
Citation: Valledor, P.; Gomez, A.;

Puente, J.; Fernandez, I. Solving

Rescheduling Problems in Dynamic

Permutation Flow Shop

Environments with Multiple

Objectives Using the Hybrid

Dynamic Non-Dominated Sorting

Genetic II Algorithm. Mathematics

2022, 10, 2395. https://doi.org/

10.3390/math10142395

Academic Editor: David Barilla

Received: 25 May 2022

Accepted: 30 June 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Solving Rescheduling Problems in Dynamic Permutation Flow
Shop Environments with Multiple Objectives Using the Hybrid
Dynamic Non-Dominated Sorting Genetic II Algorithm
Pablo Valledor 1, Alberto Gomez 2 , Javier Puente 2,* and Isabel Fernandez 2

1 Global R & D Asturias, ArcelorMittal Inc., 33400 Avilés, Spain; pablo.valledor-pellicer@arcelormittal.com
2 Department of Business Administration, Polytechnic School of Engineering, University of Oviedo,

33204 Gijon, Spain; albertogomez@uniovi.es (A.G.); ifq@uniovi.es (I.F.)
* Correspondence: jpuente@uniovi.es

Abstract: In this work, we seek to design a model that contributes to the study and resolution of
a multi-objective rescheduling problem in dynamic permutation flow shop contexts. In this type
of problem, where the objectives can be valued in heterogeneous units, the difficulty of achieving
an optimal solution leads to finding a set of non-dominated efficient solutions (also called Pareto
front). On the other hand, we will also consider the potential appearance of disruptions in planned
scheduling (such as machine breakdowns or arrival of new priority jobs) that require a rapid re-
planning of the aforementioned scheduling. In this paper, a hybrid dynamic non-dominated sorting
genetic II metaheuristic (HDNSGA-II) is proposed to find the optimal Pareto front. The algorithm
is applied to a benchmark already tested in previous studies, defined by three conflicting objective
functions (makespan, total weighted tardiness, and stability) and three different types of disruption
(machine breakdowns, incorporation of new jobs, and modifications in process times). According
to the statistical comparison performed, the HDNSGA-II algorithm performs better in the designed
environment, especially in larger problems.

Keywords: scheduling; multi-objective; dynamic scheduling; predictive-reactive; greedy

MSC: 90-08; 90C29

1. Introduction
1.1. Flow Shop Problems

The problem of scheduling a set of jobs assigned to different machines in specific
production environments has been studied profusely since the 1950s, highlighting its
non-deterministic polynomial-time hardness (NP-hardness), as exposed by [1].

In flow shop production systems of “n” jobs to be processed in “m” machines, the
usual goal is to seek the optimal scheduling of the “n” jobs. Each job integrates “m” possible
operations to be performed on each of the machines. Because each machine must process
jobs at specific periods of time, to complete a job on an available machine j, processing must
have previously completed on the j-1 machine.

In the factorial permutation flow shop problems (PFSPs), the scheduling of jobs to be
processed is the same on all machines. It is usually considered that there are no established
orders of precedence among job operations (completed without interruption) and that
machines can only perform one operation at a time.

Single-objective flow shop optimization consists of sequencing n jobs on m machines
minimizing or maximizing a single determined criterion. There are multiple objective
functions applied to flow shop optimization. The most common is the maximum task
completion time (makespan). As for the techniques proposed in the literature to solve this

Mathematics 2022, 10, 2395. https://doi.org/10.3390/math10142395 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142395
https://doi.org/10.3390/math10142395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3570-4043
https://orcid.org/0000-0001-7019-2202
https://orcid.org/0000-0001-6083-1605
https://doi.org/10.3390/math10142395
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142395?type=check_update&version=1

Mathematics 2022, 10, 2395 2 of 20

problem, they range from exact to approximate methods, based on metaheuristics or using
simple heuristics depending on the selected objective.

There are several methods based on mathematical models of integer linear program-
ming (MILP) applied to the problem of minimizing the makespan. As remarkable stud-
ies, [2] describes a MILP model of the PFSP problem to minimize the makespan with an
exponential growth in the number of restrictions. They propose a technique based on row
generation to solve the linear relaxation of the problem in polynomial time. On the other
hand, [3] exhibits different formulations for the flow shop problem with permutation, with
and without unlimited buffers and with the aim of minimizing the delay of jobs. When
solved with exact methods such as branch and bound, the global optimal solution can be
found. However, the factorial complexity of the sequencing problems makes it possible to
solve them in reasonable time only in small problems, producing memory and execution
time troubles with instances starting from 20 jobs to 10 machines ([4]).

Due to the high computational requirements of the aforementioned methods in the face
of factorial complexity problems, multiple heuristics have been proposed in the literature
(see for example [5–8]). Ref. [9] carries out an exhaustive comparison of 22 heuristics
applied to the problem of minimizing the total flow time in flow shop problems with
permutation.

According to [10], on average, the NEH heuristic [7] calculates a makespan close to 3% of
the optimum, for a total of jobs varying in the range 5–500 and a number of machines between
5 and 25. Both the NEH and Rajendran and Ziegler heuristics are important because they are
widely used in the literature in the process of initializing solutions for later improvement
through a metaheuristic. An example of a solution initialization procedure that uses both
heuristics is that proposed by [11], used by the RIPG algorithm defined in [12].

Multi-objective optimization problems seek to identify efficient solutions (not domi-
nated) for multiple conflicting objectives (such as cost, quality, or time) by determining the
so-called Pareto front, a set of solutions from which the decision maker will choose the one
that best meet the specific requirements of the problem.

In this type of problem, it is necessary to choose efficiency metrics that allow comparing
the solutions of the Pareto front obtained with the different algorithms used in their
resolution. From the analysis of the literature, the following efficiency indicators have
been chosen:

• Hypervolume metric, according to the calculation proposed by [13].
• Unary Epsilon Indicator [14–16].
• Convergence metric, suggested by [17].
• Rate of non-dominated solutions [18].

The methods applied in multi-objective optimization can be categorized in scalar-
based and metaheuristic-based techniques [19]. Regarding the scalar techniques, there
are different strategies that convert the starting problem into a single-objective type in
order to establish the objective weights which allow to obtain the Pareto front, such as
CWA (conventional weighted aggregation), DWA (dynamic weighted aggregation), RWA
(randomly weighted aggregation), and BWA (bang-bang weighted aggregation).

Regarding metaheuristic techniques, we highlight those based on: genetic algo-
rithms [20–26], particle swarms [27], tabu search [28], simulated annealing [11,29], ant
colonies [30,31], decomposition-based kernel techniques [32], greedy algorithms [12], fuzzy-
based techniques [33], hybrid algorithms [34], student learning-based approaches [35], or
techniques based on local search [36]. Most articles on these methods study two-objective
problems that are graphically representable in a simple way and whose results are easier
to analyze.

Recent studies indicate the need to first understand the limitations of current algo-
rithms when working with a greater number of objective functions and later to design new
techniques that work properly when the number of these functions increases [37,38].

The investigation is structured as follows. The rescheduling systems described in the
literature are illustrated first. Then, after defining the integer linear programming model

Mathematics 2022, 10, 2395 3 of 20

that describes the problem, a rescheduling system is proposed to solve it according to a
predictive-reactive strategy. Subsequently, the novel HDNSGA-II metaheuristic is described
and validated on Dubois-Lacoste instances in a static and bi-objective environment. Next,
after calibrating the model parameters, the HDNSGA-II and RIPG metaheuristics are
applied to a benchmark previously designed in this context. Finally, the comparative
results obtained by both algorithms are shown and discussed and the main conclusions of
the work are presented.

1.2. Rescheduling Systems

Static scheduling problems determine the processing sequence of an initial set of
previously established jobs on the available machines of a system whose conditions are
known in advance and unchanged over time. In real production environments, disruptions
can arise, such as changes in the priority of carrying out jobs, breakdowns, or maintenance
operations on machines. These disruptions lead to dynamic scheduling systems, which
require the rescheduling of jobs. The literature shows three main strategic approaches
for this rescheduling [39,40]: predictive-reactive, proactive (or robust), and dynamic. One
of the most used is the predictive-reactive strategy, which will be chosen in this paper.
Additionally, the three main decision policies to reschedule jobs in the predictive-reactive
approach [41] are: event-driven, periodic, and hybrid (periodic being the one chosen in this
paper). There are also three main methods to update an infeasible schedule when interrup-
tions arise in the system (disabling the initial schedule): right-shift rescheduling [42,43],
partial regeneration [42], and complete regeneration [44,45]. The complete regeneration
method is the one used in this study.

Usual performance indicators for rescheduling systems can be efficiency metrics (e.g.,
makespan, mean flow time, or total weighted tardiness) or robustness metrics (such as
solution robustness metrics, as known as stability metrics as described in [46]) (e.g., system
mean stability [41,47,48]).

