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A B S T R A C T   

While prior studies report associations between fine particulate matter (PM2.5) exposure and fetal growth, few 
have explored temporally refined susceptible windows of exposure. 

We included 2328 women from the Spanish INMA Project from 2003 to 2008. Longitudinal growth curves 
were constructed for each fetus using ultrasounds from 12, 20, and 34 gestational weeks. Z-scores representing 
growth trajectories of biparietal diameter, femur length, abdominal circumference (AC), and estimated fetal 
weight (EFW) during early (0–12 weeks), mid- (12–20 weeks), and late (20–34 weeks) pregnancy were calcu
lated. A spatio-temporal random forest model with back-extrapolation provided weekly PM2.5 exposure estimates 
for each woman during her pregnancy. Distributed lag non-linear models were implemented within the Bayesian 
hierarchical framework to identify susceptible windows of exposure for each outcome and cumulative effects 
[βcum, 95% credible interval (CrI)] were aggregated across adjacent weeks. For comparison, general linear 
models evaluated associations between PM2.5 averaged across multi-week periods (i.e., weeks 1–11, 12–19, and 
20–33) and fetal growth, mutually adjusted for exposure during each period. Results are presented as %change in 
z-scores per 5 μg/m3 in PM2.5, adjusted for covariates. 

Weeks 1–6 [βcum = − 0.77%, 95%CrI (− 1.07%, − 0.47%)] were identified as a susceptible window of exposure 
for reduced late pregnancy EFW while weeks 29–33 were positively associated with this outcome [βcum = 0.42%, 
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95%CrI (0.20%, 0.64%)]. A similar pattern was observed for AC in late pregnancy. In linear regression models, 
PM2.5 exposure averaged across weeks 1–11 was associated with reduced late pregnancy EFW and AC; but, 
positive associations between PM2.5 and EFW or AC trajectories in late pregnancy were not observed. 

PM2.5 exposures during specific weeks may affect fetal growth differentially across pregnancy and such as
sociations may be missed by averaging exposure across multi-week periods, highlighting the importance of 
temporally refined exposure estimates when studying the associations of air pollution with fetal growth.   

1. Introduction 

Air pollution is among the most substantial global environmental 
threats (Cohen et al., 2017; Murray et al., 2020), impacting a range of 
human health outcomes. A growing body of literature implicates the 
adverse impacts of prenatal air pollution exposure on fetal growth (Fu 
et al., 2019), which in turn may increase the risk of neonatal morbidity 
and mortality (Kesavan and Devaskar, 2019), and possibly impact 
cognitive and behavioral impairments during childhood (Sacchi et al., 
2020; Sucksdorff et al., 2015). Therefore, it is imperative to improve our 
understanding of the mechanism by which air pollution exposure may 
alter the fetal growth trajectory. 

Particulate matter with an aerodynamic diameter of less than 2.5 μm 
(PM2.5) is an ambient air pollutant derived from natural and anthropo
genic combustion-related sources (Adams et al., 2015). In addition to 
having a greater number of anthropogenic sources than larger particles, 
the relative pathogenicity of PM2.5 is due to its relatively larger surface 
area to which potentially toxic compounds can bind; further, PM2.5 
particles can readily pass through the respiratory barrier of the lower 
airways (Feng et al., 2016). Exposure to PM2.5 has been widely inves
tigated as a risk factor for preterm birth and outcomes related to an 
infant’s size at birth, such as low birth weight (LBW) or 
small-for-gestational-age (SGA) (Klepac et al., 2018; Simoncic et al., 
2020; Tapia et al., 2020). However, these static outcomes do not 
adequately capture the dynamic nature of intrauterine growth (Smarr 
et al., 2013). While the use of attained weight at birth may represent late 
pregnancy growth, it likely does not reflect growth during early or 
mid-pregnancy (Hemachandra and Klebanoff, 2006), which may be 
relevant periods of susceptibility for environmental exposures. Further, 
the use of birth anthropometry does not allow the assessment of growth 
in specific body segments, which is important to consider as delays in 
specific fetal parameters may have unique health consequences (Yanney 
and Marlow, 2004). In a systematic review and meta-analysis encom
passing studies published through 2017, Fu et al. (2019) recommended 
that more studies utilizing serial ultrasounds should be conducted to 
characterize fetal growth and accelerate our understanding of mecha
nisms through which air pollution impacts fetal health. 

Four additional studies have recently been published that were not 
included in the Fu et al. (2019) meta-analysis; these studies provide 
further evidence of negative associations between prenatal PM2.5 
exposure and ultrasound-measured fetal growth (Cao et al., 2019; Leung 
et al., 2022; Lin et al., 2020; Shao et al., 2020), though they varied in the 
specific exposure metrics used, all of the aforementioned studies aver
aged exposure across multi-week periods [i.e., trimesters (Shao et al., 
2020), the first 16 weeks of pregnancy (Leung et al., 2022), or from 
conception to the time of the ultrasound examination (Cao et al., 2019; 
Leung et al., 2022; Lin et al., 2020)], and none of those studies evaluated 
growth trajectories of the fetus during different pregnancy periods. The 
timing of exposure is important in determining the specific nature of the 
relationship between prenatal air pollution exposure and fetal growth as 
fetal development is a period of increased vulnerability to environ
mental chemicals (Slama et al., 2008). Measuring air pollution exposure 
either during the entire pregnancy period or across broad windows 
defined a priori (e.g., trimesters) may limit the identification of critical 
windows of exposure during pregnancy, particularly if ‘true’ critical 
periods do not align with a priori defined clinical periods (Wilson et al., 
2017). Thus, despite the increased use of ultrasound-measured fetal 

growth, assessment of precisely identified susceptible windows of pre
natal PM2.5 exposure on the fetal growth trajectories remains limited. 

