
European Journal of Operational Research 305 (2023) 1323–1336 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

Reducing the time required to find the Kemeny ranking by exploiting 

a necessary condition for being a winner 

� 

Noelia Rico 

1 , Camino R. Vela , Irene Díaz 

∗

Department of Computer Science, University of Oviedo, Edificio Departamental Oeste. Módulo 1, 2. a planta. Calle Pedro Puig Adam, s/n., Campus de Gijón, 

C.P. 33204, Spain 

a r t i c l e i n f o 

Article history: 

Received 21 June 2021 

Accepted 20 July 2022 

Available online 25 July 2022 

Keywords: 

Group decisions and negotiations 

Combinatorial optimization 

Computational social choice 

Ranking aggregation 

Kemeny method 

a b s t r a c t 

The ranking aggregation problem is gaining attention in different application fields due to its connec- 

tion with decision making. One of the most famous ranking aggregation methods can be traced back to 

Kemeny in 1959. Unfortunately, the problem of determining the result of the aggregation proposed by 

Kemeny, known as Kemeny ranking as it minimizes the number of pairwise discrepancies from a set 

of rankings given by voters, has been proved to be NP-hard, which unfortunately prevents practitioners 

from using this method in most real-life problems. In this work, we introduce two exact algorithms for 

determining the Kemeny ranking. The best of these algorithms guarantees a reasonable search time up to 

14 alternatives, showing an important reduction of the execution time in comparison to other algorithms 

found in the literature. Moreover, a dataset of profiles of rankings is provided and a study of additional 

aspects of the votes that may have impact on the execution time required to determine the winning 

ranking is also detailed. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The need of ranking different alternatives according to the pref- 

rences of some voters arises frequently in many fields of applica- 

ion such as medicine ( Cao, Guo, Ao, & Zhou, 2020 ), recommender 

ystems ( Oliveira, Diniz, Lacerda, Merschmanm, & Pappa, 2020 ) 

nd quality of life research ( Goerlich & Reig, 2021 ). For this rea-

on, preference aggregation has caught the attention of researchers 

rom many different fields and in particular of social choice theo- 

ists. Within the field of social choice theory, methods of differ- 

nt nature have been proposed to obtain the ranking that best 

epresents the preferences of voters ( Fishburn, 1973 ). In particu- 

ar, the interest of this paper lies in the subfield of social choice 

heory usually referred to as computational social choice ( Brandt, 

onitzer, Endriss, Lang, & Procaccia, 2016 ), which focuses on the 

omputation requirements and aspects related to the efficiency of 

hese methods. 
� This research has been supported by Grant TIN2017-87600-P from the Spanish 

overnment and PID2019-106263RB-I00. 
∗ Corresponding author. 

E-mail address: sirene@uniovi.es (I. Díaz) . 
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The main difficulty is then to define methods that avoid 

he voting paradox. In this direction, Kemeny (1959) proposed a 

ethod that searches for the ranking that is the closest to all rank- 

ngs given by voters. This method naturally extends Condorcet’s 

roposal in the sense that when the Condorcet ranking exists, it is 

he ranking obtained by the Kemeny method. Although there ex- 

st different approaches for solving the ranking aggregation prob- 

em ( Schulze, 2011; Tideman, 1987 ), the one proposed by Kemeny 

s the only one that has been proved to be neutral , consistent and 

ondorcet at the same time ( Hemaspaandra, Spakowski, & Vogel, 

005; Young, 1988 ). These desirable properties make the Kemeny 

ethod very appealing to be used in real-life problems. 

In order to determine the Kemeny ranking, it is necessary to 

ompute the distance of all the possible rankings to the rankings 

rovided by some voters. This is necessary because the Kemeny 

anking is defined as the one that minimizes the distance to the 

ankings given by the voters. This fact makes the complexity of 

he Kemeny method greatly depend on the number of alternatives. 

nfortunately, there exists no known algorithm to compute the Ke- 

eny ranking in polynomial time for any number of alternatives, 

hich actually prevents its use in practice in many real-life prob- 

ems. In fact, the problem of finding the Kemeny ranking has been 

roved to be NP-hard ( Bartholdi, Tovey, & Trick, 1989 ). Some al- 

orithms have been proposed over the years in order to reduce 
under the CC BY-NC-ND license 
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Table 1 

Profile of rankings π4 
10 given by ten voters on the set of four alternatives 

A = { a 1 , a 2 , a 3 , a 4 } (left) and corresponding outranking matrix (right). 

Table 2 

Points annotated to compute the Kemeny distance between the rankings r i 
and r j based on the order of the alternatives a k and a � . 

a k � j a � a k ∼ j a � a � � j a k 

a k �i a � 0 1 2 

a k ∼i a � 1 0 1 

a � �i a k 2 1 0 
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π  
he number of rankings to explore to determine the Kemeny rank- 

ng ( Azzini & Munda, 2020 ). Along this line of research, we propose

wo new exact algorithms that reduce the number of rankings to 

xplore by using some intrinsic properties related to the domain 

f the Kemeny problem. 

The remainder of this paper is organized as follows. In 

ection 2 , the Kemeny method and the notation used throughout 

his work are introduced. Section 3 discusses the use of branch and 

ound algorithms for computing the Kemeny ranking. More pre- 

isely, the existing branch and bound algorithms for the computa- 

ion of the Kemeny ranking already described in the literature are 

ecalled and some new proposals are introduced. The experiments 

onducted to measure the performance of the proposed algorithms 

nd the obtained results are discussed in Section 4 . Additional as- 

ects concerning the impact of the characteristics of the profile of 

ankings on the execution time are analyzed in Section 5 . Some 

nal remarks and future lines of research are given in Section 6 . 

. The Kemeny ranking aggregation method 

Consider a set of n alternatives A = { a 1 , · · · , a n } . A binary re-

ation R on the set A is a subset of the Cartesian product A × A ,

hat is, a set of ordered pairs (a i , a j ) ∈ A . It is usually noted as

A , R ) . A linear order is a binary relation that is transitive, anti-

ymmetric and complete ( a i Ra j ∨ a j Ra i ). The linear order (A , �) is

alled a ranking , being � the better than preference on the set of 

lternatives A ( Roberts & Tesman, 2009 ). Obviously, if A contains 

 alternatives, there are n ! different rankings that can be obtained 

rom the set. Note that a i � a j or a j � a i for each pair of alterna-

ives a i , a j ∈ A in a ranking with i � = j. As an example, given the

et of alternatives A = { a 1 , a 2 , a 3 } , one of the 6 different rankings

hat can be obtained is a 1 � a 3 � a 2 . The alternative ranked at 

he first position of a ranking (most left) is considered the best or 

ost preferred alternative and, consequently, the alternative ranked 

t the last position is considered the worst or least preferred alter- 

ative. 

We refer as ranking with ties to any linear order defined con- 

idering the binary relation as transitive and complete but not an- 

isymmetric. These are also known as weak orders. In this kind of 

ankings, for all pairs of alternatives a i , a j ∈ A such that i � = j the

elationship between the pair is known and can be better than ( �) 

r indifferent ( ∼) such that either one of the three must happen: 

 i � a j , a j � a i or a i ∼ a j . As an example, given the set of alter-

atives A = { a 1 , a 2 , a 3 , a 4 } , a ranking with ties on this set could

e a 1 � a 2 ∼ a 4 � a 3 , indicating that a 1 is the most preferred al-

ernative, the alternatives a 2 and a 4 are equally preferred and at 

he same time less preferred than a 1 and more preferred than a 3 , 

hich is the least preferred alternative. 

A profile of rankings πn 
m 

is a list of m rankings (with or without 

ies) given by m different voters over the set of n alternatives. A 

ompact representation of a profile of rankings can be given under 

ssumption of anonymity, that is, when all the voters are assumed 

o be equal. In this work, anonymity is assumed, which makes pos- 

ible to use a compact representation of the profile that contains 

 

′ ≤ m different rankings, and each r i ∈ πn 
m 

of these unique rank- 

ngs is weighted by the number w i of voters that expressed the 

anking r i . Thus, it holds that m = 

∑ m 

′ 
i =1 w i . 

The profile of rankings may be further simplified by just pro- 

iding the pairwise comparisons between the pairs of alternatives 

 i , a j ∈ A by means of the outranking matrix ( Arrow & Raynaud,

986 ). 

efinition 1. The outranking matrix O is a matrix representing the 

rofile such that each element o i j ∈ O represents the number of 

imes that the alternative a i is preferred over the alternative a j . 

herefore, for rankings (with or without ties), it holds that o i j + 
1324 
 ji = m for any i � = j. By definition, the diagonal elements o i j when

 = j of the outranking matrix are set to 0. 