The literature on rescheduling in dynamic flow shop environments with permutation
and multiple objective functions is still scarce. The algorithms for finding non-dominated
solutions in PFSP environments, with a proactive-reactive strategy proposed by [49,50], do
not use weighting of the objective functions. Ref. [49] utilises the MOSA (multi-objective
simulated annealing algorithm) while [50] proposes metaheuristics based on hyper-volume
known as IBEA (indicator-based evolutionary algorithm). Ref. [51] proposes the application
of a state-of-the-art greedy algorithm for scheduling problems, called RIPG (restarted iter-
ated Pareto greedy) to solve a three-objective permutation flow shop rescheduling problem.

The literature on rescheduling in environments other than the flow shop with per-
mutation is not abundant either. Ref. [52] adjusts the NSGA-II—non-dominated sorting
genetic algorithm [21]—for a stochastic FJSP (flexible job shop problem). Ref. [53] builds a
multi-objective genetic algorithm to minimize the schedule’s total tardiness and stability
in an environment with parallel machines and variations in job delivery dates. Ref. [54]
developed a hybrid MPGA-CP (multiple populations genetic algorithm with constraint
programming) to solve a three-objective flexible job shop problem under uncertainties. In
reviews on rescheduling methods by [55,56], the predictive-reactive strategy is recognised
as the most frequent.

2. Problem Statement

The aim followed in this paper is minimizing three objective functions: makespan,
weighted total tardiness, and stability. The selection of these objective functions seeks to
improve the productivity in the production environment (by minimizing the makespan),
the customer service (by minimizing the total weighted tardiness), and the schedule stability
in the rescheduling process when sudden disruptions arise. The mathematical formulation
of the problem studied in this paper is described below and can be found in detail in [51].

As it is a predictive-reactive rescheduling process, the mathematical formulation can
be expressed as a MILP (mixed integer linear problem) and be performed each time we

Mathematics 2022, 10, 2395 4 of 20

need to reschedule. At each rescheduling point, events (disruptions such as new jobs,
machine breakdowns, or processing time variations) are considered in the mathematical
formulation as new inputs, affecting the generation of the next schedule as those events
represent changes in the scheduling environment.

The problem formulation considers three input sets that define the environment to
deal with: J represents the set of jobs (from 1 . . . n) to be scheduled in the permutation flow
shop problem, M identifies the processing machines (from 1 . . . m) in the environment, and
O defines the operations specified at each machine for each job.

Inputs used by the model are listed below:

• Factors related to the readiness of jobs and machines:

rli is the time when job Ji is available for being processed after arriving to the
shop floor (known as release time).

rtj is the time when machine Mj is ready to process an incoming job (known as
ready time).

• Jobs-related specification factors:

pij indicates the processing time needed by the job Ji to be processed on the
machine Mj.

di represents the due date for job Ji, as requested by the client.
wi indicates a weight for the job Ji, representing its urgency.

• Predictive-reactive-related factors:

RT is the current rescheduling instant time.
Sbaseline

i,j represents the starting time of job Ji on machine Mj in the predictive
baseline schedule calculated initially.

• Disruption events-related factors:

BJ
start represents the starting time of a breakdown disruption for machine Mj.

BJ
end represents the end time of a breakdown disruption for machine Mj.

Variables optimized and calculated by the model are described below:

• xij are binary variables indicating the position of each Job Ji in the schedule:

∀ i, j ∈ J : xij =

{
1, i f Ji is at j location in the schedule
0, otherwise

• Si,j represents the starting time of job Ji on machine Mj in the calculated new opti-
mal schedule.

• Ci indicates the completion time of job Ji, and it depends on the competition time on
each machine Mj (Ci,j).

• yi,j,1, yi,j,2, and yi,j,3 are binary variables that represents three possible situations of
machine breakdowns:

∀ i ∈ J ∧ j ∈ M : yi,j,1 is 1 (job already processed situation) in case operation of
job Ji on machine Mj

(
Oi,j
)

finishes before we have a breakdown in the machine;
otherwise takes 0 value.

∀ i ∈ J ∧ j ∈ M : yi,j,2 is 1 (conflict situation) in case operation Oi,j is not
finished when the breakdown occurs; otherwise takes 0 value.

∀ i ∈ J ∧ j ∈ M : yi,j,3 is 1 (job starting time displacement situation) in case
operation Oi,j needs to be done after a machine breakdown; otherwise takes
0 value.

As objectives to optimize, we need to minimize the following to get the Pareto frontier
(PF): makespan (Cmax), total weighted tardiness (TWT), and stability (STB).

minPF (Cmax, TWT, STB) (1)

Mathematics 2022, 10, 2395 5 of 20

Makespan (first objective function) indicates the maximum completion time for all
jobs. It is a common objective to be minimized in permutation flow shop problems and it is
calculated as the completion time of the last scheduled job in the sequence:

Cmax = max
i=1,...,n

(Ci(π)) = Cn (2)

Completion time for each job depends on the processing in the last machine M in a
permutation flow shop problem:

∀ i ∈ J : Ci = Ci,j=M (3)

The three defined machine breakdowns situations are considered in this mathematical
formulation to adjust the competition time of jobs in the machines:

Job already processed situation:

∀i ∈ J ∧ ∀j ∈ M : Ci,j +
(
1− yi,j,1

)
·BigM ≥ Si,j + ∑n

k=1 xki·pkj (4)

∀i ∈ J ∧ ∀j ∈ M : Ci,j −
(
1− yi,j,1

)
·BigM ≤ Si,j + ∑n

k=1 xki·pkj (5)

Conflict situation (in this case, job needs to re-start after machine is ready):

∀i ∈ J ∧ ∀j ∈ M : Ci,j +
(
1− yi,j,2

)
·BigM ≥ Si,j + ∑n

k=1 xki·pkj + (BJ
end − BJ

start) (6)

∀i ∈ J ∧ ∀j ∈ M : Ci,j −
(
1− yi,j,2

)
·BigM ≤ Si,j + ∑n

k=1 xki·pkj + (BJ
end − BJ

start) (7)

Job starting time displacement situation (in this case, job waits to start):

∀i ∈ J ∧ ∀j ∈ M : Ci,j +
(
1− yi,j,3

)
·BigM ≥ Max(Si,j, BJ

end) + ∑n
k=1 xki·pkj (8)

∀i ∈ J ∧ ∀j ∈ M : Ci,j +
(
1− yi,j,3

)
·BigM ≥ Max(Si,j, BJ

end) + ∑n
k=1 xki·pkj (9)

The next equation ensures that only one out of the three previous situations occurs for
a job, when a machine breakdown event arises in the production environment:

∀i ∈ J ∧ ∀j ∈ M : ∑3
k=1 yi,j,k = 1 (10)

Starting times for jobs Ji on each machine Mj, need to be calculated depending on the
completion times:

∀i ∈ J ∧ j ∈ M : Si,j = Max(Ci,j−1, Ci−1,j) (11)

To linearise the Max function and completely model the starting times, we include the
equations below:

A job cannot start in a machine if a previous job has not finished on the same machine:

∀i > 1 ∈ J ∧ ∀j ∈ M : Si,j ≥ Ci−1,j (12)

and if its previous operation has not yet finished:

∀i ∈ J ∧ ∀j > 1 ∈ M : Si,j ≥ Ci,j−1 (13)

Starting time in the first machine of the production environment needs to respect the
jobs release times:

∀i ∈ J : Si,1 ≥ rli (14)

Moreover, the formulation needs to respect the machine readiness specifications:

∀i ∈ J ∧ ∀j ∈ M : Si,j ≥ rtj (15)

Mathematics 2022, 10, 2395 6 of 20

The second objective considered in this problem is the total weighted tardiness (TWT)
that depends on the differences between the due dates of the jobs and their completion
time in the permutation flow shop system, weighted by its urgency, that is:

TWT = ∑n
i=1 Max(Cim − di, 0)·wi (16)

The next equations are included to linearise the Max function:

TWT ≥ ∑n
i=1(Cim − di)·wi (17)

TWT ≥ 0 (18)

Stability (STB) is the third objective optimized in our problem statement. It represents
the differences in starting times of unprocessed scheduled jobs in the baseline schedule
of the predictive-reactive paradigm versus their new starting times as calculated by the
optimization. STB is calculated following the next equation:

STB =
1

nnot processed
·∑n

i=1

∣∣∣Si,1 − Sbaseline
i,1

∣∣∣+ scale√
Sbaseline

i,1 − RT

 (19)

As the absolute value function is non-linear and non-differentiable, we add the next
equations to model STB in a suitable shape for the MILP formulation. We initially replace
the absolute function by a variable, DeltaStartTime:

STB =
1

nnot processed
·∑n

i=1

DeltaStart Timei +
scale√

Sbaseline
i,1 − RT

 (20)

Then, we add binary variables to define two different situations (d1 and d2):

∀j ∈ J : 0 ≤ Sj,1 ≤ BigM (21)

∀j ∈ J : 0 ≤ DeltaStart Timej −
(

Sj,1 − Sbaseline
j,1

)
≤ 2·BigM·d2j (22)

∀j ∈ J : 0 ≤ DeltaStart Timej −
(

Sbaseline
j,1 − Sj,1

)
≤ 2·BigM·d1j (23)

∀j ∈ J : d1j + d2j = 1 (24)

In case d1 takes value 1, it means that the DeltaStartTime variable will take: Sj,1 −
Sbaseline

j,1 ; otherwise Sbaseline
j,1 − Sj,1.

