European Journal of Operational Research 305 (2023) 1323-1336

European Journal of Operational Research

=
UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Reducing the time required to find the Kemeny ranking by exploiting N
a necessary condition for being a winner”

Noelia Rico!, Camino R. Vela, Irene Diaz*

Department of Computer Science, University of Oviedo, Edificio Departamental Oeste. Médulo 1, 2.% planta. Calle Pedro Puig Adam, s/n., Campus de Gijon,

C.P. 33204, Spain

ARTICLE INFO

Article history:

Received 21 June 2021
Accepted 20 July 2022
Available online 25 July 2022

Keywords:

Group decisions and negotiations
Combinatorial optimization
Computational social choice
Ranking aggregation

Kemeny method

ABSTRACT

The ranking aggregation problem is gaining attention in different application fields due to its connec-
tion with decision making. One of the most famous ranking aggregation methods can be traced back to
Kemeny in 1959. Unfortunately, the problem of determining the result of the aggregation proposed by
Kemeny, known as Kemeny ranking as it minimizes the number of pairwise discrepancies from a set
of rankings given by voters, has been proved to be NP-hard, which unfortunately prevents practitioners
from using this method in most real-life problems. In this work, we introduce two exact algorithms for
determining the Kemeny ranking. The best of these algorithms guarantees a reasonable search time up to
14 alternatives, showing an important reduction of the execution time in comparison to other algorithms
found in the literature. Moreover, a dataset of profiles of rankings is provided and a study of additional
aspects of the votes that may have impact on the execution time required to determine the winning

ranking is also detailed.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The need of ranking different alternatives according to the pref-
erences of some voters arises frequently in many fields of applica-
tion such as medicine (Cao, Guo, Ao, & Zhou, 2020), recommender
systems (Oliveira, Diniz, Lacerda, Merschmanm, & Pappa, 2020)
and quality of life research (Goerlich & Reig, 2021). For this rea-
son, preference aggregation has caught the attention of researchers
from many different fields and in particular of social choice theo-
rists. Within the field of social choice theory, methods of differ-
ent nature have been proposed to obtain the ranking that best
represents the preferences of voters (Fishburn, 1973). In particu-
lar, the interest of this paper lies in the subfield of social choice
theory usually referred to as computational social choice (Brandt,
Conitzer, Endriss, Lang, & Procaccia, 2016), which focuses on the
computation requirements and aspects related to the efficiency of
these methods.
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The main difficulty is then to define methods that avoid
the voting paradox. In this direction, Kemeny (1959) proposed a
method that searches for the ranking that is the closest to all rank-
ings given by voters. This method naturally extends Condorcet’s
proposal in the sense that when the Condorcet ranking exists, it is
the ranking obtained by the Kemeny method. Although there ex-
ist different approaches for solving the ranking aggregation prob-
lem (Schulze, 2011; Tideman, 1987), the one proposed by Kemeny
is the only one that has been proved to be neutral, consistent and
Condorcet at the same time (Hemaspaandra, Spakowski, & Vogel,
2005; Young, 1988). These desirable properties make the Kemeny
method very appealing to be used in real-life problems.

In order to determine the Kemeny ranking, it is necessary to
compute the distance of all the possible rankings to the rankings
provided by some voters. This is necessary because the Kemeny
ranking is defined as the one that minimizes the distance to the
rankings given by the voters. This fact makes the complexity of
the Kemeny method greatly depend on the number of alternatives.
Unfortunately, there exists no known algorithm to compute the Ke-
meny ranking in polynomial time for any number of alternatives,
which actually prevents its use in practice in many real-life prob-
lems. In fact, the problem of finding the Kemeny ranking has been
proved to be NP-hard (Bartholdi, Tovey, & Trick, 1989). Some al-
gorithms have been proposed over the years in order to reduce
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the number of rankings to explore to determine the Kemeny rank-
ing (Azzini & Munda, 2020). Along this line of research, we propose
two new exact algorithms that reduce the number of rankings to
explore by using some intrinsic properties related to the domain
of the Kemeny problem.

The remainder of this paper is organized as follows. In
Section 2, the Kemeny method and the notation used throughout
this work are introduced. Section 3 discusses the use of branch and
bound algorithms for computing the Kemeny ranking. More pre-
cisely, the existing branch and bound algorithms for the computa-
tion of the Kemeny ranking already described in the literature are
recalled and some new proposals are introduced. The experiments
conducted to measure the performance of the proposed algorithms
and the obtained results are discussed in Section 4. Additional as-
pects concerning the impact of the characteristics of the profile of
rankings on the execution time are analyzed in Section 5. Some
final remarks and future lines of research are given in Section 6.

