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Abstract
We consider the vertical motion of a free falling ball bouncing elastically on a racket moving
in the vertical direction according to a regular 1-periodic function f . For fixed coprime p, q
we study existence, stability in the sense of Lyapunov and multiplicity of p periodic motions
making q bounces in a period. If f is real analytic we prove that one periodic motion is
unstable and give some information on the set of these motions.

1 Introduction

The vertical dynamics of a free falling ball on a moving racket is considered. The racket
is supposed to move periodically in the vertical direction according to a regular periodic
function f (t) and the ball is reflected according to the law of elastic bouncing when hitting
the racket. The only force acting on the ball is the gravity g. Moreover, the mass of the racket
is assumed to be large with respect to the mass of the ball so that the impacts do not affect
the motion of the racket.

This model has inspired many authors as it represents a simple model exhibiting complex
dynamics, depending on the properties of the function f . The first results were given by
Pustyl’nikov in [21] who studied the possibility of having motions with velocity tending to
infinity, for ḟ large enough. On the other hand, KAM theory implies that if the Ck norm, for
k large, of ḟ is small then all motions are bounded. On these lines some recent results are
given in [11, 14, 17]. Bounded motions can be regular (periodic and quasiperiodic, see [12])
and chaotic (see [15, 16, 22]). Moreover, the non periodic case is studied in [9, 10], the case
of different potentials is considered in [4] and recent results on ergodic properties are present
in [23].

In this paper we are concerned with (q, p)-periodic motions understood as p-periodic
with q bounces in each period. Here p, q are supposed to be positive coprime integers. In
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[12] it is proved that if p/q is sufficiently large, then there exists at least one (q, p)-periodic
motion. This result comes from an application of Aubry-Mather theory as presented in [2].
Actually, the bouncing motions correspond to the orbits of an exact symplectic twist map of
the cylinder, and (q, p)-periodic motions correspond to (p, q)-periodic orbits. The orbits of
suchmaps can be found as critical points of an action functional and the (p, q)-periodic orbits
found in [12] correspond tominima. Here we first note that a refined version of Aubry-Mather
theory (see [7]) gives, for each couple of coprime p, q such that p/q is large, the existence of
another (p, q)-periodic orbit that is not a minimum, since it is found via aminimax argument.
This gives the existence of two different (q, p)-periodic motions for fixed values of p, q ,
with p/q large.

We are first interested in the stability in the sense of Lyapunov of such periodic motions.
This is related to the structure of the (p, q)-periodic orbits of the corresponding exact sym-
plectic twist map, for fixed p, q . It comes from Aubry-Mather theory that the (p, q)-periodic
orbits that are minima can be ordered and if there are two with no other in the middle then
they are connected by heteroclinic orbits. In this case they are unstable. On the other hand,
(p, q)-periodic orbits can form an invariant curve. In this case they are all minima but their
stability cannot be determined as before since we are in a degenerate scenario. However, if
we suppose to be in the real analytic case, a topological argument (see [18, 20]) can be used
to deduce instability. More precisely we will use the fact that for a real analytic area and
orientation preserving embedding of the plane that is not the identity, every stable fixed point
is isolated. Therefore, the hypothesis of f being real analytic comes here into play.

Concerning the structure of the set of (q, p)-periodic motions we prove that in the real
analytic case they can only be either isolated or in a degenerate case, in the sense that the
corresponding orbits form an invariant curve that is the graph of a real analytic function. As
before, in the isolated case at least one is unstable and in the degenerate case they all are
minima and unstable. Note that this result differs from Aubry-Mather theory since we are
not requiring the orbits to be minima of a functional. To prove this result we need the q-th
iterate of the map to be twist. For q = 1 this is true for every real analytic f , while for the
general case q > 1 we need to restrict to ‖ f̈ ‖ being small.

The paper is organized as follows. In Sect. 2 we recall some known facts about exact
symplectic twist maps together with the results for the analytic case. In Sect. 3 we introduce
the bouncing ball map and describe its main properties. Finally, the results on the existence
of two (q, p)-periodic motions, the instability and the structure of the set are given in Sect.
4.

