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Abstract—Vehicle Routing Problem is an optimization problem
of great interest in many real world scenarios such as waste
management, delivery routing, etc. When employed in application
contexts, there are several constraints that have to be considered
such as vehicle fleet capacity and time windows. In real-world
cases, it is common to find uncertainty in some parameters
such as customer demands or route costs. This work proposes
a way to address demand uncertainty based on fuzzy logic and
adaptive credibility thresholds joined to a memetic algorithm
to find the route assignments with minimum total cost. This
approach is tested over several fuzzified benchmark instances
and case scenarios to validate its adequacy and performance.

Index Terms—Capacitated VRP, Time Windows, Fuzzy de-
mands, Credibility, Memetic algorithm.

I. INTRODUCTION

The vehicle routing problem (VRP) is a well-known NP-
hard optimization problem [1] whose importance has increased
over time with the ever-growing demand for package delivery
services, efficient waste management and some other transport
logistic domains where the operational costs are a main factor.
The problem consists of, given a customer set’s demands and
locations and a fleet of vehicles, finding a set of minimum cost
routes that the vehicles have to travel while fulfilling certain
conditions, such as starting and ending at the depot and serving
each customer only once. This, however, is the classic problem
statement. In order to make meaningful contributions to real
world contexts, the VRP has been reformulated in various
ways, considering the nature of the vehicle fleets (capacitated
[2], heterogeneous [3], [4]), time windows [3], [5], multiple
depots [4], pick-up and delivery tasks [5], etc.)

Depending on the VRP application domain, different con-
straints need to be introduced that make the problem even
harder to solve efficiently. In this work, we tackle a variant
with time windows and uncertain demands. This variant is
common in waste management, which presents two main
characteristics:

• Accessibility: Waste collection cannot be done at any
time of the day. In addition to the general (nightly) time
interval during which the waste can be collected, there
can be other factors that limit when a waste point can be
visited, and they must be taken into account to provide
good service to the citizens.

• Uncertainty: When planning waste collection routes, it
is impossible to know the exact waste quantity that will

be present at each waste container in advance. This leads
us to the necessity of making robust plans that can assure
that a route will not be abandoned prematurely leaving
some neighborhoods without service.

Thus far, and to the best of our knowledge, there has
not been any approach to tackle demand uncertainty in VRP
that fully exploits the features of fuzzy numbers to model
customer demands and make decisions based on the fuzzy
computations. Instead, they are typically based on Monte
Carlo simulations [6] or use a β-robust approach to assure
that solution costs are no greater than a predefined value
[7] in stochastic environments, which can be referred just to
customer demand or also to displacement time and the mere
customer presence.

In [6], the authors use an ant-colony algorithm combined
with simulated annealing to solve a VRP with uncertain
customer demands. Uncertainty is modeled by means of fuzzy
set theory using the notions of possibility, necessity and the
average of both metrics, credibility [8]. This approach uses
credibility thresholds, and runs 1000 times per credibility
value. For each one of them, customer demands are prede-
termined within an interval, and optimal routes and their costs
are computed. The optimal credibility corresponds to the one
whose average cost is minimal.

In this work we tackle VRP with time windows and uncer-
tain demands to minimize the total cost. We propose a novel
strategy to solve the problem using adaptive credibility thresh-
olds, thus trying to find good solutions for the problem with
relaxed capacity constraints and then evolve to find solutions
with higher credibility levels. In the process, solutions for all
credibility levels are found, obtaining a collection of solutions
that can be adopted depending on the desired credibility levels.
We propose a memetic algorithm as solving method which
combines a genetic algorithm with local search strategies.
A new version of the Split decodification algorithm [9] is
designed to work with the credibility thresholds. The work
is organized as follows: first, Section II formalizes the Vehicle
Routing Problem with time windows and uncertain demands.
Section III explicitly explains the proposed algorithm for the
presented problem, such as individual encoding, evaluation and
operators used in a genetic algorithms and the local search that
is integrated into it. Then, Section IV discusses the algorithm’s
performance across several testing scenarios and Section V
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Figure 1. An example of a VRP instance with 9 customers and 3 routes.

yields the conclusions extracted from the whole work and also
presents future lines of work.