In the present study, our primary aim was to implement distributed 
lag non-linear models to identify weekly windows in which fetal growth 
trajectories may be related to prenatal PM2.5 exposure. To demonstrate 
potential differences in the identification of windows of longer duration 
that might represent susceptible periods of exposure to PM2.5 on fetal 
growth, we also provided analyses of associations between PM2.5 and 
fetal growth trajectories using exposure estimates averaged across multi- 
week exposure periods that align with the timing of fetal growth mea
surement (gestational weeks 1–11, 12–19, and 20–33). 

2. Materials and methods 

2.1. Study design and population 

This study was based on the INfancia y Medio Ambiente (INMA)— 
Environment and Childhood Study—a multi-site prospective 
population-based birth cohort study in Spain (Guxens et al., 2012). The 
present analysis includes mother and infant pairs from four INMA re
gions: Asturias (n = 426), Gipuzkoa (n = 561), Sabadell (n = 584), and 
Valencia (n = 757), who were recruited from the main public hospital or 
health center of each study area between November 2003 and February 
2008. The detailed cohort profile, including the geographical location of 
each study site has been published previously (Guxens et al., 2012). 
Eligible women were aged 16 years or older and resided in one of the 
study areas, attended the first prenatal clinic visit between 10 and 13 
gestational weeks, had a singleton pregnancy, did not follow any pro
gram of assisted reproduction, had no communication problems, and 
planned to deliver their child at the recruitment hospital. Consent was 
obtained from women to collect data on sociodemographic and lifestyle 
factors and multiple ultrasound measures of fetal growth during preg
nancy. Ethical approval was obtained from the ethics committee of the 
reference hospitals. This study was approved by the Institutional Review 
Board of Baylor College of Medicine. 

2.2. Prenatal PM2.5 exposure assessment 

Daily PM2.5 levels were estimated for 2009 for the entire Spanish 
territory (except for the Canary Islands, Ceuta, and Melilla) at a 1 square 
kilometer resolution using a spatio-temporal land-use random forest 
model that combined ground-level air pollution and satellite-based 
measures of aerosol optical depth, land-use, meteorological, and 
traffic variables. These estimates were then adjusted to the exact loca
tions of woman’s reported residence(s) throughout their pregnancy 
using a second random forest model incorporating several spatial vari
ables such as traffic, land use, and population. These models follow the 
methodology previously developed by Stafoggia and colleagues’ and 
applied in Italy and Sweden (Stafoggia et al., 2019, 2020). The R2 of our 
models for the year 2009 was estimated as 0.78 using out-of-bag sam
pling and 0.54 using 10-fold cross validation. Following the method of 
temporal adjustment from the European Study of Cohorts for Air 
Pollution Effects (ESCAPE) protocol, daily PM2.5 exposure estimates for 
2003–2008 (i.e. the pregnancy period) were computed using the stan
dardized methodology to temporally adjust the 2009 annual average 
concentrations of PM2.5 at each women’s residence with daily records 
from stationary ambient monitoring networks that operate continuously 
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in each study area (Procedure for Back-Extrapolation: Manual by the 
ESCAPE project, 2012). In Gipuzkoa where PM2.5 monitoring data was 
available, the temporal adjustment was conducted by multiplying the 
annual 2009 PM2.5 estimates at each woman’s residence from the 
random forest model by the ratio of the daily PM2.5 estimates from the 
stationary monitoring site to the 2009 annual average PM2.5 estimate 
from the same monitoring site. In the case of Asturias, Sabadell, and 
Valencia where PM2.5 levels from stationary monitoring networks for 
the years 2003–2008 were not available, the annual 2009 PM2.5 esti
mates for each woman’s residence computed from the random forest 
model were first multiplied by the ratio of daily PM10 estimates from the 
stationary monitoring site to the 2009 annual average PM10 estimate 
from the same monitoring site and then further multiplied by the median 
ratio of 2009 average PM10 to 2009 average PM2.5 levels from ambient 
monitoring stations in which both pollutants were measured. This 
method assumes a similar temporal variation in PM10 and PM2.5 con
centrations and is recommended when there are insufficient 
ground-level PM2.5 data for temporal adjustment (Procedure for 
Back-Extrapolation: Manual by the ESCAPE project, 2012). Predicted 
PM2.5 concentrations at each woman’s residence (weighting for resi
dential mobility) were averaged for each week of each woman’s specific 
gestational period. Lastly, we calculated three additional exposure 
metrics to assess PM2.5 exposure across longer pregnancy periods, rep
resenting average PM2.5 exposure during gestational weeks 1–11, 
12–19, and 20–33. 

2.3. Fetal growth assessment 

Women had two to eight ultrasound exams, with an average of 3.1 
ultrasounds per woman, which included ultrasound scans that were 
conducted at approximately 12, 20, and 34 weeks of gestation at 
routinely scheduled antenatal care visits by obstetricians. The following 
fetal parameters were recorded from each ultrasound: femur length (FL), 
abdominal circumference (AC), and biparietal diameter (BPD) (in mil
limeters) and used to calculate an estimated fetal weight (EFW, in 
grams) using the Hadlock algorithm (Hadlock et al., 1985). Gestational 
age was estimated based on the last menstrual period. An early 
crown-rump length was used for gestational age dating when the par
ticipant’s self-reported last menstrual period differed from the estimate 
based on the first ultrasound by ≥ 7 days (Westerway et al., 2000). 

