003/65/EC) and the Spanish Government (RD 53/2013)
and the Ethics Committee of the University of Oviedo. On the day of sacrifice, animals
were euthanized by sodium pentobarbital overdose (Dolethal, Vétoquinol, Lure, France)
injected intraperitoneally, under general anesthesia. Immediately thereafter, eyes were
enucleated and processed for immunofluorescence studies.

Mice were divided into three groups depending on the treatment: (1) HSmP mice
treated with regenerating agent (RGTA, Cacicol®, Théa Laboratoires, Clermont-Ferrand,
France; n = 35); (2) Dx mice treated with the vehicle of HSmP (Dextran T40 in physiological
saline solution; n = 35) and (3) BSS mice treated with balanced salt solution (BSS, Sterile
Irrigating Solution, Alcon Laboratories, Inc., Fort Worth, TX, USA; n = 35). Animals treated
only with BSS were considered as a negative control. BSS is commonly used as irrigating
solution in clinic and as a control in experimental designs due to its biological inactiv-
ity [42–44]. Only the right eye of each mouse was surgically injured and the contralateral
eye served as uninjured control. Mice in the BSS, vehicle (Dx) and HSmP groups received
the treatment topically in both eyes twice: one drop (5 µL) 1 h after the induction of the
surgical injury and one drop 48 h later.

2.2. Induction of Corneal Injury by Laser Ablation

Corneal injury was performed as previously described [17,30,31,45–47]. Right eyes
were subjected to a photorefractive keratectomy (PRK) laser ablation surgical procedure
with a 2.0 mm ablation zone on the central cornea and a depth of 45 µm (including the
epithelium) with a VISX Star S3 excimer laser (Johnson & Johnson, Santa Ana, CA, USA)
used only for animal research. Before surgical procedures, mice were deeply anaesthetized
by intraperitoneal injection of a mixture of ketamine hydrochloride (80 mg/Kg; Imal-
gene 1000, Merial Laboratorios S.A., León, Spain) and xylazine hydrochloride (5 mg/Kg;
Rompun, Bayer Hispania S.L., Barcelona, Spain), followed by topical application of 0.5%
tetracaine clorhydrate and 1 mg of oxybuprocaine (Colircusí Anestésico Doble, Alcon S.A.,
Barcelona, Spain).

2.3. Clinical Course

Corneal wound healing was examined under a Leica S6D stereoscopic microscope (Le-
ica Microsystems, Wetzlar, Germany) immediately after surgery and at 1, 2, 3, 7 and 15 days
after PRK surgery (0 H, 1 D, 2 D, 3 D, 7 D and 15 D, respectively). The fluorescein-staining
test (Alcon S.A., Barcelona, Spain) was used to visualize the corneal epithelial defect. FIJI
image analysis software (ImageJ 1.52d; National Institutes of Health, Bethesda, MD, USA)
was used to calculate the area (mm2) of the epithelial defect. The level of opacity (haze) in
the cornea was assessed by two researchers observing under a stereomicroscope according
to OECD Test Guidance 405 Annex I scale (score 0 (clear) to 4 (severely dense opacity)) [48].

2.4. Tissue Processing and Microscopy

Five eye globes from each group and time point were fixed by immersion in buffered
4% paraformaldehyde (4% PF) for 1 h at room temperature, cryoprotected in 30% sucrose,
embedded in OCT compound (Optimum Cutting Temperature; Tissue-Teck, Sakura, Tokyo,
Japan) and snap frozen in liquid nitrogen. Transversal sections (5 µm) were obtained with
a Microm HM550 cryostat (Microm International GmbH, Walldorf, Germany) through the
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central region of the cornea for immunofluorescence analysis using specific antibodies to
study proliferation (rabbit polyclonal antibody to Ki67; 1:500; Abcam, Cambridge, UK), my-
ofibroblast transformation (rabbit polyclonal antibody to αSMA 1:200; Abcam), assembly
of epithelial cells (rabbit polyclonal antibody to E-cadherin 1:200; Santa Cruz Biotechnol-
ogy, Inc., Santa Cruz, CA, USA) and nerve regeneration (rabbit monoclonal antibody to
neuronal class III β-tubulin (β-tubulin III) 1:500; Abcam). Immunofluorescence assays were
performed as described previously [17,30,45]. Samples were incubated overnight with the
corresponding antibody and revealed with complementary Alexa Fluor 594 anti-rabbit
secondary antibody (1:500; Molecular Probes, Eugene, OR, USA). Nuclei were counter-
stained with DAPI (4′,6-diamidino-2-phenylindole; 2 µg/mL; Molecular Probes). A TUNEL
histochemical assay (dUTP Nick End Labeling; Promega BioSciences LLC, San Luis Obispo,
CA, USA) was performed according to the manufacturer’s instructions to visualize cells
undergoing apoptosis. Sections were examined under a Leica DM 6000 fluorescence micro-
scope equipped with a digital image capture system (LASX, Leica Microsystems GmbH,
Wetzlar, Germany).