II. PROBLEM FORMULATION

The classic VRP consists in finding the best set of routes
(typically minimizing costs) that allow the customers’ demand
coverage. The problem can be modeled as a complete undi-
rected graph G = (S,A) where S = {0, 1, 2, . . . , n} is a set
of nodes representing customers (node 0 represents the depot)
and A = {(i, j) | i ̸= j, i, j,∈ S} is the set of arcs joining all
the nodes. Each arc (i, j) is labeled with a non-negative cost
that meets the triangle inequality cij ≤ cik + ckj ,∀i, j, k ∈ S.
On the other hand, a vehicle fleet V = {1, . . .m} is stationed
at the depot and is tasked to visit the customers.

In some cases, each customer i is also associated with a
time window [ei, li] that indicates the time interval where the
demanded service can be provided (VRP-TW). This way, ei is
the earliest possible time to do so, and li the latest. The depot
has a time window as well, which is denoted by [e0, l0]. Note
that every vehicle of the fleet must return to the depot before l0.
In addition to the time windows, each customer has a service
time si assigned that indicates the amount of time needed to
satisfy the customer’s demand di. All vehicles are assumed to
have a speed of 1 unit/s., so the time spent traveling an arc
equals its distance (tij = cij). If a vehicle arrives to a node
i before the earliest moment of its time window (ai < ei) a
waiting time is incurred, so the beginning of the service time
is bi = max(ei, ai).

In this work, we consider one of the most common variants
of the VRP, the Capacitated VRP (CVRP), where every vehicle
has a maximum capacity constraint Q common to them all, and
the number of vehicles available in the depot is unlimited. This
way, a solution for the CVRP is a partition {R1, R2, . . . Rk}
where each Ri contains a subset of clients whose demand sum
does not exceed Q.

The CVRP-TW problem can be modeled with Equations
(1)-(11). First, Equation (1) gives the objective function to
minimize, which in this case is the sum of route distances.
Equation (2) considers a binary variable xv

ij which indicates
whether the arc (i, j) is traversed by the vehicle v. Equations
(3) and (4) make sure that a customer is visited and by a
single vehicle. Equations (5) and (6) assure that every route
starts and ends at the depot. Equation (7) expresses that

the demand attended by each vehicle must not exceed the
maximum capacity. The remaining four Equations ((8)-(11))
handle time window constraints. The first two are used to keep
track of the time taken by each route, including waiting times
if necessary, whereas the other two define the depot’s time
window, and how every vehicle must end their route before
that time window expires.

min f(x) = min
∑
v∈V

∑
i∈S

∑
j∈S

cijx
v
ij (1)

Subject to:

xv
ij ∈ {0, 1},∀i, j ∈ S, v ∈ V (2)

∑
v∈V

∑
j∈S

xv
ij = 1,∀i ∈ S − {0} (3)

∑
j∈S

xv
ij −

∑
j∈S

xv
ji = 0,∀i ∈ S − {0},∀v ∈ V (4)

∑
j∈S−{0}

xv
0j = 1,∀v ∈ V (5)

∑
j∈S−{0}

xv
j0 = 1,∀v ∈ V (6)

∑
i∈S−{0}

∑
j∈S

dix
v
ij ≤ Q,∀v ∈ V (7)

xv
ij = 1→ aj = bi + si + tij ,∀i, j ∈ S, v ∈ V (8)

bi = max{ei, ai},∀i ∈ S − {0} (9)

e0 ≤ bv0 ≤ l0,∀v ∈ V (10)

e0 ≤ bvn+1 ≤ l0,∀v ∈ V (11)

A. Uncertain demands and credibility

In the cases where demand is not known in advance, and
only an interval of possible values and a most plausible one
are available, Triangular Fuzzy Numbers (TFN) can be used
to model the uncertainty. A TFN â = (a1, a2, a3) is a fuzzy
value whose membership function is given in Equation (12).

µã(x) =


x−a1

a2−a1 if a1 < x < a2

a3−x
a3−a2 if a2 ≤ x < a3

0 otherwise
(12)

In the context of this work, for each demand d̂i, each
defining point represents the smallest possible demand value
(d1i ), the most plausible one (d2i ) and the largest possible value
(d3i ). These values are generally given by experienced workers.
We can denote this variant as Capacitated Vehicle Routing
Problem with Time Windows and Fuzzy Demands (CVRP-
TW-FD).



Uncertain demands make it more difficult to determine if
vehicle with capacity Q will necessarily cover all the demand
of its route (Equation (7)). In the context of triangular fuzzy
numbers and possibility theory, the necessity of meeting the
demand is a matter of degree, which is given by Equation
(13). Similarly, the degree to which the demand will possibly
be met can be computed using Equation (14). The average of
those equations (Equation (15)) is called Credibility degree,
and it is the criterion adopted for solution evaluations in this
approach, based on the work from [6].

