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Stability for Evolution Equations with
Variable Growth

Sergey Shmarev , Jacson Simsen and Mariza Stefanello Simsen

Abstract. We study the homogeneous Dirichlet problem for the evolution
p(x, t)-Laplacian with the nonlinear source

ut − div
(
|∇u|p(x,t)−2∇u

)
= f(x, t, u), (x, t) ∈ Q = Ω × (0, T ).

Here, Ω ⊂ R
n is a bounded domain, n ≥ 2, and p(x,t) is a given function

p(·) : Q �→ ( 2n
n+2

, p+], p+ < ∞. It is shown that the solution is stable with

respect to perturbations of the exponent p(x, t), the nonlinear source
f(x, t, u), and the initial datum. We obtain quantitative estimates on
the norm of the difference between two solutions in a variable Sobolev
space through the norms of perturbations of the exponent p(x, t) and
the data u(x, 0), f . Estimates on the rate of convergence of solutions of
perturbed problems to the solution of the limit problem are derived.

Mathematics Subject Classification. 35K55, 35K92, 35B35.

Keywords. Nonlinear parabolic equation, variable growth, p(x, t)-Laplacian,
stability.

1. Introduction

The paper addresses the question of continuous dependence on the data for
the solutions of the Dirichlet problem for the quasilinear parabolic equations
with variable nonlinearity. We consider the problem⎧

⎪⎨
⎪⎩

ut − Δp(z)u = f(z, u) in Q,

u = 0on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ R
n, n ≥ 2, is a bounded domain, Q = Ω× (0, T ) is the cylinder of

the finite height T . By z = (x, t) we denote the points of Q. The differential
operator
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Δp(z)u = div
(
|∇u|p(z)−2∇u

)

with a given function p : Q �→ (1,∞) is a generalization of the classical p-
Laplacian operator with constant p. The right-hand side of equation (1.1)
is a given function of its arguments. We will distinguish between the cases
where f is a given function of the independent variables z ∈ Q, or depends
also on the solution u(z). In the latter case, we consider either the nonlinear
sources of the form

f(z, s) = −a|s|σ(z)−2s + f0(z) (1.2)

with a given function σ : Q �→ [2,∞), a = const, and f0 in a suitable Lebesgue
space, or f(z, u) = φ(u) + f0(z) with a Lipschitz-continuous function φ(·).

By now, the theory of PDEs with variable nonlinearity accounts for nu-
merous results on the issues of existence, uniqueness, and qualitative proper-
ties of solutions. The results on the character of dependence of solutions to
problem (1.1) on the data and the nonlinear structure of the equations are
scarce, albeit the study of the stability of the mathematical models based on
PDEs is important to ensure applicability of the theory to real-world prob-
lems because the mathematical models are built, in general, on approximate
experimental data.

It is known that the solutions of the Dirichlet problem for the evolution
p(z)-Laplace equation and the source term (1.2) with σ(z) = p(z), f0 = 0 and
a ≥ 0 are stable with respect to the initial data [7]: the solutions of problem
(1.1) corresponding to the initial data u0, v0 satisfy the estimate

‖u(·, t) − v(·, t)‖2
2,Ω ≤ ‖u0 − v0‖2

2,Ω for a.e. t ∈ (0, T ).

Similar stability estimates in L2(Ω) were proven in [9] for the solutions of
parabolic systems with nonstandard growth and a cross-diffusion term. The
p(z)-Laplacian is a prototype of the operators with nonstandard growth con-
sidered in [7,9]. In [16], the stability estimates in L1(Ω) with respect to the
initial data were derived for the solutions of anisotropic parabolic equations
with double variable nonlinearity, convective terms, and possible degeneracy
on the lateral boundary of the problem domain.

Continuity of solutions of equation (1.1) with respect to the variable
exponent p and convergence to the solution of the limit problem was discussed
in papers [12–15]. In these works, continuity in C([0, T ];L2(Ω)) is proven for
the solutions of degenerate equations with p ≡ p(x) > 2. These restrictions
are due to the method of the study, based on the analysis of the semigroup
generated by the operator −Δp(·) in L2(Ω).

Another approach to this problem was developed in [10,11]. In [10], the
continuity of solutions of the evolution p-Laplace equation with respect to
p was considered for the Dirichlet problem in a cylinder, and in [11] for the
Cauchy problem with constant p. It is shown in [10] that the solutions of the
problem

ut − Δpu = 0 in Q, u = φ on the parabolic boundary of Q (1.3)

with constant p ≥ 2 and a sufficiently regular boundary ∂Ω are continuous
with respect to the perturbation of the exponent p. If pi → p and ui are the
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corresponding solutions of problem (1.3), then there exists ε > 0 such that
ui → u in Lp+ε(0, T ;W 1,p+ε(Ω)) where u is the solution of the limit problem.
A specific difficulty is that the solutions corresponding to different pi belong
to different energy spaces prompted by equation (1.3):∫

Q

(|ui|pi + |∇ui|pi) dz < ∞.

This difficulty is overcome due to the property of the global higher inte-
grability of the gradient. It turns out that there exists ε > 0 such that
|∇ui| ∈ Lp+ε(Q) for sufficiently large i, which allows one to conclude that
the sequence {ui} is a Cauchy sequence in this space and converges to the
solution of the limit problem.

In the stationary case, it is shown in [6] that the solutions of the obsta-
cle problem for elliptic equations with nonstandard growth are stable with
respect to perturbations of their nonlinear structure. The p(x)-Laplace equa-
tion is a prototype of the class of equations studied in [6], where the global
higher integrability of the gradient is also one of the main ingredients in the
proof of stability.

In the present paper, we are interested in the continuity of solutions
of problem (1.1) with respect to the initial data u0, the source f in the
form (1.2), and the exponents of nonlinearity p(z), σ(z). We find sufficient
conditions of continuity and estimate the moduli of continuity with respect
to each component of the vector {p(z), u0, f0, σ(z)} (the data). The proof
of continuity with respect to p(z) relies on the property of global higher
integrability of the gradient. This property is derived in [3] for the solutions of
problem (1.1) with f(z, u) ≡ f(z) under certain assumptions on the regularity
of the variable exponent p(z) and the data u0, f , which allow one to show
also that the corresponding solution possesses better regularity than the weak
solutions. Such solutions are called the strong solutions—see Definition 3.1.
The results on continuity are formulated in terms of the norm in a variable
Sobolev space of the difference between a strong solution corresponding to
a regular exponent p(z) and the weak solution of the same problem with an
exponent q(z).

Organization of the paper. In Sect. 2, we introduce the variable Lebesgue
and Sobolev spaces and collect their basic properties. Section 3 is devoted
to the study of problem (1.1) with the source term f(z) independent of u.
The main result is given in Theorem 3.5. Let us illustrate it by the following
example. Assume that

∂Ω ∈ C2, p(·), q(·) : Q �→
(

2n

n + 2
, β

)
, β < ∞, f ∈ L2(0, T ;W 1,2

0 (Ω))

and ∫

Ω

|∇u0|s(x) dx < ∞ with s(x) = max{2, p(x)}.

If p(·) is Lipschitz-continuous in Q, q(·) is continuous in Q with a logarithmic
modulus of continuity, and −α ≤ p(z)−q(z) ≤ γ with positive constants α, γ
depending only on n (condition (3.9)), then the solutions of problem (1.1)
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u, v with the exponents p and q, and the same initial datum and the source
term, satisfy the inequality

‖u − v‖2
L∞(0,T ;L2(Ω)) +

∫

Q

|∇u − ∇v|q(z) dz ≤ C

(
R + R q+

2 + R q−
2

)
(1.4)

where

R = sup
Q

(
|p − q| q

q−1

)
, q+ = sup

Q
q, q− = inf

Q
q.