Computationally, the value of the element o i j when i � = j is ob- 

ained from πn 
m 

by annotating 1 point every time that a i � a j and 

.5 points every time that a i ∼ a j . An example of a profile of rank-

ngs and its corresponding outranking matrix is shown in Table 1 . 

The aim of a ranking aggregation function is to summarize the 

nformation of the profile of rankings into the ranking that best 

epresents the preferences of the voters of the profile. The result- 

ng ranking is usually referred to as the winning ranking . In this 

ork, we try to find the ranking (without ties) that results from 

ombining the rankings (with or without ties) in a profile of rank- 

ngs using the Kemeny method. 

Kemeny (1959) proposed a method that selects as the winning 

anking from all possible rankings on A , the ranking s that min- 

mizes the so-called Kemeny distance δ(s, πn 
m 

) from the ranking 

o the profile of rankings. Intuitively, this distance represents the 

umber of pairwise discrepancies in the relative order of every 

air of alternatives in the ranking s and all the rankings in the 

rofile πn 
m 

. Formally, given two rankings r i and r j on the set of 

lternatives A , the Kemeny distance between these two rankings 

s computed by annotating for each pair of alternatives a k , a � ∈ A
 certain number of points d r i ,r j (a k , a � ) according to the order of

hese alternatives in the rankings, as shown in Table 2 . 

By adding these points for every pair of alternatives, the Ke- 

eny distance δ(r i , r j ) between two rankings is defined as 

(r i , r j ) = 

n −1 ∑ 

k =1 

n ∑ 

� = k +1 

d r i ,r j ( a k , a � ) . (1) 

xample 1. As an example, we illustrate the computation of the 

emeny distance between the rankings r 1 = a 3 � a 4 � a 1 � a 2 and 

 2 = a 2 � a 3 ∼ a 4 � a 1 . First of all, it is necessary to check the rela-

ive position of a 1 with respect to the three remaining alternatives. 

his comparison annotates 2 + 0 + 0 = 2 points, as a 1 is ranked at

 worse position than a 3 and a 4 in both rankings (0 points in each 

omparison because the order is the same) but the order of a 1 and 

 2 is the opposite in r 1 and r 2 (2 points). Afterwards, a 2 is com- 

ared with a 3 and a 4 , which annotates 2 + 2 = 4 points because a 2 
s ranked at a worse position than a 3 and a 4 in r 1 but at better

osition in r 2 (different order, 2 points each). Lastly, a 3 and a 4 are 

ompared, adding 1 more point as both alternatives are tied in r 2 
ut not in r 1 . This procedure results in a final Kemeny distance of 

(r 1 , r 2 ) = (2 + 0 + 0) + (2 + 2) + (1) = 7 . 

The Kemeny distance of a ranking s to the profile of rankings 
n 
m 

is defined as the sum of the Kemeny distances of s to all the
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Table 3 

Distance computed using the outranking matrix from all the possible rankings obtained using the set of al- 

ternatives A = { a 1 , a 2 , a 3 , a 4 } to the profile of rankings in Table 1 . 

Ranking δ Ranking δ Ranking δ Ranking δ

a 1 � a 4 � a 2 � a 3 14 a 1 � a 3 � a 4 � a 2 24 a 4 � a 3 � a 1 � a 2 30 a 2 � a 3 � a 1 � a 4 38 

a 4 � a 1 � a 2 � a 3 16 a 4 � a 2 � a 1 � a 3 24 a 3 � a 1 � a 4 � a 2 32 a 4 � a 3 � a 2 � a 1 38 

a 1 � a 2 � a 4 � a 3 18 a 2 � a 1 � a 4 � a 3 26 a 4 � a 2 � a 3 � a 1 32 a 2 � a 3 � a 4 � a 1 40 

a 1 � a 4 � a 3 � a 2 20 a 1 � a 3 � a 2 � a 4 28 a 3 � a 4 � a 1 � a 2 34 a 3 � a 4 � a 2 � a 1 42 

a 1 � a 2 � a 3 � a 4 22 a 2 � a 4 � a 1 � a 3 28 a 3 � a 1 � a 2 � a 4 36 a 3 � a 2 � a 1 � a 4 44 

a 4 � a 1 � a 3 � a 2 22 a 2 � a 1 � a 3 � a 4 30 a 2 � a 4 � a 3 � a 1 36 a 3 � a 2 � a 4 � a 1 46 
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ankings r i ∈ πn 
m 

, as shown in Eq. (2) . 

(s, πn 
m 

) = 

m 

′ ∑ 

i =1 

w i · δ(s, r i ) . (2) 

The Kemeny problem is actually a minimization problem, as for 

ll the possible n ! rankings of the n alternatives in A , the one (or

nes) that minimizes the value of δ is (or are) selected as the win- 

ing ranking. In the remainder of this paper, we skip the factor 2 

n Eq. (3) as it obviously does not affect the minimization problem. 

Equivalently, the Kemeny distance between a ranking s and the 

rofile of rankings may also be computed from the outranking ma- 

rix. This can be achieved by summing the elements of the matrix 

hat show disagreement with the ranking s . More formally, for two 

lternatives a i , a j , the element o i j shows the agreement of the vot-

rs with the order a i � a j and, conversely, the element o ji shows 

he disagreement of the voters with the order a i � a j . The Kemeny 

istance of the ranking s to the profile of rankings πn 
m 

is then given 

n terms of the outranking matrix O as follows: 

(s, πn 
m 

) = 2 ·
n ∑ 

i =1 

n ∑ 

j=1 

o ji · x i j with i � = j , (3) 

here x i j = 1 if a i �s a j and 0 otherwise; which represents the 

um of all the elements o ji such that a j is ranked at a worse posi-

ion than a i in the ranking s . 

xample 2. Consider the ranking r 1 = a 1 � a 3 � a 2 � a 4 . The 

istance of the ranking to the profile of rankings in Table 1 can be

omputed using Eq. (3) as follows. 

• Firstly, the alternative a i , i = 1 is considered, then x 1 j = 1 for

1 < j ≤ n . Thus, the sum of all the elements in the first col-

umn of the matrix ( 1 + 1 + 4 = 6 ) represents the disagree-

ment with a 1 being ranked at the first position. Thus, all the 

rankings with a 1 in the top position, i.e., of the form ‘ a 1 �
. . . ’ will have at least a distance to the profile of rankings of 

6, obtained after adding o 2 , 1 = 1 , o 3 , 1 = 1 and o 4 , 1 = 4 . 
• Secondly, as a 3 is in the second position let us consider next 

i = 3 , having x 3 j = 1 for j = 2 and j = 4 , as a 2 and a 4 are

ranked in a worse position. For this reason, the sum of all 

the elements in the third column of the matrix except the 

first one (because a 1 � a 3 and therefore o 1 , 3 does not repre- 

sent disagreement) are added ( o 2 , 3 + o 4 , 3 = 8 + 7 = 15 ). The

elements added are the ones that represent disagreement 

with a 2 being ranked at the second position when a 1 is al- 

ready ranked at the first position. 
• Finally, the fourth element of the second column ( o 4 , 2 = 7 ) 

represents the disagreement with a 2 being ranked over the 

alternative a 4 . This results in a Kemeny distance (recall that 

we omit the factor 2, as it does not affect the optimization 

problem) of δ(r 1 , π
n 
m 

) = ((1 + 1 + 4) + (8 + 7) + (7)) = 28 . 