Finally, we add equations to ensure that the jobs can only be located at just one position
in the schedule and that there cannot be more than one job in the same position:

∀i ∈ J : ∑n
j=1 xij = 1 (25)

∀j ∈ J : ∑n
i=1 xij = 1 (26)

3. Proposed Solution

The architecture of the proposed rescheduling system and the HDNSGA-II proposed
algorithm are subsequently described.

HDNSGA-II is a population algorithm based on the NSGA-II technique, developed
by [21], which incorporates various improvement mechanisms. In particular, it adds a
probabilistic model for estimating distributions to restart the population when stagnation
occurs, a local tabu search process, and an initialization of the population based on a
GRASP procedure and prior knowledge. In addition to the improvements introduced
in the NSGA-II, the algorithm is applied to a context where the NSGA-II has never been

Mathematics 2022, 10, 2395 7 of 20

applied, that is, in the multi-objective framework for task rescheduling. Additionally, the
HDNSGA-II algorithm is compared with the RIPG algorithm [51].

3.1. Rescheduling Architecture

In this paper, the rescheduling strategy used builds on the predictive-reactive approach.
Thus, in the first place a baseline schedule is established that is later updated according
to the disruptions that appear in the system. It is essential to indicate the appropriate
period for the rescheduling cycles, depending on the dimensions of the problem. In the
paper, this period is obtained dividing the maximum jobs’ completion time (Cmax) by the
total number of rescheduling points to be executed in the system (five rescheduling points
were considered as being an adequate number to evaluate the capacity of adaptation of
the architecture without having to excessively increase the number of executions in the
system) [51].

3.2. Hybrid Dynamic NSGA-II Algorithm

The HDNSGA-II algorithm proposed in this study is based on the NSGA-II multi-
object evolutionary algorithm, developed by [21], considered one of the best multi-object
techniques in the scientific literature. The HDNSGA-II algorithm adapts the NSGA-II tech-
nique to dynamic rescheduling environments, hybridizing it with estimation of distribution
algorithms (EDAs) and implementing a memetic approach to improve each individual in
the population based on a local search using a Tabu technique.

The built-in probabilistic learning model is based on the probability of dependence
of each job on their predecessors and successors and on the probability of sorting and
placing each job in the sequence corresponding to the best individuals. The model allows to
generate good quality artificial chromosomes (new individuals) when there is a stagnation
of the algorithm, avoiding convergence towards local optimal solutions.

There are previous studies that use memetics and EDAs. Thus, [57] proposes a ge-
netic memetic algorithm for a bi-objective flow shop problem with permutation called
NNMA that integrates NEH heuristic (as a local search improvement procedure) with
NSGA-II metaheuristic. On the other hand, [58] develops a hybrid genetic algorithm for a
mono-objective flow shop problem with permutation. In addition to classic crossover and
mutation operators, artificial chromosomes are generated through estimation of distribu-
tions algorithms (EDAs) modelling, learning, and sampling. This hybridization seeks to
develop the solution population both evolutionarily and artificially. The proposed algo-
rithm is called ACGA (artificial chromosomes with genetic algorithm), applying genetic
evolution until the process reaches a stable situation. At that point, the distribution estima-
tion algorithm (EDA) is alternated with the genetic algorithm, during a certain number of
pre-set iterations. The EDA strategy is based on the combination of univariate and bivariate
modelling. The univariate probabilistic model represents the importance of job order in the
sequence, and the bivariate model represents the block structure in the sequence, that is,
the probability that one job precedes or succeeds another. Figure 1 shows an outline of the
proposed HDNSGA-II algorithm, consisting of the following steps:

Step 1. The population of solutions is initialized. Initialization incorporates knowl-
edge of previous reschedules when building individuals taking advantage of previously
performed optimizations in order to start from a good set of initial solutions. If the system
is in the first rescheduling period, lacking knowledge about previous searches, initialization
is performed using a GRASP (greedy randomized adaptive search procedure) algorithm
along with a tabu local search procedure.

This idea of GRASP initialization is used to obtain good candidate solutions at the
start of a genetic algorithm [59]. During this initialization, two solutions are generated
by applying the NEH heuristic with the aim of minimizing makespan and the NEH-EDD
technique in order to minimize total weighted tardiness [60]. In the NEH-EDD procedure,
the jobs are initially scheduled according to their delivery date (applying the EDD rule)
and later, the final sequence is obtained by applying NEH. The remaining N-2 individuals,

Mathematics 2022, 10, 2395 8 of 20

N being the size of the initial population, are generated randomly to subsequently apply a
process to improve the quality of each individual, using a GRASP algorithm together with
a local tabu search.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 21

estimation algorithm (EDA) is alternated with the genetic algorithm, during a certain
number of pre-set iterations. The EDA strategy is based on the combination of univariate
and bivariate modelling. The univariate probabilistic model represents the importance of
job order in the sequence, and the bivariate model represents the block structure in the
sequence, that is, the probability that one job precedes or succeeds another. Figure 1 shows
an outline of the proposed HDNSGA-II algorithm, consisting of the following steps:

Step 1. The population of solutions is initialized. Initialization incorporates
knowledge of previous reschedules when building individuals taking advantage of pre-
viously performed optimizations in order to start from a good set of initial solutions. If
the system is in the first rescheduling period, lacking knowledge about previous searches,
initialization is performed using a GRASP (greedy randomized adaptive search proce-
dure) algorithm along with a tabu local search procedure.

This idea of GRASP initialization is used to obtain good candidate solutions at the
start of a genetic algorithm [59]. During this initialization, two solutions are generated by
applying the NEH heuristic with the aim of minimizing makespan and the NEH-EDD
technique in order to minimize total weighted tardiness [60]. In the NEH-EDD procedure,
the jobs are initially scheduled according to their delivery date (applying the EDD rule)
and later, the final sequence is obtained by applying NEH. The remaining N-2 individuals,
N being the size of the initial population, are generated randomly to subsequently apply
a process to improve the quality of each individual, using a GRASP algorithm together
with a local tabu search.

Figure 1. Flow diagram of the HDNSGA-II technique. Figure 1. Flow diagram of the HDNSGA-II technique.

The GRASP algorithm [59,61] is an iterative search process in two phases, where each
iteration carries out a constructive process and a local search procedure. In the construction
phase, a greedy randomized function is used to construct initial solutions, generating
feasible solutions at each iteration. Subsequently, this solution is exposed to a local search
procedure to improve its quality. Finally, the best solution found in all iterations is returned.
In the construction phase, a greedy randomized adaptive procedure is applied, based on
a restricted list of candidates, called RCL (restricted candidate list), where elements are
iteratively incorporated into a structure, initially empty, until a solution of the problem
is obtained. The choice of the next element to include is based on heuristic information
on how convenient it is to include the element in the solution. A single execution of the
GRASP algorithm is carried out for each solution to be generated in order to quickly obtain
an initial set of solutions.

In GRASP construction phase, the evaluation of incremental costs is carried out by
calculating the distances after incorporating new candidate elements (jobs) in the solution
through the CDA (crowding distance assignment) operator of the NSGA-II. After the
incremental evaluation, the best solutions will be those with the highest CDA value, within
the set of partial non-dominated solutions, in order to achieve greater diversification in the
search process. The Tabu search used in the construction of the solution initial population
follows a scheme based on the neighbourhood exchange operator by permutation of two
randomly selected jobs.

Mathematics 2022, 10, 2395 9 of 20

When the dynamic system is at rescheduling points after the initial one, an alternative
“population reinitialization method” is used. In these situations, a prior knowledge mecha-
nism is incorporated into the proposed HDNSGA-II method. In this case, N/4 individuals,
N being the population size, are selected from the Pareto front obtained in the previous
rescheduling point by the HDNSGA-II metaheuristic. For each of the chosen solutions, jobs
already processed in the system are eliminated and jobs previously scheduled are assigned
in the same order specified by the selected non-dominated solution. Subsequently, new jobs
arriving at the system are scheduled according to NEH and NEH-EDD heuristics. Thus,
for each of the N/4 solutions found, two solutions are generated and consequently N/2
individuals from the initial population are covered. The remaining N/2 solutions in the
population are generated as in the first rescheduling period, that is, by random initialization
together with a GRASP and Tabu search-based improvement procedure. The reason for
this random initialization in half population is to allow the algorithm the possibility of
obtaining many changes on the new Pareto front.