2.5. Cell Counting

Three equidistant sections (at 50 µm intervals) obtained from the central region of
five corneas for each experimental group were used to quantify Ki67+ cells and TUNEL-
labeled cells in the entire corneal section (in both the epithelium and the stroma) with
the Cell Counter utility of FIJI software. Corneal αSMA+ myofibroblasts were counted
by two independent observers. Every positive cell with clearly identifiable nuclei (DAPI
stained in blue) was counted on five nonoverlapping corneal regions of 224.14 × 167.38 µm
in size. Each microscope field comprised a column of central corneal tissue extending
from the anterior epithelium to the posterior stromal surface. The density of regenerating
nerve fiber terminals (β-tubulin III+) in the epithelium was calculated as the number of
terminals/linear mm based on the “epidermal nerve fiber density” index. Measures of
the thickness of the cornea were made on the same sections used for immunofluorescence
analysis using the FIJI software utility “straight line” and automatic measurement. All
morphometric analysis was carried out using FIJI software.

2.6. Whole-Mounted Cornea Immunofluorescence

Five eyeballs from each group of mice were freshly isolated at 7 D, dissected and fixed
1 h at room temperature (RT) in 4% PF and washed in 0.1 M PBS, pH 7.4 (PBS). They were
blocked for 1 h with 5% BSA, 5% goat serum, 0.2% sodium azide and 0.3% Triton X-100
in PBS (PBS-Triton; all products from Merck KGaA, Darmstadt, Germany). Corneas were
incubated for 24 h at RT in the presence of rabbit anti–neuronal class III β-tubulin (1:500;
Abcam, Cambridge, UK). The samples were then incubated for 24 h at RT in the presence of
anti-rabbit IgG Alexa Fluor 594 secondary antibody (1:500; Molecular Probes). Afterwards,
samples were rinsed three times with washing solution followed by incubation for 10 min
at RT with DAPI, and, finally, they were mounted with fluorescent mounting medium
(DAKO, Glostrup, Denmark).

2.7. Sholl Analysis

For Sholl analysis, images were acquired using the Leica TCS-SP2-AOBS spectral
confocal microscope (Leica Microsystems). Leica LAS X software was used to fuse the
adjacent tiles and produce maximum intensity projections. The adjacent image tiles were
captured with overlap to ensure proper tiling. All images were acquired using the same
intensity settings. ImageJ Sholl analysis v3.2.7 plugin from FIJI [49] was used to calculate
the number of regenerative sensory axons in the injured region. Intersecting fibers were
automatically counted at 100, 300, 500, 700, 900 and 1100 µm from the corneal center.



Polymers 2022, 14, 4921 5 of 15

2.8. Statistical Analysis

All experiments were conducted in a masked fashion. Data extracted from the compar-
ison analysis were expressed as means ± standard error of the mean (SEM). The differences
among groups for each parameter were assessed by analysis of variance (ANOVA) fol-
lowed by the Student–Newman–Keuls test. A p value of <0.05 was considered statistically
significant. Prism 6 statistical software (GraphPad Software Inc., San Diego, CA, USA) was
used to run the analysis.