The distances obtained using this simplification from all the 

ossible rankings to the profile of rankings in Table 1 are shown 

n Table 3 . 

m

1325 
From Example 2 it can be seen that the rankings that share the 

op alternatives will use the same elements of the outranking ma- 

rix associated to these alternatives in order to partially compute 

he distance from the ranking to the profile. Notice how, using 

q. (3) , it is possible to associate a common partial distance for 

ll the rankings that have the same top � alternatives in the same 

rder. 

efinition 2. Let A = { a 1 , · · · , a n } be a set of alternatives and let

 σ (1) � a σ (2) � · · · � a σ (� ) � a σ ( � +2 ) � · · · � a σ (n ) be a ranking with 

a permutation of { 1 , 2 , . . . , n } . Then, ρ = a σ (1) � a σ (2) � · · · �
 σ (� ) is a prefix of length � . 

efinition 3. Let A = { a 1 , · · · , a n } be a set of alternatives. Let ρ =
 σ (1) � a σ (2) � · · · � a σ (� ) be a prefix. The Kemeny partial distance 

rom a prefix to a profile πn 
m 

is defined as 

ρ (πn 
m 

) = 

� ∑ 

i =1 

� ∑ 

j=1 

o σ ( j) σ (i ) · x σ (i ) σ ( j) with σ (i ) � = σ ( j) , 

σ a permutation on the alternatives 

Given ρ , there are (n − � )! rankings on A that start with this 

refix. 

roposition 1. Let ρ be a prefix of length � , then 

ρ (πn 
m 

) ≤ δ( r ρ, πn 
m 

) , 

or each ranking r ρ = ρ � a σ ( � +1 ) � · · · � a σ (n ) . 

roof. It is straightforward as all the elements of the outranking 

atrix are non negative. Thus, by Def. 3 and Eq. (3) 

ρ (πn 
m 

) = 

� ∑ 

i =1 

� ∑ 

j=1 

o σ ( j) σ (i ) · x σ (i ) σ ( j) ≤
� ∑ 

i =1 

� ∑ 

j=1 

o σ ( j) σ (i ) · x σ (i ) σ ( j) 

+ 

n ∑ 

i = � +1 

n ∑ 

j= � +1 

o σ ( j) σ (i ) · x σ (i ) σ ( j) = δ( r ρ, πn 
m 

) 

�

Using Example 2 again to illustrate Proposition 1 , it is shown 

hat, if ρ := a 1 � a 2 , using the profile of rankings π4 
10 

given in 

able 1 , then the distance from this prefix to the profile is ob- 

ained from adding o 2 , 1 + o 3 , 1 + o 4 , 1 and then o 3 , 2 + o 4 , 2 obtain-

ng δρ = 1 + 1 + 4 + 2 + 7 = 15 . Further example of this can be ob-

erved in Table 3 , as the rankings that have the same first and sec-

nd alternative only differ in their distance taking into account the 

hird alternative a i and a j , so they differ only in the value o ji . 

The ranking that minimizes the Kemeny distance to the pro- 

le of rankings is typically referred to as the Kemeny ranking. This 

anking has also been referred to as the maximum likelihood rank- 

ng by some authors ( Young, 1988 ), as the Kemeny problem can be 

eformulated as the problem of seeking for the ranking that maxi- 

izes the agreement with the profile of rankings. 

Although along this paper we refer to the Kemeny ranking in 

ingular, it is necessary to keep in mind that the problem may have 

ore than one solution depending on the profile of rankings. 
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2 Henceforth, ρ will be used interchangeably for denoting the prefix and the node 

associated with the prefix. 
. Algorithms to solve the Kemeny problem 

A naive approach to solve the Kemeny problem would require 

o explore all the n ! possible rankings over the set of alternatives 

 in order to determine the one that is the closest to the pro-

le of rankings. This exploration of all the possible solutions of the 

emeny problem has a main drawback that prevents practitioners 

rom using this method in real-life problems, as the computation 

f the solution, both in terms of execution time and memory stor- 

ge, becomes unavoidably. Note that in this work we consider that 

he solution to the Kemeny problem is a strict ranking, therefore 

ot containing tied alternatives, which is a common practice in the 

iterature. Obviously, the number of possible rankings with tied al- 

ernatives is even greater than n ! (see, e.g., Bailey, 1998 ), therefore 

he consideration of rankings with tied alternatives as possible so- 

utions would lead to an even less-attractive problem from a com- 

utational point of view. 

The process of searching the Kemeny ranking can be framed 

s a combinatorial optimization problem , as it is based on finding 

n optimal solution from a finite set of tentative solutions. Within 

his framework, the set of all tentative n ! solutions of the prob- 

em is referred to as the search space of the problem and denoted 

y S. As already mentioned, this exhaustive search is not tractable, 

herefore it is necessary to carefully reduce the search space and 

void the exploration of some of the possible rankings. 

A possible way out for solving the problem is to consider 

ranch-and-bound (BB) . This kind of algorithms aims to optimize 

he value of an objective function by recursively splitting the search 

pace into different branches, which are subsequently pruned 

hen it is proved that they cannot lead to an optimal solution. 

n the context of the Kemeny problem, in order to determine the 

inning ranking for a profile of rankings πn 
m 

over the set of alter- 

atives A , the search space S is defined as the set of all possible

ankings s on A and the objective function to optimize is the Ke- 

eny distance δ(s, πn 
m 

) . The aim is to minimize the value of this

unction in order to find the Kemeny ranking. 

Different branch-and-bound algorithms have been proposed to 

nd the Kemeny ranking. Emond & Mason (2002) considered also 

eak orders as potential solutions and proposed to create branches 

or each pair of alternatives defining the three possible pairwise 

elations (better, worse, tied) for the pair of alternatives, subse- 

uently associating each branch with a correlation measure and 

enalty. Amodio, D’Ambrosio, & Siciliano (2016) further explored 

his idea. Barthelemy, Guenoche, & Hudry (1989) introduced the 

xploration of the rankings with the same prefix , i.e. the branches 

roup the rankings that rank the first alternatives in the same or- 

er. These prefixes have also been used by Muravyov (2007, 2013) . 

n a recent work, Azzini & Munda (2020) provided a necessary con- 

ition for alternatives to be at the top of the winning ranking and 

roposed a recursive algorithm based on this condition. Although 

hey did not frame their algorithm as a BB algorithm, it can be un- 

erstood as one, as it is based on pruning the search space accord- 

ng to the aforementioned necessary condition for an alternative to 

e ranked at the top position. Azzini and Munda’s algorithm will 

e explained in detail in the upcoming sections since it will be 

sed as base for the algorithms proposed in this work. 

.1. BB algorithms based on prefixes 

Branch and bound algorithms that build the rankings by adding 

ne alternative in each step are a strong option for solving the Ke- 

eny problem. As introduced in Definition 2 , a prefix of length 

 represents the order for the alternatives in the top � positions. 

iven a profile of rankings on a set of n alternatives, the search 

pace is modeled as a rooted tree structure of n levels where each 

evel � ∈ { 1 , . . . , n } of the tree contains nodes representing all dif-
1326 
erent prefixes of length � . Therefore, each node has an associated 

refix ρ that represents the subset of the search space containing 

ll the possible rankings beginning with that prefix 2 ( Muravyov, 

013 ). Each prefix has an associated partial distance δρ to the pro- 

le of rankings, which defines the lower bound for that branch, i.e., 

ll the rankings beginning with that prefix are at least at a distance 

ρ from the profile of rankings. 

Using this structure, the first level of the tree contains n nodes, 

here each node has a prefix of length one containing one differ- 

nt alternative a i ∈ A . Each node of the tree at the � -th level has

 − � successors, that are obtained by adding at the end of the pre- 

x ρ one of the alternatives in A that had not been added yet to 

he prefix ρ . The leaves of the tree at the (� = n ) -th level are rank-

ngs, therefore their associated δρ represents the distance of the 

orresponding possible solution to the profile of rankings. If the 

ree is not pruned, there are n ! leaves and all of them should be

xplored in order to determine the solution of the problem. These 

olutions are the leaf nodes that minimize δρ . 

Branch and bound algorithms ensure that no optimal solution is 

ost by using lower and upper bounds. Each node has an associated 

ower bound and, in case that this lower bound exceeds the upper 

ound, then the branch can be safely pruned as it cannot lead to 

n optimal solutions. 

The nodes are explored in a depth-first fashion, i.e., all the chil- 

ren of the node ρ that can lead to a potential solution are ex- 

lored before the siblings of ρ . The aim of the branch and bound 

lgorithm is to prune the branches of this tree using information 

f the problem in order to reduce the number of explored nodes. 

Let δρ = δρ (πn 
m 

) be the partial distance from the prefix ρ to 

he profile of rankings (see Proposition 1 ) and let us denote by 
∗ the best distance for a ranking solution s ∈ S found until the 

oment during the exploration of the search space, i.e. the low- 

st value of δρ found in a leaf node. The value δ∗ is the upper 

ound used to prune the tree, as the solutions that exceed this 

ound are not optimal solutions because at least one solution with 

ower distance to the profile has been found. As it was detailed in 

ection 2 , the distance δρ associated with a prefix cannot decrease 

hen a new alternative is appended to the prefix. Therefore, only 

he nodes whose associated δρ does not exceed the upper bound 

∗ (i.e., δρ ≤ δ∗) need to be explored, as they are the only ones that 

an lead to a solution that improves the current one. 