To estimate longitudinal growth curves for fetal parameters, our 
group previously applied linear mixed models to establish the rela
tionship between gestational age and each fetal growth parameter, for 
each region separately (Iñiguez et al., 2016). These models were 
adjusted for the following constitutional factors known to affect fetal 
growth: maternal age, height, pre-pregnancy weight, country of birth, 
parity, paternal height, and fetal sex (Mamelle et al., 2001). These fetal 
growth curves were used to calculate unconditional z-scores at 12, 20, 
and 34 weeks of gestation, which are predictions of fetal size at the given 
time points. This method allows the growth trajectory of the fetus during 
a given time interval to be calculated by conditioning a z-score at a given 
time point on the z-score from the previous time point (Hadlock et al., 
1985; Royston, 1995). For example, the growth trajectory of EFW for 
12–20 gestational weeks is represented by the conditional z-score for 
EFW at 20 weeks, which is calculated by conditioning EFW at week 20 
on EFW at week 12. Previously, growth trajectories for each fetal 
parameter (i.e., EFW, FL, AC, and BPD) were calculated for the periods 
of 12–20 weeks (representing mid-pregnancy) and 20–34 weeks (rep
resenting late pregnancy) (Iñiguez et al., 2016). For each fetal param
eter, the outcomes of interest in our analysis were focused on the 
unconditional z-score at 12 weeks of gestation (which necessarily rep
resents fetal growth from 0 to 12 weeks) as well as the conditional 
z-scores at 20 and 34 weeks. These outcomes reflect the impact of PM2.5 
on fetal growth during early, mid-, and late pregnancy, respectively. 

2.4. Covariate measurement 

All women underwent interviews during the first and third trimesters 
of pregnancy to collect data on sociodemographic and behavioral 
characteristics via interviewer-administered questionnaires. Potential 
confounders were informed by prior knowledge and a directed acyclic 
graph. We adjusted models for the following variables: maternal age 
(continuous [years]), maternal and paternal education (primary, sec
ondary, and university), cohabitation (living with father/not living with 
father), parity (0, 1, and ≥2), alcohol use (at least one drink per week/ 
fewer than one drink per week) and smoking (self-reported active 
smoking at 12 and/or 32 weeks gestation) during pregnancy, fetal sex 
(female/male), social class, and pre-pregnancy body mass index (BMI). 
Social class was classified based on the highest of either maternal or 
paternal occupation during pregnancy according to the 1994 Spanish 
National Occupation Codes and assessed as a ternary measure of low (IV 
+ V for skilled, semi-skilled, and unskilled manual workers), middle (III 
for other non-manual workers and manual worker supervisors), and 
high (I + II for managers, technicians, and associate professionals) 
(Domingo-Salvany et al., 2000). Self-reported pre-pregnancy BMI 
(kg/m2) was classified as underweight (BMI ≤18.49), normal (BMI 
18.50–24.99), overweight (BMI 25.0–29.99), and obese (BMI ≥30.0). 
We also adjusted for the child’s birth season as a proxy for potential 
seasonal trends, including trends in ambient temperature. 

2.5. Statistical analysis 

Among the 2462 women with complete fetal growth data, women 
missing exposure (n = 22) and covariate (n = 112) data were excluded 
for a final sample size of 2328 women. All covariate data were sum
marized using percentages. Gestational period-specific exposure metrics 
(i.e., PM2.5 averaged across gestational weeks 1–11, 12–19, and 20–33) 
were summarized using the median, 25th, and 75th percentiles. 

To address our primary goal to evaluate susceptible windows of 
exposure to PM2.5 on fetal growth, we applied distributed lag non-linear 
models, a flexible approach that utilizes a bi-dimensional space of 
functions, called a cross-basis, to simultaneously model the exposure- 
and lag-response relationships (Gasparrini, 2011) and addresses the 
limitation of assessing exposure averaged across relatively large periods 
of time. Distributed lag non-linear models allow for the estimation of 
potentially non-linear variations in the dimensions of predictor intensity 
and lag. In our study, average weekly PM2.5 exposures were used when 
fitting these models. A linear exposure-response function was specified 
and a natural cubic spline was specified for the lag-response function in 
the cross-basis of the models. Fitting a spline function of time in the 
models allows us to capture long-term trends in the data (Bhaskaran 
et al., 2013). The number and placement of knots in the splines were 
determined through evaluation of multiple models with varying 
numbers of knots; the final model was selected based on the Akaike 
information criterion (AIC) (Gasparrini, 2014). The placement of knots 
for splines in the 10 models with the lowest AIC and for each fetal 
growth outcome are shown in Supplementary Material, Tables S1, S2, 
and S3. We evaluate the estimated weekly PM2.5 exposure that corre
sponded to one less than the gestational week of the growth trajectory of 
interest (i.e., we evaluated PM2.5 exposures during gestational weeks 1 
through 11 with 12-week growth trajectories, 1 through 19 with 
20-week growth trajectories, and 1 through 33 with 34-week growth 
trajectories). Distributed lag non-linear models were fit using the 
Bayesian hierarchical model framework via the integrated nested Lap
lace approximation (Gómez-Rubio, 2020). Further, to account for po
tential heterogeneity in study characteristics between regions, an 
independent and identically distributed Gaussian random effect for 
study region was included in the model framework (Lowe et al., 2021). 
The percentage change in fetal growth associated with a 5 μg/m3 unit 
increase in PM2.5 exposure during a given week of gestation was esti
mated. Susceptible windows of exposure were identified as those weeks 
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in which 95% credible intervals (CrIs) excluded the null; cumulative 
effects (βcum) were calculated by aggregating effects across lags when 
susceptible windows were identified in adjacent weeks. 