3. Results
3.1. Wound Healing

Laser induced wounds were strongly stained with fluorescein from 0 H, showing
averaged wounded areas of 2.76 ± 0.28 mm2. The speed of wounded area reduction was
significantly improved with HSmP treatment compared to Dx and BSS (p < 0.01) at day 1
and day 2 (p < 0.05; Figure 1a,c)). In addition to wound healing area closure, HSmP-treated
epithelia were preferentially found to be completely healed at day 2. A total of 60% of
eyes showed no fluorescein staining in the HSmP group compared to only 26% in the Dx
group and 30% in the BSS group. At day 7, all eyes from HSmP and Dx groups were totally
healed, while 12.5% of the animals in the BSS group still showed epithelial lesions. At the
end of the experiment (day 15), all eyes showed no fluorescein staining (Figure 1d).
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Figure 1. Macroscopic findings for the injured ocular surface. (a) The fluorescein-staining test
demonstrated the epithelial defect in a temporal sequence. No fluorescein staining was recorded at
15 D. (b) The transparency of the cornea was reduced in the first two postsurgical days. The HSmP
group showed transparent corneas at 15 D (magnification in (a,b): 12.5×). (c) Wound healing was
accelerated after application of one drop of HSmP. (d) Zero percent of the corneas in the HSmP group
had healed completely at 48 h. Some BSS treated eyes presented incomplete wound closure at day 7.
(e) The grade of transparency was significantly improved in HSmP-treated animals 15 days after
injury. Dx- and BSS-treated corneas showed no transparency recovery by the end of the experiment
(* = p < 0.05; ** = p < 0.01; *** = p < 0.001).
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3.2. Corneal Transparency

Upon laser ablation, injured eyes of all groups (HSmP, Dx and BSS) showed high
levels of corneal opacity (day 1). This opacity made it impossible to observe structures
of the anterior chamber and the iris in all groups (Figure 1b), showing an intense degree
of haze (about 3.5 in the OECD TG405 scale). After 72 h, HSmP-treated corneas showed
a significant reduction in the opacity compared to the BSS group (p < 0.01), scoring <2.0.
The Dx group showed a grade of opacity over 2.3 and did not differ significantly from
BSS (Figure 1e). The degree of transparency at day 7 was also greater in corneas treated
with HSmP compared to BSS (p < 0.001), with HSmP-treated mice showing only a mild
degree of haze. At the end of the experiment (day 15), haze degree in BSS corneas were not
reduced compared to day 7, and animals in the Dx group reversed the course of healing
and showed a higher degree of opacity. At this time-point, HSmP-treated animals showed
near transparent corneas, significantly more transparent than Dx or BSS corneas (p < 0.001).

3.3. Histopathological Analysis

To further understand the macroscopic features of wound healing upon HSmP treat-
ment, we performed a series of histopathological and morphometric analysis. Measures
of the corneal thickness at the center of the cornea showed that eyes treated with HSmP
at day 7 presented values statistically equivalent to those measured in uninjured corneas
(98.94 ± 1.62 µm in HSmP group vs. 105.47 ± 1.60 µm in untreated healthy corneas; n.s.).
Compared to BSS and Dx groups, corneal thickness was significantly greater in the HSmP
group (p < 0.001) (Table 1).

Table 1. Measurements of histomorphometric parameters at 7 D.

Group Corneal Thickness (in µm ± SEM) Myofibroblasts
(Number of α-SMA+ Cells ± SEM)

Intraepithelial Nerve Density
(β-Tubulin III+ Fibers/mm ± SEM)

Uninjured 105.47 ± 1.60 0 110.61 ± 4.89
BSS 51.95 ± 2.59 11.8 ± 1.49 33.26 ± 3.78
Dx 61.16 ± 5.23 7.92 ± 0.45 37.32 ± 2.83

HSmP 98.94 ± 1.62 4.92 ± 0.60 60.49 ± 8.05

3.3.1. Cell Proliferation

During the first 72 h, Ki67+ dividing cells were numerous in the stroma, resulting in
a high cellular density in the injured area. Apart from fibroblasts, many Ki67+ inflamma-
tory cells could be identified by the characteristic shape of their nuclei (neutrophils and
lymphocytes). There were also proliferative cells in the epithelium at the periphery of the
wound (Figure 2).