Step 2. The elements of the population are sorted using the NSGA-II fast non-
dominated sorting method.

Step 3. According to the crowding distance assignment (CDA) method of the NSGA-II,
a distance value assigned to each individual in the population is calculated. The MCDA
(modified crowding distance assignment) method applied in the RIPG is not used in this
case as selection mechanism. The MCDA method was proposed to avoid population
stagnation, avoiding the selection of the same solution in consecutive iterations, when
there is no improvement [62]. In the case of HDNSGA-II, this stagnation is controlled by
applying EDAs, which reinitialize the solution population when a certain threshold of the
consolidation ratio is exceeded (Step 4).

Step 4. The descendant population generation method is selected using the traditional
evolutionary genetic approach or through the generation of artificial chromosomes, depend-
ing on the EDA implemented. To select one or the other method, the mechanism proposed
by [63] is used, considering the consolidation ratio as an online mechanism for stopping and
detecting stagnation of solutions in multi-objective problems. This ratio is a convergence
metric based on the concept of dominance and the total set of non-dominated solutions
found during the entire execution of the algorithm. It is defined as the relative number
of non-dominated solutions that still hold on the approximate Pareto front calculated in
the current iteration. In the algorithm improvement phases, the consolidation ratio has a
low value, reaching high values as the Pareto front converges. In HDNSGA-II, when the
population consolidation ratio reaches a certain threshold, the population is reinitialized by
generating artificial chromosomes using an EDA. In this way, the knowledge obtained in
previous searches is used to generate as individuals of the new population those with the
greatest potential from a probabilistic point of view.

Step 5. If the consolidation ratio has been exceeded, the implemented EDA is used
to generate artificial chromosomes until the maximum size of the population is reached.
The EDA algorithm consists of two phases: a first phase of modelling and learning and
later a solution sampling phase. In the modelling phase, two learning models are used
analogously to the proposal presented by [58]: a univariate and a bivariate modelling. The
univariate model represents the existing correlations in the order of the different jobs in the
sequence. On the other hand, the bivariate model represents the structure of job blocks in
the sequence, allowing to evaluate the probability that one job precedes or succeeds another,
characterizing the job transition relationships. Finally, in the sampling phase, the solution
population in the current generation is reinitialized. For this reason, the two statistics
calculated in the modelling phase are used, creating a probabilistic model which evaluates
the probability that a job i is located in position i.

Step 6. If the consolidation threshold limit is not reached, the population of descen-
dants is generated by selecting pairs of individuals from the population, by means of a
selection process through a binary tournament and applying genetic operators. The one
point order (OP) is used as crossing operator. This method has been selected as it provides

Mathematics 2022, 10, 2395 10 of 20

good results in scheduling problems [64]. On the other hand, inversion is used as mutation
operator [65].

Step 7. After crossing and mutating individuals (Step 6) or having generated the
population using the EDA (Step 5), a local search is performed on the descendants of
the population, specializing and improving the new generation. Therefore, an iterated
memetic search is incorporated based on a hybrid algorithm through the local search process
mentioned in the RIPG algorithm [51] together with an improvement of the solutions
through a tabu search. Hence, in a similar way to RIPG, the selected job is reinserted in
nneigh positions close to a random position in the sequence, obtaining a set of solutions
of which only the non-dominated solutions are considered. From the obtained solutions,
the solution with the greatest distance (using the CDA method) is selected through the
local RIPG search to subsequently improve it by means of a local Tabu search procedure,
following the same scheme used in Step 1 of this algorithm.

Step 8. Finally, the total set of non-dominated solutions is returned, storing them in an
external file that is updated in each iteration of the genetic.

4. Results

For the algorithm, the benchmark proposed by [51] is used. Instances can be accessed at
http://dx.doi.org/10.17632/4p4jcwdwpt.2 (accessed on 20 May 2022) (Mendeley Website).

4.1. Parameter Calibration

The hardware used in the experimentation was a computer with an Intel Xeon X5675
Quad-Core 3.07 GHz processor and 16 GB of RAM. The operating system used was Win-
dows 7 Enterprise Edition, 64-bit architecture. The software was developed on the .NET
platform with the C# programming language and using Microsoft Visual Studio 2010
Development Framework.

To fairly compare all algorithms, the same stopping criterion was used. This criterion is
defined from different approaches in the literature [64,66–70]. Most of them use a maximum
execution time as stopping criterion, estimated in relation to the size of the problem, which
is defined by the number of jobs and machines that the system has available. In this paper,
the time limit was calculated with the following equation:

t = n×m2 × 100

where t is the total time expressed in milliseconds, n indicates the number of jobs considered
in the problem instance, and m is the number of machines defined. The above equation is
used to calculate the execution time because both the number of jobs and the number of
machines played a role in the complexity of the problem to be solved. In addition, it allows
to use more calculation time in problems with greater complexity.

Likewise, an automatic configuration methodology of the parameters defining the
algorithms is proposed, based on an extension of the iterated F-Race method, implemented
in the irace tool [71]. For this, hypervolume is defined as the metric to evaluate the
configurations, as it is the most used criterion. To select the training instances, a complexity
analysis is performed based on the results provided by the scientific literature on the
Taillard instances [36,72].

A total of six problems have been selected (ta02, ta031, ta047, ta061, ta080, and ta024)
as representative instances. Two of them of low complexity, in terms of resolution difficulty,
another two of medium complexity, and another two of high complexity. The criterion
selected to assess the complexity of an instance was based on a trade-off between the
number of non-dominated solutions found in the scientific literature in terms of bi-objective
static problems (makespan and total weighted tardiness) and the relative error found in
single-objective problems considering the makespan criterion. The instances employed
in the calibration phase were not subsequently used for algorithm evaluation in order to
avoid overfitting.

http://dx.doi.org/10.17632/4p4jcwdwpt.2

Mathematics 2022, 10, 2395 11 of 20

After analyzing the Irace results, the HDNSGA-II algorithm has greater variability
in the face of changes in the parameters. Table 1 shows the results of the automatic
configuration using the HDNSGA-II algorithms.

Table 1. Automatic HDNSGA-II configuration via Irace.

Parameter Value Data Type Range
Established for Irace

Population size (N) 54 Integer (50, 150)

Crossover probability 0.71 Decimal (0.5, 0.9)

Mutation probability 0.15 Decimal (0.05, 0.2)

nneigh (consecutive positions where a job
is reinserted in the local search phase) 1 Integer (1, 12)

Number of iterations after which an
offspring population is obtained using the

probabilistic EDA method (interval
iterations)

9 Integer (2, 10)

Maximum consolidation ratio. Once
passed, the population is reinitialized

using the probabilistic model
0.51 Decimal (0.4, 0.9)

Maximum number of iterations to reach a
consolidation rate greater than the

maximum threshold
55 Integer (30, 70)

Maximum number of iterations improving
the solution (the solution is improved in

multi-objective when the size of the
non-dominated solutions set is increased).

Used in tabu search (k)

2 Integer (1, 7)

Number of iterations for which a
movement is marked as tabu (tenure factor) 3 Integer (1, 5)

4.2. Comparison of HDNSGA-II and RIPG Metaheuristics in Dynamic Multi-Objective Environments

In order to verify the performance of the proposed HDNSGA-II metaheuristic, it
is executed together with the RIPG [51] metaheuristic on the 50 benchmark problems,
specifically developed in this work for a flow shop rescheduling environment.

The main differences between HDNSGA-II and RIPG are focused on its architecture:
HDNSGA-II is a population-based algorithm, whereas RIPG is a constructive algorithm.
HDNSGA-II integrates a learning method based on EDAs to learn from past searches
(previous knowledge), while RIPG restarts the working set to avoid stagnation effect.
Finally, HDNSGA-II integrates an advanced Tabu local search to improve the solutions.

Each algorithm is executed 10 times independently for each of the experiments, in
order to be able to perform a statistical analysis of confidence. Wilcoxon statistical test is
used to evaluate the comparison between the HDNSGA-II and RIPG at an α = 0.05 level
of significance.

Next, a comparison of the metaheuristics is represented for each of the performance
metrics used and based on the types of problems analyzed. Figure 2 shows the evolution of
the median of the hypervolume during 10 independent executions of the algorithms. It can
be seen how RIPG performs better, reaching a higher hypervolume value than HDNSGA-II
in small-sized instances (20 jobs). With 50, 100, and 200 jobs, HDNSGA-II exceeds RIPG,
clearly accentuating this difference the larger the size of the problem to be solved.

The unary multiplicative epsilon indicator behaves in a similar way to hypervolume,
as shown in Figure 3. In this case, the lower the value, the better the algorithm.