We conducted several secondary analyses. First, given sex differ
ences in response to air pollution exposures and prenatal development 
(Bertin et al., 2015), we evaluated fetal sex-specific effects in two ways. 
First, we included an interaction term between the cross-basis in the 
distributed lag non-linear models and fetal sex. Here, an interaction 
between PM2.5 and fetal sex was indicated if the deviance information 
criterion (DIC) for the interaction model was at least 2 units lower than 
the model without an interaction term and the widely applicable in
formation criterion (WAIC) in the interaction model was at least 7 units 
lower than the model without an interaction term (Duncan and Men
gersen, 2020). Second, we produced fetal sex-specific models to visually 
compare the shapes of the model curves for male and female fetuses. 
Second, we conducted a sensitivity analysis applying inverse probability 
weights (IPWs) to the distributed lag non-linear models to assess the 
impact of potential selection bias due to the loss of subjects missing fetal 
growth measurements (n = 173). Third, given our previous results 
regarding an association between NO2 exposure and fetal growth 
(Whitworth et al., 2022), among the subset of women for whom NO2 
exposure data were available (n = 2104), we conducted sensitivity an
alyses adjusting for this co-exposure (operationalized as averaged 
weekly exposure) through the addition of a second cross-basis in the 
distributed lag non-linear models representing the NO2 response func
tion. Finally, to demonstrate potential differences in identification of 
susceptible windows of exposure using more traditional methods, gen
eral linear models were adopted within the integrated nested Laplace 
approximation to evaluate associations between PM2.5 exposure aver
aged across each exposure period and each fetal growth parameter 
during early, mid-, and late pregnancy. These models were mutually 
adjusted for exposure during different pregnancy periods (Wilson et al., 
2017). Specifically, for early pregnancy growth outcomes, we examined 
exposure averaged across weeks 1–11; for mid-pregnancy growth out
comes, we examined exposure averaged across weeks 1–11 and weeks 
12–19; for the late pregnancy growth outcomes, we examined exposure 
averaged across weeks 1–11, weeks 12–19, and weeks 20–33. Effect 
estimates and 95% CrIs for these models are presented as a percentage 
change in fetal growth per 5 μg/m3 increase in average PM2.5 exposure 
over a given exposure period. 

Statistical analyses were conducted using SAS version 9.4 (SAS 
Institute, Cary, NC, USA) and R version 4.0.4 (R Core Team, Vienna, 
Austria). 

3. Results 

3.1. Participant characteristics 

The maternal, paternal, and fetal characteristics of the participants 
are summarized in Table 1. Most women were 30–34 years of age 
(42.40%). Overall, 41.32% of the mothers and 44.33% of the fathers had 
a secondary level of education, and 40.72% of mothers were classified in 
the low social class category. More than half of the women had pre- 
pregnancy BMI classified as normal (69.03%), and 26.55% were over
weight or obese. The majority of women in the present study were pri
miparous (56.49%). Approximately one-third of women reported 
smoking during pregnancy (31.70%), and 8.93% of women reported at 
least one alcoholic drink per week during their pregnancy. There were 
some differences in the sociodemographic characteristics between 
women recruited from different study regions (Supplementary Material, 
Table S4). For example, while 25.82% of women in Asturias were ≥35 
years at recruitment, the proportion of women recruited from other 
study regions ranged from 14.66 to 18.72%. Compared with women 
from the other three study regions, more women in Gipuzkoa had a 
university-level of education and were classified in the high social class 
category. A total of 41.08% of women from Valencia self-reported 

smoking during pregnancy compared with 28.40% of women in Astu
rias, 22.82% of women in Sabadell, and 30.48% of women in Gipuzkoa. 
The median (25th-75th percentiles) of the average PM2.5 exposure 
during gestational weeks 1–11, 12–19, and 20–33 was 14.72 
(12.63–16.73), 14.52 (12.62–16.71), and 14.53 (12.43–16.51) μg/m3, 
respectively. 

3.2. Identification of weekly susceptible windows of PM2.5 exposure on 
fetal growth 

Fig. 1 shows the results from the distributed lag non-linear models 
(see corresponding effect estimates and 95% CrIs in Supplementary 
Material, Tables S5, S6, and S7). Although the shape of these models 
indicated negative associations between PM2.5 exposure and each fetal 
growth parameter in early pregnancy, there was no evidence of any 
specific susceptible windows (Fig. 1, A). In mid-pregnancy (Fig. 1, B), we 
identified that PM2.5 exposure during gestational weeks 1–2 was asso
ciated with increased EFW growth (βcum = 0.44%, 95% CrI = 0.22%, 
0.66%) while weeks 7–19 were associated with reduced EFW growth 
(βcum = − 1.17%, 95% CrI = − 1.59%, − 0.75%). As with EFW, we 
observed a susceptible window of exposure during the first two gesta
tional weeks on mid-pregnancy AC growth (βcum = 0.30%, 95% CrI =
0.18%, 0.42%), while PM2.5 exposure during weeks 6–9 was associated 
with decreased AC growth in mid-pregnancy (βcum = − 0.35%, 95% CrI 

Table 1 
Maternal, paternal, and fetal characteristics of 2328 INMA partici
pants, 2003–2008.  