Nec(q̂i ≤ Q) = sup
x≤Q

µq̂i(x) =


0 Q ≤ q1i
Q−q1i
q2i−q1i

if q1i ≤ Q ≤ q2i

1 if q2i < Q
(13)

Pos(q̂i ≤ Q) = 1− sup
x>Q

µq̂i(x) =


0 Q ≤ q2i
Q−q2i
q3i−q2i

if q2i < Q ≤ q3i

1 if Q > q3i
(14)

Cr(q̂i ≤ Q) =


0 Q < q1i

Q−q1i
2(q2i−q1i )

if q1i ≤ Q ≤ q2i
Q+q3i−2q2i
2(q3i−q2i )

if q2i < Q < q3i

1 Q ≥ q3i

(15)

Consequently, the constraint given by Equation (7) has to
be reformulated to only accept routes whose credibility equals
or exceeds a threshold ζ. That is, it is replaced with Equation
(16).

Cr

 ∑
i∈S−{0}

∑
j∈S

d̃ix
v
ij ≤ Q

 ≥ ζ,∀v ∈ V (16)

III. MEMETIC ALGORITHM

Genetic algorithms (GA) are classic metaheuristics which
are demonstrated to have high performance in many problems.
The general schema of a genetic algorithm is as follows.
Solutions of the problem are encoded as individuals, which
conform a population. At each step, individuals in the pop-
ulation are paired (selection) and combined (crossover) with
a certain probability, thus creating an offspring population.
Each offspring has a probability of suffering a small mutation.
Finally, the offspring population is combined with the previous
one to conform the population that will go ahead to the next
generation. This process continues until a stopping criterion
is met, and the best individual found so far is returned as the
best found solution to the problem. Genetic algorithms are
popular not just for their performance but also for the ease to
complement them with other metaheuristics and optimization
algorithms. Memetic algorithms are a good example of that,
combining the exploration of an evolutionary strategy with the
exploitation capabilities of local search.

A. Individual encoding and evaluation
Typically, solutions to the VRP can be encoded using

a permutation of all customers (also called “giant tour”).
When decoding a permutation to obtain a solution, the Split
algorithm implemented in [9] as part of their GA to solve
the CVRP, appears as the most successful method. This
algorithm decomposes a giant tour taking into account vehicle
capacity and other constraints such as time windows. In order
to evaluate individuals for the CVRP-TW-FD, the original
algorithm must be adapted to consider time windows and
uncertain demands with credibility thresholds. The pseudo-
code of the Split algorithm adapted to CVRP-TW-FD is given
as Algorithm 1.

First, two vectors V and P are defined such that V contains
the best accumulated cost of every route considering the first
i destinations and P keeps the start of the best route that
ends at the element i (lines 1-5). The next phase fills the
previous vectors with the needed data for evaluation and route
reconstruction (lines 7-30). Lines 8-10 initialize the control
variables that model each route that picks the i-th element
of the grand tour T as first destination. The following repeat
block (lines 11-29) adds a new element to be part of the current
route (Ti as the first location to visit) and computes the cost,
load and inverted time associated with that addition. If the
new addition conforms an infeasible route, the repeat block
is exited, and the algorithm continues with the next route’s
first destination point i+ 1. Until that happens, vector values
Vj and Pj are updated with the previous accumulated costs
and the index of the best predecessor (end of previous route),
respectively.

Reconstruction of the routes is not hard to perform once
the predecessor list is ready, since the only thing to do is to
trace what node is the best predecessor to the current one,
starting from the end, and add each subroute or trip to the set
of routes S in the corresponding order [9].

An example of the impact that the credibility threshold ζ
may have on the solution evaluation for a certain problem
instance is illustrated in Figure 2. The example instance is
detailed in Table I, where each row is a customer (0 is the
depot) and (xi, yi) represents its coordinates. Note that the
larger the threshold value is, the more vehicles are involved
in the solution with the consequent increase in reliability and
distance cost.