The constant C depends on the structural constants and the norms of u
and v in the corresponding energy spaces, which are estimated through the
data. It is worth noting that we do not distinguish between the degenerate
and singular equations, i.e., p(z), q(z) > 2, or 1 < p(z), q(z) < 2. Moreover,
the regions of degeneracy and singularity of the equations for u and v may
overlap but need not coincide. In the general case where the solutions u and
v correspond to different initial data u0, v0 and the source terms f1, f2, the
constant R depends also on ‖u0 − v0‖2,Ω and ‖f1 − f2‖2,Q. In Theorem 3.10,
we present results on convergence of families of strong solutions of problem
(1.1) to weak (strong) solutions of the limit problem.

In Sect. 4, we consider problem (1.1) with a nonlinear source. The main
attention is paid to the case of the source of the form (1.2) with a ≥ 0. The
study is confined to the class of exponents σ(z) for which the existence of
a weak solution u(z) is already known. This fact allows one to consider the
nonlinear source f(z, u(z)) as a given function of the independent variable z
and apply the results of Sect. 3, which is possible for degenerate equations
under the following assumptions on the range of the exponents in (1.1) and
(1.2):

2 ≤ p(z), 2 ≤ σ(z) ≤ 1 +
p(z)
2

in Q.

We derive estimates of the type (1.4) for the solutions of problem (1.1) and
(1.2) corresponding to the data {p(z), u0(x), f0(z), σ(z)} and {q(z), v0(x),
g0(z), μ(z)} with R depending also on supQ |σ(z) − μ(z)| and the norms of
u0 − v0, f0 − g0. This result is true if at least one of the sets of data produces
a strong solution.

In Sect. 4.3, we extend the results to the nonlinear sources of the form
f(z, s) = φ(s) + f0(z) with the same Lipschitz-continuous, not necessarily
sign-definite function φ. Since φ(s) is no longer assumed to be sign-definite,
the norm of the difference between two solutions is estimated by the same
quantity as in the case (1.2) with a ≥ 0, but with a coefficient that grows
exponentially in time.

2. Preliminaries

We collect here the background information on the variable Lebesgue and
Sobolev spaces used throughout the paper. We refer to the monograph [4] for
further information, and also to [2, Ch.1] and [5] for the properties of spaces
of functions defined on cylinders.
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Let Ω be a bounded domain with Lipschitz-continuous boundary ∂Ω and
p : Ω → [p−, p+] ⊂ (1,∞) be a measurable function. Define the functional

ρp(·)(f) =
∫

Ω

|f(x)|p(x) dx

(the modular). The set

Lp(·)(Ω) = {f : Ω → R : f is measurable on Ω, ρp(·)(f) < ∞}
equipped with the Luxemburg norm

‖f‖p(·),Ω = inf
{

λ > 0 : ρp(·)

(
f

λ

)
≤ 1

}

is a reflexive and separable Banach space and C∞
0 (Ω) is dense in Lp(·)(Ω).

The modular ρp(·)(f) is lower semicontinuous. By the definition of the norm

min{‖f‖p−

p(·),Ω, ‖f‖p+

p(·),Ω} ≤ ρp(·)(f) ≤ max{‖f‖p−

p(·),Ω, ‖f‖p+

p(·),Ω}. (2.1)

The dual of Lp(·)(Ω) is the space Lp′(·)(Ω) with the conjugate exponent p′ =
p

p − 1
. For f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω), the generalized Hölder inequality

holds:∫

Ω

|fg| ≤
(

1
p− +

1
(p′)−

)
‖f‖p(·),Ω‖g‖p′(.),Ω ≤ 2‖f‖p(.),Ω‖g‖p′(·),Ω. (2.2)

Let p1, p2 be two bounded measurable functions in Ω such that 1 < p1(x) ≤
p2(x) a.e. in Ω. Then, Lp2(·)(Ω) is continuously embedded in Lp1(·)(Ω) and

∀u ∈ Lp2(·)(Ω) ‖u‖p1(·),Ω ≤ C(|Ω|, p±
1 , p±

2 )‖u‖p2(·),Ω.

The variable exponent Sobolev space W
1,p(·)
0 (Ω) is defined as the set of func-

tions

W
1,p(·)
0 (Ω) = {u : Ω → R | u ∈ Lp(·)(Ω) ∩ W 1,1

0 (Ω), |∇u| ∈ Lp(·)(Ω)}
equipped with the norm

‖u‖
W

1,p(·)
0 (Ω)

= ‖u‖p(·),Ω + ‖∇u‖p(·),Ω.

Let p ∈ Clog(Ω), i.e., the exponent p is continuous in Ω with the logarithmic
modulus of continuity:

|p(x1) − p(x2)| ≤ ω(|x1 − x2|), (2.3)

where ω(τ) is a nonnegative function satisfying the condition

lim sup
τ→0+

ω(τ) ln
(

1
τ

)
= C < ∞.

Then, C∞
0 (Ω) is dense in W

1,p(·)
0 (Ω) and the Poincaré inequality holds: for

all u ∈ W
1,p(·)
0 (Ω)

‖u‖p(·),Ω ≤ C‖∇u‖p(·),Ω

with a constant C independent of u(x). The dual of W
1,p(·)
0 (Ω), denoted

W ′(Ω), is the set of bounded linear functionals over W
1,p(·)
0 (Ω): Φ ∈ W ′(Ω)
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iff there exist Φ0 ∈ Lp′(·)(Ω),Φi ∈ Lp′(·)(Ω), i = 1, . . . , n, such that for all
u ∈ W

1,p(·)
0 (Ω)

〈Φ, u〉 =
∫

Q

(
uΦ0 +

n∑
i=1

uxi
· Φi

)
dx.

Lp(·)(Ω) = {f : Ω → R : f is measurable on Ω, ρp(·)(f) < ∞}
For the study of parabolic problems we need the spaces of functions

depending on z ≡ (x, t) ∈ Q. Let us define the spaces

Vt(Ω) = {u : Ω → R | u ∈ L2(Ω) ∩ W 1,1
0 (Ω), |∇u|p(x,t) ∈ L1(Ω)}, t ∈ (0, T ),

Wp(·)(Q) = {u : (0, T ) → Vt(Ω) | u ∈ L2(Q), |∇u|p(x,t) ∈ L1(Q)}.

The space Wp(·)(Q) is equipped with norm

‖u‖Wp(·)(Q) = ‖u‖2,Q + ‖∇u‖p(·),Q.

The dual W′
p(·)(Q) of the space Wp(·)(Q) is the set of bounded linear func-

tionals over Wp(·)(Q): Φ ∈ W′
p(·)(Q) iff there exists Φ0 ∈ L2(Q), Φi ∈

Lp′(·)(Q), i = 1, . . . , n, such that for all u ∈ Wp(·)(Q)

〈Φ, u〉 =
∫

Q

(
uΦ0 +

n∑
i=1

uxi
Φi

)
dz.

Let Clog(Q) be the set of functions satisfying condition (2.3) in the closure
of the cylinder Q. If u ∈ Wp(·)(Q), ut ∈ W′

p(·)(Q) and p(z) ∈ Clog(Q), then
∫

Q

uut dz =
1
2

∫

Ω

u2(x, t) dx
∣∣∣
t=T

t=0
. (2.4)

By convention, throughout the text C denotes the constants which can
be computed or estimated through the data but whose exact values are unim-
portant. The symbol C may be used for different constants inside the same
formula, and may even vary from line to line.