Characteristics n (%) 

Maternal age (years) 
< 25 166 (7.13) 
25–29 749 (32.17) 
30–34 987 (42.40) 
≥ 35 426 (18.30) 

Maternal education 
Up to primary 561 (24.10) 
Secondary 962 (41.32) 
University 805 (34.58) 

Paternal education 
Primary 823 (35.35) 
Secondary 1032 (44.33) 
University 473 (20.32) 

Social class 
Low 947 (40.72) 
Middle 620 (26.63) 
High 760 (32.65) 

Cohabitation 
Living with father 2294 (98.54) 
Not living with father 34 (1.46) 

Pre-pregnancy BMI (kg/m2) 
Underweight (≤18.49) 103 (4.42) 
Normal (18.50–24.99) 1607 (69.03) 
Overweight (25.0–29.99) 436 (18.73) 
Obese (≥30.0) 182 (7.82) 

Parity 
0 1315 (56.49) 
1 859 (36.90) 
≥ 2 154 (6.62) 

Smoking during pregnancy 
No 1590 (68.30) 
Yes 738 (31.70) 

Alcohol use during pregnancy 
< 1 drink per week 2120 (91.07) 
≥ 1 drink per week 208 (8.93) 

Fetal sex 
Female 1129 (48.50) 
Male 1199 (51.50) 

Child’s birth season 
Spring 571 (24.53) 
Summer 558 (23.97) 
Autumn 542 (27.58) 
Winter 557 (23.93)  
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= − 0.50%, − 0.21%). Although attenuated, a similarly shaped curve was 
observed for the associations between weekly PM2.5 exposures and mid- 
pregnancy FL as for EFW, with a susceptible window of exposure iden
tified during gestational weeks 7–19 (βcum = − 0.43%, 95% CrI =
− 0.64%, − 0.21%). Lastly, we observed that PM2.5 exposure during 
gestational weeks 5–6 was marginally associated with increased mid- 
pregnancy BPD growth (βcum = 0.10%, 95% CrI = 0.05%, 0.16%). 
With regards to fetal growth during late pregnancy (Fig. 1, C), we 
observed a susceptible window of PM2.5 exposure for reduced EFW 
growth during gestational weeks 1–6 (βcum = − 0.77%, 95% CrI =
− 1.07%, − 0.47%), while PM2.5 exposure during weeks 29–33 (βcum =

0.42%, 95% CrI = 0.20%, 0.64%) was associated with increased EFW 
growth. In addition, a similar pattern was found for AC, with gestational 
weeks 1–7 (βcum = − 0.32%, 95% CrI = − 0.46%, − 0.18%) identified as a 
susceptible window of exposure for reduced AC growth in late preg
nancy. As with EFW, we also observed a susceptible window of exposure 
to PM2.5 during the end of the period (weeks 27–33) associated with 
increased late pregnancy AC growth (βcum = 0.30%, 95% CrI = 0.16%, 
0.44%). No evidence of specific susceptible windows of exposure to 
PM2.5 on FL and BPD growth in late pregnancy were observed. 

Our results were unchanged after applying IPWs to the distributed 
lag non-linear models (data not shown). No evidence of sexually 
dimorphic differences in sensitive windows of exposure to PM2.5 on fetal 
growth was identified based on our comparison of model fit between 
models with and without an interaction term between the cross-basis 
and fetal sex. However, visual inspection of the fetal sex-specific 
model results (Supplementary Material, Figs. S1, S2, and S3) did 
reveal some differences in patterns of effect and windows of suscepti
bility to PM2.5 between male and female fetuses. For example, suggested 
negative associations between PM2.5 exposure and decreased early fetal 
growth for AC and BPD appear to be primarily influenced by female 
fetuses. Additionally, windows of susceptibility to PM2.5 on mid- 
pregnancy EFW and FL appear isolated to female fetuses. Similarly, as
sociations between PM2.5 exposure and late EFW and AC growth also 
appear in female but not male fetuses. In addition, adjustment for 
weekly prenatal NO2 exposure resulted in wider credible intervals, the 
direction and strength of the associations between PM2.5 exposure and 
each fetal growth parameter remained similar (Supplementary Material, 
Fig. S4). 

Fig. 1. Associations between weekly prenatal PM2.5 exposure (per 5 μg/m3 increase) and percentage change in estimated fetal weight, abdominal 
circumference, femur length, and biparietal diameter during (A) early (first 12 weeks of gestation), (B) mid- (12–20 weeks of gestation), and (C) late 
(20–34 weeks of gestation) pregnancy. Models were adjusted for maternal age, maternal and paternal education, social class, cohabitation, pre-pregnancy BMI, 
parity, smoking and alcohol use during pregnancy, child’s birth season, fetal sex, and account for heterogeneity between regions. The x-axes represent gestational 
weeks, and the y-axes represent the percentage change in fetal growth. The solid lines represent the estimated values from the fitted distributed lag non-linear 
models, and the shaded areas represent 95% CrI around the estimate for each gestational week. The gestational weeks where the 95% CrI excludes null value 
(dotted horizontal line) were identified as susceptible windows of exposure. 
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3.3. Associations between PM2.5 exposure averaged across pregnancy 
periods and fetal growth 

The associations of prenatal PM2.5 exposure averaged across 
different pregnancy periods with fetal growth during early, mid-, and 
late pregnancy are shown in Fig. 2 (see corresponding effect estimates 
and 95% CrIs in Supplementary Material, Table S8). We observed re
ductions in early pregnancy growth for EFW (β = − 0.55%, 95% CrI =
− 1.16%, 0.05%), AC (β = − 0.42%, 95% CrI = − 0.87%, 0.03%), and 
BPD (β = − 0.44%, 95% CrI = − 0.91%, 0.03%) in relation to PM2.5 
exposure averaged across gestational weeks 1–11, although none of 
these estimates were statistically significant. Little evidence of associa
tions between period-averaged PM2.5 exposure and mid-pregnancy 
growth was observed, although exposure during weeks 12–19 was 
marginally associated with reduced EFW during this period (β =
− 0.85%, 95% CrI = − 1.79%, 0.09%). PM2.5 exposures during the first 
eleven weeks was associated with reduced growth in EFW (β = − 1.14%, 
95% CrI = − 1.85%, − 0.43%) and AC (β = − 0.48%, 95% CrI = − 0.80%, 
− 0.16%) in late pregnancy. 