B. Genetic operators
In this proposal, we test different crossover and mutation

operators ([10]), as well as their respective probability val-
ues to find the best setup for our algorithm. Regarding the
crossover operators, the following ones are considered:

• Partially Mapped Crossover (PMX)
• Ordered Crossover (OX)
• Edge Recombination Crossover (ERX) [11]
The first two are commonly-used crossover operators for

permutation, whereas the last one is specific to Traveling
Salesman Problem (TSP) and VRP problems. We also consider
three well-known mutation operators:



Algorithm 1: Pseudo code of the Split algorithm for
CVRP-TW-FD

Data: Grand tour T , Cost matrix c, Time windows
[e, l], Credibility threshold ζ

Result: Best predecessors and costs
1 V0 ← 0 ; // Accumulated routes cost
2 P0 ← 0 ; // Predecessor vector
3 for i from 1 to n do
4 Vi ←∞;
5 Pi ← −1;
6 end
7 for i from 1 to n do
8 j ← i ; // End of route cursor
9 ˜load← 0 ; // Route load (fuzzy)

10 z ← 0 ; // Route time
11 repeat
12 ˜load← ˜load+ ˜dTj ;
13 if i = j then
14 cost← c0Ti

+ sTi
+ cTi0;

15 z ← max(t0Ti
, eTi

) + sTi
+ tTi0;

16 else
17 cost← cost−cTj−10+cTj−1Tj +sTj +cTj0;
18 aux← max(z − cTj−10 + cTj−1Tj , eTj );
19 if aux ≤ lTj

then
20 z ← aux+ sTj

+ tTj0;
21 else
22 z ←∞;
23 end
24 end
25 if Cr( ˜load ≤ Q) ≥ ζ and (Vi−1 + cost) < Vj

and z ≤ l0 then
26 Vj ← Vi−1 + cost;
27 Pj ← i− 1;
28 j ← j + 1;
29 until j > n or z > l0 or not Cr(load ≤ Q) ≥ ζ;
30 end

Table I
EXAMPLE INSTANCE DESCRIPTION.

VEHICLE CAPACITY Q = 50

i (xi, yi) d̃i ei li si
0 (94.53, 110.24) - 0 350 -
1 (33.68, 62.54) (8, 19, 26) 30 80 10
2 (65.65, 36.84) (11, 21, 31) 100 240 10
3 (135.20, 51.58) (3, 6, 11) 150 290 10
4 (31.26, 139.27) (18, 19, 20) 10 160 10
5 (65.65, 168.37) (3, 7, 11) 30 220 10
6 (184.34, 92.40) (8, 12, 18) 80 220 10
7 (93.62, 65.56) (9, 16, 23) 30 90 10
8 (118.19, 163.84) (3, 6, 12) 10 110 10
9 (134.07, 118.86) (8, 16, 24) 20 180 10
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Figure 2. Evaluation of a same grand tour with different credibility thresholds.

• Index Shuffle (ISM): It swaps two positions at random.
• Scramble (SM): A sub-array in the permutation is rear-

ranged at random.
• Inversion (IM): A sub-array in the permutation is in-

verted.
In this proposal, both selection and replacement operators

are predefined to be 3-tournament (3 population members are
picked at random and the best one is picked) and elitist (the
best member of the current generation survives to the next by
replacing the worst one of the new generation), respectively.

C. Local Search

Local search algorithms are a type of trajectory-based meta-
heuristics. The most common one, hill climbing, has a quite
simple structure: given an initial solution or state, generate
a set of neighbor solutions and examine them. If a better
position in the neighborhood is found, a move is performed
to that state and the process is repeated until no neighbor is
better than the current state. Several neighborhood structures
can be implemented to work with any solution representation
and problem. In this case, two of the most common operators
for VRP are the ones considered:

• Swap: Two vector elements are swapped. Similar to Index
Shuffle mutation.



• 2-opt: Two cut points define a section in the original
vector and the solution with that segment inverted define
a neighbor.

Notice that for an instance with n customers, the neighbor-
hood size for both neighborhoods would be n×(n−1)

2 .
Another factor that should be considered while implement-

ing local search algorithm is the neighborhood exploration
or movement policy and, in large scale problems, pruning.
The first one refers to the process to select the neighbor
solutions and to perform a move. There are two neighborhood
exploration strategies:

• First improvement (FI): Once a better solution than the
starting one is found, the movement is performed. In
this case the order that the neighborhood set is explored
can have a notable impact. In this work, this strategy
randomly explores the generated neighborhood.

• Best improvement (BI): Every neighbor solution is
evaluated and the one that improves most determines
the movement. The order in which the neighborhood is
explored is irrelevant here, since all of them are visited.

As to the pruning, it is a process that discards neighbors in
order to improve the efficiency of the search. A naive approach
is to limit the evaluations per neighborhood by means of a
percentage of the neighborhood size or a fixed number.