Regarding the ratio of non-dominated solutions (see Figure 4), RIPG exceeds HDNSGA-
II in instances of 20 jobs. In the rest of the problems, HDNSGA-II clearly improves, reaching

Mathematics 2022, 10, 2395 12 of 20

a ratio of non-dominated solutions of 1 against the RIPG, which is around 0.25 in most of
the problems. Finally, with respect to the D1R metric, the situation is analogous to the rest
of the metrics. RIPG is better for scenarios with 20 jobs, and HDNSGA-II far exceeds RIPG
the larger the problem size, as shown in Figure 5.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 21

4.2. Comparison of HDNSGA-II and RIPG Metaheuristics in Dynamic
Multi-Objective Environments

In order to verify the performance of the proposed HDNSGA-II metaheuristic, it is
executed together with the RIPG [51] metaheuristic on the 50 benchmark problems, spe-
cifically developed in this work for a flow shop rescheduling environment.

The main differences between HDNSGA-II and RIPG are focused on its architecture:
HDNSGA-II is a population-based algorithm, whereas RIPG is a constructive algorithm.
HDNSGA-II integrates a learning method based on EDAs to learn from past searches (pre-
vious knowledge), while RIPG restarts the working set to avoid stagnation effect. Finally,
HDNSGA-II integrates an advanced Tabu local search to improve the solutions.

Each algorithm is executed 10 times independently for each of the experiments, in
order to be able to perform a statistical analysis of confidence. Wilcoxon statistical test is
used to evaluate the comparison between the HDNSGA-II and RIPG at an α = 0.05 level
of significance.

Next, a comparison of the metaheuristics is represented for each of the performance
metrics used and based on the types of problems analyzed. Figure 2 shows the evolution
of the median of the hypervolume during 10 independent executions of the algorithms. It
can be seen how RIPG performs better, reaching a higher hypervolume value than
HDNSGA-II in small-sized instances (20 jobs). With 50, 100, and 200 jobs, HDNSGA-II
exceeds RIPG, clearly accentuating this difference the larger the size of the problem to be
solved.

Figure 2. Comparison of the hypervolume evolution with HDNSGA-II and RIPG in each type of
instance.

The unary multiplicative epsilon indicator behaves in a similar way to hypervolume,
as shown in Figure 3. In this case, the lower the value, the better the algorithm.

Figure 2. Comparison of the hypervolume evolution with HDNSGA-II and RIPG in each type
of instance.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21

Figure 3. Comparison of the Epsilon unary indicator evolution with HDNSGA-II and RIPG in each
type of instance.

Regarding the ratio of non-dominated solutions (see Figure 4), RIPG exceeds
HDNSGA-II in instances of 20 jobs. In the rest of the problems, HDNSGA-II clearly im-
proves, reaching a ratio of non-dominated solutions of 1 against the RIPG, which is
around 0.25 in most of the problems. Finally, with respect to the D1R metric, the situation
is analogous to the rest of the metrics. RIPG is better for scenarios with 20 jobs, and
HDNSGA-II far exceeds RIPG the larger the problem size, as shown in Figure 5.

Figure 4. Comparison of the non-dominated solutions ratio evolution with HDNSGA-II and RIPG
in each type of instance.

Figure 3. Comparison of the Epsilon unary indicator evolution with HDNSGA-II and RIPG in each
type of instance.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21

Figure 3. Comparison of the Epsilon unary indicator evolution with HDNSGA-II and RIPG in each
type of instance.

Regarding the ratio of non-dominated solutions (see Figure 4), RIPG exceeds
HDNSGA-II in instances of 20 jobs. In the rest of the problems, HDNSGA-II clearly im-
proves, reaching a ratio of non-dominated solutions of 1 against the RIPG, which is
around 0.25 in most of the problems. Finally, with respect to the D1R metric, the situation
is analogous to the rest of the metrics. RIPG is better for scenarios with 20 jobs, and
HDNSGA-II far exceeds RIPG the larger the problem size, as shown in Figure 5.

Figure 4. Comparison of the non-dominated solutions ratio evolution with HDNSGA-II and RIPG
in each type of instance. Figure 4. Comparison of the non-dominated solutions ratio evolution with HDNSGA-II and RIPG in
each type of instance.

Mathematics 2022, 10, 2395 13 of 20Mathematics 2022, 10, x FOR PEER REVIEW 14 of 21

Figure 5. Comparison of the D1R distance evolution with HDNSGA-II and RIPG in each type of
instance.

As a result of the performed analysis, HDNSGA-II performs worse than RIPG tech-
nique for small instances (20 jobs). However, when the number of jobs and machines in-
creases, HDNSGA-II performs better than the non-population RIPG technique. One of the
reasons for this worsening of RIPG as the size of the problem increases is the growth of
the number of non-dominated solutions in the constructive/destructive process of the al-
gorithm, increasing the computational strength of the technique. To statistically demon-
strate this conclusion, the results of the Wilcoxon statistical test are shown below, depend-
ing on the dimensions of the problem. Thus, Table 2 describes the comparative results
between HDNSGA-II and RIPG algorithms in problems with 20 and 50 jobs. This table
shows HDNSGA-II outperforms RIPG (W+) if it has a worse performance (W−) or if there
are no significant differences between them (W=). The best results of RIPG can be seen in
problems with 20 jobs, improving in all metrics to the HDNSGA-II. Better results are ob-
tained in 90.67% of the instances for hypervolume, 80% for the epsilon unary indicator,
92% for D1R, and 57.33 for the ratio of non-dominated solutions. For issues with 50 jobs,
HDNSGA-II outperforms RIPG on all performance metrics evaluated. Table 3 presents
the results of the Wilcoxon test for the largest problems (100 and 200 jobs). It is observed
how HDNSGA-II surpasses RIPG in all cases. Therefore, it can be concluded that
HDNSGA-II performs better in dynamic multi-objective environments than RIPG, except
in smaller problems (20 jobs).

Table 2. Wilcoxon test results on metaheuristics for problems with 20 and 50 jobs.

20 Jobs Percentage 50 Jobs Percentage
Metric W− W+ W= Metric W− W+ W=

Hipervolume 90.67 0.00 9.33 Hipervolume 5.33 82.67 12.00
D1R 92.00 0.00 8.00 D1R 8.00 66.67 25.33

RNDS 57.33 5.33 37.33 RNDS 0.00 98.67 1.33
Epsilon 80.00 0.00 20.00 Epsilon 9.33 69.33 21.33

Figure 5. Comparison of the D1R distance evolution with HDNSGA-II and RIPG in each type
of instance.

As a result of the performed analysis, HDNSGA-II performs worse than RIPG tech-
nique for small instances (20 jobs). However, when the number of jobs and machines
increases, HDNSGA-II performs better than the non-population RIPG technique. One of
the reasons for this worsening of RIPG as the size of the problem increases is the growth of
the number of non-dominated solutions in the constructive/destructive process of the algo-
rithm, increasing the computational strength of the technique. To statistically demonstrate
this conclusion, the results of the Wilcoxon statistical test are shown below, depending on
the dimensions of the problem. Thus, Table 2 describes the comparative results between
HDNSGA-II and RIPG algorithms in problems with 20 and 50 jobs. This table shows
HDNSGA-II outperforms RIPG (W+) if it has a worse performance (W−) or if there are no
significant differences between them (W=). The best results of RIPG can be seen in problems
with 20 jobs, improving in all metrics to the HDNSGA-II. Better results are obtained in
90.67% of the instances for hypervolume, 80% for the epsilon unary indicator, 92% for D1R,
and 57.33 for the ratio of non-dominated solutions. For issues with 50 jobs, HDNSGA-II
outperforms RIPG on all performance metrics evaluated. Table 3 presents the results of the
Wilcoxon test for the largest problems (100 and 200 jobs). It is observed how HDNSGA-II
surpasses RIPG in all cases. Therefore, it can be concluded that HDNSGA-II performs
better in dynamic multi-objective environments than RIPG, except in smaller problems
(20 jobs).

Table 2. Wilcoxon test results on metaheuristics for problems with 20 and 50 jobs.

20 Jobs Percentage 50 Jobs Percentage

Metric W− W+ W= Metric W− W+ W=

Hipervolume 90.67 0.00 9.33 Hipervolume 5.33 82.67 12.00

D1R 92.00 0.00 8.00 D1R 8.00 66.67 25.33

RNDS 57.33 5.33 37.33 RNDS 0.00 98.67 1.33

Epsilon 80.00 0.00 20.00 Epsilon 9.33 69.33 21.33

Mathematics 2022, 10, 2395 14 of 20

Table 3. Wilcoxon test results on metaheuristics for problems with 100 and 200 jobs.