4. Discussion 

Our study implemented distributed lag non-linear models to explore 
temporally refined (weekly) susceptible windows of exposure to PM2.5 
on longitudinally-measured fetal growth trajectories, which addresses a 
gap in the literature regarding not only the influence of the timing of 
PM2.5 exposure on fetal growth but also the influence of PM2.5 exposure 
on the growth of specific fetal body segments. The assessment of 

susceptible windows of exposure revealed a few consistent patterns, 
including a window of sensitivity to exposure during gestational weeks 
29–33 and 27–33 on increased late pregnancy growth for both EFW and 
AC, respectively. We also applied more ‘traditional’ metrics of exposure 
averaged across multi-week periods. Although this method provided 
some consistent results with the distributed lag non-linear models, the 
use of exposures averaged across multi-week periods obscured the bio
logically plausible finding regarding increased growth in late pregnancy. 

Several previous epidemiologic studies have utilized fetal biometry 
to address limitations in the use of birth anthropometry to understand 
the association between exposure to PM2.5 and fetal growth. For 
example, a study conducted in North East Scotland (Clemens et al., 
2017) found that a 5 μg/m3 increase in PM2.5 concentrations was asso
ciated with reductions in z-scores of FL, AC, and BPD during the third 
trimester. Additionally, this study utilized annual PM2.5 exposures 
estimated at the maternal residential postal code which may not reflect 
individual exposure levels nor inform temporal variability. Two Chinese 
studies (Cao et al., 2019; Lin et al., 2020) observed negative associations 
between PM2.5 exposure aggregated from conception to the time of each 
ultrasound measurement and several measures of fetal growth, 
including EFW, AC, FL, and BPD. In a study of Shanghai women, Shao 
et al. (2020) reported reductions in AC and FL at gestational week 24 
were associated with a 10 μg/m3 increase in PM2.5 exposure averaged 
during the first and second trimesters. However, women in these Chi
nese studies experienced PM2.5 exposure levels higher than women in 
the United States (US) and Europe (average range from approximately 
30 to 80 μg/m3) and thus, may not be generalizable and directly com
parable to our results. In addition, in a study of women who resided in 

Fig. 2. Associations between prenatal PM2.5 exposure (per 5 μg/m3 increase) averaged across multi-week pregnancy periods and percentage change in (A) 
estimated fetal weight, (B) abdominal circumference, (C) femur length, and (D) biparietal diameter during early (first 12 weeks of gestation), mid- (12–20 
weeks of gestation), and late (20–34 weeks of gestation) pregnancy, mutually adjusted for exposure during each period. Models were adjusted for maternal 
age, maternal and paternal education, social class, cohabitation, pre-pregnancy BMI, parity, smoking and alcohol use during pregnancy, child’s birth season, fetal sex, 
and account for heterogeneity between regions. The y-axes represent the percentage change in fetal growth. The dotted horizontal lines represent the null value. 
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Eastern Massachusetts, Leung et al. (2022) observed that a 5 μg/m3 

increase in PM2.5 exposure averaged across the first 16 gestational weeks 
was associated with reduced AC and BPD z-scores measured during the 
routine anatomy scan during the second trimester (before 24 weeks of 
gestation). While these previous results support the hypothesis that 
PM2.5 exposure is related to impaired fetal growth, they have relied on 
exposures aggregated across relatively large periods of pregnancy, or the 
entire gestational period and thus, were unable to evaluate specific 
windows of sensitivity to exposure at different time points during 
pregnancy. 

Similar to Shao et al. (2020) and Leung et al. (2022), we observed 
associations between PM2.5 exposure in several gestational weeks during 
early pregnancy (i.e., gestational weeks 1–7) and decreased AC growth 
in late pregnancy. While Shao et al. (2020) indicated that PM2.5 expo
sures during each trimester were associated with reduction of FL 
measured at both weeks 24 and 36, we did not observe associations 
between PM2.5 exposures and late pregnancy FL growth. Additionally, 
Leung et al. (2022) reported that PM2.5 exposure averaged across the 
first 16 gestational weeks was associated with decreased BPD measured 
during the routine anatomy scan, while we found a marginal association 
between PM2.5 averaged across weeks 1–11 and reduced early preg
nancy BPD growth, and no association was observed with 
mid-pregnancy BPD. A direct comparison between the studies from Shao 
et al. (2020) and Leung et al. (2022) and ours is difficult given differ
ences in the timing of assessment of both exposure and fetal biometry; 
moreover, these previous studies analyzed fetal size while we analyzed 
fetal growth trajectories. To date, we are aware of only one Chinese 
study that has employed distributed lag non-linear models to examine 
associations of exposure to PM2.5 on a growth-related outcome (Wu 
et al., 2018). This study found exposure to PM2.5 during weeks 27–33 
was associated with decreased birth weight, and exposure in weeks 
approximately 20–25 was (not statistically significantly) associated with 
increased birth weight. Although this study did not directly assess fetal 
growth as an outcome and evaluated extremely high levels of change in 
PM2.5 exposure (about per 55 μg/m3) that are not relevant to Western 
countries, it supports the necessity of refining exposure assessments due 
to the differential effects of air pollution exposures on birth weight (and 
by extension, fetal growth) during periods that do not align with tradi
tionally defined time periods (e.g., trimesters). 