D. Proposed algorithm

The aim of this work is to provide a method that can produce
good quality and robust routes for a given CVRP-TW-FD
instance. To achieve this goal, the process listed in Algorithm
2 is proposed.

Algorithm 2: Memetic algorithm with dynamic cred-
ibility for the CVRP-TW-FD

Data: Population size p, Credibility threshold step ∆ζ,
Crossover probability pc, Mutation probability
pm, LS probability pLS , LS neighborhood
neigh op, LS exploration expl str

Result: Best routes sets found per credibility threshold
1 pop ← initialization(p);
2 for ζ from 0 to 1 step ∆ζ do
3 evaluate(pop, ζ);
4 repeat
5 parents ← 3-tournament selection(pop);
6 offspring ← crossover(parents, pc);
7 offspring ← mutation(offspring, pm);
8 pop ← elitist replacement(pop, offspring);
9 for ind in pop do

10 if uniform(0, 1) ≤ pLS then
11 ind ← local search(ind, neigh op,

expl str);
12 end
13 until 15 generations without improvement;
14 record best(pop, ζ);
15 end

Essentially, the algorithm follows the classic scheme of
a Genetic Algorithm. However, after replacement, there is
a small chance pLS for each individual to be improved by
Local Search. This aspect is the one that brings exploitation
to the algorithm. The process continues until no better solution
is found for 15 consecutive generations. At that time, the
best solution found is stored and the credibility threshold is
increased by ∆ζ. The population is not reset at this stage, but
a complete evaluation is needed, since it cannot be assured that
the previous routes fulfill the new credibility requirement. In
the end, the algorithm yields the set with the best solutions per
credibility threshold. In this work, we propose to set ∆ζ = 0.1.

IV. RESULTS AND ANALYSIS

This section focuses on the previously defined algorithm’s
performance across various well-known CVRP instances con-
veniently adapted for uncertain demands. In particular, six
instances from [12]: R110, R203, C107, C205, RC101 and
RC208 are transformed and tested. Problems of type R have
generated customer locations from a squared grid, while
type C are clustered and RC implies a combination of both
methods. The first digit in each instance name indicates how
constraining time windows and vehicle capacity are, being 1
very constraining and 2 hardly constraining. The instances are
adapted by transforming every customer’s demand di into a
TFN d̂i = (di−∆di, di, di+∆di), where ∆ is a random value
between 0 and 0.8 and each obtained point is rounded to the
nearest integer. The algorithm has been implemented with the
help of the DEAP Python framework [13] and run on an Intel
Core i5-9400F processor with 16 GB RAM and Windows 10.

A. Parameter setting

A first set of experiments is carried out to determine the best
combination of Local Search (LS) and GA parameters. For LS,
it is needed to find the combination of neighborhood operator
and exploration strategy that offers the best improvements. For
any medium to large sized instance, the neighborhood size can
be deemed as too large in the sense that the computational
time needed to evaluate all solutions is too high to make
the memetic algorithm converge in a reasonable amount of
time. Therefore, we propose to limit the number of evaluations
per run, applying LS to a small percentage of the population
and exploring a limited fraction of the neighborhood which
is randomly selected. In this testing, LS is applied to 2% of
the population each iteration, including the best solution in the
population, and only 10% of all neighbors are explored. A set
of 50 random solutions are created, and the four LS variants
that result from combining the two exploration strategies and
neighborhood structures are run on every one of them.

Table II shows fitness-related values: minimum, maximum,
average and standard deviation obtained through the 50 runs.
The last two columns count how many times the corresponding
variant gives the best and worst solution among the four.
On average, 2-opt operator behaves worse than Swap inde-
pendently on the exploration strategy. Not only the means
are greater than their counterpart operator, but the rankings



Table II
LOCAL SEARCH VARIANTS PERFORMANCE SUMMARY ON FUZZY RC208

(FITNESS)

Variant Min. Max Mean Std. Dev. #1 #4
FI - Swap 1342.3 1797.8 1588.4 110.93 11 0
BI - Swap 1326.4 2004.4 1586.7 124.33 16 0
FI - 2-opt 1419.3 2214.4 1681.8 159.37 9 27
BI - 2-opt 1330.2 1961.4 1640.0 149.73 14 23

indicate that, though there are times when they have the
best performance, the optimization gets stuck much more
often. This, naturally, can be due to the limitations on the
neighborhood exploration, but it can be stated that the best
operator for our method is Swap. To better assess differences
between all four variants, a Friedman statistical test is run,
showing no significant differences between FI-Swap and BI-
Swap. However, the FI strategy can potentially save execution
time, since it does not necessarily evaluate all neighbors.
Therefore, this is the strategy that is used.