100 Jobs Percentage 200 Jobs Percentage

Metric W− W+ W= Metric W− W+ W=

Hipervolume 0 100 0 Hipervolume 0 100 0

D1R 0 100 0 D1R 0 100 0

RNDS 0 100 0 RNDS 0 100 0

Epsilon 0 100 0 Epsilon 0 100 0

Below is the evolution of Pareto fronts in some instances selected for the HDNSGA-
II and RIPG algorithms at different rescheduling points (nevertheless, all Pareto fronts
obtained with RIPG and HDNSGA-II can be found on http://dx.doi.org/10.17632/4p4
jcwdwpt.2 (accessed on 20 May 2022)—Mendeley Website). Different symbols and grey
levels in the charts represent different rescheduling points.

Figure 6 depicts the Pareto fronts obtained by HDNSGA-II at each rescheduling point
in a problem with 20 jobs and 10 machines.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 21

Table 3. Wilcoxon test results on metaheuristics for problems with 100 and 200 jobs.

100 Jobs Percentage 200 Jobs Percentage
Metric W− W+ W= Metric W− W+ W=

Hipervolume 0 100 0 Hipervolume 0 100 0
D1R 0 100 0 D1R 0 100 0

RNDS 0 100 0 RNDS 0 100 0
Epsilon 0 100 0 Epsilon 0 100 0

Below is the evolution of Pareto fronts in some instances selected for the HDNSGA-
II and RIPG algorithms at different rescheduling points (nevertheless, all Pareto fronts
obtained with RIPG and HDNSGA-II can be found on
http://dx.doi.org/10.17632/4p4jcwdwpt.2 (accessed on 20 May 2022)—Mendeley Website).
Different symbols and grey levels in the charts represent different rescheduling points.

Figure 6 depicts the Pareto fronts obtained by HDNSGA-II at each rescheduling point
in a problem with 20 jobs and 10 machines.

Figure 6. Dynamic Pareto evolution for HDNSGA-II in TA_20_10_3.

Figure 7 shows the Pareto fronts obtained by RIPG, observing its better performance
against the HDNSGA-II by allowing to distribute in a more uniform way the non-domi-
nated solutions and covering better alongside the three axes (makespan, total weighted
tardiness, and stability), as it is clearly shown in rescheduling points 4 and 5.

Figure 6. Dynamic Pareto evolution for HDNSGA-II in TA_20_10_3.

Figure 7 shows the Pareto fronts obtained by RIPG, observing its better performance
against the HDNSGA-II by allowing to distribute in a more uniform way the non-dominated
solutions and covering better alongside the three axes (makespan, total weighted tardiness,
and stability), as it is clearly shown in rescheduling points 4 and 5.

Figure 8 illustrates the dynamic evolution of the Pareto front obtained by HDNSGA-II
in a problem with 100 jobs and 20 machines.

In RIPG (see Figure 9), the solution space is not explored as uniformly as in HDNSGA-II.
Finally, with the aim of being able to make a fair comparison, it should be noted that

the execution times used to run every instance are the same for each of the metaheuristics.
Figure 10 illustrates a graphical summary of the execution times of each instance according
to the size of the problem.

http://dx.doi.org/10.17632/4p4jcwdwpt.2
http://dx.doi.org/10.17632/4p4jcwdwpt.2

Mathematics 2022, 10, 2395 15 of 20
Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21

Figure 7. Dynamic Pareto evolution for RIPG in TA_20_10_3.

Figure 8 illustrates the dynamic evolution of the Pareto front obtained by HDNSGA-
II in a problem with 100 jobs and 20 machines.

Figure 8. Dynamic Pareto evolution for HDNSGA-II in TA_100_20_6.

In RIPG (see Figure 9), the solution space is not explored as uniformly as in
HDNSGA-II.

Figure 7. Dynamic Pareto evolution for RIPG in TA_20_10_3.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21

Figure 7. Dynamic Pareto evolution for RIPG in TA_20_10_3.

Figure 8 illustrates the dynamic evolution of the Pareto front obtained by HDNSGA-
II in a problem with 100 jobs and 20 machines.

Figure 8. Dynamic Pareto evolution for HDNSGA-II in TA_100_20_6.

In RIPG (see Figure 9), the solution space is not explored as uniformly as in
HDNSGA-II.

Figure 8. Dynamic Pareto evolution for HDNSGA-II in TA_100_20_6.

Mathematics 2022, 10, 2395 16 of 20Mathematics 2022, 10, x FOR PEER REVIEW 17 of 21

Figure 9. Dynamic Pareto evolution for RIPG in TA_100_20_6.

Finally, with the aim of being able to make a fair comparison, it should be noted that
the execution times used to run every instance are the same for each of the metaheuristics.
Figure 10 illustrates a graphical summary of the execution times of each instance accord-
ing to the size of the problem.

Figure 10. Total execution times on every rescheduling instance for each metaheuristic.

5. Conclusions and Future Lines of Research
Several relevant contributions are made in this study. First, a benchmark has been

generated to model dynamic rescheduling problems incorporating potential disruptions
in the production environment. Likewise, a periodic rescheduling architecture has been
designed and implemented, based on a predictive-reactive strategy. On the other hand, a
population metaheuristic (HDNSGA-II) has been developed and compared with another
non-population metaheuristic (RIPG) in dynamic rescheduling systems. Finally, it should

Figure 9. Dynamic Pareto evolution for RIPG in TA_100_20_6.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 21

Figure 9. Dynamic Pareto evolution for RIPG in TA_100_20_6.

Finally, with the aim of being able to make a fair comparison, it should be noted that
the execution times used to run every instance are the same for each of the metaheuristics.
Figure 10 illustrates a graphical summary of the execution times of each instance accord-
ing to the size of the problem.

Figure 10. Total execution times on every rescheduling instance for each metaheuristic.

5. Conclusions and Future Lines of Research
Several relevant contributions are made in this study. First, a benchmark has been

generated to model dynamic rescheduling problems incorporating potential disruptions
in the production environment. Likewise, a periodic rescheduling architecture has been
designed and implemented, based on a predictive-reactive strategy. On the other hand, a
population metaheuristic (HDNSGA-II) has been developed and compared with another
non-population metaheuristic (RIPG) in dynamic rescheduling systems. Finally, it should

Figure 10. Total execution times on every rescheduling instance for each metaheuristic.

5. Conclusions and Future Lines of Research

Several relevant contributions are made in this study. First, a benchmark has been
generated to model dynamic rescheduling problems incorporating potential disruptions
in the production environment. Likewise, a periodic rescheduling architecture has been
designed and implemented, based on a predictive-reactive strategy. On the other hand, a
population metaheuristic (HDNSGA-II) has been developed and compared with another
non-population metaheuristic (RIPG) in dynamic rescheduling systems. Finally, it should
be noted that the proposed HDNSGA-II algorithm incorporates the knowledge gained in
previous rescheduling points in the population reinitialization process.

The HDNSGA-II algorithm proposed in this study notably improves the RIPG—
commonly used in the state of the art of bi-objective flow shop optimization problems—
except for small problems (20 jobs)—in all the performance metrics evaluated. On the other
hand, it should be noted that the RIPG technique is more robust than the HDNSGA-II

Mathematics 2022, 10, 2395 17 of 20

population technique since any parameterization of the algorithm achieves similar results
in median value. Finally, the number of evaluations of the objective functions is greater in
the RIPG algorithm than in the HDNSGA-II. This is due to the greedy phase of solution
construction, where the set of non-dominated solutions has to be maintained. For this
reason, the number of iterations executed by RIPG is less than in HDNSGA-II when scaling
the number of objective functions.

As future lines of research, the impact of using probabilistic models (EDAs) in the
HDNSGA-II algorithm and the consideration of previous rescheduling points in the popula-
tion reinitialization process in future rescheduling periods could be analyzed. Likewise, the
study of local search in the HDNSGA-II genetic algorithm could be deepened. The results of
the automatic parameterization given by Irace in the algorithm do not ensure the efficiency
of the local search in the genetic, since the optimal parameterization of HDNSGA-II only
takes into account a single neighboring position in which to reinsert the selected job in
the local search phase (parameter named nneigh). The interaction between the two steps
applied in the local search—GRASP process and improvement of the solution through a
Tabu search—could also be analyzed.

On the other hand, the influence of the baseline used in the evaluation of the objective
stability function could also be analyzed. Likewise, the dynamic system could be evaluated
according to the number of rescheduling points chosen. In the study, all the experiments
were analyzed using five rescheduling points, but the variations could be evaluated with
a number of rescheduling points between 0 and 1000, as is done in [73]. Finally, the
proposed metaheuristics could be adapted to dynamic environments in problems called
many-objective optimization, where the number of objective functions is greater than three.