Our study identified multiple susceptible windows of PM2.5 exposure 
associated with delayed fetal growth. Several biological mechanisms 
have been implicated in this association, including systemic oxidative 
stress, inflammation, and vascular and placental dysfunction, which 
lead to the inhibition of transplacental nutrient exchange (Kannan et al., 
2007; Liu et al., 2016; Veras et al., 2008). Reduced placental vascular
ization may also explain differential influences of air pollution on fetal 
growth during different time periods in gestation. The placenta is more 
vulnerable to air pollution during the first trimester, and early placental 
insults may lead to delayed effects, including pregnancy complications 
(Hettfleisch et al., 2017). This delayed effect has been confirmed in 
Griffin et al.‘s findings that dysregulated placentation and angiogenesis 
led by maternal infections in early pregnancy (before 20 weeks of 
gestation) may result in changes in umbilical blood flow during the third 
trimester (Griffin et al., 2012). In addition, different body parts may be 
differently influenced by air pollution as time, duration, and intensity of 
exposure may selectively affect the maturation of different body seg
ments (Selevan et al., 2000). For example, brain development is critical 
in the early to mid-pregnancy periods (Salihagić Kadić and Predojević, 
2012; Selevan et al., 2000); therefore, measuring head growth only 
during late pregnancy may not be informative. Lastly, growth velocities 
vary by organ system. While AC marks growth in subcutaneous fat and 
abdominal organs and has relatively stable growth velocity throughout 
pregnancy (Ohuma et al., 2021), FL and BPD are indicators of fetal 
skeleton growth with the highest growth velocities around 16–20 
gestational weeks, followed by rapid decrease in growth velocity until 
term. This may coincide with our finding of a sensitive window of 

exposure to PM2.5 for reduced FL growth in mid but not late pregnancy. 
Further, the brain-sparing effect – a fetal adaptive reaction for brain 
development to placental insufficiency (Roza et al., 2008; Swanson 
et al., 2009) may possibly explain the limited evidence of susceptible 
windows of exposure to PM2.5 on BPD in our study. 

Though not identified in the ‘traditional’ analysis of PM2.5 exposure 
averaged across pregnancy periods, the application of distributed lag 
non-linear models identified several positive associations between PM2.5 
and fetal growth. Notably, we found that PM2.5 exposure during weeks 
29–33 and 27–33 was associated with increased late pregnancy growth 
for EFW and AC, respectively. We recently published similar positive 
patterns between exposure to NO2 during weeks in the second and third 
trimesters and increased late pregnancy EFW, AC, and BPD growth 
(Whitworth et al., 2022). Studies from other groups also report similar 
findings with respect to PM10 exposure and increased birth anthro
pometry (Lamichhane et al., 2018) and fetal growth (van den Hooven 
et al., 2012; Zhao et al., 2018). A study conducted in the Netherlands 
(van den Hooven et al., 2012) showed that women exposed to third 
(30.6–33.6 μg/m3) and highest (>33.6 μg/m3) quartile levels of PM10 
averaged across pregnancy was associated with an increase EFW growth 
during weeks 20–24 compared to those with the lowest quartile (<28 
μg/m3). Additionally, in a large study of Chinese women, Zhao et al. 
(2018) reported that the risk of over-growth (classified as z-scores of 
growth >97th centile) in FL and head circumference increased by about 
20% for women exposed to more than 150 μg/m3 of PM10 averaged from 
conception to ultrasound examination compared to those with PM10 less 
than 150 μg/m3. Recently, exposure to PM2.5 has also been implicated to 
increased risk of macrosomia in a nationwide study of Chinese women 
(Chen et al., 2020). One possible mechanism for the effect of increased 
late pregnancy growth is that the levels of adipokines such as leptin and 
adiponectin in the placenta may be influenced by exposure to air 
pollution such as PM2.5 and NO2 in late pregnancy (Alderete et al., 2018; 
Lavigne et al., 2016), followed by various metabolic actions in utero, 
leading to abnormal fetal weight gain in late pregnancy (Alderete et al., 
2018). Another hypothesis is related to intrauterine catch-up growth, 
such that exposure to several air pollutants (PM2.5, PM10, SO2, O3, and 
NO2) induces delayed growth in early pregnancy following by a period 
of growth acceleration in late pregnancy (Shao et al., 2020). Given the 
emerging evidence related to prenatal air pollution exposure in post
natal catch-up growth (Fleisch et al., 2015; Starling et al., 2020), addi
tional studies are needed to clarify the mechanisms underlying the effect 
of air pollution exposure in rapid catch-up growth during late 
pregnancy. 