Concerning the genetic operators, a similar test as with LS
has been carried out: 50 different populations with 60 individu-
als are optimized with all proposed algorithm variants. Popula-
tion size is selected on the basis of the necessary balance with
respect to execution time when LS is present. We consider
the 3 crossover and mutation operators introduced in the
previous section as well as values 0.4, 0.6 and 0.8 for crossover
probability and 0.1 and 0.2 for mutation probability, leading
to 54 different variants. In this case, there are two factors
to consider: fitness and diversity. Naturally, the combination
of operators that is capable of obtaining the best possible
solutions should be selected. However, when combined with
LS, diversity should be also encouraged in the population to
avoid premature convergence which is much more likely when
there is potential to run LS in every generation. We consider
that two solutions are similar if they have the same route set.
Each population is associated a diversity rate, computed as the
quotient between the number of distinct individuals in it and
the population size.

Regarding fitness, the best 12 variants make use of the ERX
crossover, and the best results are obtained with crossover
probability of 0.8 and ISM mutation with probability 0.2.
Regarding diversity, as expected, the best variants are those
that have a high crossover and mutation probabilities, since
these operators are in charge of creating new solutions. In
fact, the three setups yielding more diverse solutions are those
using ISM mutation, the highest combination probabilities and
the three crossover operators. There, it seems straight forwards
to choose ERX crossover with probability of 0.8 and ISM
mutation with probability 0.2, since it obtains both the best
results in terms of fitness and it is in the top three in terms of
diversity.

B. Algorithm’s performance

This subsection presents the results of the CVRP-TW-FD
with dynamic credibility when applied to set of instances
with uncertain demands. Figure 3 shows population’s evolution

Table III
BEST SOLUTIONS FOUND FOR ORIGINAL FUZZY INSTANCES PER

CREDIBILITY THRESHOLD
(FITNESS, NUMBER OF ROUTES)

R110 R203 C107 C205 RC101 RC208
ζ = 0.0 1455.4, 19 1163.1, 10 1672.5, 20 1306.8, 14 2073.9, 25 1121.6, 7
ζ = 0.1 1301.7, 15 1163.1, 10 1311.7, 16 1055.8, 10 2068.9, 25 1118.4, 7
ζ = 0.2 1293.2, 15 1163.1, 10 1311.7, 16 1055.2, 10 2068.9, 25 1118.4, 7
ζ = 0.3 1293.2, 15 1163.1, 10 1311.7, 16 1055.2, 10 2068.9, 25 1118.4, 7
ζ = 0.4 1293.2, 15 1163.1, 10 1311.7, 16 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 0.5 1293.2, 15 1163.1, 10 1311.7, 16 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 0.6 1293.2, 15 1163.1, 10 1245.5, 15 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 0.7 1293.2, 15 1163.1, 10 1245.5, 15 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 0.8 1293.2, 15 1163.1, 10 1330.4, 16 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 0.9 1293.2, 15 1163.1, 10 1308.1, 16 1053.7, 10 2068.9, 25 1118.4, 7
ζ = 1.0 1299.3, 15 1163.1, 10 1347.3, 16 1053.7, 10 2068.9, 25 1118.4, 7

through the process for instances C107 and R203, being these
two representative of the others. Fitness (in red) and number of
routes obtained (in blue) of the best solution at each credibility
threshold are depicted. Table III shows the average route cost
and number of vehicles obtained for each credibility threshold
and instance.

At a first glance, it is remarkable that route cost and the
number of routes show a strong correlation, having very
similar patterns during evolution. The other aspect that stands
out is that credibility thresholds have almost no impact in the
routes. It is not until ζ ≥ 0.8 in some of the most constraining
instances (e.g. C107) that route costs increase, usually due to
the necessity of adding an extra vehicle to cover the demand.
This does not happen in instances of type 2, though that should
be expected since the vehicle capacity is high. In fact, in many
cases best individual optimization cannot go further than what
is achieved when ζ ≤ 0.1.

Our hypothesis is that this behavior is due to customers’
demands not posing a very tight constraint. It is our belief
that time windows are in fact the most restrictive constraint.
To test this hypothesis, the algorithm is applied to a set of
instances with relaxed time windows, and another set with a
more restricted vehicle capacity.