By using this process, δ∗ is modified at the beginning of the al- 

orithm with the distance of the first solution s explored and sub- 

equently updated every time that a leaf node that minimizes the 

istance to the profile is reached. At the end of the execution, the 

alue of δ∗ is the minimum distance to the profile of rankings. 

The steps of this branch and bound algorithm using δ to prune 

he search space are presented in Algorithm 1 . 

Notice that the default initialization of δ∗ can be represented as 
∗ = + ∞ , which makes δ∗ to take the value of the first leaf node

xplored as previously explained. 

.2. Necessary condition for the winning alternative 

Azzini & Munda (2020) proved in Proposition 1 of their work 

hat a necessary condition for a ranking to be the Kemeny rank- 

ng is that the alternative a i ∈ A at the top position must satisfy 

hat 
∑ n 

j=1 o i j ≥ ∑ n 
j=1 o ji . Let us emphasize that this property is 

 necessary but not sufficient condition, meaning that not all the 

lternatives that have a row sum greater than or equal to their cor- 

esponding column sum are top alternatives. 

For the sake of simplicity, in the remaining of this paper we 

enote by αi the truth value obtained from the Boolean expression 
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Algorithm 1: BB algorithm based on prefixes with prune 

based on δ. 

input : Initial distance δ∗. By default, δ∗ = 

+ ∞ . 

1. Define the empty list of solutions τ . 

2. Initialize the stack of nodes to explore with n nodes, 

each of them contains a prefix ρ of 

length � = 1 with a different alternative a i ∈ A . 

3. Take (and remove) the first node ρ from the stack and 

compute the distance δρ := δρ (πn 
m 

) . 

• If � = n and δρ = δ∗, then add this solution to τ . 
• If � = n and δρ < δ∗, then overwrite τ with the current 

ranking and update δ∗ := δρ . 
• If � < n and δρ ≤ δ∗, then add at the beginning of the 

stack all the possible children of 

this node, obtained by appending each of the n − � 

alternatives that are not already fixed 

in ρ at the end of the prefix. 

4. Repeat recursively Step 3 until the stack is empty. 

α

w

o

o

E

p

g

t

p

1

a

h

t

a

t

&

A

t

i

r

c  

t

m

α

c

e

c

o

t

h

m

d

n

c

f

i

 

w

3

t

c

C

t

e

t

t

o

t

i

i

K

d

e

t

m

e

a

i = 

n ∑ 

j=1 

o i j ≥
n ∑ 

j=1 

o ji , (4) 

hich means that αi = True when the alternative a i is preferred 

ver the remaining alternatives in A at least as many times as the 

ther alternatives are preferred over a i . 

Based on this condition, Azzini and Munda define the Mork- 

xact algorithm to solve the Kemeny problem by recursively ex- 

loring the alternatives verifying that αi = True . 3 By using this al- 

orithm, they obtain a tractable execution time up to n = 13 al- 

ernatives. To achieve these results, they perform experiments on 

rofiles of rankings synthetically generated, reaching profiles with 

3 alternatives and with a constant number of 100 voters. 

Although they just refer to their algorithm as a recursive ex- 

ct algorithm , this is in fact a branch and bound algorithm that 

as been implemented recursively. In this paper, we characterize 

his algorithm as such, in order to focus on how their condition 

llows to prune the search space and can be combined with addi- 

ional pruning criteria. Furthermore, in Rico, Vela, Pérez-Fernández, 

 Díaz (2021b) a slightly modification of the original definition of 

zzini and Munda’s algorithm in order to ensure that all the solu- 

ions of the problem are taken into account. In comparison to the 

mplementation presented in Rico et al. (2021b) , the one presented 

ight after has been further improved in order to reduce the exe- 

ution time. As the sum of all the values at the i -th row and all

he values at the i -th column is constant for any i , the value of αi 

ay be equivalently defined in terms of a threshold, as follows: 

i = 

n ∑ 

j=1 

o i j ≥
m · (n − 1) 

2 

. (5) 

Notice that the value on the right part of the comparison is 

onstant for a fixed dimension of the matrix and number of vot- 

rs. In this work, these values for all the levels of the recursive 

alls are computed in advance. So this computation is done only 

nce at the beginning of the execution and each recursive call only 
3 In their original work, the authors approach this as a maximization problem 

hat searches for the ranking with a maximum score based on the maximum likeli- 

ood interpretation of the problem. We have reformulated their interpretation as a 

inimization problem in order to be consistent with the other algorithms that are 

iscussed within this paper. 

C

a

D

B  

o
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eeds to check the row sum of its associated matrix, avoiding the 

omputation of the column sum. 

The resulting algorithm after adding these considerations is re- 

erred to as ME (after the original name MorkExact) and outlined 

n Algorithm 2 . This algorithm is considered as benchmark in this 

Algorithm 2: ME. 

input : An outranking matrix O for n > 3 alternatives. 

1. Define an empty list of tentative solutions τ . 

2. Take O and define the set η containing the alternatives 

in O with αi = True . 

3. Initialize a stack of nodes to explore. Create one node for

each alternative a i ∈ η. 

4. Take (and remove) the first node ρ from the stack. 

5. Consider the submatrix O ρ , which contains only the 

alternatives of A that are not already fixed in ρ . 

• If the dimension of the matrix is 2 × 2 . For the two 

remaining alternatives a i , a j : 

– If o i j > o ji , add to τ the ranking ρ � a i � a j . 

– If o ji > o i j , add to τ the ranking ρ � a j � a i . 

– If o i j = o ji , add to τ both rankings ρ � a i � a j 
and ρ � a j � a i . 

• If the number of alternatives in O is n ≥ 3 : 

– Determine η for the subset matrix O ρ containing 

the alternatives in O ρ with αi = True and add 

one node of the form ‘ ρ � a i ’ to the stack for each 

a i ∈ η. 

6. Repeat Step 4 and Step 5 until the stack is empty. 

7. Compute δ(s i , π
n 
m 

) for all the rankings s i ∈ τ . 

8. Establish δmin = min s i ∈ τ (δ(s i , π
n 
m 

)) . 

9. Delete all rankings with value δ(s i , π
n 
m 

) greater than the 

minimum value δmin . 

ork. 

.3. ME-RCW algorithm 

In Rico et al. (2021b) a preliminary version of a new algorithm 

hat avoids the exploration of some tentative solutions recursively 

hecking for the existence of a Condorcet winner is introduced. A 

ondorcet winner is an alternative such that it is preferred over all 

he other alternatives in the profile by a simple majority of vot- 

rs. As in the rankings in the profile of rankings all voters define 

he relationship for each pair of alternatives in A , this means that 

he Condorcet winner is the alternative that is preferred over all 

ther alternatives in the profile by half of votes. It is possible that 

he Condorcet winner do not exist and, on the other hand, if it ex- 

sts the profile of rankings may have a Condorcet winner even if 

t does not have a Condorcet ranking. As a Condorcet method, the 

emeny method ensures that the Kemeny ranking ranks the Con- 

orcet winner at the first position of the winning ranking when- 

ver it exists. Although it is not possible for a profile of rankings 

o have more than one Condorcet winner, it is possible to have 

ore than one alternative a i with αi = True . In this case, in pres- 

nce of a Condorcet winner it is not necessary to explore all the 

lternatives with αi = True as only the ranking starting with the 

ondorcet winner can lead to an optimal solution. The existence of 

 Condorcet ranking is guaranteed as follows. 

efinition 4. Let O be an outranking matrix associated to πn 
m 

. The 

-outranking matrix, O 

B , is a boolean matrix such that o B 
i j 

= 1 and

 

B 
ji 

= 0 if and only if o i j > o ji . 
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Algorithm 3: ME-RCW. 

input : An outranking matrix O for n > 3 alternatives. 

1. Define an empty list of tentative solutions τ . 

2. Take O and define the set η containing the alternatives 

in O with αi = True . 

3. Initialize a stack of nodes to explore. Create one node for 

each alternative a i ∈ η. 

4. Take (and remove) the first node ρ from the stack. 

5. Consider the submatrix O ρ , which contains only the 

alternatives of A that are not already fixed in ρ . 

• If the dimension of the matrix is 2 × 2 . For the two 

remaining alternatives a i , a j : 

– If o i j > o ji , add to τ the ranking ρ � a i � a j . 

– If o ji > o i j , add to τ the ranking ρ � a j � a i . 