2 Some results on periodic orbits of exact symplectic twist maps

Let us denote by � = R × (a, b) with −∞ ≤ a < b ≤ +∞ a possibly unbounded strip of
R
2. We will deal with Ck (k ≥ 1) or real analytic embeddings S̃ : � → R

2 such that

S̃ ◦ σ = σ ◦ S̃ (2.1)

where σ : R2 → R
2 and σ(x, y) = (x + 1, y). By this latter property, S̃ can be seen as the

lift of an embedding S : � → A where A = T×R with T = R/Z and � is now understood
as the corresponding strip of the cylinder. We denote S̃(x, y) = (x̄, ȳ) and the corresponding
orbit by (xn, yn)n∈Z.
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We say that S̃ is exact symplectic if there exists a C1 function V : � → R such that
V ◦ σ = V and

ȳd x̄ − ydx = dV (x, y) in �.

Moreover, by the (positive) twist condition we understand

∂ x̄

∂ y
> 0 in �.

A negative twist condition would give analogous results. The exact symplectic condition
implies that S̃ preserves the two-form dy ∧ dx so that it is area and orientation preserving.
An equivalent characterization is the existence of a generating function, i.e. a C2 function
h : � ⊂ R

2 → R such that h(x + 1, x̄ + 1) = h(x, x̄) and h12(x, x̄) < 0 in � and for
(x, y) ∈ � we have S̃(x, y) = (x̄, ȳ) if and only if{

h1(x, x̄) = −y

h2(x, x̄) = ȳ.

Moreover, S̃ preserves the ends of the cylinder if, uniformly in x ,

ȳ(x, y) → ±∞ as y → ±∞
and twists each end infinitely if, uniformly in x ,

x̄(x, y) − x → ±∞ as y → ±∞.

Finally we will say that an embedding of the cylinder S : � → A satisfies any of these
properties if so does its corresponding lift.

These maps enjoy several properties and many interesting orbits are proved to exist. Here
we recall some results concerning periodic orbits. We start with the following

Definition 2.1 Fix two coprime integers p, q with q �= 0. An orbit (xn, yn)n∈Z of S̃ is said
(p, q)-periodic if (xn+q , yn+q) = (xn + p, yn) for every n ∈ Z. Moreover, we say that it is
stable (in the sense of Lyapunov) if for every ε > 0 there exists δ > 0 such that for every
(x̂0, ŷ0) satisfying |(x0, y0) − (x̂0, ŷ0)| < δ we have |S̃n(x̂0, ŷ0) − (xn, yn)| < ε for every
n ∈ Z.

Remark 2.2 Note that (p, q)-periodic orbits correspond to fixed points of the map σ−p ◦ S̃q .
This follows from the fact that S̃ is a diffeomorphism defined on the cylinder. Each point of
the orbit is a fixed point of σ−p ◦ S̃q and a fixed point of σ−p ◦ S̃q is the initial condition of
a (p, q)-periodic orbit. Note that different fixed points may correspond to the same orbit but
not viceversa. Moreover, if an orbit is (p, q)-periodic then it cannot be also (p′, q ′)-periodic
unless p/q = p′/q ′. Actually, let ξ = (x, y) and suppose that ξ = σ−p ◦ S̃q(ξ) = σ−p′ ◦
S̃q

′
(ξ). Thenσ p(ξ) = S̃q(ξ) andσ p′

(ξ) = S̃q
′
(ξ) fromwhich S̃qq

′
(ξ) = σ pq ′

(ξ) = σ p′q(ξ)

and pq ′ = p′q . Finally, the stability of a (p, q)-periodic orbit corresponds to the stability in
the sense of Lyapunov of the corresponding fixed point of the map σ−p ◦ S̃q .

A particular class of periodic orbits are the so called Birkhoff periodic orbits.