Whenever it does not cause a confusion, we omit the arguments of the
variable exponents of nonlinearity.

We repeatedly use the Young inequality in the following form: for all
a, b > 0 and r > 1

a · b ≤ 1
r
ar +

1
r′ b

r′ ≤ ar + br′
, r′ =

r

r − 1
.

In particular, for a = 1, b = cs with c > 0 and r > s > 1 we have cs ≤ 1+ cr.

3. Evolution p(z)-Laplace Equation

In this section, we study the problem

⎧
⎪⎨
⎪⎩

ut − div
(|∇u|p(z)−2∇u

)
= f(z) in Q = Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(3.1)
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where Ω ⊂ R
n, n ≥ 2, is a domain with the boundary ∂Ω ∈ C2, the height

T of the cylinder Q is an arbitrary finite number, f(z) and p(z) are given
functions whose properties will be specified later.

3.1. Weak and Strong Solutions

Definition 3.1. A function u : Q �→ R is called weak solution of problem (3.1)
if

(a) u ∈ C0([0, T ];L2(Ω)) ∩ Wp(Q), ut ∈ (Wp(Q))′;
(b) for every φ ∈ Wp(Q),

∫

Q

(
utφ + |∇u|p−2∇u · ∇φ

)
dz =

∫

Q

fφdz; (3.2)

(c) for every φ ∈ L2(Ω)
∫

Ω

(u(x, t) − u0)φ(x) dx → 0 as t → 0+;

(d) a weak solution is called strong solution if

ut ∈ L2(Q), |∇u|p(z) ∈ L∞(0, T ;L1(Ω)).

We will need the following known assertions on the existence and unique-
ness of weak and strong solutions to problem (3.1).

Theorem 3.2 [1,5]. Let ∂Ω ∈ Lip, p(z) ∈ Clog(Q), and

2n

n + 2
< p− ≤ p(z) ≤ p+ < ∞, p± = const. (3.3)

Then, for every u0 ∈ L2(Ω) and f ∈ L2(Q), problem (3.1 has a unique weak
solution such that

ess sup
(0,T )

‖u(t)‖2
2,Ω +

∫

QT

|∇u|p(z) dz ≤ C
(‖u0‖2

2,Ω + ‖f‖2
2,Q

)
(3.4)

with a constant C depending on n and T .

Theorem 3.3 [3]. Let f ∈ L2(0, T ;W 1,2
0 (Ω)) and u0 ∈ W

1,s(·)
0 (Ω) with s(x) =

max{2, p(x, 0)}. Assume that ∂Ω ∈ C2 and

ess sup
Q

|∇p| + ess sup
Q

|pt| = L < ∞. (3.5)

Then, the weak solution u(z) of problem (3.1) is the strong solution and the
following estimate holds:

‖ut‖2
2,Q + ess sup

(0,T )

∫

Ω

|∇u|s(z) dz ≤ C, s(z) = max{2, p(z)}, (3.6)

with C = C
(
n, T, ∂Ω, p±, ‖u0‖W

1,s(·)
0 (Ω)

, ‖f‖L2(0,T ;W 1,2
0 (Ω))

)
. Moreover, for

every

δ ∈ (0, r∗), r∗ =
4p−

p−(n + 2) + 2n
,
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there is a constant C, depending on the same quantities as the constant in
(3.6) and δ, such that ∫

Q

|∇u|p(z)+δ dz ≤ C. (3.7)

The constants in (3.6) and (3.7) depend on ∂Ω through the norm of the
parametrization of ∂Ω in the local coordinate system.

Remark 3.4. The weak solutions of equation (3.1) also possess the property
of higher integrability of the gradient but only in the local setting—see, e.g.,
[3] for a brief review of the literature on this issue. In the local version of
(3.7), the integral is taken over any subcylinder Q′ � Q and the constant C
may depend on the distance between the parabolic boundaries of Q and Q′.
The local estimates for weak solutions may be continued up to the lateral
boundary of Q, but the question of their extension up to the initial plane
{t = 0} is open.

3.2. Continuity with Respect to the Data

Let us assume that we are given two sets of data:

S1 ≡ {p(z), f1(z), u0(x)} satisfy the conditions of Theorem 3.3,

S2 ≡ {q(z), f2(z), v0(x)} satisfy the conditions of Theorem 3.2.
(3.8)

By Theorems 3.2 and 3.3, the corresponding solutions u(z) and v(z) are the
unique strong and weak solutions of problem (3.1) in the sense of Definition
3.1.

Let us assume that there exists a constant λ ∈ (0, r∗) such that

− (q(z) − 1)(r∗ − λ) ≤ q(z) − p(z) ≤ r∗ − λ ∀z ∈ Q. (3.9)

Accept the notation

R = ‖u0 − v0‖2
2,Ω + ‖f1 − f2‖2

2,Q + sup
Q

|p − q|q′
.

The main result is the estimate on the difference between the strong
and the weak solutions in the norm of Wq(·)(Q).

Theorem 3.5. Assume that ∂Ω ∈ C2 and conditions (3.8), (3.9) are fulfilled
for the sets of data {p, f1, u0} and {q, f2, v0}. Let u(z), v(z) be the corre-
sponding strong and weak solutions of problem (3.1). Then,

ess sup
(0,T )

‖u − v‖2
2,Ω(t) +

∫

Q

|∇(u − v)|q(z) dz ≤ C

(
R + R q+

2 + R q−
2

)
(3.10)

with a constant C depending on T , n, ∂Ω, p±, q±, λ, L, ‖f1‖
L2

(
0,T ;W 1,2

0 (Ω)
),

‖f2‖L2(Q), ‖u0‖W
1,s(·)
0 (Ω)

, ‖v0‖2,Ω.

The crucial ingredient of the proof of Theorem 3.5 is the property (3.7)
of global higher integrability of the gradient, which must hold for at least one
of the solutions u and v. The proof of (3.7) in [3, Th.2.1] requires an extra
regularity of the problem data. Since these regularity assumptions render the
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weak solution of problem (3.1) a strong solution, in the conditions of Theorem
3.5 we assume that at least one of the solutions is a strong solution in the
sense of Definition 3.1.

Lemma 3.6. Let the conditions of Theorem 3.5 be fulfilled. If u(x) is the
strong solution of problem (3.1), then

|∇u| ∈ Lq(·)(Q), |∇u|p(z)−1 ∈ Lq′(·)(Q).

Proof. By (3.7), |∇u| ∈ Lp(·)+δ(Q) for every δ < r∗. The inclusion |∇u| ∈
Lq(·)(Q) follows from the second inequality in (3.9) and Young’s inequality
because q(z) ≤ p(z) + r∗ − λ: for δ = r∗ − λ

∫

Q

|∇u|q(z) dz ≤
∫

Q

(
1 + |∇u|p(z)+δ

)
dz ≤ |Q| +

∫

Q

|∇u|p(z)+δ dz.

The inclusion |∇u|p−1 ∈ Lq′
(Q) is fulfilled if (p − 1)q′ ≤ p + r∗ − λ. This

inequality can be written in the form

p − 1
p + r∗ − λ

=
(p + r∗ − λ) − (1 + r∗ − λ)

p + r∗ − λ
≤ 1 − 1

q
⇔ 1

q
≤ 1 + r∗ − λ

p + r∗ − λ
,

which is equivalent to the first inequality in (3.9). �

Lemma 3.7. Under the conditions of Theorem 3.5, the following energy rela-
tion holds:

∫

Q

(u − v)t(u − v) dz +
∫

Q

(|∇u|p−2∇u − |∇v|q−2∇v
) · ∇(u − v) dz

=
∫

Q

(f1 − f2)(u − v) dz.