2. The Kemeny ranking aggregation method

Consider a set of n alternatives A = {ay,---,ay}. A binary re-
lation R on the set A is a subset of the Cartesian product A x A,
that is, a set of ordered pairs (g;, a;) € A. It is usually noted as
(A,R). A linear order is a binary relation that is transitive, anti-
symmetric and complete (a;Ra; v a;Ra;). The linear order (A, >) is
called a ranking, being >~ the better than preference on the set of
alternatives A (Roberts & Tesman, 2009). Obviously, if .4 contains
n alternatives, there are n! different rankings that can be obtained
from the set. Note that a; > a; or a; > g; for each pair of alterna-
tives a;,a; € A in a ranking with i # j. As an example, given the
set of alternatives A = {ay, ay, as}, one of the 6 different rankings
that can be obtained is a; >~ a3 > ap. The alternative ranked at
the first position of a ranking (most left) is considered the best or
most preferred alternative and, consequently, the alternative ranked
at the last position is considered the worst or least preferred alter-
native.

We refer as ranking with ties to any linear order defined con-
sidering the binary relation as transitive and complete but not an-
tisymmetric. These are also known as weak orders. In this kind of
rankings, for all pairs of alternatives a;, a; € A such that i # j the
relationship between the pair is known and can be better than (>)
or indifferent (~) such that either one of the three must happen:
a; > aj, a; > a; or a; ~a;. As an example, given the set of alter-
natives A = {aq, ay, a3, a4}, a ranking with ties on this set could
be a; > a; ~ a4 > as, indicating that a; is the most preferred al-
ternative, the alternatives a, and a4 are equally preferred and at
the same time less preferred than a; and more preferred than as,
which is the least preferred alternative.

A profile of rankings m[ is a list of m rankings (with or without
ties) given by m different voters over the set of n alternatives. A
compact representation of a profile of rankings can be given under
assumption of anonymity, that is, when all the voters are assumed
to be equal. In this work, anonymity is assumed, which makes pos-
sible to use a compact representation of the profile that contains
m’ < m different rankings, and each r; € 7} of these unique rank-
ings is weighted by the number w; of voters that expressed the
ranking r;. Thus, it holds that m = Z}i] w;.

The profile of rankings may be further simplified by just pro-
viding the pairwise comparisons between the pairs of alternatives
a;,a; € A by means of the outranking matrix (Arrow & Raynaud,
1986).

Definition 1. The outranking matrix O is a matrix representing the
profile such that each element o;; € O represents the number of
times that the alternative a; is preferred over the alternative a;.
Therefore, for rankings (with or without ties), it holds that o;; +
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Table 1
Profile of rankings mj, given by ten voters on the set of four alternatives
A={ay,ay,as3,a4} (left) and corresponding outranking matrix (right).

‘ Number of voters Ranking ap | ay | az | ay
1 ay >ay>ap > ay a | 0] 9|96
3 ay >ay>a,>a a| 110|813
4 ag > a; > a, > a3 a3 | 112|013
2 ay >a; > a; > ay ag | 4 | 7| 710

Table 2
Points annotated to compute the Kemeny distance between the rankings r;
and r; based on the order of the alternatives a; and a,.

ag >j a ag ~;j a ag >j a
a > a; 0 1 2
a ~; g 1 1
Qg > Gk 2 1 0

0ji =m for any i # j. By definition, the diagonal elements o;; when
i = j of the outranking matrix are set to 0.

Computationally, the value of the element o;; when i # j is ob-
tained from s by annotating 1 point every time that g; > a; and
0.5 points every time that a; ~ a;. An example of a profile of rank-
ings and its corresponding outranking matrix is shown in Table 1.

The aim of a ranking aggregation function is to summarize the
information of the profile of rankings into the ranking that best
represents the preferences of the voters of the profile. The result-
ing ranking is usually referred to as the winning ranking. In this
work, we try to find the ranking (without ties) that results from
combining the rankings (with or without ties) in a profile of rank-
ings using the Kemeny method.

Kemeny (1959) proposed a method that selects as the winning
ranking from all possible rankings on .4, the ranking s that min-
imizes the so-called Kemeny distance (s, 7[t) from the ranking
to the profile of rankings. Intuitively, this distance represents the
number of pairwise discrepancies in the relative order of every
pair of alternatives in the ranking s and all the rankings in the
profile wj. Formally, given two rankings r; and r; on the set of
alternatives 4, the Kemeny distance between these two rankings
is computed by annotating for each pair of alternatives a;, a, € A
a certain number of points drl.,rj (ay, a;) according to the order of
these alternatives in the rankings, as shown in Table 2.