Definition 2.3 Fix two coprime integers p, q with q �= 0. An orbit (xn, yn)n∈Z of S̃ is said a
Birkhoff (p, q)-periodic orbit if there exists a sequence (sn, un)n∈Z such that

• (s0, u0) = (x0, y0)
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• sn+1 > sn
• (sn+q , un+q) = (sn + 1, un)
• (sn+p, un+p) = S̃(sn, un)

Remark 2.4 Note that a Birkhoff (p, q)-periodic orbit is a (p, q)-periodic orbit since

(xn+q , yn+q) = (snp+qp, unp+qp) = (snp + p, unp) = S̃n(s0, u0) + (p, 0) = (xn + p, yn).

The existence of Birkhoff (p, q)-periodic orbits comes from Aubry-Mather theory. Here
we give a related result [7, Th. 9.3.7]

Theorem 2.5 Let S : A → A be an exact symplectic twist diffeomorphism that preserves
and twists the ends infinitely and let p, q be two coprime integers. Then there exist at least
two Birkhoff (p, q)-periodic orbits for S.

Remark 2.6 TheTheorem is proved via variational techniques. The periodic orbits correspond
to critical points of an action defined in terms of the generating function. One of this point is
a minimum and the other is a minimax if the critical points are isolated.

In the analytic case, something more can be said on the topology of these orbits.

Proposition 2.7 Let S̃ : � → R
2 be an exact symplectic twist analytic embedding satisfying

condition (2.1) and admitting a (p, q)-periodic orbit. Then there exists at least one (p, q)-
periodic orbit that is unstable.

Proof The proof is essentially given in [13, 18, 20]. We give here a sketch. It is enough to
prove that there exists at least one unstable fixed point of the area and orientation preserving
1-1 real analytic map σ−p ◦ S̃q . Let us first note that since S̃ is twist, the map σ−p ◦ S̃q is
not the identity. Actually, it is known (see for example [6])) that if S̃ is twist, then the image
of a vertical line under S̃q is a positive path, i.e. a curve such that the angle between the
tangent vector and the vertical is always positive. This implies that S̃q cannot be a horizontal
translation.

By hypothesis the set of fixed points of σ−p ◦ S̃q is not empty so that applying [20,
Chapter 4.9, Theorem 15] we deduce that every stable fixed point is an isolated fixed point.

Hence, if there exists some non isolated fixed point, it must be unstable. Finally, suppose
that we only have isolated fixed points that are all stable. From [20, Chapter 4.5, Theorem 12]
they must all have index 1. On the other hand, the Euler characteristic of the cylinder is null,
and by the Poincaré-Hopf index formula we have a contradiction. Hence, there must exists
at least one fixed point that is unstable. �
Corollary 2.8 In the conditions of Theorem 2.5, if S is real analytic then there exists at least
one unstable (p, q)-periodic orbit.

In the analytic case, the twist condition gives information on the structure of the set of
(p, q)-periodic orbits. Actually the following result has been proved in [13, 19]

Theorem 2.9 Consider a C1-embedding S̃ : � → R satisfying property (2.1) and suppose it
is exact symplectic and twist. Fix a positive integer p and assume that for every x ∈ R there
exists y ∈ (a, b) such that

x̄(x, a) < x + p < x̄(x, y). (2.2)

Then the map σ−p ◦ S̃ has at least two fixed points in [0, 1) × (a, b). Moreover, if S̃ is real
analytic then the set of fixed points is finite or the graph of a real analytic 1-periodic function.
In the first case the index of such fixed points is either −1, 0, 1 and at least one is unstable.
In the second case, all the fixed points are unstable.
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Remark 2.10 Aubry-Mather theory gives a description, for fixed p, q of those (p, q)-periodic
orbits that are global minimizers. They can be ordered and if two of them are neighbouring,
in the sense that there is no other minimal (p, q)-periodic orbit in the middle, then there
are heteroclinic connections between them [2, 7]. In this case, the (p, q)-periodic orbits are
unstable. On the other hand, they can form an invariant curve. We stress that in the analytic
case Theorem 2.9 gives the description of the set of all (p, q)-periodic orbits, not only those
that are action minimizing.