– If o i j = o ji , add to τ both rankings ρ � a i � a j 
and ρ � a j � a i . 

• If the number of alternatives in O is n ≥ 3 : 

– If there is a Condorcet winner a i , add a node for 

the prefix ρ � a i at the beginning of the stack. 

– If there is not a Condorcet winner, determine η for 

the subset matrix O ρ containing the alternatives in 

O ρ with αi = True and add one node of the form 

‘ ρ � a i ’ to the stack for each a i ∈ η. 

6. Repeat Step 4 and Step 5 until the stack is empty. 

7. Compute δ(s i , π
n 
m 

) for all the rankings s i ∈ τ . 

8. Establish δmin = min s i ∈ τ (δ(s i , π
n 
m 

)) . 

9. Delete all rankings with value δ(s i , π
n 
m 

) greater than the 

minimum value δmin . 

t

p

m

a
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roposition 2. Let πn 
m 

be a profile of rankings and O 

B the B- 

utranking matrix associated to O . O 

B is transitive if o i j > o ji and

 jk > o k j then o ik > o ki for all i, j, k < n . 

roof. if o i j > o ji and o jk > o k j and thus, o ik > o ki then it is satis-

ed that if o B 
i j 

= 1 , o B 
jk 

= 1 then o B 
ik 

= 1 for all i, j, k < n . As conse-

uence O 

B is transitive. �

It is straightforward that if O 

B represents a complete, transitive 

nd asymmetric relation with 

(
n 
2 

)
elements equal to 1, the relation 

t represents is a Codorcet ranking. Example 3 illustrates how the 

ondorcet ranking can easily be obtained from a complete, transi- 

ive and asymmetric O 

B by avoiding the recursive exploration pro- 

ess. Note also that in case that o i j = o ji for some i, j, then O 

B does

ot represent a complete relation and thus it is not possible to 

each a Condorcet ranking, even if the relation is transitive. 

xample 3. Let us consider the outranking matrix associated with 

he profile of rankings shown in Table 1 . In Fig. I , the first table

hows the outranking matrix and the right table the B-outranking 

atrix. Each alternative a i obtains an associated score by adding all 

he elements in the i -th row. The Condorcet ranking is obtained by 

orting decreasingly the values. This process guarantees the profile 

o be a Condorcet ranking, as all the alternatives are preferred over 

ll the other alternatives ranked in a worse position. 

Moreover, from the illustrated above, it can be seen that using 

his matrix it can also be determined the existence of a Condorcet 

inner if any. 

Fig. I. B-outranking matrix and Condorcet rank

roposition 3. In presence of a Condorcet winner, the B-outranking 

atrix has exactly one alternative with a total score of n − 1 . 

roof. Note that if there is a Condorcet winner, an alternative is 

referred over all the others and thus ∃ i 1 / ∑ n 
j=1 o 

B 
i 1 j 

= n − 1 . As-

ume there are two different rows, i 1 , i 2 , such that 

n 
 

j=1 

o B i 1 j 
= n − 1 , 

n ∑ 

j=1 

o B i 2 j 
= n − 1 . 

hus, 

n 
 

j=1 

(o B i 1 j 
+ o B ji 1 ) > n − 1 , 

hich is a contradiction by construction of O 

B . �

Given a prefix, the ranking that minimizes the total distance to 

he profile of rankings must be the ranking created with the sub- 

et of alternatives not included in the prefix that minimizes the 

istance to the profile. Consequently, in presence of a Condorcet 

inner in this subset, this alternative must be the first ranked al- 

ernative in the ranking to append to the prefix and there is no 

eed to explore the remaining alternatives in the branch. The re- 

ulting algorithm, presented in Algorithm 3 , is hereinafter referred 
1328 
tained from the profiles of rankings in Table 1 . 

o as ME-RCW (after the original name MorkExact and the incor- 

oration of checking if there is a Recursive Condorcet Winner). Its 

ain characteristics are: 

• In presence of a Condorcet ranking, the winning ranking can 

be determined by using the outranking matrix by counting 

how many times each alternative a i ∈ A is preferred over 

other alternatives (because in this case the outranking ma- 

trix must be transitive). This property is used as a precon- 

dition in the exploration process, as this exploration must 

be avoided in presence of a Condorcet ranking. This means 

that, Kemeny method always returns Condorcet ranking if 

this exists, therefore, the exploration of the rankings is not 

necessary and the Kemeny ranking can be computed using 

the outranking matrix in polynomial time. 
• As a Condorcet method, the Kemeny ranking is such that, 

if there exists a Condorcet winner for the profile of rank- 

ings, then this alternative will be ranked at the first posi- 

tion. Consequently, the exploration of all other alternatives 

is no longer needed and it is skipped, even if they fulfill that 

αi = True . 

As the Algorithm ME , the Algorithm ME-RCW may be divided 

lso in two different parts. Firstly, all the tentative solutions τ that 

ould lead to the Kemeny ranking are computed. Once this reduced 

ist of tentative solutions has been obtained, the distance of each 
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Algorithm 4: ME-BB. 

1. Define an empty list of solutions τ . 

2. Take O and define the set η containing the alternatives 

in O with αi = True . 

3. Initialize a stack of nodes to explore. Create one node for 

each alternative a i ∈ η. 

4. Take (and remove) the first node ρ from the stack. 

5. Compute the distance δρ := δρ (πn 
m 

) . 

• If δρ > δ∗ go to Step 4. 
• If δρ ≤ δ∗ go to Step 6. 

6. Consider the submatrix O ρ , which contains only the 

alternatives of A that are not 

already fixed in the prefix ρ: 

• If the dimension of the matrix is 2 × 2 . 

– For the two remaining alternatives a i , a j : 

∗ If o i j > o ji , define r 1 := ρ � a i � a j . 

∗ If o ji > o i j , define r 1 := ρ � a j � a i . 

∗ If o i j = o ji , define r 1 := ρ � a i � a j and 

r 2 := ρ � a j � a i . 

– Compute the distance δr 1 := δ(r 1 , π
n 
m 

) : 

∗ If δr 1 < δ∗, then empty τ and add r 1 to it. If r 2 
is defined add it also to τ . 

Update δ∗ = δr 1 . 

∗ If δr 1 = δ∗, then append this solution to τ . If δr 2 

is defined add it also τ . 

• If the number of alternatives in O is n ≥ 3 , determine 

η for the subset matrix O ρ

containing the alternatives in O ρ with αi = True and 

add one node of the form 

‘ ρ � a i ’ to the stack for each a i ∈ η. 

7. Repeat steps 4 to 6 until the stack is empty. 
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f these rankings s ∈ τ to the profile of rankings is computed. Con- 

idering these distances, it is necessary to filter τ in order to keep 

nly the rankings that are the closest to the profile. 

Note that the last three steps in Algorithm 2 and 

lgorithm 3 are needed since the property concerning the al- 

ernatives such αi = True proved by Azzini & Munda (2020) is 

ecessary but not sufficient for an alternative to be ranked at the 

rst position. Therefore, after the recursive process, the solution 

annot be determined until the distance for all the rankings in the 

ist of tentative solutions has been computed. 

The authors of the original Mork-Exact algorithm themselves 

ealized that these final steps are among the main sources of com- 

utational inefficiency of the algorithm. This of course implies also 

nefficiency during the recursive process, as unnecessary nodes 

ave been evaluated. 

A more thorough study of the behavior of the algorithm for 

ifferent types of profiles of rankings has been conducted in this 

ork in comparison to the study presented in Rico et al. (2021b) . 

.4. Proposed algorithms combining different pruning techniques 

The aim of this work is to combine the pruning techniques of 

hese algorithms in order to obtain a reduction of the execution 

ime. 

The first step is to incorporate the necessary condition for the 

op alternative of the Kemeny ranking into the classic BB approach 

hat prunes the search space based on the upper bound δ∗ pre- 

ented in Algorithm 1 . This allows to skip the branches that can- 

ot lead to a solution better than one found during the previous 

xploration of the search space. Also, solutions that would require 

o append alternatives with αi = False to the prefix are also dis- 

arded. This version of the algorithm is referred to as ME-BB after 

orkExact (the original name) adding Branch and Bound based on 

he distance, and it is presented in Algorithm 4 . 

Notice how with this algorithm, the last three steps of Algo- 

ithm ME-RCW are no longer needed since at the end of the exe- 

ution τ contains only the list of final solutions. 