Corneas treated with HSmP showed a significantly lower density of Ki67+ cells
(p < 0.05) 24 h after injury compared to Dx or BSS (Figure 2 and Table 2). The density
of Ki67-positive cells decreased rapidly between 24 and 48 h in all groups of injured mice
(Table 2). The lowest density of cells on day 2 was found in HSmP-treated corneas (Table 2),
with a marked difference from BSS-treated corneas (p < 0.001). By day 3, HSmP eyes
showed a low density of dividing cells compared to Dx (p < 0.001) and BSS (p < 0.01).
Dividing cells were restricted almost exclusively to the epithelium in HSmP group while
Ki67+ cells were still present in the stroma in Dx and BSS groups (Figure 2d–f). Values
of the dividing cell count were close to normal by day 7 in all groups, with no statistical
differences between them (Table 2).
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of proliferation. Uninjured corneas (a,b) showed a low number of proliferative cells restricted to the
basal layer of the epithelium. HSmP-treated corneas (g) showed a lower number of proliferative
cells compared to vehicle (e) and BSS (c) one day after injury. Numbers of Ki67+ cells were greatly
reduced at 72 h in all groups (d,f,h). HSmP presented a lower number of Ki67+ cells. Dashed lines
mark the border of the initial injury in the 1 D series of images (scale bars: 50 µm).

Table 2. Values of cell density attending to proliferation and apoptosis during the corneal wound healing.

Group Proliferating Cells (Ki67+ Cells/mm ± SEM) Apoptotic Cells (TUNEL+ Cells/mm ± SEM)

D1 D2 D3 D7 D1 D2 D3 D7
Uninjured - - - 48.06 ± 4.09 - - - 18.01 ± 0.72

BSS 272.29 ± 8.13 77.42 ± 2.72 65.30 ± 5.34 47.36 ± 1.73 256.03 ± 12.49 42.35 ± 2.62 31.60 ± 4.54 15.90 ± 0.75
Dx 273.16 ± 6.96 55.11 ± 1.73 77.52 ± 2.97 58.07 ± 1.84 169.51 ± 16.82 62.67 ± 3.00 63.99 ± 26.86 18.44 ± 2.09

HSmP 204.57 ± 17.89 44.70 ± 2.32 44.15 ± 6.24 51.65 ± 4.14 143.97 ± 25.57 61.15 ± 25.93 31.53 ± 8.73 16.50 ± 2.50

3.3.2. Apoptosis

The maximum rate of apoptotic events was found within the first 48 h after the
induction of the wound in all groups. The maximum density of TUNEL+ cells at day 1
was in the BSS group (Figure 3 and Table 2) while the HSmP-treated group had the lowest
density of apoptotic cells (p < 0.01). TUNEL positive cells were observed both in the
epithelium surrounding the wound and in the central corneal stroma, where epithelium
was absent at day 1 after injury (Figure 3).

Two days after laser ablation, the density of apoptotic TUNEL+ cells was markedly
reduced in all groups (Table 2). Although Dx- and HSmP-treated corneas showed a high
number of apoptotic cells, differences from BSS were not statistically significant. The density
of apoptotic cells progressively decreased to day 3, when the number of death-committed
cells in the stroma decreased notably, especially in HSmP and BSS groups compared to Dx
(Figure 3d,f,h). At day 7, all injured groups showed similar densities to uninjured animals
(Table 2) and dying cells were found exclusively at the outermost layer of the epithelium,
resembling the normal superficial cell turnover process in the cornea (see Figure 4a,b).
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Figure 3. TUNEL-positive profiles (in green) in the laser-ablated region (1 day and 3 days after
surgery). Uninjured corneas (a,b) showed a low number of apoptotic cells restricted to the outermost
layer of the epithelium. One day after injury, the BSS-treated group (c) showed a higher number of
apoptotic cells compared to Dx (e) or HSmP (g). Number of TUNEL+ cells was greatly reduced at
72 h in all groups (d,f,h). Dashed lines mark the border of the initial injury in the 1 D series of images
(scale bars: 50 µm).
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cytoarchitecture 7 days after injury. Uninjured corneas showed a structured epithelium with E-cadherin
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staining restricted to the periphery of the cells, forming a typical network pattern (a). The BSS group
(e) presented irregularities in the epithelium and diffuse E-cadherin staining. Corneas treated with
Dx exhibited E-cadherin staining at the superficial layers of the epithelium but it was absent from
basal layers (i). HSmP-treated corneas (m) presented a correctly stratified epithelium with normal
E-cadherin staining. Column 2: Intraepithelial nerve regeneration 7 days after injury in cross-section.
The subbasal plexus is easily recognizable in uninjured corneas at the bottom of basal epithelial
cells (b). Numerous nerve terminals rose to the epithelial surface. The general morphologies of
subbasal plexus and intraepithelial terminals were similar between uninjured and HSmP groups (n).
BSS- (f) and Dx-treated (j) corneas exhibited poor density in intraepithelial nerves. Column 3:
Myofibroblast transformation 7 days after injury. Uninjured corneas had negative immunolabeling
for αSMA (c). In contrast, many αSMA+ myofibroblasts could be observed in BSS and Dx groups (g,k),
while HSmP (o) presented a low number of αSMA+ cells. Column 4: Myofibroblast transformation
15 days after injury. Uninjured corneas did not contain any αSMA+ myofibroblasts (d). HSmP-treated
corneas exhibited a reduced number of myofibroblasts (p) compared to BSS (h) and Dx (l). Nuclei
were counterstained with DAPI (scale bars: 50 µm).