3 The bouncing ball map and its properties

Consider the motion of a bouncing ball on a vertically moving racket. We assume that the
impacts do not affect the racketwhose vertical position is described by a 1-periodicCk , k ≥ 2,
or real analytic function f : R → R. Let us start getting the equations of motion, following
[16]. In an inertial frame, denote by (t, w) the time of impact and the corresponding velocity
just after the bounce, and by (t̄, w̄) the corresponding values at the subsequent bounce. From
the free falling condition we have

f (t) + w(t̄ − t) − g

2
(t̄ − t)2 = f (t̄) , (3.1)

where g stands for the standard acceleration due to gravity. Noting that the velocity just
before the impact at time t̄ is w − g(t̄ − t), using the elastic impact condition and recalling
that the racket is not affected by the ball, we obtain

w̄ + w − g(t̄ − t) = 2 ḟ (t̄) , (3.2)

where˙stands for the derivative with respect to time. From conditions (3.1–3.2) we can define
a bouncingmotion given an initial condition (t, w) in the following way. Ifw ≤ ḟ (t) then we
set t̄ = t and w̄ = w. If w > ḟ (t), we claim that we can choose t̄ to be the smallest solution
t̄ > t of (3.1). Bolzano theorem gives the existence of a solution of (3.1) considering

Ft (t̄) = f (t) − f (t̄) + w(t̄ − t) − g

2
(t̄ − t)2

and noting that Ft (t̄) < 0 for t̄ − t large and Ft (t̄) > 0 for t̄ − t → 0+. Moreover, the
infimum t̄ of all these solutions is strictly larger than t since if there exists a sequence t̄n → t
satisfying (3.1) then,

w − g

2
(t̄n − t) = ( f (t̄n) − f (t))/(t̄n − t)

that contradicts w > ḟ (t) using the mean value theorem. For this value of t̄ , condition (3.2)
gives the updated velocity w̄.

For t̄ − t > 0, we introduce the notation

f [t, t̄] = f (t̄) − f (t)

t̄ − t
,

and write

t̄ = t + 2

g
w − 2

g
f [t, t̄] , (3.3)

that also gives

w̄ = w − 2 f [t, t̄] + 2 ḟ (t̄). (3.4)
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Now we change to the moving frame attached to the racket, where the velocity after the
impact is expressed as v = w − ḟ (t), and we get the equations⎧⎨

⎩
t̄ = t + 2

g
v − 2

g
f [t, t̄] + 2

g
ḟ (t)

v̄ = v − 2 f [t, t̄] + ḟ (t̄) + ḟ (t) .

(3.5)

By the periodicity of the function f , the coordinate t can be seen as an angle. Hence, equations
(3.5) define formally a map

	̃ : R −→ R

(t, v) �−→ (t̄, v̄),

satisfying 	̃ ◦ σ = σ ◦ 	̃ and the associated map of the cylinder 	 : A → A.
This is the formulation considered by Kunze and Ortega [9]. Another approach was con-

sidered by Pustylnikov in [21] and leads to a map that is equivalent to (3.5), see [12]. Noting
that w > ḟ (t) if and only if v > 0, we can define a bouncing motion as before and denote it
as a sequence (tn, vn)n∈Z+ with Z

+ = {n ∈ Z : n ≥ 0} such that (tn, vn) ∈ T × [0,+∞)

for every n ∈ Z
+.

The maps 	 and its lift 	̃ are only defined formally. In the following lemma we state that
they are well defined and have some regularity. Let us introduce the notation Rv∗ = {v ∈
R : v > v∗}, Av∗ = T × Rv∗ and R

2
v∗ = R × Rv∗ . We will denote the sup norm by ‖·‖ and

recall that f ∈ Ck(T), k ≥ 2 or real analytic.

Lemma 3.1 There exists v∗ > 4‖ ḟ ‖ such that the map 	 : Av∗ → A is a Ck−1 embedding.
If f is real analytic, then 	 is a real analytic embedding.

Proof The proof is essentially given in [16]. We give here a sketch. To prove that the map
is well defined and Ck−1 we denote v∗∗ = 4‖ ḟ ‖ and apply the implicit function theorem to
the Ck−1 function F : {(t, v, t̄, v̄) ∈ Av∗∗ × R

2 : t �= t̄} → R
2 given by

F(t, v, t̄, v̄) :=
⎛
⎝ t̄ − t − 2

g
v + 2

g
f [t, t̄] − 2

g
ḟ (t)

v̄ − v + 2 f [t, t̄] − ḟ (t̄) − ḟ (t)

⎞
⎠ ,

This gives the existence of a Ck−1 map 	 defined in Av∗∗ such that F(t, v,	(t, v)) = 0. If
f is real analytic, we get that 	 is real analytic applying the analytic version of the implicit
function theorem.