C. Relaxed time windows

The next scenario tested in the present work softens the
time window constraint in every instance to study whether the
impact of uncertainty is more notable in the final solutions
and search process. Each customer’s time window is set to be
equal to the depot’s (ei = e0, li = l0 ∀i ∈ S − {0}). Figure 4
and Table IV represent the information concerning population
behavior and best solutions per credibility. For the graphics,
instances fuzzC107 and fuzzR203 are selected as the most
representative.

As expected, fitness values and the number of vehicles
involved in the solutions are lower with respect to the original
instances, so the main focus in this scenario is the behavior
of the population throughout evolution. Strong correlation in
line patterns between fitness and vehicles still apply here, and
there are still some instances of type 2 behaving similarly to
the original instances (fuzzR203, fuzzRC208). It must be noted
that in these cases the number of routes needed to manage
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Figure 3. Algorithm evolution for fuzzy instances C107 and R203.

0 100 200 300 400
Generation

1000

1500

2000

2500

3000

3500

4000

Fi
tn

es
s

fuzzC107-noTW

10

11

12

13

14

15

16

17

Ve
hi

cle
s

Avg. fitness
Min. fitness
Avg. vehicles
Min. vehicles

0 50 100 150 200 250
Generation

1000

1500

2000

2500

3000

3500

Fi
tn

es
s

fuzzR203-noTW

2

3

4

5

6

Ve
hi

cle
s

Avg. fitness
Min. fitness
Avg. vehicles
Min. vehicles

Figure 4. Algorithm evolution for fuzzy relaxed time windows instances.

Table IV
BEST SOLUTIONS FOUND FOR FUZZY INSTANCES WITHOUT TIME

WINDOWS PER CREDIBILITY THRESHOLD
(FITNESS, NUMBER OF ROUTES)

R110 R203 C107 C205 RC101 RC208
ζ = 0.0 1057.8, 10 724.91, 2 1116.8, 11 746.72, 3 1125.4, 10 846.17, 3
ζ = 0.1 1017.9, 10 724.91, 2 1023.3, 11 746.72, 3 1124.9, 10 846.17, 3
ζ = 0.2 1014.1, 10 724.91, 2 1023.3, 11 746.72, 3 1124.9, 10 846.17, 3
ζ = 0.3 1014.1, 10 724.91, 2 1023.3, 11 746.72, 3 1124.9, 10 846.17, 3
ζ = 0.4 1014.1, 10 724.91, 2 1023.3, 11 746.72, 3 1124.9, 10 846.17, 3
ζ = 0.5 1014.1, 10 724.91, 2 1023.3, 11 746.72, 3 1124.9, 10 846.17, 3
ζ = 0.6 1014.8, 10 724.91, 2 1023.7, 11 747.57, 4 1119.7, 10 846.17, 3
ζ = 0.7 1030.4, 10 724.91, 2 1069.9, 11 759.92, 4 1185.4, 11 846.17, 3
ζ = 0.8 1026.6, 11 724.29, 2 1111.8, 12 772.38, 4 1216.1, 13 846.17, 3
ζ = 0.9 1039.4, 11 727.42, 2 1169.8, 13 760.02, 4 1313.7, 14 846.17, 3
ζ = 1.0 1049.7, 11 744.57, 3 1208.0, 14 765.60, 4 1387.3, 14 846.17, 3

demand has significantly decreased, hinting to a really high
difference between demand quantity and vehicle capacity.

The rest of instances show a more interesting demeanor. The
number of routes found by the best solutions are also slightly
reduced, though not as much as type 2 instances. Credibility
threshold starts to affect the best solution at ζ ≥ 0.6, triggering
“steps” in both fitness and number of vehicles. What stands
out in this stages is that fitness manages to be optimized after
the bump by around a 10%, usually at the expense of adding
more vehicles.

D. Highly-constrained capacity

To better assess the impact of the credibility thresholds, the
last scenario that is tested keeps the original time windows
but reduces vehicle capacity to a 40% of its original values.