(3.11)

Proof. By Theorem 3.2 v ∈ Wq(Q), vt ∈ W′
q(Q), by Theorem 3.3 and

Lemma 3.6 u ∈ Ws(Q) ⊆ Wq(Q) with s(z) = max{p(z), q(z)}, and ut ∈
L2(Q). The function ut ∈ L2(Q) can be identified as an element of W′

q(Q):
for every g ∈ Wq(Q)

∣∣∣∣
∫

Q

utg dz

∣∣∣∣ ≤ ‖ut‖2,Q‖g‖2,Q ≤ ‖ut‖2,Q‖g‖Wq(Q).

It follows that u − v ∈ Wq(Q), (u − v)t ∈ W′
q(Q). There is a sequence {φk}

such that

φk ∈ C1([0, T ];C1
0 (Ω)), φk → u − v in Wq(Q), (φk)t → (u − v)t in W′

q(Q).

Taking φk for the test-function in identities (3.2) for u and v, combining
the results, and then passing to the limit as k → ∞ we obtain equality
(3.11). �
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3.3. Proof of Theorem 3.5

Integrating by parts in the first term and then rearranging the second term
on the left-hand side, we rewrite (3.11) in the form

1
2
‖u − v‖2

2,Ω(t) +
∫

Q

(|∇u|q−2∇u − |∇v|q−2∇v
) · ∇(u − v) dz

=
∫

Q

(f1 − f2)(u − v) dz +
1
2
‖u0 − v0‖2

2,Ω

+
∫

Q

(|∇u|q−2∇u − |∇u|p−2∇u
) · ∇(u − v) dz.

(3.12)

Let us accept the notation

Q− = Q ∩ {z : q(z) < 2}, Q+ = Q \ Q− ≡ {z : q(z) ≥ 2},

Sq(u, v) =
(|∇u|q−2∇u − |∇v|q−2∇v

) · ∇(u − v),

I+ =
∫

Q+

Sq(u, v) dz, I− =
∫

Q−
Sq(u, v) dz,

I = I+ + I− ≡
∫

Q

(|∇u|q−2∇u − |∇v|q−2∇v
) · ∇(u − v) dz

and rewrite equality (3.12) as follows:

1
2
‖u − v‖2

2,Ω(t) + I =
∫

Q

(f1 − f2)(u − v) dz +
1
2
‖u0 − v0‖2

2,Ω

+
∫

Q

(|∇u|q−2∇u − |∇u|p−2∇u
) · ∇(u − v) dz.

(3.13)

Lemma 3.8. Under the conditions of Theorem 3.5

∫

Q

|∇(u − v)|q(z) dz ≤ C

(
I + I q−

2 + I q+
2

)
(3.14)

with a constant C depending on T , n, ∂Ω, p±, q±, λ, L, ‖f1‖L2(0,T ;W 1,2
0 (Ω)),

‖f2‖L2(Q), ‖u0‖W
1,s(·)
0 (Ω)

, ‖v0‖2,Ω.

Proof. We will make use of the well-known inequality: for all ξ, ζ ∈ R
n

(|ξ|q−2ξ − |ζ|q−2ζ) · (ξ − ζ) ≥ C

{
|ξ − ζ|q q ≥ 2,

(1 + |ξ|2 + |ζ|2) q−2
2 |ξ − ζ|2 q ∈ (1, 2).

(3.15)
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By Hölder’s inequality (2.2) and relation (2.1) between the norm and
the modular,
∫

Q−
|∇u − ∇v|q(z) dz

=
∫

Q−
(1 + |∇u|2 + |∇v|2)q 2−q

4

(
(1 + |∇u|2 + |∇v|2) q−2

2 |∇(u − v)|2
) q

2
dz

≤ 2max

⎧
⎪⎨
⎪⎩

(∫

Q−
(1 + |∇u|2 + |∇v|2) q−2

2 |∇(u − v)|2 dz

) q+
2

,

(∫

Q−
. . .

) q−
2

⎫
⎪⎬
⎪⎭

× max

⎧
⎪⎨
⎪⎩

(∫

Q−
(1 + |∇u|2 + |∇v|2) q

2 dz

)1− q−
2

,

(∫

Q−
. . .

)1− q+
2

⎫
⎪⎬
⎪⎭

≡ J−.

By (3.15),

J− ≤ C max
{

I
q−
2− , I

q+
2−

}

× max

⎧
⎨
⎩

(
1 +

∫

Q

|∇u|q dz +
∫

Q

|∇v|q dz

)1− q−
2

, (1 + . . .)1− q+
2

⎫
⎬
⎭

≤ C max
{

I
q−
2− , I

q+
2−

} (
1 +

∫

Q

|∇u|q dz +
∫

Q

|∇v|q dz

)1− q−
2

.

Due to estimates (3.4), (3.6) and property (3.7) of higher integrability of the
gradient for strong solutions, the second factor is estimated by a constant
depending only on the data. It follows that

∫

Q−
|∇u − ∇v|q(z) dz ≤ J− ≤ C max

{
I

q−
2− , I

q+
2−

}
.

The estimate
∫

Q+
|∇u − ∇v|q(z) dz ≤ CI+

is an immediate consequence of (3.15). Gathering these inequalities we find
that

∫

Q

|∇(u − v)|q(z) dz ≤ C (I+ + J−)

≤ C

(
I+ + I

q−
2− + I

q+
2−

)
≤ C

(
I + I q−

2 + I q+
2

)

with a constant C = C
(
p±, q±, ‖∇u‖q(·),Q, ‖∇v‖q(·),Q

)
. The estimate on

‖∇v‖q(·),Q follows from (3.4), ‖∇u‖q(·),Q is estimated in (3.4), (3.6)
and (3.7). �
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Equality (3.13) yields the inequality

1
2
‖u − v‖2

2,Ω(t) + I ≤ 1
2
‖u0 − v0‖2

2,Ω + ‖f1 − f2‖2,Q‖u − v‖2,Q

+
∫

Q

∣∣|∇u|q−2∇u − |∇u|p−2∇u
∣∣ |∇(u − v)|dz

≡ j1 + j2 + j3.

(3.16)

Lemma 3.9. Under the conditions of Theorem 3.5,

|j3| ≤ C sup
Q

|p(z) − q(z)|q′(z) (3.17)

with a constant C depending on ‖∇u‖q(·),Q, ‖∇u‖p(·),Q, ‖∇v‖q(·),Q.

Proof. By the generalized Hölder inequality (2.2),

j3 =
∫

Q

∣∣|∇u|q−2∇u − |∇u|p−2∇u
∣∣ |∇(u − v)|dz

≤ 2
∥∥(|∇u|q−2 − |∇u|p−2)∇u

∥∥
q′(·),Q ‖∇(u − v)‖q(·),Q.

By the Lagrange finite-increments formula,

|∇u|q−2 − |∇u|p−2 = |∇u|−2

∫ 1

0

d
dθ

(
|∇u|θq+(1−θ)p

)
dθ

= |∇u|−2

∫ 1

0

|∇u|p+θ(q−p) dθ ln |∇u|(q − p),

whence

|(|∇u|q−2 − |∇u|p−2)∇u|q′

≤
(∫ 1

0

(
|∇u|p+θ(q−p)−1| ln |∇u||

)
dθ

)q′

|q − p|q′
:= M.