Author Contributions: Conceptualization, P.V. and A.G.; Data curation, J.P.; Formal analysis, P.V.;
Investigation, P.V., A.G., J.P. and I.F.; Methodology, P.V., A.G. and J.P.; Software, P.V.; Supervision,
J.P. and I.F.; Validation, P.V., A.G. and I.F.; Writing—original draft, P.V. and A.G.; Writing—review &
editing, J.P. and I.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Instances and Solutions Dataset referred in this paper can be accessed
at http://dx.doi.org/10.17632/4p4jcwdwpt.2 (accessed on 20 May 2022) (Mendeley Website).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
2. Frieze, A.; Yadegar, J. A new integer programming formulation for the permutation flowshop problem. Eur. J. Oper. Res. 1989, 40,

90–98. [CrossRef]
3. Birgin, E.G.; Ronconi, D.P. Heuristic methods for the single machine scheduling problem with different ready times and a

common due date. Eng. Optim. 2012, 44, 1197–1208. [CrossRef]
4. Šeda, M. Mathematical models of flow shop and job shop scheduling problems. World Acad. Sci. Eng. Technol. 2007, 1, 122–127.
5. Palmer, D.S. Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time—A Quick Method of Obtaining a Near

Optimum. J. Oper. Res. Soc. 1965, 16, 101–107. [CrossRef]
6. Gupta, J.N.D. A Functional Heuristic Algorithm for the Flowshop Scheduling Problem. J. Oper. Res. Soc. 1971, 22, 39–47.

[CrossRef]
7. Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11,

91–95. [CrossRef]
8. Rajendran, C.; Ziegler, H. An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. Eur. J.

Oper. Res. 1997, 103, 129–138. [CrossRef]
9. Pan, Q.-K.; Ruiz, R. A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput.

Oper. Res. 2013, 40, 117–128. [CrossRef]
10. Modrak, V.; Semanco, P.; Kulpa, W. Performance Measurement of Selected Heuristic Algorithms for Solving Scheduling Problems.

In Proceedings of the 2013 IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany,
Slovakia, 31 January–2 February 2013; pp. 205–209.

http://dx.doi.org/10.17632/4p4jcwdwpt.2
http://doi.org/10.1287/moor.1.2.117
http://doi.org/10.1016/0377-2217(89)90276-2
http://doi.org/10.1080/0305215X.2011.634409
http://doi.org/10.1057/jors.1965.8
http://doi.org/10.1057/jors.1971.18
http://doi.org/10.1016/0305-0483(83)90088-9
http://doi.org/10.1016/S0377-2217(96)00273-1
http://doi.org/10.1016/j.cor.2012.05.018

Mathematics 2022, 10, 2395 18 of 20

11. Varadharajan, T.; Rajendran, C. A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the
makespan and total flowtime of jobs. Eur. J. Oper. Res. 2005, 167, 772–795. [CrossRef]

12. Ciavotta, M.; Minella, G.; Ruiz, R. Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and
a comprehensive study. Eur. J. Oper. Res. 2013, 227, 301–313. [CrossRef]

13. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

14. Knowles, J.; Thiele, E.; Zitzler, E. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers; No. Tech. Rep. 214;
Computer Engineering and Networks Laboratory (TIK), ETH Zurich: Zurich, Switzerland, 2006.

15. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.; da Fonseca, V. Performance assessment of multiobjective optimizers: An analysis
and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

16. Zitzler, E.; Brockhoff, D.; Thiele, L. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via
Weighted Integration. In Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science; Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., Murata, T., Eds.; Springer: Berlin, Germany, 2007; pp. 862–876.

17. Czyzżak, P.; Jaszkiewicz, A. Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial opti-
mization. J. Multi-Criteria Decis. Anal. 1998, 7, 34–47. [CrossRef]

18. Ishibuchi, H.; Yoshida, T.; Murata, T. Balance between genetic search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling. IEEE Trans. Evol. Comput. 2003, 7, 204–223. [CrossRef]

19. Minella, G.; Ruiz, R.; Ciavotta, M. A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem.
Inf. J. Comput. 2008, 20, 451–471. [CrossRef]

20. Amirian, H.; Sahraeian, R. Multi-objective differential evolution for the flow shop scheduling problem with a modified learning
effect. Int. J. Eng.Trans. C Asp. 2014, 27, 1395.

21. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

22. Ishibuchi, H.; Murata, T. Multi-Objective Genetic Local Search Algorithm. In Proceedings of the IEEE International Conference on
Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 119–124.

23. Karimi, N.; Davoudpour, H. A high performing metaheuristic for multi-objective flowshop scheduling problem. Comput. Oper.
Res. 2014, 52, 149–156. [CrossRef]

24. Li, B.-B.; Wang, L. A Hybrid Quantum-Inspired Genetic Algorithm for Multiobjective Flow Shop Scheduling. IEEE Trans. Syst.
Man, Cybern. Part B Cybernetics 2007, 37, 576–591. [CrossRef]

25. Pasupathy, T.; Rajendran, C.; Suresh, R. A multi-objective genetic algorithm for scheduling in flow shops to minimize the
makespan and total flow time of jobs. Int. J. Adv. Manuf. Technol. 2006, 27, 804–815. [CrossRef]

26. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.; Ryan, M. A Simple and Effective Approach for Tackling
the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [CrossRef]

27. Sha, D.Y.; Lin, H.H. A particle swarm optimization for multi-objective flowshop scheduling. Int. J. Adv. Manuf. Technol. 2009, 45,
749–758. [CrossRef]

28. Allouche, M.A. Manager’s Preferences Modeling within Multi-Criteria Flowshop Scheduling Problem: A Metaheuristic Approach.
Int. J. Bus. Res. Manag. 2010, 1, 33–45.

29. Lin, S.-W.; Ying, K.-C. Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-
annealing algorithm. Comput. Oper. Res. 2013, 40, 1625–1647. [CrossRef]

30. Gravel, M.; Price, W.L.; Gagné, C. Scheduling continuous casting of aluminum using a multiple objective ant colony optimization
metaheuristic. Eur. J. Oper. Res. 2002, 143, 218–229. [CrossRef]

31. Rabanimotlagh, A. An efficient ant colony optimization algorithm for multiobjective flow shop scheduling problem. Int. J. Ind.
Manuf. Eng. 2011, 5, 598–604.

32. Zangari, M.; Constantino, A.A.; Ceberio, J. A decomposition-based kernel of Mallows models algorithm for bi- and tri-objective
permutation flowshop scheduling problem. Appl. Soft Comput. 2018, 71, 526–537. [CrossRef]

33. Yuan, F.; Xu, X.; Yin, M. A novel fuzzy model for multi-objective permutation flow shop scheduling problem with fuzzy processing
time. Adv. Mech. Eng. 2019, 11, 1687814019843699. [CrossRef]

34. Ojstersek, R.; Brezocnik, M.; Buchmeister, B. Multi-objective optimization of production scheduling with evolutionary computa-
tion: A review. Int. J. Ind. Eng. Comput. 2020, 11, 359–376. [CrossRef]

35. Sasmito, A.; Pratiwi, A.B. Chaotic Student Psychology based Optimization Algorithm for Bi-Objective Permutation Flowshop
Scheduling Problem. Int. J. Intell. Eng. Syst. 2021, 14, 109–118. [CrossRef]

36. Dubois-Lacoste, J.; López-Ibáñez, M.; Stützle, T. A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems.
Comput. Oper. Res. 2011, 38, 1219–1236. [CrossRef]

37. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

38. Yuan, Y.; Xu, H.; Wang, B. An Improved NSGA-III Procedure for Evolutionary Many-Objective Optimization. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO’14, Vancouver, BC, Canada, 12–16 July 2014;
ACM: New York, NY, USA; pp. 661–668.

http://doi.org/10.1016/j.ejor.2004.07.020
http://doi.org/10.1016/j.ejor.2012.12.031
http://doi.org/10.1109/4235.797969
http://doi.org/10.1109/TEVC.2003.810758
http://doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://doi.org/10.1109/TEVC.2003.810752
http://doi.org/10.1287/ijoc.1070.0258
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.cor.2014.01.006
http://doi.org/10.1109/TSMCB.2006.887946
http://doi.org/10.1007/s00170-004-2249-6
http://doi.org/10.3390/math9030270
http://doi.org/10.1007/s00170-009-1970-6
http://doi.org/10.1016/j.cor.2011.08.009
http://doi.org/10.1016/S0377-2217(01)00329-0
http://doi.org/10.1016/j.asoc.2018.07.011
http://doi.org/10.1177/1687814019843699
http://doi.org/10.5267/j.ijiec.2020.1.003
http://doi.org/10.22266/ijies2021.0630.10
http://doi.org/10.1016/j.cor.2010.10.008
http://doi.org/10.1109/TEVC.2013.2281535

Mathematics 2022, 10, 2395 19 of 20

39. Kuster, J.; Jannach, D.; Friedrich, G. Applying Local Rescheduling in response to schedule disruptions. Ann. Oper. Res. 2008, 180,
265–282. [CrossRef]

40. Zakaria, Z.; Petrovic, S. Genetic algorithms for match-up rescheduling of the flexible manufacturing systems. Comput. Ind. Eng.
2012, 62, 670–686. [CrossRef]

41. Pfeiffer, A.; Kádár, B.; Monostori, L. Stability-oriented evaluation of rescheduling strategies, by using simulation. Comput. Ind.
2007, 58, 630–643. [CrossRef]

42. Abumaizar, R.J.; Svestka, J. Rescheduling job shops under random disruptions. Int. J. Prod. Res. 1997, 35, 2065–2082. [CrossRef]
43. Smith, S.F. Reactive Scheduling Systems. In Intelligent Scheduling Systems, Operations Research/Computer Science Interfaces Series;

Brown, D.E., Scherer, W.T., Eds.; Springer: Boston, MA, USA, 1995; pp. 155–192.
44. Church, L.K.; Uzsoy, R. Analysis of periodic and event-driven rescheduling policies in dynamic shops. Int. J. Comput. Integr.