3.3.3. Epithelial Morphology

Figure 4a shows the normal cytoarchitecture of mouse corneal epithelium consisting
of four to five layers of cells. Using E-cadherin immunofluorescence to visualize the
microscopic structure of the epithelium, corneas treated with HSmP showed morphology
similar to that for uninjured corneas 7 days after injury (Figure 4m). The inner border of the
epithelium seemed to be regular except for some punctual alterations. In contrast, corneas
treated with BSS or Dx showed an irregular cytoarchitecture in the epithelium (Figure 4e,i).
Epithelial layers were undefined. At day 7, only the HSmP group had a normal layered
epithelium, while the rest of the groups showed supernumerary epithelium layers and the
shape of the cells and nuclei was spherical. E-cadherin was not present at the basal border
of the epithelium in Dx- or BSS-treated corneas.

3.3.4. Myofibroblast Formation

There were noticeable differences regarding fibrotic transformation and the average
number of contractile cells in the cornea depending on the treatment received. There were
significantly less αSMA+ myofibroblasts in HSmP-treated corneas at day 7 (Figure 4o)
compared to the BSS (p < 0.001; Figure 4g) and Dx groups (p < 0.05; Figure 4k) (see Table 1).
Interestingly, only HSmP-treated corneas kept a reduced number of myofibroblasts at
day 15, while Dx and BSS presented a thick layer of αSMA-positive cells in the anterior
stroma (Figure 4h,l,p).

3.3.5. Nerve Regeneration

HSmP-treated corneas exhibited a significantly higher number of intraepithelial
nerve terminals in cross-section compared to Dx (p < 0.05) and BSS (p < 0.01) groups
(Figure 4f,j,n). At day 7, HSmP-treated corneas showed approximately one half of the
intraepithelial nerve density found in uninjured mice (60.5 ± 8 terminals/mm in HSmP vs.
110.6 ± 4.9 terminals/mm in uninjured corneas) (see Table 1 for details).

Sholl analysis of whole-mount preparations showed that laser ablation of the corneal
surface produced a circular lesion that eliminated all sensory fibers of the subbasal plexus
in the area. In addition, the density of subbasal fibers at the periphery of the lesion was
significantly reduced 7 days after ablation. While an uninjured cornea showed an average
of 320.40 ± 7.12 fibers at 1100 µm, far from the center of the cornea, control animals (treated
only with BSS) showed only 116.50 ± 1.96 fibers (p < 0.001). Nerve regeneration in the
injured area was observed at 7 D in all groups (Figure 5). Regenerating fibers sprouted
from nerve stumps at the edge of the lesion located 700 µm from the center of the cornea
and progressed radially toward the center. HSmP-treated eyes showed a significantly
higher number of nerve fibers in the center of the cornea at day 7 than Dx and BSS groups
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(p < 0.05). Furthermore, HSmP-treated corneas showed more fibers in the periphery of the
lesion than the Dx and BSS groups (p < 0.01). There was no statistical difference between
the Dx and BSS groups (Figure 6).
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Figure 5. Nerve regeneration in whole-mount preparations of the cornea. (A) Example of an
uninjured cornea showing intact β-tubulin III+ corneal sensory innervation with a dense subbasal
plexus. (B) HSmP-treated corneas showed higher numbers of regenerating axons in the ablated zone
(dashed line) than Dx (C) and BSS (D) groups. Furthermore, regenerating fibers in the HSmP group
reached a greater distance from the edge of the lesion (scale bars: 200 µm).
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omitted from the graph. They were p < 0.001 with Dx and BSS at all distances. Differences between
the uninjured group and HSmP group were p < 0.001 at 100 and 500 µm and p < 0.01 at 300, 700, 900
and 1100 µm.