(3.18)

For the sake of definiteness, let us assume first that q(z) ≥ p(z). There are
two possibilities: ∇u ≥ 1 and |∇u| < 1.

(a) |∇u| ≥ 1. For every constant α > 0,

M ≤
(∫ 1

0

(|∇u|q−1+α
) (|∇u|−α ln |∇u|) dθ

)q′

|q − p|q′

≤ Cα|∇u|(q−1+α)q′ |q − p|q′
(3.19)

with the constant

Cα =

(
sup

(1,∞)

s−α ln s

)q′

= (αe)−q′ ≤ (αe)−q+/(q+−1).

Assumption (3.9) allows one to choose α in such a way that

(q − 1 + α)q′ ≤ p + r∗ − λ

2
.
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It suffices to take for α any positive number satisfying the inequality

α <
λ

2
q− − 1

p+ + r∗ − λ
.

Using Young’s inequality and (3.9), we find that at the points where |∇u| ≥ 1

M ≤ Cα

(
1 + |∇u|p+r∗− λ

2

)
|p − q|q′

with a constant C independent of u.

(b) |∇u| < 1. For every constant β > 0

M ≤ |∇u|(p−1−β)q′ (|∇u|β | ln |∇u||)q′
|q − p|q′

≤ Cβ |∇u|(p−1−β)q′ |q − p|q′ (3.20)

with the constant

Cβ =

(
sup
(0,1)

(
sβ | ln s|)

)q′

= (βe)−q′ ≤ (βe)−q+/(q+−1).

Take 0 < β < p− − 1. By Young’s inequality,

M ≤ Cβ (1 + |∇u|q) |q − p|q′

with an independent of u constant C.

If p(z) ≥ q(z), we arrive at the same conclusion replacing p and q in the
integrand of (3.18):

|∇u|p+θ(q−p)−1| ln |∇u|| ≤ C

{
|∇u|p−1+α if |∇u| ≥ 1,

|∇u|q−1−β if |∇u| < 1.

Estimate (3.17) follows by integration of the estimates on M over Q and
using (3.7) and (3.4). �

Plugging (3.17) into (3.16), we continue (3.16) as follows:
1
2
‖u − v‖2

2,Ω(t) + I ≤ C (‖u‖2,Q + ‖v‖2,Q) ‖f1 − f2‖2,Q

+
1
2
‖u0 − v0‖2

2,Ω + C sup
Q

|p(z) − q(z)|q′(z).
(3.21)

Using the inequalities ‖u‖2,Q ≤ ‖u‖Wp(Q), ‖v‖2,Q ≤ ‖v‖Wq(Q), we obtain the
estimate

‖u − v‖2
2,Ω(t) + 2I ≤ ‖u0 − v0‖2

2,Ω

+C

(
‖f1 − f2‖2,Q + sup

Q
|p − q|q′

)
≤ CR

(3.22)

with a constant C depending on T , n, ∂Ω, q±, L, ‖u‖Wp
, ‖v‖Wq

, where the
last two quantities are estimated through the data of problems (3.1) for u
and v.

The assertion of Theorem 3.5 immediately follows now from (3.22) and
(3.14). �
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3.4. Compactness of Families of Strong Solutions

Let {pk(z)} be a sequence of functions satisfying the conditions

2n

n + 2
< p− ≤ pk(z) ≤ p+ < ∞ in Q,

‖∇pk‖∞,Q + ‖(pk)t‖∞,Q = L < ∞
(3.23)

with some positive constants p± and L. Let {um} be the sequence of strong
solutions of the problems

∂uk

∂t
− div

(
|∇uk|pk(z)−2∇uk

)
= f in Q,

uk = 0 on ∂Ω × (0, T ),

uk(x, 0) = u0(x) in Ω.

(3.24)

Theorem 3.10. Let ∂Ω ∈ C2, f ∈ L2(0, T ;W 1,2
0 (Ω)), and u0 ∈ W 1,s

0 (Ω) with
s = max{2, p+}.

(i) If pk(z) satisfy conditions (3.23), then there exists p∗(·) ∈ Cα(Q), α ∈
(0, 1), p− ≤ p∗(z) ≤ p+, such that the sequence {uk} is relatively com-
pact in Wp∗(Q): there is a subsequence {pkm

(z)} such that

‖ukm
− uks

‖2
2,Ω(t) +

∫

Q

|∇(ukm
− uks

)|p∗(z) dz → 0 (3.25)

as km, ks → ∞.
(ii) The sequence {ukm

} converges in Wp∗(Q) to the weak solution of prob-
lem (3.1) with p(z) ≡ p∗(z).

Proof. (i) Let us fix some α ∈ (0, 1). By virtue of (3.23) the set {pk} is
uniformly bounded and Lipschitz-equicontinuous. By the Ascoli–Arzelá the-
orem {pk} is compact in Cα(Ω). Let {pkm

} be a Cauchy sequence in Cα(Q),
pkm

(·) → p∗(·) in Cα(Q). Take pkm
, pks

with m and s so large that supQ |pkm
−

pks
| < 1 and condition (3.9) is fulfilled. By Theorem 3.5 with p = pkm

,
q = pks

ess sup
(0,T )

‖ukm
− uks

‖2
2,Ω(t) +

∫

Q

|∇(ukm
− uks

)|pks dz

≤ C

(
R + R p+

2 + R p−
2

) (3.26)

where

R = sup
Q

|pkm
− pks

|p′
ks ≤ sup

Q
|pkm

− pks
|(p−)′

.

The constant C in (3.26) depends on the constants p±, L, n, T , the properties
of ∂Ω, and the norms ‖ukm

‖Wpkm
(Q), ‖ukm

‖Wpks
(Q). Due to Theorems 3.2

and 3.3, the last two quantities are estimated by a constant that depends on
the data of problem (3.24) but does not depend on km, ks. Replacing pkm

and pks
and repeating the same arguments, we also have
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ess sup
(0,T )

‖ukm
− uks

‖2
2,Ω(t) +

∫

Q

|∇(ukm
− uks

)|pkm (z) dz

≤ C

(
R + R p+

2 + R p−
2

)
.

(3.27)

Gathering (3.26) and (3.27), we obtain

ess sup
(0,T )

‖ukm
− uks

‖2
2,Ω(t) +

∫

Q

|∇(ukm
− uks

)|max{pkm ,pks } dz

≤ C

(
R + R p+

2 + R p−
2

)

for all suffiently large km, ks. Since pks
→ p∗ in Cα(Q), condition (3.9) is

fulfilled for q = p∗ and p = max{pks
, pkm

}, whence (3.25).
(ii) Let us consider problem (3.1) with the exponent p∗(·) ∈ Cα(Q), p∗ =

lim pkm
, and the data f , u0. By Theorem 3.2 this problem has a unique weak

solution u∗ ∈ Wp∗(Q). By Theorem 3.5, the uniform convergence pkm
→ p∗

and inequality (3.10) yield

‖ukm
− u∗‖Wp∗ → 0 as km → ∞.

�

Corollary 3.11. Let {uk} be the sequence of solutions of problem (3.24) with
f = fk and u0 = u0k. Assume that Ω and pk satisfy the conditions of Theorem
3.10, fk ∈ L2(0, T ;W 1,2

0 (Ω)), u0k ∈ W 1,s
0 (Ω) with s = max{2, p+}, and

fk → f in L2(Q), u0k → u0 in L2(Ω).