Manuf. 1992, 5, 153–163. [CrossRef]
45. Vieira, G.E.; Herrmann, J.W.; Lin, E. Analytical models to predict the performance of a single-machine system under periodic and

event-driven rescheduling strategies. Int. J. Prod. Res. 2000, 38, 1899–1915. [CrossRef]
46. Herroelen, W.; Leus, R. Project scheduling under uncertainty: Survey and research potentials. Eur. J. Oper. Res. 2005, 165, 289–306.

[CrossRef]
47. Matsveichuk, N.M.; Sotskov, Y.N.; Werner, F. Partial job order for solving the two-machine flow-shop minimum-length problem

with uncertain processing times. Optimization 2011, 60, 1493–1517. [CrossRef]
48. Matsveichuk, N.M.; Sotskov, Y.N.; Egorova, N.G.; Lai, T.C. Schedule execution for two-machine flow-shop with interval processing

times. Math. Comput. Model. 2009, 49, 991–1011. [CrossRef]
49. Ben Itayef, A.; Loukil, T.; Teghem, J. Rescheduling a Permutation Flowshop Problems Under the Arrival a New Set of Jobs.

In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009;
pp. 188–192.

50. Liefooghe, A.; Basseur, M.; Humeau, J.; Jourdan, L.; Talbi, E.-G. On optimizing a bi-objective flowshop scheduling problem in an
uncertain environment. Comput. Math. Appl. 2012, 64, 3747–3762. [CrossRef]

51. Valledor, P.; Gomez, A.; Priore, P.; Puente, J. Modelling and Solving Rescheduling Problems in Dynamic Permutation Flow Shop
Environments. Complexity 2020, 2020, 2862186. [CrossRef]

52. Xiong, J.; Xing, L.-N.; Chen, Y.-W. Robust scheduling for multi-objective flexible job-shop problems with random machine
breakdowns. Int. J. Prod. Econ. 2013, 141, 112–126. [CrossRef]

53. Lima, H. Genetic algorithm approach to multiobjective rescheduling on parallel machines. IFAC Proc. Vol. 2005, 38, 139–144.
[CrossRef]

54. Zhang, S.; Tang, F.; Li, X.; Liu, J.; Zhang, B. A hybrid multi-objective approach for real-time flexible production scheduling and
rescheduling under dynamic environment in Industry 4.0 context. Comput. Oper. Res. 2021, 132, 105267. [CrossRef]

55. Vieira, G.E.; Herrmann, J.W.; Lin, E. Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods.
J. Sched. 2003, 6, 39–62. [CrossRef]

56. Ouelhadj, D.; Petrovic, S. A survey of dynamic scheduling in manufacturing systems. J. Sched. 2009, 12, 417–431. [CrossRef]
57. Chiang, T.-C.; Cheng, H.-C.; Fu, L.-C. NNMA: An effective memetic algorithm for solving multiobjective permutation flow shop

scheduling problems. Expert Syst. Appl. 2011, 38, 5986–5999. [CrossRef]
58. Chen, Y.-M.; Chen, M.-C.; Chang, P.-C.; Chen, S.-H. Extended artificial chromosomes genetic algorithm for permutation flowshop

scheduling problems. Comput. Ind. Eng. 2012, 62, 536–545. [CrossRef]
59. Marinakis, Y.; Migdalas, A.; Pardalos, P.M. Expanding Neighborhood GRASP for the Traveling Salesman Problem. Comput.

Optim. Appl. 2005, 32, 231–257. [CrossRef]
60. Holthaus, O.; Rajendran, C. A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness

of jobs. J. Oper. Res. Soc. 2005, 56, 947–953. [CrossRef]
61. Resende, M.; Ribeiro, C. Greedy randomized adaptive search procedures. In Handbook of metaheuristics. International Series in

Operations Research and Management Science; Glover, F., Kochenberger, G., Eds.; Springer: New York, NY, USA, 2003; Volume 57,
pp. 219–249.

62. Minella, G.G. Optimización Multi-Objetivo Para La Programación De La Producción. Ph.D. Thesis, Universitat Politècnica de
València, Valencia, Spain, 2014.

63. Goel, T.; Stander, N. A Study on the Convergence of Multiobjective Evolutionary Algorithms. In Proceedings of the Presented at
the 13th Multidisciplinary Analysis and Optimization Conference, Fort Worth, TX, USA, 13–15 September 2010; pp. 1–18.

64. Vallada, E.; Ruiz, R. Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem. Omega
2010, 38, 57–67. [CrossRef]

65. Mirabi, M.; Ghomi, S.M.T.F.; Jolai, F. A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop
scheduling problem. J. Ind. Eng. Int. 2014, 10, 57. [CrossRef]

66. Abdelhadi, A.; Mouss, L.H. An efficient hybrid approach based on multi agent system and emergence method for the integration
of systematic preventive maintenance policies in hybrid flow-shop scheduling to minimize makespan. J. Mech. Eng. Res. 2013, 5,
112–122. [CrossRef]

67. Costa, A.; Cappadonna, F.A.; Fichera, S. A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop
Sequence Dependent Group Scheduling Problem. Algorithms 2014, 7, 376–396. [CrossRef]

http://doi.org/10.1007/s10479-008-0488-x
http://doi.org/10.1016/j.cie.2011.12.001
http://doi.org/10.1016/j.compind.2007.05.009
http://doi.org/10.1080/002075497195074
http://doi.org/10.1080/09511929208944524
http://doi.org/10.1080/002075400188654
http://doi.org/10.1016/j.ejor.2004.04.002
http://doi.org/10.1080/02331931003657691
http://doi.org/10.1016/j.mcm.2008.02.004
http://doi.org/10.1016/j.camwa.2012.02.051
http://doi.org/10.1155/2020/2862186
http://doi.org/10.1016/j.ijpe.2012.04.015
http://doi.org/10.3182/20050703-6-cz-1902.01507
http://doi.org/10.1016/j.cor.2021.105267
http://doi.org/10.1023/A:1022235519958
http://doi.org/10.1007/s10951-008-0090-8
http://doi.org/10.1016/j.eswa.2010.11.022
http://doi.org/10.1016/j.cie.2011.11.002
http://doi.org/10.1007/s10589-005-4798-5
http://doi.org/10.1057/palgrave.jors.2601906
http://doi.org/10.1016/j.omega.2009.04.002
http://doi.org/10.1007/s40092-014-0057-7
http://doi.org/10.5897/JMER2013.0275
http://doi.org/10.3390/a7030376

Mathematics 2022, 10, 2395 20 of 20

68. Hatami, S.; Ruiz, R.; Romano, C.A. Two Simple Constructive algorithms for the Distributed Assembly Permutation Flowshop
Scheduling Problem. In Managing Complexity, Lecture Notes in Management and Industrial Engineering; Hernández, C., López-
Paredes, A., Pérez-Ríos, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 139–145.

69. Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

70. de Souza, D.L.; Sergio, F.; Gedraite, R.A. A Comparative Study Using Bio-Inspired Optimization Methods Applied to Controllers
Tuning. In Frontiers in Advanced Control System; INTECH: London, UK, 2012; pp. 143–162.

71. López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic
algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

72. Taillard, E.D. Éric Taillard’s Page. 2014. Available online: http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html (accessed on 20 May 2022).

73. Sabuncuoglu, I.; Karabuk, S. Rescheduling frequency in an FMS with uncertain processing times and unreliable machines.
J. Manuf. Syst. 1999, 18, 268–283. [CrossRef]

http://doi.org/10.1016/j.ejor.2005.12.009
http://doi.org/10.1016/j.orp.2016.09.002
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://doi.org/10.1016/S0278-6125(00)86630-3

	Introduction
	Flow Shop Problems
	Rescheduling Systems

	Problem Statement
	Proposed Solution
	Rescheduling Architecture
	Hybrid Dynamic NSGA-II Algorithm

	Results
	Parameter Calibration
	Comparison of HDNSGA-II and RIPG Metaheuristics in Dynamic Multi-Objective Environments

	Conclusions and Future Lines of Research
	References