Table V
BEST SOLUTIONS FOUND FOR FUZZY INSTANCES WITH REDUCED

VEHICLE CAPACITY PER CREDIBILITY THRESHOLD
(FITNESS, NUMBER OF ROUTES)

R110 R203 C107 C205 RC101 RC208
ζ = 0.0 1638.4, 24 1100.3, 10 1892.9, 25 1421.2, 15 2583.5, 31 1079.0, 7
ζ = 0.1 1609.1, 24 1100.3, 10 1892.9, 25 1289.7, 14 2483.4, 30 948.44, 7
ζ = 0.2 1550.2, 22 1100.3, 10 1886.4, 25 1174.1, 12 2444.8, 29 942.23, 7
ζ = 0.3 1550.2, 22 1100.3, 10 1886.4, 25 1174.1, 12 2444.8, 29 942.23, 7
ζ = 0.4 1548.9, 22 1100.3, 10 1886.4, 25 1174.1, 12 2444.8, 29 942.23, 7
ζ = 0.5 1548.9, 22 1100.3, 10 1886.4, 25 1174.1, 12 2444.8, 29 942.23, 7
ζ = 0.6 1566.7, 23 1100.3, 10 1886.4, 25 1191.7, 12 2468.7, 30 942.23, 7
ζ = 0.7 1645.1, 23 1100.3, 10 1886.4, 25 1179.5, 12 2529.5, 30 944.44, 7
ζ = 0.8 1688.2, 24 1100.3, 10 2043.9, 28 1183.0, 12 2603.0, 31 951.77, 7
ζ = 0.9 1744.1, 26 1100.3, 10 2266.9, 32 1194.4, 12 2640.2, 33 991.84, 8
ζ = 1.0 1858.5, 28 1102.4, 10 2325.1, 33 1196.5, 12 2776.8, 35 986.51, 8

Results of the runs in this situation are shown in Figure 5 and
Table V. Instances R110 and R203 are the most illustrative
ones in this case.

The first notable effect of the new scenario is the rise of
the number of routes, both in average and best individual
in instances of type 1, while type 2 ones keep a similar
number of vehicles, suggesting that the reduction to a 40%
is insufficient to impact the search process. This can be easily
seen in Figure 5, where fitness “steps” happen at high values
of ζ (if is the case) and are not of great magnitude.

On the other hand, instances of type 1 have a similar
behavior to the ones analyzed in the previous subsection:
“steps” in fitness happen with the increase of ζ, that come
coupled with a significant increase of number of vehicles. Of
course, this vehicle growth is much higher than the relaxed
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Figure 5. Algorithm evolution for fuzzy highly-constrained vehicle capacity instances.

time windows scenario because of the lower transport capacity.
Nevertheless, solutions are well optimized after the bump,
minimizing the cost rise both in fitness and number of vehicles.

Based on all these results, one may wonder if it is really nec-
essary start the search from ζ = 0.0 and increase the threshold
until reaching 1 or just execute the algorithm at the desired
ζ value instead of building solutions step by step. Although
good results can be achieved with this strategy it cannot be
overlooked that the probability of that happening is really low
when the population is initialized with no heuristic and almost
completely dependent of the Local Search. One advantage of
this approach is that, when credibility requirements strengthen
(ζ increases), in the best case population fitness is the same as
at the previous threshold (as happens most of the times with
the original fuzzified instances), giving a chance of further
improve solutions and consider them for previous thresholds. If
that happens, a solution found at a higher credibility threshold
with lower fitness at least keeps that fitness in the previous ζ,
if not improves. In the other case, when solutions change to
assure demand coverage, the degree of fitness augmentation
may not be big enough to equate to starting from scratch at a
new credibility threshold.

V. CONCLUSIONS AND FUTURE WORK

The present work has tackled the Capacitated Vehicle Rout-
ing Problem with Time Windows and uncertain demands. In
this problem, customer demand is not known beforehand, so
it becomes necessary to design routes that can optimize costs
while making sure that all demand is satisfied and constraints
are not violated. Demand has been modeled as triangular
fuzzy numbers, and the uncertainty aspect of the problem has
been tackled with the notion of credibility to achieve robust
solutions across possible scenarios. To solve the problem, a
Genetic Algorithm together with a hill-climbing Local Search
and dynamic credibility handling has been developed, where
solution representation is carried out as a permutation and its
evaluation is done by means of the Split algorithm, adapted
to uncertainty and time windows. The proposed algorithm
is tested against six adapted instances from a well-known
literature benchmark. After a parameter study for both LS and
GA, its behavior is analyzed across several scenarios according
to time window severity and vehicle capacity, pointing to the

good performance of the method when it comes to minimize
route costs after a demand requirement augmentation. It also
shows that when demand becomes a very restrictive constraint,
the algorithm is capable of quickly adapting to new thresholds
and finding more robust solutions while decreasing the costs.
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