Then, there exists p∗ ∈ Cα(Q) such that the sequence {uk} is precompact in
Wp∗(·)(Q) and converges in Wp∗(·)(Q) to the weak solution of problem (3.24)
with the data {p∗(z), f(z), u0(z)}.

4. Evolution p(z)-Laplacian with a Nonlinear Source

Let us consider the problem with the nonlinear source

ut − div(|∇u|p(z)−2∇u) = f(z, u) in Q,

u = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω. (4.1)

The source f(z, u) is a Carathéodory function (measurable in z ∈ Q for a.e.
u ∈ R and continuous with respect to u for a.e. z ∈ Q).

Definition 4.1. A function u : Q �→ R is called weak solution of problem (4.1)
if
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(a) u ∈ C0([0, T ];L2(Ω)) ∩ Wp(Q), ut ∈ (Wp(Q))′;
(b) for every φ ∈ Wp(Q),∫

Q

(
utφ + |∇u|p−2∇u · ∇φ

)
dz =

∫

Q

f(z, u)φ dz; (4.2)

(c) for every φ ∈ L2(Ω) (u(x, t) − u0, φ(x))2,Ω → 0 as t → 0+;
(d) a weak solution is called strong solution if ut ∈ L2(Q) and |∇u|p(z) ∈

L∞(0, T ;L1(Ω)).

4.1. Existence of Strong Solutions

Let f satisfy the following growth conditions: there exist a constant c0 ≥ 0
and a function f0(z) such that

|f(z, u)| ≤ c0|u|λ−1 + f0(z) in Q × R (4.3)

with

λ = max{2, p− − δ} ≥ 2, δ > 0, f0 ∈ Lλ′
(Q). (4.4)

Theorem 4.2 (Th.4.1, [2]). Let ∂Ω and p(z) satisfy the conditions of Theo-
rem 3.2. If the source f(z, s) satisfies conditions (4.3), (4.4), then for every
u0 ∈ L2(Ω) problem (4.1) has at least one weak solution in the sense of
Definition 4.1. The weak solution satisfies the estimate

ess sup
(0,T )

‖u(t)‖2
2,Ω +

∫

Q

|∇u|p(z) dz ≤ C
(‖u0‖2

2,Ω + ‖f0‖λ′,Q + 1
)

(4.5)

with an independent of u constant C.

We will assume that the source f(z, u) has the form

f(z, u) = −a|u|σ(z)−2u + f0(z), a = const �= 0,

σ ∈ C0(Q), ‖∇σ‖∞,Q = K < ∞.
(4.6)

This function satisfies conditions (4.3), (4.4) with λ = σ+ ≡ supQ σ(z). By
Theorem 4.2 problem (4.1) with the nonlinear source satisfying (4.6) has at
least one weak solution.

Theorem 4.3. Let the conditions of Theorem 4.2 be fulfilled. Moreover, as-
sume that ∂Ω ∈ C2, p(z) satisfies conditions (3.5), and f(z, s) has the form
(4.6). If

p− ≥ 2, 2 ≤ σ(z) ≤ 1 +
p(z)
2

in Q,

u0 ∈ W
1,s(·)
0 (Ω) with s = max{2, p(x, 0)},

f0 ∈ L2(0, T ;W 1,2
0 (Ω)),

(4.7)

then every weak solution of problem (4.1) is a strong solution in the sense of
Definition 4.1. The strong solution satisfies estimates (3.6) and possesses the
property of higher integrability of the gradient (3.7):

∫

Q

|∇u|p(z)+δ dz ≤ C, δ ∈
(

0,
4p−

p−(n + 2) + 2n

)
, (4.8)
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with a constant C depending on the data of problem (4.1) and δ, but inde-
pendent of u.

Proof. A weak solution u(z) of problem (4.1) can be regarded as a weak
solution of problem (3.1) with the known right-hand side

F (z) := f(z, u(z)).

Since λ = σ+ ≥ 2, then λ′ =
λ

λ − 1
≤ 2 and by the Poincaré inequality

f0 ∈ L2(0, T ;W 1,2
0 (Ω)) ⊂ L2(Q) ⊆ Lλ′

(Q).

To be able to apply Theorem 3.3 and to conclude that the weak solution u(z)
is a strong solution, it remains to check that

φ(z, u) ≡ |u|σ(z)−2u ∈ L2(0, T ;W 1,2
0 (Ω)).

It is straightforward to compute

|∇φ| ≤ (σ − 1)|u|σ−2|∇u| + |u|σ−1| ln |u|||∇σ|.
By Young’s inequality,

‖∇φ‖2
2,Q ≤ (σ+ − 1)

∫

Q

(
|u|2(σ−2) p(z)

p(z)−2 + |∇u|p
)

dz

+
∫

Q

|u|2(σ−1)| ln |u||2|∇σ|2 dz ≡ J1 + J2 + J3. (4.9)

We will make use of the following assertion.

Lemma 4.4. Let us assume that ∂Ω ∈ Lip, p(z) ∈ C(Q), u ∈ L∞(0, T ;L2(Ω))
∩ Wp(·)(Q), and

ess sup
(0,T )

‖u(t)‖2
2,Ω +

∫

Q

|∇u|p(z) dz ≤ M.

Then, for every ε ∈ (
0, 1

n

)

‖u‖p(·)+ε,Q ≤ C

with a constant C = C(M,p±, n, ω, |Ω|, ε), where ω is the modulus of conti-
nuity of p(z), and p± are the maximum and minimum of p(z) in Q.

Proof. Let us take a finite cover of Q by the cylinders Di = Ωi × (τi, τi + h),
i = 1, . . . , K such that ∂Ωi ∈ Lip, h > 0, τ1 = 0. Denote

p+
i = sup

Di

p(z), p−
i = inf

Di

p(z).

The uniform continuity of p(z) in Q allows one to choose Ωi and h > 0 in
such a way that

p+
i + ε

p−
i

< 1 +
2
n

for 0 < ε <
1
n

. (4.10)

For every i = 1, 2, . . . , K there are two possibilities: either p+
i + ε ≤ 2, or

p+
i + ε > 2.
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(a) p+
i + ε ≤ 2. By Young’s inequality

‖u‖2
p(·)+ε,Di

≤ C
(
1 + ‖u‖2

2,Di

) ≤ C(1 + hM).

(b) p+
i +ε > 2. In this case, we apply the Gagliardo–Nirenberg inequality

‖u‖p+
i +ε

p+
i +ε,Ωi

≤ C
(
‖∇u‖θi(p

+
i +ε)

p−
i ,Ωi

+ ‖u‖θi(p
+
i +ε)

2,Ωi

)
‖u‖(1−θi)(p

+
i +ε)

2,Ωi

≤ C
(
‖∇u‖θi(p

+
i +ε)

p−
i ,Ωi

+ M
1
2 θi(p

+
i +ε)

)
M

1
2 (1−θi)(p

+
i +ε)

≤ C(M,p±, n)
(
1 + ‖∇u‖θi(p

+
i +ε)

p−
i ,Ωi

)
(4.11)

with the exponent

0 < θi =
1
2 − 1

p+
i +ε

1
2 − n−p−

i

np−
i

<
p−

i

p+
i + ε

.