Although our analysis comparing model fit between models with and 
without an interaction term did not support fetal sex differences in 
susceptible periods of exposure to PM2.5 on fetal growth, visual com
parison of fetal-sex specific models did suggest sex differences, with 
many findings appearing only among female fetuses. The previous 
literature regarding the sexually-dimorphic impacts of PM2.5 exposure 
on fetal growth has been mixed with Leung et al. (2022) and Clemens 
et al. (2017) reporting no fetal sex differences in associations between 
exposure to PM2.5 and fetal growth. However, a systematic review of the 
effect of infant gender on associations between air pollution and varied 
pregnancy outcomes indicated evidence that female infants were more 
susceptible to air pollution with regard to low birth weight, though the 
number of studies included was limited (Ghosh et al., 2007). To our 
knowledge, ours is the first study to investigate the impact of fetal sex on 
susceptible periods of exposure to PM2.5 on fetal growth trajectories. 
Future studies utilizing large sample sizes and from diverse populations 
should investigate this question further and animal studies would help to 
better inform potential mechanisms through which sexually-dimorphic 
impacts of air pollution on fetal growth may occur. 

The use of distributed lag non-linear models in our study allowed us 
to identify more refined critical periods of exposure than traditional 
statistical models using exposure windows corresponding to relatively 
wide exposure windows (e.g., trimesters) (Wilson et al., 2017). There 
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were several instances where the analyses of PM2.5 exposure averaged 
across pregnancy periods were inconsistent with the analyses of weekly 
susceptible windows of PM2.5 exposure. Most notably were the 
above-mentioned positive associations between PM2.5 exposure during 
weeks 27–33 and late pregnancy growth in EFW and AC. These bio
logically plausible associations were obscured when exposures were 
averaged across weeks 20–33 (the period in which late pregnancy 
growth was also measured). These findings clearly demonstrate that the 
use of traditional exposure metrics may not align with periods of fetal 
vulnerability and may mask the identification of windows of sensitivity. 
The use of distributed lag non-linear models has additional advantages. 
For example, linear models do not allow for simultaneous modeling of 
the temporal and intensity components of the lagged exposure (Gas
parrini et al., 2010, 2017). Also, issues regarding multiple comparisons 
may be eliminated when simultaneously modeling 
lag-exposure-outcome relationships using the cross-basis structure 
inherent in distributed lag non-linear models (Gasparrini and Arm
strong, 2013; Gasparrini et al., 2010). The distributed lag non-linear 
models also revealed increased mid-pregnancy growth in EFW, AC, 
and BPD associated with PM2.5 exposure in the first several weeks of 
pregnancy, though the credible intervals for these estimates were wide. 
We are unaware of any biologically plausible mechanism to support 
these findings. It is possible that they are due to chance or the linearity 
constraints at the boundary knots in the natural cubic splines used in the 
models. Additionally, the present study may be susceptible to potential 
live-birth bias if fetuses who were particularly susceptible to PM2.5 
exposure were unobserved due to pregnancy loss (Goin et al., 2021; 
Leung et al., 2021; Liew et al., 2015). The magnitude of this bias likely 
depends on several factors, including the mechanism of selection (Goin 
et al., 2021; Leung et al., 2021). Given the observed associations be
tween PM2.5 exposure and pregnancy loss (Gaskins et al., 2019; Zhang 
et al., 2019), live birth bias may contribute, at least in part, to the un
expected protective associations observed in our study. 

The assessment of PM2.5 exposure in this study did not account for 
individual time-activity patterns and lacked information on exposures to 
indoor air pollutants; thus, may be susceptible to potential exposure 
misclassification. However, our exposure assessment did account for 
residential mobility during pregnancy, which improves the accuracy of 
estimating individual exposure levels compared to previous air pollution 
investigations. While it is possible that some measurement error may 
have been introduced in our air pollution models by using the ratio of 
measured PM10:PM2.5 to inform the temporal adjustment of PM2.5 for 
some study regions, we accounted for between-region heterogeneity 
through the random effect in the statistical models. Furthermore, our 
study was unable to account for unmeasured factors such as ambient 
temperature. Although we attempted to control for temperature effects 
through the inclusion of birth season in our models, we recognize that 
season is an imperfect proxy of temperature. Potential measurement 
error in fetal biometry was limited because ultrasound measurements 
were conducted under a standard protocol by specialized obstetricians. 
Also, fetal growth z-scores were calculated based on longitudinal growth 
curves constructed using fetal biometry data measured from multiple 
ultrasounds and thus, the possible random error in modeling growth is 
diminished. 

5. Conclusions 

Our analysis of susceptible windows of exposure to PM2.5 and fetal 
growth using data from a large prospective birth cohort in Spain pro
vides evidence of the differential influences of prenatal PM2.5 exposure 
on fetal growth. In particular, results of the distributed lag non-linear 
models revealed that PM2.5 exposure during specific weeks of early 
and mid-pregnancy were associated with reduced mid- and late preg
nancy EFW and AC growth, while PM2.5 exposure during late pregnancy 
was associated with increased EFW and AC growth in late pregnancy. 
These analyses highlight the importance of refining exposure estimates 

in studying the associations of environmental exposure on adverse fetal 
growth given, as seen in our study, traditional exposure metrics may 
obscure the differential influences of exposure when aggregating expo
sure over broad periods and ignore fetal vulnerability on growth in 
specific periods and body segments. Further replication studies with 
refined exposure assessments are warranted to evaluate the windows of 
susceptibility to air pollution exposure to advance the understanding of 
the etiology of adverse fetal growth and rule out possibly spurious 
findings and to explore susceptible windows of exposure to other preg
nancy outcomes that have been widely associated with air pollution, 
such as preterm birth. The evidence provided by this study not only 
supports the need to apply novel methods to enhance the understanding 
of the underlying mechanism of prenatal air pollution as a cause of 
adverse health effects in children but may also inform future public 
health interventions, such as those targeting community-wide re
ductions in air pollution levels, to further reduce the adverse effects of 
environmental factors on children. 
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