An additional consideration that may be added to ME-BB is the 

ne already incorporated to ME-RCW that, in the presence of the 

ondorcet winner among the remaining alternatives not fixed in ρ , 

nly this alternative is explored. This incorporation results in the 

lgorithm hereinafter referred to as ME-BBRCW as it incorporates 

ranch and bound based on the distance and also the recursive 

ondorcet winner to the MorkExact algorithm, which is detailed in 

lgorithm 5 . 

xample 4. As an example of the reduction of the search space 

erformed by the algorithm ME-BBRCW , consider the profile of 

ankings shown in Table 4 . Note that this profiles holds that a 1 �
 2 , a 2 � a 3 and a 3 � a 1 . Therefore, as the outranking matrix asso-

iated with the profile is not transitive, this profile does not yield 

 Condorcet ranking. There is no associated Condorcet winner ei- 

her, as all the alternatives lose at least once against one of the 

ther alternatives in a pairwise context. Therefore, the algorithm 

ust explore the search space to determine the ranking obtained 

ith the alternatives in A that minimizes the distance to the pro- 

le. Fig. 1 illustrates the reduction of the search space according to 

he proposed algorithms. 

First of all, in Fig. 1 (a) the complete search space that a naive

lgorithm would explore to find the Kemeny solution for the pro- 

le of rankings given in Table 4 is shown. 

The search space when the branches are pruned according to 

he value of δ is shown in Fig. 1 (b). In this subfigure, the algo-

ithm initializes with a generic value of δ∗ = + ∞ . The first rank-

ng explored modifies this value to δ∗ = 34 . Considering this upper 

ound two branches are pruned, and, subsequently, a new ranking 
1329
ith δ∗ = 34 is added to τ . When a new ranking with δρ = 30 is

ound, as δρ < δ∗, the list of solutions is emptied and, next, this 

olution is added and the value of δ∗ = 30 is updated. The pro- 

ess continues until the optimal solution with δ∗ = 18 is found. For 

rofiles of rankings for which there exist more than one solution 

o the Kemeny problem, only those solutions would have been ex- 

lored by the algorithm after this point. 

In Fig. 1 (c) the search space is defined by exploring only the 

odes with the alternatives that fulfill the property αi = True , as 

roposed by Azzini & Munda (2020) . In this example, after finding 

he optimal solutions, two additional solutions are still added even 

f they do not improve the best found solution. At the end of the 

xploration, the list τ contains the four rankings. Thus, the Kemeny 

istance must be computed in order to find the optimal value and 

hus identify the rankings that are closest to the profile. 

Fig. 1 (d) shows the total reduction of the search space achieved 

y the algorithm proposed in this paper. Notice that, when fixed 

he alternative a 3 , the alternative a 4 is a Condorcet winner so it 

s the only alternative explored even if other one satisfies that 

i = True . In this case, as the profile of rankings results in a unique 

emeny ranking, no other complete ranking is explored as the 

ranches are pruned by using the upper bound δ∗. If the Kemeny 

roblem admits more than one solution, only those solutions are 

dded to the list τ . 

The reduction shown in Example 4 is even more accentuated 

hen both the depth of the tree and the number of recursive calls 

ncrease, causing the number of nodes in the initial search space 

o increase and therefore emphasizing the effect of the pruning. 
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Fig. 1. Search space defined in order to determine the Kemeny ranking for the profile of rankings in Table 4 using different algorithms. 
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.5. Complexity of the algorithms 

The complexity of algorithms is usually studied using the so- 

alled Big O ( Arora & Barak, 2009 ) notation, which defines how 

he algorithm responds, in terms of theoretical efficiency, when the 

ize of the input changes. 

Note that the computation time of the algorithms proposed in 

his work depends on a precondition (the existence of a Condorcet 

anking). Thus, the best scenario happens if there is a Condorcet 

anking. In this case the winning ranking is computed using the B- 

utranking matrix (Definition 4 ) in constant time. However, when 

here is not a Condorcet ranking, the algorithm must build the 

ree for searching the optimal solution according to the Kemeny 

ethod. Then, the complexity of this process must be studied. 

The search space explored using BB algorithms heavily depends 

n the prune criteria specifically defined for the problem and on 

ow it can be applied to a concrete input data. As consequence, 

he size of the elements to explore cannot be determined before- 

and which makes it impossible to exactly define the complexity. 

nstead, the complexity of the best and worst cases are usually 

rovided as lower and upper bounds. 

 

t  

1330 
Regarding the worst case, note that BB algorithms are generally 

pplied to NP-hard problems (as in this work), for which the com- 

lexity associated to the worst case is equal to a brute force ex- 

loration. This means that the worst scenario actually gives no in- 

ight into the real performance of the algorithm. According to this, 

he worst complexity for the algorithms proposed in this work is 

 (n !) , as the number of rankings is factorial on the number of al-

ernatives. 

Regarding the best case, let us try to further study the complex- 

ty by modeling the search space like the tree graph that is defined 

y the algorithms. The theoretical complexity time can be given in 

erms of k , which corresponds with the remaining number of al- 

ernatives left to add to the prefix being currently explored, and 

herefore it varies at each level of the tree. Consider t the time re- 

uired to access one element of the outranking matrix. Then, the 

ime complexity can be expressed using the following formulas. 

 (k ) = 

{ 

t when k = 1 

kt + kT (k − 1) when 1 < k < n 

kT (k − 1) when k = n 

To illustrate this behavior, an example with a set of n = 4 al-

ernatives A = { a , a , a , a } is shown in Fig. 2 . In the root node
1 2 3 4 
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Algorithm 5: ME-BBRCW. 

input : An outranking matrix O for n > 3 alternatives. 

1. Define an empty list of solutions τ . 

2. Take O and define the set η containing the alternatives 

in O with αi = True . 

3. Initialize a stack of nodes to explore. Create one node for 

each alternative a i ∈ η. 

4. Take (and remove) the first node ρ from the stack. 

5. Compute the distance δρ := δρ (πn 
m 

) . 

• If δρ > δ∗ go to Step 4. 
• If δρ ≤ δ∗ go to Step 6. 

6. Consider the submatrix O ρ , which contains only the 

alternatives of A that are not already fixed in ρ: 

• If the dimension of the matrix is 2 × 2 . 

– For the two remaining alternatives a i , a j : 

∗ If o i j > o ji , define r 1 := ρ � a i � a j . 

∗ If o ji > o i j , define r 1 := ρ � a j � a i . 

∗ If o i j = o ji , define r 1 := ρ � a i � a j and 

r 2 := ρ � a j � a i . 

– Compute the distance δr 1 := δ(r 1 , π
n 
m 

) : 

∗ If δr 1 < δ∗, then empty τ and add r 1 to it. If r 2 
is defined add it also to τ . Update δ∗ = δr 1 . 

∗ If δr 1 = δ∗, then append this solution to τ . If δr 2 

is defined add it also τ . 

• If the number of alternatives in O is n ≥ 3 : 

– If there is a Condorcet winner a i , add a node for 

the prefix ‘ ρ � a i ’ at the beginning of the stack. 

– If there is not a Condorcet winner, determine η for 

the subset matrix O ρ containing the alternatives in 

O ρ with αi = True and add one node of the form 

‘ ρ � a i ’ to the stack for each a i ∈ η. 

7. Repeat steps 4 to 6 until the stack is empty. 

Table 4 

Profile of rankings π4 
10 given by ten voters on the set of four alternatives A = 

{ a 1 , a 2 , a 3 , a 4 } (left) and corresponding outranking matrix (right). 
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Fig. 2. Exploration path for the first ranking in lexicographical order of the search 

space and showing the number of branches expanded by each node depending on 

its level. 
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f the tree, four alternatives are left to explore. Therefore k = n =
 . This node is an special case because neither a ranking nor a 

istance is associated to it. Then, a prefix ρ is fixed using the 

rst alternative of the set. When this alternative is fixed, using 

efinition 3 the three elements of the matrix o 2 , 1 , o 3 , 1 , o 4 , 1 must

e added to the distance associated to the prefix. The same pro- 

ess is followed when new alternatives are added at other levels 

f the tree. Note that this should be repeated on the k alternatives 

n each level of the tree, obtaining the complexity. 

The results of the time complexity are shown in terms of t for 

ach level of the tree below: 

T (1) = t 

T (2) = 2 t + 2 T (1) = 2 t + 2 t = 4 t 

T (3) = 3 t + 3 T (2) = 3 t + 3(4 t) = 3 t + 12 t = 15 t 

T (4) = 4 t + 4 T (3) = 4 t + 3(15 t) = 49 t 

b

1331 
However, let us recall that the BB algorithms prune the search 

pace. During this process, the number of branches is reduced in 

ach node by a factor f k , being f k the number of branches that 

an be discarded in each node of the search space with 0 ≤ f k ≤ k .