One can easily check that 	 is a local diffeomorphism since

det Dt,v	(t, v) = −det(Dt,vF(t, v,	(t, v)))

det(Dt̄,v̄F(t, v,	(t, v)))
�= 0 on Av∗∗ .

To prove that 	 is a global embedding we need to prove that it is injective in Av∗ for v∗
eventually larger than v∗∗. This can be done as in [16]. �
Remark 3.2 Note that we cannot guarantee that if (t0, v0) ∈ Av∗ then 	(t0, v0) ∈ Av∗ . This
is reasonable, since the ball can slow down decreasing its velocity at every bounce. Hence,
in general, given (t0, v0) ∈ Av∗ we can only define a finite number of iterates of the map 	.
We will be interested in orbits defined for all n ∈ Z. These orbits are called complete.

On the other hand, a bouncing motion is defined as long as v ≥ 0.
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Remark 3.3 From the physical point of view, the condition 	n(t0, v0) ∈ Av∗ for every n,
implies that we can only hit the ball when it is falling. To prove it, suppose that t0 = 0 and
let us see what happens at the first iterate. The time at which the ball reaches its maximum
height is tmax = v0

g . On the other hand, the first impact time t̄ satisfies,

t̄ ≥ 2

g
v0 − 4

g
‖ ḟ ‖ = tmax

(
2 − 4

v0
‖ ḟ ‖

)
> tmax ,

where the last inequality comes from v0 ∈ Rv∗ and v∗ > 4‖ ḟ ‖.
The map 	̃ is exact symplectic if we pass to the variables time-energy (t, e) defined by

(t, e) =
(
t,
1

2
v2

)
,

obtaining the conjugated map


 : Ae∗ −→ A, e∗ = 1

2
v2∗

defined by ⎧⎪⎪⎨
⎪⎪⎩

t̄ = t + 2

g

√
2e − 2

g
f [t, t̄] + 2

g
ḟ (t)

ē = 1

2

(√
2e − 2 f [t, t̄] + ḟ (t̄) + ḟ (t)

)2
,

(3.6)

that by Lemma 3.1 is a Ck−1-embedding or real analytic if f is real analytic. More precisely,
we have the following result, proved in [16].

Lemma 3.4 The map 
 is exact symplectic and twist in Ae∗ .
Moreover, 
 preserves and twists infinitely the upper end.

The map 
 is not defined in the whole cylinder. However, it is possible to extend to the
whole cylinder preserving its properties. More precisely:

Lemma 3.5 There exists a Ck−2 exact symplectic and twist diffeomorphism 
̄ : A → A

such that 
̄ ≡ 
 on Ae∗ and 
̄ ≡ 
0 on A \ A e∗
2
where 
0 is the integrable twist map


0(t, e) = (t+e, e).Moreover, 
̄ preserves the ends of the cylinder and twists them infinitely.
If f is real analytic, then the extension 
̄ is C∞.

Due to Lemma 3.1 and the fact that the maps 
 and 	 are conjugated we can consider
the lift 
̃ : R2

e∗ → R
2 and give the following

Definition 3.6 A complete bouncing motion (tn, en)n∈Z is a complete orbit of the map 
̃.

In the following section we will study the existence and properties of periodic complete
bouncing motions as orbits of the map 
̃ defined in (3.6).

4 Periodic bouncingmotions

The existence of periodic complete bouncing motions follows from an application of Aubry-
Mather theory. In this section we prove it and in the analytic case we give some results on
the structure of such motions and their stability.
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We start saying that a complete bouncing motion is (q, p)-periodic if in time p the ball
makes q bouncing before repeating the motion, more precisely:

Definition 4.1 Given two coprime integers q, p ∈ Z
+, a complete bouncing motion

(tn, en)n∈Z is (q, p)-periodic if the corresponding orbit of 
̃ is (p, q)-periodic. Moreover,
we say that it is stable if the corresponding orbit is stable.