Notice that θi(p+
i + ε) < p−

i due to (4.10). Integrating inequality (4.11) in t
over the interval (τi, τi + h) and applying Young’s inequality, we obtain

∫

Di

|u|p(z)+ε dz ≤ h|Ω| + ‖u‖p+
i +ε

p+
i +ε,Di

≤ C(M,p±, |Ω|, n)

(
h +

∫ τi+h

τi

‖∇u‖θi(p
+
i +ε)

p−
i ,Ωi

dt

)

≤ C(M,p±, h, |Ω|, n)

⎛
⎜⎝1 +

(∫

Di

|∇u|p−
i dz

) θi(p
+
i +ε)

p
−
i

⎞
⎟⎠

≤ C(M,p±, h, |Ω|, n)
(

1 +
∫

Di

|∇u|p(z) dz

)

≤ C(M,p±, h, |Ω|, n) (1 + M) .

Gathering the estimates for all i = 1, 2, . . . ,K, we obtain the required esti-
mate

∫

Q

|u|p(z)+ε dz ≤
K∑

i=1

∫

Di

|u|p(z)+ε dz ≤ C(M,p±, ω, |Ω|, n).

�

Remark 4.5. For ε = 0, a similar inequality was proven in [2, Lemma 1.32],
see also [8, Lemma 2.3].

For a weak solution of problem (4.1), the second term J2 of (4.9) is
estimated in (4.5). By virtue of Lemma 4.4 and (4.5), the first term J1 is
bounded if

2(σ(z) − 2)
p(z)

p(z) − 2
≤ p(z) ⇔ σ(z) ≤ 1 +

p(z)
2

.
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To estimate J3, we proceed as in (3.19) and (3.20): for every ε > 0 (small),

J3 ≤ CK2

∫

Q

(
|u|2(σ(z)−1)+ε + |u|2(σ(z)−1)−ε

)
dz.

Applying Young’s inequality and then using Lemma 4.4 and (4.5), we find
that for ε < 1

n

J3 ≤ C

(
1 +

∫

Q

|u|2(σ(z)−1)+ε dz

)
≤ C

(
1 +

∫

Q

|u|p(z)+ε dz

)
≤ C

with a constant C depending only on the data.
The weak solution u(z) of problem (4.1) can be considered now as a

weak solution of problem (3.1) with the source F (z) ∈ L2(0, T ;W 1,2
0 (Ω)).

By Theorem 3.3, this problem has a unique strong solution v(z) which must
coincide with u(z). �

4.2. Equations with Nonpositive Nonlinear Sources

Let f(z, s) satisfy conditions (4.6) and S1, S2 be the sets of data of problem
(4.1) such that

S1 ≡ {p(z), σ(z), u0, f0} satisfy the conditions of Theorem 4.3,

S2 ≡ {q(z), μ(z), v0, g0} satisfy the conditions of Theorem 4.2 with

f(z, s) = −a|s|μ(z)−2s + g0(z),

q(z) ≥ 2, 2 ≤ μ(z) ≤ 1 +
q(z)
2

.

(4.12)

Theorem 4.6. Let u(z), v(z) be a strong and a weak solutions of problem
(4.1) that correspond to the data sets S1 and S2. Assume that a ≥ 0, the data
satisfy conditions (4.12), and the exponents p(z) and q(z) satisfy condition
(3.9). Then,

ess sup
(0,T )

‖u(t) − v(t)‖2
2,Ω +

∫

Q

|∇(u − v)|q(z) dz

≤ C

(
‖u0 − v0‖2

2,Ω + ‖f0 − g0‖2,Q + sup
Q

|p − q|q′
+ sup

Q
|σ − μ|

)

with a constant C depending only on the data.

Proof. It is known that problem (4.1) with the source defined by (4.6) and
the constant a ≥ 0 has at most one weak solution - [2, Th.4.6]. Hence, u(z)
and v(z) are unique as the weak solutions of problem (4.1). Moreover, u(z) is
the strong solution and possesses the property of global higher integrability of
the gradient (4.8). Using this property together with Lemma 3.6 we conclude
that the function u−v is an admissible test-function in the integral identities
(4.2) for u and v. Combining these identities and integrating by parts in t,
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we obtain the equality: for a.e. t ∈ (0, T )

1
2
‖u − v‖2

2,Ω(t) +
∫ t

0

∫

Ω

(|∇u|p(z)−2∇u − |∇v|q(z)−2∇v) · ∇(u − v) dz

= −a

∫ t

0

∫

Ω

(
|u|σ(z)−2u − |v|μ(z)−2v

)
(u − v) dz

+
1
2
‖u0 − v0‖2

2,Ω +
∫ t

0

∫

Ω

(u − v)(f0 − g0).

Rearranging this equality, applying (3.15), and using the fact that the last
equality holds for a.e. t ∈ (0, T ), we arrive at the inequality: for a.e. t ∈ (0, T )

1
2
‖u − v‖2

2,Ω(t) +
∫

Q

(|∇u|q(z)−2∇u − |∇v|q(z)−2∇v) · ∇(u − v) dz

≤
∫

Q

(|∇u|q(z)−2∇u − |∇u|p(z)−2∇u) · ∇(u − v) dz

−a

∫

Q

(
|u|σ(z)−2u − |u|μ(z)−2u

)
(u − v) dz

+
1
2
‖u0 − v0‖2

2,Ω +
∫

Q

(u − v)(f0 − g0) dz

≡ K1 + K2 + K3 + K4. (4.13)

The term K1 is already estimated in Lemma 3.9:

K1 ≤ C sup
Q

|p − q|q′

with a constant C depending only on the data. To estimate K2 we fix an
arbitrary z ∈ Q and represent

|u|σ−2 − |u|μ−2 =
∫ 1

0

d

dθ

(
|u|θσ+(1−θ)μ−2

)
dθ

=
∫ 1

0

|u|θσ+(1−θ)μ−2 ln |u|dθ(σ − μ).

For the sake of definiteness, let us assume that σ(z) > μ(z). For every suffi-
ciently small ε > 0 there is a constant Cε such that

∣∣∣|u|σ(z)−2 − |u|μ(z)−2
∣∣∣ |u| ≤ (σ(z) − μ(z))

{
|u|σ(z)−1| ln |u|| if |u| > 1,

|u|μ(z)−1| ln |u|| if |u| ≤ 1,

≤ Cε(σ(z) − μ(z))

{
|u|σ(z)−1+ε if |u| > 1,

|u|μ(z)−1−ε if |u| ≤ 1,

≤ Cε(σ(z) − μ(z))
(
1 + |u|σ(z)−1+ε

)
.

If σ(z) ≤ μ(z), we obtain the same inequalities replacing μ and σ. Thus, for
every z ∈ Q∣∣∣|u|σ(z)−2 − |u|μ(z)−2

∣∣∣ |u| ≤ C|σ(z) − μ(z)|
(
1 + |u|σ(z)−1+ε + |u|μ(z)−1+ε

)
.
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It follows that

K2 ≤ a sup
Q

|σ − μ|C
∫

Q

(
1 + |u − v|2 + |u|2(σ−1)+2ε + |u|2(μ−1)+2ε

)
dz

≤ a sup
Q

|σ − μ|C
(
|Q| + ‖u‖2

2,Q + ‖v‖2
2,Q

+
∫

Q

|u|2(σ−1)+2ε dz +
∫

Q

|u|2(μ−1)+2ε dz
)
,

where ε > 0 is still an arbitary small number. Lemma 4.4 and equality (4.5)
for u and v yield that if

2(σ(z) − 1) ≤ p(z), 2(μ(z) − 1) ≤ q(z), 0 < ε <
1
2n

,

then there is a constant C, depending only on the data of problems (4.1) for
u and v, such that∫

Q

|u|2(σ(z)−1)+2ε dz +
∫

Q

|u|2(μ(z)−1)+2ε dz ≤ C.