 (k ) = 

{ 

t when k = 1 

kt + (k − f k ) T (k − 1) when 1 < k < n 

(k − f k ) T (k − 1) when k = n 

Notice that, because of how the tree is created, there is at least 

ne node in each level which f k < k , which guarantees that at least

ne leaf node is reached. The best case complexity in this situa- 

ion happens when the two following conditions occur at the same 

ime: 1) the first leaf node explored of each level has f k = k − 1

nd the remaining ones have f k = 0 , and 2) the ranking reached

as the minimum distance to the profile and moreover it is the 

nly solution. This leads to explore the first leaf, which corre- 

ponds with the lexicographical order of the set of the alternatives. 

he best case scenario is found when this ranking is the optimal 

nd unique solution. In addition, its associated distance must be 

ower than the distance associated to all the nodes with k = n − 1 .

urthermore, this distance is smaller than the distance associated 

o all the nodes with the same prefix of any length. In this case 

he complexity is linear on the number of alternatives, which rep- 

esents the lower bound. 

Some other considerations can be highlighted with regard to 

he complexity. In fact, although it is impossible to determine the 

umber of branches that will be pruned from the search space us- 

ng these algorithms, some properties of the problem can be used 

n order to bound it. Consider the complementary ranking , that is 

he one that has exactly the opposite relation for each pair of al- 

ernatives (given r 1 := a 2 � a 3 � a 1 � a 4 , its complementary rank- 

ng is r 1 := a 4 � a 1 � a 3 � a 2 ). Taking into account Eq. (3 ), the el-

ments of the outranking matrix considered for determining the 

istance δ(r 1 , π) are exactly the opposite to the elements used for 

etermining the distance δ( r 1 , π) . This makes constant the sum of 

he distances of two complementary rankings: 

(r 1 , π) + δ( r 1 , π) = 

n 

2 − n 

2 

· m . (6) 

Thus, only those alternatives a i which αi = True are explored, 

hich always leads to the complementary ranking with minimum 

istance. In addition, it can be guaranteed that only half of the 

ankings are explored. Although this does not affect the theoretical 

omplexity as the exploration of n ! 
2 rankings instead of n ! rankings 

till has a complexity O (n !) , this has an impact on the execution

ime. 

Another consideration is that, given the outranking matrix, the 

ranches of the search space pruned in the first level of the tree 

hat define the search space when k = n − 1 can be known prior 

o execution, as it is equal to the number of rows that have α =
rue (see Eq. (5) ), and thus f k = n −1 is known. However, for deeper 

ranches, the reduction is also improved but the value of f can- 
k 
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ot be known in advance. Moreover, more branches will be dis- 

arded also considering the upper bound defined according to the 

istances previously obtained. The complexity of the operations re- 

uired for branching and compute the bounds of the algorithm 

s, in the worst case, quadratic. Moreover notice how the number 

f alternatives decreases when the tree is deeper, meaning that 

he execution time also decreases even if the operations are still 

uadratic. 

. Experiments and results 

In order to test the proposed algorithms, a synthetic dataset 

ontaining different profiles of rankings has been created. It con- 

ains only profiles of rankings that do not have a Condorcet winner 

and consequently, neither a Condorcet ranking). These profiles of 

ankings consider numbers of alternatives n ∈ [8 , 14] and numbers 

f voters m ∈ { 10 , 50 , 100 , 250 , 500 , 1000 , 2000 } . The same num-

ers of voters plus one has also been considered in order to com- 

are the behavior for an even or odd number of voters. For each 

ifferent combination of (n, m ) , a total of 200 profiles are consid-

red. Each of the profiles has been created according to the follow- 

ng steps (1) Randomly select the number d ≤ m of different rank- 

ngs in the profile. (2) Obtain d random different permutations of 

he n alternatives. (3) A random vector of d elements whose sum is 

qual to m is generated where each element represents the num- 

er of voters associated to each ranking generated in the second 

tep. (4) If the profile do not have a Condorcet winner, create the 

utranking matrix and add this to the dataset. 

The experiments have been conducted in two separate parts. 

irstly, the proposed algorithms have been compared with the 

riginal algorithm for values of n ∈ { 8 , 9 , 10 } in order to check the

eduction in the execution time. Secondly, the execution time for 

he profiles of rankings with greater values of n are calculated by 

sing the best of the proposed algorithms. 

All the results presented in this paper have been obtained using 

 MacBookAir10,1 with a chip Apple M1 of 8 cores (with 4 perfor- 

ance cores and 4 efficiency cores) and 16 GB of RAM memory. 

.1. Comparison with the original method 

The execution times obtained for the algorithms ME-RCW , 
E-BB and ME-BBRCW are compared with that for the original al- 

orithm ME . A thorough study has been carried out for the pro- 

les of the aforementioned synthetic dataset corresponding to the 

umber of alternatives n ∈ { 8 , 9 , 10 } . This study has been restricted

o these lower numbers of alternatives as the execution time is 

ery fast, whereas for greater numbers of alternatives the execu- 

ion time becomes too slow for the benchmark algorithm ME . For 

ach profile of rankings and algorithm, the execution time required 

o determine the Kemeny ranking has been measured three times 

nd the median value has been obtained with the aim of minimiz- 

ng the impact that other processes being executed on the com- 

uter may have. 

A general comparison of the average time required by each al- 

orithm for each number of alternatives is shown in Fig. 3 , show- 

ng the improvement of the algorithms proposed in this paper in 

omparison to the original algorithm. The left-hand side of the fig- 

re shows the execution times on a shared scale for all the num- 

ers of alternatives. Note that this figure evidences the exponential 

rowth of the execution time of the algorithms as the number of 

lternatives increases. The right-hand side of the figure shows the 

ercentage of time required by the proposed algorithms to solve 

he Kemeny problem on average in comparison to the execution 

ime for the Algorithm ME . Although it reduces the execution time, 

lgorithm ME-RCW is the worst of the three algorithms proposed 

n this paper, as in the worst-case scenario it requires on average 
1332 
 33% of the execution time taken by the Algorithm ME . The Al- 

orithm ME-BB requires percentages of time lower than 24% in 

verage in comparison to the original Algorithm ME . The best im- 

rovement is achieved by ME-BBRCW , the one that combines all 

he pruning criteria. Its execution time is lower than the 11% of 

he original algorithm, independently of the number of alterna- 

ives tested. Furthermore, the improvements with respect to the 

lgorithm ME seem to be larger as the number of alternatives in- 

reases. 

Fig. 4 shows the percentage of time required by each of the 

roposed algorithms in comparison to the original Algorithm ME 
or different numbers of alternatives and voters. Note that the be- 

avior of Algorithm ME-RCW depends on whether the number of 

oters is odd or even. In addition, its execution time decreases as 

he number of voters increases. In contrast to Algorithm ME-RCW , 
he execution time for Algorithm ME-BB increases for larger num- 

ers of voters, as recursively checking the existence of the Con- 

orcet winner is not applied in this case. Algorithm ME-BBRCW , 
hat combines all the pruning criteria, achieves a much more sta- 

le execution time when the number of voters varies within each 

umber of alternatives. Nevertheless, this algorithm still presents 

 slight difference depending on whether the number of voters is 

dd or even. Furthermore, the reduction in the execution time for 

his algorithm is close to 10% of the execution time of the origi- 

al algorithm for any combination of number of alternatives and 

umber of voters. In addition, the improvement seems to be more 

ubstantial as the value of n increases. 

Paired t-tests have been performed to compare the execution 

ime obtained by the ME-BBRCW and by the other algorithms. The 

-value obtained is lower than 2.2e-16 in all the test, showing that 

E-BBRCW execution time is statistically lower than the obtained 

y the other algorithms. 

.2. Results for larger numbers of alternatives 

The execution time of Algorithm ME drastically increases as 

he number of alternatives increases, making the comparison 

ore difficult for large datasets. In this section, results for n ∈ 

 11 , 12 , 13 , 14 } are shown only for the Algorithm ME-BBRCW , as it

as been proved to be the fastest of all the proposed algorithms, 

s detailed in the previous subsection. 