The existence of two (q, p)-periodic complete bouncing motions comes from an applica-
tion of Theorem 2.5.

Theorem 4.2 For every f ∈ C3 there exists α > 0 such that for every positive coprime p, q
satisfying p/q > α there exist two different (q, p)-periodic complete bouncing motions.
Moreover, if f is real analytic, then at least one of the (q, p)-periodic complete bouncing
motion is unstable.

Proof By Lemma 3.4, the map 
 defined in (3.6) is a C2 exact symplectic twist embedding
in Ae∗ for some large e∗ depending on ‖ ḟ ‖. Moreover 
 preserves and twists infinitely the
upper end. Its extension 
̄ coming from Lemma 3.5 satisfies the hypothesis of Theorem 2.5
and admits for every coprime p, q two Birkhoff (p, q)-periodic orbit. Consider the Birkhoff
(p, q)-periodic orbits for p, q positive and p/q large enough such that

p

q
− 1 − 4

g
‖ ḟ ‖ >

2

g

√
2e∗. (4.1)

Since Birkhoff periodic orbits are cyclically ordered, from [5, lemma 9.1] we have that they
satisfy the estimate tn+1 − tn > p/q − 1. On the other hand, from (3.6),

tn+1 − tn ≤ 2

g

√
2en + 4

g
‖ ḟ ‖

so that it must be

2

g

√
2en + 4

g
‖ ḟ ‖ >

p

q
− 1.

By the choice of p/q in (4.1) we have that en > e∗ for every n ∈ Z so that these Birkhoff
periodic orbits are all contained in Ae∗ and so they are orbits of the original map 
. If f is
real analytic the result on the instability follows from Proposition 2.7. �

Theorem 4.2 gives the existence of (q, p)-periodic bouncing motions but does not give
information on the topological structure of the set of (q, p)-periodic bouncing motions for
fixed values of (q, p). This is a complicated issue and some results comes fromAubry-Mather
theory. However, here we will see which results can be obtained using Theorem 2.9. To state
this result we give the following

Definition 4.3 We say that the set of (q, p)-periodic complete bouncing motions is (analyti-
cally) degenerate if there exists a real analytic curve (t(s), e(s)) such that (t(s+1), e(s+1)) =
(t(s) + 1, e(s)) for every s ∈ R, the function t(s) is bijective for s ∈ [0, 1) and (tn, en)n∈Z
is a (q, p)-periodic complete bouncing motion if and only if there exist n0, s0 such that
(tn0 , en0) = (t(s0), e(s0)).

The following result is a quite direct consequence of Lemma 3.4.
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Proposition 4.4 If f is real analytic, then there exists α > 0 such that for every p > α the
set of (1, p)-periodic complete bouncing motions is either finite or degenerate. In the first
case at least one (1, p)-periodic complete bouncing motion is unstable. In the degenerate
case, all (1, p)-periodic complete bouncing motion are unstable.

Proof By Lemma 3.4 the map 
̃ is exact symplectic and twist on R
2
e∗ . Moreover, let us

choose a such that e∗ <
√
2a and p such that

gp

2
− 2‖ ḟ ‖ >

√
2a.

Let us start with the following estimates for the lift 
̃ that can be easily proved by induction
on n from (3.6):

|√2en − √
2e| ≤ 4n‖ ḟ ‖,

∣∣∣∣tn − t − 2

g
n
√
2e

∣∣∣∣ ≤ 4n2
‖ ḟ ‖
g

. (4.2)

The second, for n = 1, gives

t̄(t, a) − t ≤ 2

g

√
2a + 4

‖ ḟ ‖
g

< p.