The estimate on K2 is completed. The estimate on K4 follows from (4.5): by
Hölder’s inequality

K4 ≤ (‖u‖2,Q + ‖v‖2,Q) ‖f0 − g0‖2,Q ≤ C‖f0 − g0‖2,Q.

The term K3 does not require a special estimating.
Substituting the estimates on Kj into (4.13) and using (3.15), we finally

obtain

ess sup
(0,T )

‖u(t) − v(t)‖2
2,Ω +

∫

Q

|∇(u − v)|q(z) dz

≤ C

(
‖u0 − v0‖2

2,Ω + ‖f0 − g0‖2,Q + sup
Q

|p − q|q′
+ sup

Q
|σ − μ|

)

with a constant C depending only on the data. �

4.3. Equations with Lipschitz-Continuous Sources

Let us consider the nonlinear source of the form

f(z, s) = φ(s) + f0(z) (4.14)

with the function φ subject to the following conditions:

φ(0) = 0, φ(s) is Lipshitz-continuous in R with the constant D. (4.15)

Since

|f(z, s)| ≤ |f0| + |φ(s) − φ(0)| ≤ D|s| + |f0|,
it follows from Theorem 4.2 that problem (4.1) with the nonlinear source f
satisfying (4.14) and (4.15) has at least one weak solution u(z). Moreover, by
[2, Th.4.7] this solution is unique.

If {p(z), u0, f0} satisfy the conditions of Theorem 4.3 and

φ(u) ∈ L2(0, T ;W 1,2
0 (Ω)), (4.16)
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then the weak solution u(z) is a strong solution. Inclusion (4.16) immediately
follows from (4.5) and (4.15) : since φ(u) is Lipschitz-continuous, it is a.e.
differentiable and∫

Q

|∇φ(u)|2 dz =
∫

Q

|φ′(u)|2|∇u|2 dz ≤ D2

∫

Q

(1 + |∇u|p(z)) dz ≤ C.

Let us return to problem (4.1) with the source satisfying (4.14) and (4.15).

Theorem 4.7. Let u(z), v(z) be two weak solutions of problem (4.1) with the
source f(z, s) satisfying conditions (4.14) and (4.15). Assume that u and v
correspond to the sets of data S1 ≡ {p(z), u0, f0(z)}, S2 ≡ {q(z), v0, g0(z)}
that satisfy the conditions of Theorems 3.3 and 3.2, respectively. If p(z) and
q(z) satisfy condition (3.9), then

ess sup
(0,T )

‖u − v‖2
2,Ω(t) +

∫

Q

|∇(u − v)|q(z) dz ≤ C

(
R̃ + R̃ q−

2 + R̃ q+
2

)

where

R̃ := CeDT

(
sup
Q

|p − q|q′
+ ‖f0 − g0‖2,Q + ‖u0 − v0‖2

2,Ω

)

and C is a constant depending only on the data.

Proof. Since u(z) is a weak solution of problem (4.1) and the set of data S1

satisfies the conditions of Theorem 4.3, u(z) is a strong solution of problem
(4.1). We will argue as in the proof of Theorem 4.6. Combining identities
(4.2) for u and v with the test-function u − v, we arrive at the following
equality: for a.e. t ∈ (0, T )

1
2
‖u − v‖2

2,Ω(t) +
∫ t

0

∫

Ω

(|∇u|q(z)−2∇u − |∇v|q(z)−2∇v) · ∇(u − v) dz

=
∫ t

0

∫

Ω

(|∇u|q(z)−2∇u − |∇u|p(z)−2∇u) · ∇(u − v) dz

+
1
2
‖u0−v0‖2

2,Ω+
∫ t

0

∫

Ω

(u−v)(f0−g0) dz+
∫ t

0

∫

Ω

(φ(u)−φ(v)) (u−v) dz.

(4.17)

From this equality, we derive the inequality

1
4
‖u − v‖2

2,Ω(t) +
1
2

∫

Q

(|∇u|q(z)−2∇u − |∇v|q(z)−2∇v) · ∇(u − v) dz

≤ K1 + K3 + K4 +
∫ t

0

∫

Ω

(φ(u) − φ(v)) (u − v) dz

(4.18)

which holds for a.e. t ∈ (0, T ). The terms Kj were introduced and estimated
in the proof of Theorem 4.6. It remains to estimate the last term on the
right-hand side of (4.18). By the assumptions on φ(s) and the Lagrange finite-
increment formula, we have

|φ(u) − φ(v)| |u − v| ≤
∫ 1

0

∣∣∣∣
d
dθ

φ(θu + (1 − θ)v)
∣∣∣∣ dθ|u − v| ≤ D(u − v)2.
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Let us denote

Y (t) =
∫ t

0

∫

Ω

(u − v)2 dz

and write (4.18) in the form

Y ′(t) + 2I ≤ DY (t) + K1 + K3 + K4. (4.19)

Omitting the nonnegative term 2I and integrating the resulting inequality,
we obtain the estimate

Y (t) ≤ (
eDt − 1

) 1
D

(K1 + K3 + K4) .

Substitution of this inequality into (4.19) gives: for a.e. t ∈ (0, T )

‖u − v‖2
2,Ω(t) + 2I ≤ eDt (K1 + K3 + K4)

≤ CeDT

(
sup
Q

|p − q|q′
+ ‖f0 − g0‖2,Q + ‖u0 − v0‖2

2,Ω

)
≡ R̃.

To complete the proof, we combine this estimate with the inequality proven
in Lemma 3.8. �

Remark 4.8. The same arguments show that the stability result remains true
for the solutions of problem (4.1) with the source f(z, s) = −a|s|σ(z)−2s +
φ(s) + f0(z), provided that p, q, σ, μ satisfy the conditions of Theorem 4.6
and φ(s) satisfies conditions (4.15). The only difference in the proofs consists
in the presence of the term K2 on the right-hand side of (4.18).

4.4. Convergence of Sequences of Strong Solutions

The following assertions are immediate consequences of Theorems 4.6 and
4.7.

Corollary 4.9. Let {uk} be the sequence of solutions of problem (4.1) with the
exponents {pk}, the initial functions {u0k} and the source terms {fk} of the
form (4.6). Assume that {pk, σk, u0k, f0k} satisfy the conditions of Theorem
4.3, a ≥ 0, and

u0k → u0 in L2(Ω), f0k → f0 in L2(Q), σk(z) → σ∗(z) uniformly in Q.

There exists a subsequence {pkm
} and p∗ ∈ Cα(Q) such that pkm

→ p∗ in
Cα(Q) and the sequence {ukm

} converges in Wp∗(Q) to the weak solution of
problem (4.1) with the data {p∗, σ∗, u0, f0}.
Corollary 4.10. Let {uk} be the sequence of solutions of problem (4.1) with
the exponents {pk}, the initial functions {u0k} and the source terms {fk} of
the form (4.14). Assume that {pk, u0k, f0k} satisfy the conditions of Theorem
3.3, φ satisfies conditions (4.15), and

u0k → u0 in L2(Ω), f0k → f0 in L2(Q).

Then, the sequence {pk} converges, up to a subsequence, to a function p∗ ∈
Cα(Q), α ∈ (0, 1), and the corresponding subsequence of {uk} converges in
Wp∗(Q) to the weak solution of problem (4.1) with the data {p∗, u0, f0}.
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The assertions are byproducts of the continuity estimates of Theorem
4.6 in the case of Corollary 4.9 and Theorem 4.7 in the case of Corollary
4.10. We omit the details of the proofs which are imitations of the proofs of
Theorem 3.10 and Corollary 3.11.
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