4. Discussion

The results obtained in this study suggest beneficial effects from the application of
HSmP on corneal lesions induced by a laser surgical ablation. The surgical technique used
in this study produced uniform and reproducible lesions, reducing the variability in the
evaluation of the wound closure defect [17,30,50–53].

HSmP is a poly(carboxylmethylglucose sulfate) that is supplied as the RGTA Cacicol®—a
sterile, ready-to-use, single-dose solution—and the treatment requires only a short dosage rou-
tine (2–3 days each) [1]. Topical application of HSmP or its vehicle (Dx) on the ocular surface
of mice did not affect the integrity of epithelial junctions, as supported by our results, showing
no retention of fluorescein on uninjured eyes. Our results showed marked improvement in
tissue repair when comparing HSmP to its vehicle and BSS.

One of the putative applications of HSmP as a heparin sulfate mimetic regenerative
agent is to restore the ECM. While epithelial erosions in the cornea have a good prognosis,
stromal damage is difficult to treat due to its extremely organized cytoarchitecture. Good
recovery of the wound requires the restoration of the lost stromal tissue. In our model of
lesion, as occurs in deep corneal traumas [3], a large amount of epithelial and stromal tissue
was removed from the cornea.

Epithelial alterations induce changes in the organized stromal ECM [54], and a rapid
recovery of the corneal epithelium is supposed to facilitate a good healing process [4,55].
Topical addition of one drop of HSmP immediately after laser ablation resulted in a rapid
and efficient closure of the epithelial defect, significantly faster than Dx or BSS treatments
(p < 0.01). Moreover, most of the eyes treated with HSmP (60%) were completely reepithe-
lized as rapidly as 48 h post-surgery, more than double than in animals treated with Dx
and BSS, supporting the role in cell migration stimulation of high-sulfated heparan sulfate
glycosaminoglycan. We found also a rapid effect in the reduction of the wounded area in
the Dx-treated eyes. This result, together with the higher number of Ki67+ cells counted in
Dx-treated corneas and the relatively low rate of apoptosis, pointed to a possible role of the
vehicle (a dextran) in accelerating cell proliferation during wound healing [56]. However,
excess corneal epithelial cell proliferation contributes to erosion formation [57]. Our results
also demonstrated that the cytoarchitecture of the epithelium was normal at day 7 only
in HSmP-treated corneas, while Dx- and BSS-treated epithelia showed disorganization
and altered numbers of layers, together with discontinuities in the basal layer and lack of
E-cadherin expression, indicating contact between epithelial cells and stroma. Even with
an elevated division rate, the number of completely closed lesions at 2 D in the Dx group
was only 26%, similar to the BSS control group (30%).

On the other hand, HSmP did not demonstrate a significant increase in the number of
dividing cells while also promoting a higher removal of supernumerary cells. Apoptosis
appears to act in a coordinated manner with proliferation during regenerative processes
to achieve a balance in cell number during healing [9,10,58]. In this sense, HSmP seems
to facilitate the correct balance between division and cell removal, and this results in fast
wound closure with a correct epithelial architecture.

Our results support the hypothesis that good epithelial healing promotes better trans-
parency of the cornea. Contact between epithelial cells and stroma causes myofibroblast
transformation induced by TGFβ secreted from the damaged epithelium [53,54,59]. In close
relation with the speed and efficiency of epithelial healing, HSmP-treated eyes showed
very good recovery of transparency levels from the third day of treatment. HSmP exerted a
clear effect reducing the presence of myofibroblasts in the stroma and showed the lowest
proportion of αSMA+ cells, significantly less than in Dx (p < 0.01) and BSS (p < 0.001)
groups. In this sense, HSmP has been previously reported to have an antifibrotic effect
by decreasing collagen III synthesis and improving collagen reorganization. HSmP also
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inhibits proteolytic enzymes in vitro [60]. In addition, the relatively reduced number of
proliferative cells found in mice treated with HSmP may contribute to reducing the amount
of myofibroblasts in a similar way to that using mitomycin C, which successfully reduces
scarring after PRK due to its antineoplastic properties [57]. On the other hand, both Dx
and BSS treatments showed poor transparency values at the end of the experiment (15 D).
Dx-treated eyes showed an initial reduction of the opacity at 7 D, possibly due to a high
rate of apoptosis between 3 D and 7 D (Table 2). However, while the number of apoptotic
cells reached a normal value (7 D), the number of αSMA+ cells was significantly higher
than in the HSmP group.