On the other hand, Lemma 3.4 also gives that 
̃ twists the upper end infinitely, i.e.
lime→+∞ t̄(t, e) − t = +∞ uniformly in t . Hence, condition (2.2) is satisfied in the strip
� = [a,+∞) for every p. The conclusion comes from the application of Theorem 2.9 and
the fact that (1, p)-periodic complete bouncing motions corresponds to the fixed points of
the map σ−p ◦ 
̃. �

This result is not trivially extended to (q, p)-periodic motions for q ≥ 1 since 
q need to
be exact symplectic and twist. The twist condition is in general not preserved by composition,
while the exactness is, as shown in the following result, inspired by [3]

Lemma 4.5 For every q > 0 there exists e# ≥ e∗ such that for every p > 0 the map
σ−p ◦ 
̃q : R2

e# → R
2 is exact symplectic.

Proof Since the map 
̃ is defined in R
2
e∗ , the image 
̃(R2

e∗) could not be contained in R
2
e∗

so that the iterate could not be defined. From (3.5) we have that |v̄ − v| ≤ 4‖ ḟ ‖ from which,
the map 	̃q is well defined in R

2
v#

with v# = v∗ + 4q‖ ḟ ‖. Hence passing to the variables

(t, e), the map 
̃q is defined in R
2
e# with e# = 1

2v
2
# .

Since 
 is exact symplectic, there exists V : R2
e# → R such that, defining λ = edt we

have 
̃∗λ − λ = dV . Hence, denoting V1 = V + V ◦ 
̃ + · · · + V ◦ 
̃q−1 it holds that
V1 ◦ σ = V1 on R2

e# and

dV1 = dV + 
̃∗dV + · · · + (
̃q−1)∗dV
= 
̃∗λ − λ + (
̃2)∗λ − 
̃∗λ + · · · + (
̃q)∗λ − (
̃q−1)∗λ
= (
̃q)∗λ − λ

from which 
̃q is exact symplectic. Finally, we conclude noting that by the definition of
σ−p , (σ−p ◦ 
̃q)∗λ = (
̃q)∗λ. �

Concerning the twist condition the following technical result holds.
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Lemma 4.6 Let f be C2. For every q ≥ 1 there exist εq > 0, eq > e#, such that if ‖ f̈ ‖ < εq
then

∂tq
∂e

= 2q

g
√
2e

(1 + f̃q(t, e))

where | f̃q(t, e)| < 1/2 on R2
eq .

Proof To simplify the computation, let us perform the change of variables y = √
2e + ḟ (t)

so that (3.6) becomes ⎧⎨
⎩

t̄ =t + 2

g
y − 2

g
f [t, t̄]

ȳ =y − 2 f [t, t̄] + 2 ḟ (t̄).
(4.3)

Since ∂tq/∂e = (∂tq/∂ y)(∂ y/∂e) it is enough to prove that for every q ≥ 1 there exist
εq > 0 and y(q) large, such that if ‖ f̈ ‖ < εq then

∂tq
∂ y

= 2q

g
(1 + f̃q(t, y)) (4.4)

where | f̃q(t, y)| < 1/2 on R
2
y(q) .

Let us start with some estimates that hold for every q ≥ 1. It comes from (4.3) that

yq = y + 2
q∑

i=1

ḟ (ti ) − 2
q∑

i=1

f [ti−1, ti ] (4.5)

so that

|yq − y| ≤ 4q‖ ḟ ‖.
Using it,

|tq − tq−1| ≥ 2

g
y − 2

g
(4q + 1)‖ ḟ ‖, (4.6)

from which there exists y(q) large enough and Cq such that

∣∣∂tq f [tq−1, tq ]
∣∣ =

∣∣∣∣∣ ḟ (tq) − f [tq−1, tq ]
tq − tq−1

∣∣∣∣∣ ≤ g‖ ḟ ‖
y − (4q + 2)‖ ḟ ‖ <

Cq

y
on R

2
y(q) (4.7)

and analogously

∣∣∂tq−1 f [tq−1, tq ]
∣∣ <

Cq−1

y
on R

2
y(q−1) (4.8)

Now we can start the proof by induction on q ≥ 1. For q = 1 we have, differentiating the
first equation in (4.3)

∂t1
∂ y

(
1 + 2

g
∂t1 f [t, t1]