Fig. 5 illustrates the increment of the mean execution time as n 

ncreases. Note that the value of these execution times is affected 

y the behavior of some profiles of rankings that present a larger 

xecution time than the others. If instead of the mean, the median 

xecution times were considered, the results for the values of n 

qual to 11, 12 and 13 would be 0.246, 1.13 and 5.218, respectively. 

his results in almost half of the values obtained when considering 

he mean. 

The execution time for Algorithm ME-BBRCW for different num- 

ers of alternatives and voters is illustrated in Fig. 6 . These plots 

how the mean execution time for each pair (n, m ) . The horizontal

ine shows the mean execution time for all the profiles of rankings 

ith the same value of n in the dataset. For all values of n , the

ean execution time for profiles of rankings with an odd and even 

umber of voters with one unit of difference is in general lower 

or the odd value. Notice however how this difference tends to de- 

rease as the number of voters increases. Although the execution 

ime varies for each m within each plot, this variation becomes less 

elevant as the number of voters increases, barely changing the ex- 

cution time for some values of n for the profiles of rankings with 

001 voters in comparison with the profiles of rankings with 10 

oters. 

The implemented method also runs for profiles of rankings with 

 = 14 and n = 15 alternatives. To illustrate the computational ef- 

ciency of the method, 200 profiles of rankings with the constant 
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Fig. 3. Comparison of the average execution time for all the profiles for different numbers of alternatives (8, 9 or 10). The left-hand side of the figure illustrates the 

exponential increase of the execution time and the right-hand side of the figure shows the percentage of time taken by the proposed algorithms in comparison to the 

original algorithm. 

Fig. 4. Average percentage of time required by the algorithms for each number of alternatives and voters in comparison to the execution time of the original algorithm. The 

dashed horizontal line marks the 10% of the execution time in comparison to the time taken by the Algorithm ME . 

Fig. 5. Mean execution time in seconds for the profiles of rankings with different numbers of alternatives (averaged over all numbers of voters). 

1333 
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Fig. 6. Mean execution time for the 200 profiles of each different combination of number of alternatives and voters. 

Fig. 7. Boxplots illustrating the distribution of the execution time in seconds for 200 profiles of rankings given by 11 voters, for 14 and 15 alternatives. Dashed vertical lines 

mark the one-minute, two-minute and three-minute thresholds. 
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alue of m = 11 voters have been evaluated. The results of the ex- 

cution time for these profiles are shown in Fig. 7 . For 14 alter-

atives, notice how the execution time on most of the profiles is 

elow the one-minute threshold. However, there are some outliers 

or which the execution time is considerably larger. For 15 alter- 

atives, the execution time on half of the profiles of rankings is 

elow the one-minute threshold, whereas the execution time on 

hree-fourths of the profiles of rankings is below the three-minute 

hreshold. In this case, we also observe some outliers, leading to 

n even higher execution time than in the case of 14 alternatives. 

verall, this figure hints that the execution time varies largely, 

ven for profiles of rankings with the same number of alternatives 

nd voters. Therefore, there must be other factors that affect the 

ifficulty of determining the winning ranking. 

. Factors influencing the execution time 

As has been shown in the previous section, the number of al- 

ernatives and voters are not the only factors influencing the exe- 

ution time. Some authors have pointed out that the difficulty of 

he profile of rankings may have a large influence on the execu- 

ion time required to determine the winning ranking ( Ali & Meila, 

012 ). However, the measurement of this difficulty and the identi- 

cation of the factors influencing the execution time are not trivial 

roblems, specially bearing in mind that not all algorithms for the 

omputation of the Kemeny ranking might be affected in the same 

anner. 
1334 
For example, in algorithms such as ME , the number of alterna- 

ives in the outranking matrix which have αi = True has a great 

mpact on the execution time, as it dominates the number of re- 

ursive calls (which is analogous to the number of solutions ex- 

lored). For this reason, larger values of alternatives rocket the ex- 

cution time for the algorithm ( Rico et al., 2021b ). In the profiles

f rankings used in this work, every group of 200 profiles with the 

ame number of alternatives and voters in the dataset show a nor- 

al distribution of the number of alternatives that fulfill the prop- 

rty αi = True . However, the impact of this factor is not so relevant 

hen new prune criteria are added that allow to discard branches 

ven if they have alternatives with this condition, as happen in the 

wo algorithms proposed in this paper. 

Another interesting point about the execution time can be ob- 

erved in the results shown for larger values of n in Fig. 6 . This

gure illustrates that, although the execution time seems constant 

or profiles of rankings with an even number of voters, a gentle in- 

reasing trend appears for profiles of rankings with an odd number 

f voters. 

Betzler, Fellows, Guo, Niedermeier, & Rosamond (2009) propose 

o use the average Kendall distance between the rankings in the 

rofile to measure the difficulty to determine a winning ranking. 

his can be defined in terms of the outranking matrix O as follows: 

= 

1 

h 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

o i j · o ji , 
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Fig. 8. Average Kendall distance ( X-axis) in comparison to the execution time ( Y -axis) for the profiles of rankings of 13 alternatives, separated by the number of voters. 

Fig. 9. Distribution of the index σ (frequency of the minimum margin) for the profiles of rankings with 13 alternatives in comparison to the execution time, separated by 

the number of voters. 
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here h = 

n ·(n −1) 
2 is the triangular number of the number of vot- 

rs. The value of the average Kendall distance in comparison to 

he execution time is illustrated in Fig. 8 for the profiles of rank- 

ngs with 13 alternatives. It can be observed that the profiles of 

ankings leading to a higher execution time are typically those 

or which the average Kendall distance is greater. This fact sug- 

ests that the disagreement between voters and the execution time 

ay be related to the number of rankings pruned from the search 

pace. 

Furthermore, as can be observed both in Figs. 4 and 6 , the be-

avior of the algorithm strongly depends on whether the number 

f voters is odd or even. In fact, Fig. 4 shows how this different

ehavior for profiles of rankings with an odd and even number of 

oters appears when pruning according to the Condorcet winning 

riterion. A potential explanation for the difference between the 

rofiles of rankings with an odd and even number of voters is the 

owest margin that can be obtained in the pairwise comparison. 

hen the number of voters is even, alternatives can be tied in the 

airwise comparison and, therefore, the lower margin that can be 

ttained in a pairwise comparison is 0. This implies that for two 

uch alternatives the same points will be added to the distance of 

he ranking to the profile. For this reason, it would be necessary to 

xplore both alternatives rather than one, as would be the case for 

n odd number of voters. 

Another possibility to measure the disagreement between vot- 

rs is to consider the index introduced in ( Rico, Vela, & Díaz, 2022;

e

1335 
ico, Vela, & Díaz, 2021a ). This index measures the number of 

imes that voters have the maximum possible disagreement for a 

air of alternatives. This means that half of voters prefer one al- 

ernative over the other one, whereas the other half of voters has 

he opposite preference. This pairwise maximum disagreement is 

inked to the lowest margin μ for a pairwise comparison, which 

quals 0 when m is even and equals 1 when m is odd. The index

s formally defined as follows 

= 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

γi j , (7) 

here 

i j = 

{
1 , if | o i j − o ji | = μ, 

0 , otherwise. 

The distribution of the index σ for each number of voters for 

he profiles of rankings with 13 alternatives is shown in Fig. 9 . The

isplayed density plot shows a different behavior for even numbers 

f voters than for the corresponding odd numbers of voters within 

 unit difference. 

. Conclusion 

In this paper, we have proposed different exact algorithms for 

olving the Kemeny problem. The proposed algorithms improve the 

xecution time of the one proposed by Azzini & Munda (2020) , one 
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f them even reducing at least an 88% its execution time in aver- 

ge. Furthermore, this improvement appears to be even more pro- 

ounced as the number of alternatives increases. The best of the 

roposed algorithms guarantees an assumable execution time up 

o n = 14 alternatives. 

Moreover, some factors potentially impacting the execution 

ime have been studied. Special focus has been given to some as- 

ects of the profiles of rankings that may have an impact on the 

xecution time. Further research along this direction may be of in- 

erest, as we have provided empirical evidence that hints that pro- 

les of rankings with the same number of alternatives and vot- 

rs might differ greatly in their execution time, specially for larger 

umbers of alternatives. The identification of these factors would 

llow to parametrize the algorithm and further refine the study of 

he execution time for profiles of rankings with a greater number 

f alternatives. 

A possible extension of this topic includes the development 

f parallel algorithms or the exploitation of approximate meta- 

euristic techniques with the aim of speeding up the execution 

ime, which is often necessary in many real-life applications. 
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