The presence of the myofibroblast phenotype in the tissue is also related to a reduced
deposition of matrix [54], and we noticed a possible relation between the number of
myofibroblasts in the cornea and the recovery of the stromal thickness. HSmP-treated
corneas showed the lowest number of αSMA myofibroblasts and also exhibited similar
thickness as uninjured corneas. On the other hand, corneas treated with Dx and BSS
presented a corneal thickness of about one half of the uninjured thickness.

These results point to an effect of HSmP drops on the stabilization and promotion of
ECM deposition and tissue remodeling in the cornea. HSmP has been shown to mimic
the action of heparan sulfate molecules, thereby recreating a matrix microenvironment in
which cells can migrate and multiply [1].

Interestingly, this study also showed promising results for HSmP for nerve regen-
eration, which is crucial to the survival of the corneal tissue [61–63]. We found a clear
neuroregenerative effect of HSmP, with a marked significant difference from animals treated
only with Dx (p < 0.01) and BSS (p < 0.001), which failed to promote rapid axonal regrowth.
The density of intraepithelial nerve fibers in HSmP-treated corneas reached more than 54%
of that measured in uninjured eyes as rapidly as 7 days after injury. The normal process
of nerve regeneration in the cornea (for instance, the BSS group) only receives about 30%
of the normal density of nerves in the epithelium. We noticed that the vehicle (Dx) by
itself did not promote nerve regeneration and it was statistically equivalent to BSS. Aifa
et al. (2012) described the efficacy of RGTA (HSmP) drops in healing chronic corneal lesions
in humans. In a rabbit experimental model of alkali-induced corneal lesions, administra-
tion of RGTA ophthalmic solution was found to enhance the speed and quality of healing,
restoring almost-normal corneal histology after only 1 week [35]. The use of HSmP has
also been reported as treatment in corneal neurotrophic ulcers with good results [1], and
its application after a laser-induced surgery as nerve regenerating agent could probably
avoid the undesirable effects of the addition of growth factors, such as pain sensitization,
induction of angiogenic episodes or excessive proliferation of cells [4,64,65].

Both the enhanced epithelial closure and rapid reinnervation processes observed after
HSmP treatment in comparison with Dx and BSS could aid in avoiding painful sensations
in patients after corneal injuries. Supporting this hypothesis, it has been shown that
HSmP can also alleviate pain and symptoms in patients after PRK and, thus, it could be
a useful intervention after PRK surgery [38]. In addition, HSmP showed a unique matrix
regeneration effect not found with other treatments, restoring the stromal thickness to
values present previous to the injury.

5. Conclusions

Taken altogether, the results of this study suggest that HSmP topically applied onto the
ocular surface presents important and significant advantages over other treatments used
in clinical practice, such as autologous serum or immunosuppressant drugs, modulating
wound healing with regeneration of the stromal tissue, participating in the correct assembly
of epithelial cells, promoting nerve regeneration and efficiently avoiding myofibroblast
formation and opacity. Treatment with HSmP has been shown to heal the epithelial defect
significantly faster, as well as inhibit myofibrobalst scarring. Our results support improved
reinnervation of the injured area in the early stages of wound healing. These effects of
HSmP on nerve regeneration and wound healing suggest that heparan sulfate mimetic
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polymers could help restore the integrity of the ocular surface after injury in a very effective
manner. However, due to variability in nerve detection by immunolabeling of corneal
transversal sections to the complexity of the corneal innervation, the results presented
here should be considered with caution. A more in-depth analysis of each of the items in
this study should be performed to better understand the role of synthetic heparan sulfate
mimetic polymers in corneal wound healing.
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