)
= 2

g
(4.9)

from which, using (4.7) we get the initial step taking a suitably larger value of y(1).
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For the inductive step, let us suppose (4.4) to be true for i = 1, . . . , q − 1. By implicit
differentiation

∂tq
∂ y

(
1 + 2

g
∂tq f [tq−1, tq ]

)
= 2

g

∂ yq−1

∂ y
+ ∂tq−1

∂ y

(
1 − 2

g
∂tq−1 f [tq−1, tq ]

)
(4.10)

From (4.5) and the inductive hypothesis we have

∂ yq−1

∂ y
= 1 + 2

q−1∑
i=1

(
f̈ (ti )

∂ti
∂ y

− ∂ti f [ti−1, ti ]∂ti
∂ y

− ∂ti−1 f [ti−1, ti ]∂ti−1

∂ y

)

= 1 + 2
q−1∑
i=1

(
2i

g
f̈ (ti )(1 + f̃i ) − 2i

g
∂ti f [ti−1, ti ](1 + f̃i ) − 2(i − 1)

g
∂ti−1 f [ti−1, ti ](1 + f̃i−1)

)
.

Since by (4.7-4.8) for every i |∂ti f [ti−1, ti ]| tends to zero uniformly as y → +∞ and
| f̃i | < 1/2 for y large, we can find new constants Cq−1 and y(q−1) such that on R2

y(q−1) ,

∂ yq−1

∂ y
= 1 + f̄q−1(t, y) with | f̄q−1| ≤ Cq−1‖ f̈ ‖. (4.11)

Using it and the inductive hypothesis in (4.10) we get

∂tq
∂ y

(
1 + 2

g
∂tq f [tq−1, tq ]

)
= 2

g
(1 + f̄q−1(t, y))

+ 2(q − 1)

g
(1 + f̃q−1(t, y))

(
1 − 2

g
∂tq−1 f [tq−1, tq ]

)
(4.12)

= 2q

g

(
1 + f̃q(t, y)

)
(4.13)

where,

f̃q(t, y) = 1

q
f̄q−1(t, y) + q − 1

q
f̃q−1(t, y) + 2(q − 1)

gq
∂tq−1 f [tq−1, tq ](1 + f̃q−1(t, y)).

Now (4.7-4.8) and (4.11) imply

| f̃q | <
Cq−1

q
‖ f̈ ‖ + q − 1

2q
+ C ′

q−1

y

so that we can find εq and y(q) such that if ‖ f̈ ‖ < εq then | f̃q | < 1
2 − 1

2q on R2
y(q) . Plugging

it into (4.12) and using again (4.7–4.8) we get the thesis, eventually increasing y(q). �
This is used to prove the following result

Proposition 4.7 Suppose that f is real analytic. For every q > 0 there exist α > 0 and
εq > 0 such that if p > α and ‖ f̈ ‖ < εq then the set of (q, p)-periodic complete bouncing
motion is either finite or degenerate. In the first case at least one (q, p)-periodic complete
bouncing motion is unstable. In the degenerate case, all (q, p)-periodic complete bouncing
motion are unstable.

Proof Wewould like to apply Theorem 2.9 to the map 
̃q , noting that (q, p)-periodic bounc-
ing motions correspond to fixed points of the map σ−p ◦ 
̃q . Let us fix q > 0. In Lemma
4.5 we proved that 
̃q is exact symplectic in R2

e# for some e# depending on q . Moreover, by
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Lemma 4.6, there exist εq and eq > e# such that if ‖ f̈ ‖ < εq then 
̃q is also twist on R
2
eq .

Now choose p > 0 such that

gp

2q
− 2q‖ ḟ ‖ > eq .

Hence, there exist b > a such that

eq <
√
2a <

gp

2q
− 2q‖ ḟ ‖ <

gp

2q
+ 2q‖ ḟ ‖ <

√
2b.

This choice for a, b gives condition (2.2) on the strip � = R × (a, b). Actually, from (4.2),

tq(t, b) − t ≥ 2

g
q
√
2b − 4q2

‖ ḟ ‖
g

> p

tq(t, a) − t ≤ 2

g
q
√
2a + 4q2

‖ ḟ ‖
g

< p.

This concludes the proof. �
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