By adding these points for every pair of alternatives, the Ke-
meny distance §(r;, ;) between two rankings is defined as

n-1 n
S(rir) =" dir(a.a). (1)
k=1 t=k+1

Example 1. As an example, we illustrate the computation of the
Kemeny distance between the rankings r; = a3 > a4 > a; > a, and
) = ay > a3 ~ a4 > aq. First of all, it is necessary to check the rela-
tive position of a; with respect to the three remaining alternatives.
This comparison annotates 2 + 0 + 0 = 2 points, as a; is ranked at
a worse position than az and a4 in both rankings (0 points in each
comparison because the order is the same) but the order of a; and
a, is the opposite in ry and r, (2 points). Afterwards, a, is com-
pared with a3 and a4, which annotates 2 + 2 = 4 points because a,
is ranked at a worse position than a3 and a4 in ry but at better
position in r, (different order, 2 points each). Lastly, a3 and a4 are
compared, adding 1 more point as both alternatives are tied in r;
but not in rq. This procedure results in a final Kemeny distance of
8(r1,m)=R2+0+0)+2+2)+(1)=7.

The Kemeny distance of a ranking s to the profile of rankings
7]} is defined as the sum of the Kemeny distances of s to all the
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Table 3
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Distance computed using the outranking matrix from all the possible rankings obtained using the set of al-
ternatives A = {a;, ay, as, a4} to the profile of rankings in Table 1.

Ranking § Ranking ) Ranking § Ranking $

a; > a4 > ay > as 14 a; > Az > a4 > ay 24 a4 > a3z > ay > 4y 30 ay > A3 > a4y > (g 38

a4 > 4y > ap > 03 16 Qg > Ay > ay > Az 24 as > ay > ag > 4y 32 aq > az > ay > a4 38

a; > a; > g > a3 18 a; > 4y > a4 > A3 26 a4 > Gy > az > 4q 32 a; > a3 > G4 > a4 40

a; > a4 > az > 4y 20 a; > Az > ay > (g 28 az > a4 > a1 > 4y 34 as > a4 > 4y > 4q 42

a; > a; > as > Qg 22 ap > a4 > ay > 0z 28 as > ay > ap > Qg 36 as > a; > a; > Qg 44

g > 4y > as > 0 22 a; > 4 > as > ag 30 ap > a4 > a3 > 4y 36 as > 4y > G4 > a4 46
rankings r; € 7}, as shown in Eq. (2). From Example 2 it can be seen that the rankings that share the
- top alternatives will use the same elements of the outranking ma-
(s, ) = ZW:' 8(s.T). 2) trix associated to these alternatives in order to partially compute

i=1

The Kemeny problem is actually a minimization problem, as for
all the possible n! rankings of the n alternatives in 4, the one (or
ones) that minimizes the value of § is (or are) selected as the win-
ning ranking. In the remainder of this paper, we skip the factor 2
in Eq. (3) as it obviously does not affect the minimization problem.

Equivalently, the Kemeny distance between a ranking s and the
profile of rankings may also be computed from the outranking ma-
trix. This can be achieved by summing the elements of the matrix
that show disagreement with the ranking s. More formally, for two
alternatives a;, a;, the element o;; shows the agreement of the vot-
ers with the order g; > a; and, conversely, the element o0; shows
the disagreement of the voters with the order g; > a;. The Kemeny
distance of the ranking s to the profile of rankings 7} is then given
in terms of the outranking matrix O as follows:

n n
8(s.mp) =2+ 0ji-x; withij, (3)

i=1 j=1

where x;; =1 if a; s a; and 0 otherwise; which represents the
sum of all the elements oj; such that a; is ranked at a worse posi-
tion than g; in the ranking s.

Example 2. Consider the ranking ry =a; > a3 > a, > da4. The
distance of the ranking to the profile of rankings in Table 1 can be
computed using Eq. (3) as follows.

» Firstly, the alternative a;,i =1 is considered, then x;; = 1 for
1 < j < n. Thus, the sum of all the elements in the first col-
umn of the matrix (1+ 1+ 4 = 6) represents the disagree-
ment with a; being ranked at the first position. Thus, all the
rankings with a; in the top position, i.e., of the form ‘a; >
..." will have at least a distance to the profile of rankings of
6, obtained after adding 0,1 =1, 037 =1 and 047 =4.
Secondly, as as is in the second position let us consider next
i=3, having x3; =1 for j=2 and j=4, as a, and a4 are
ranked in a worse position. For this reason, the sum of all
the elements in the third column of the matrix except the
first one (because a; > a3 and therefore 0; 3 does not repre-
sent disagreement) are added (0,3 + 043 =8+ 7 = 15). The
elements added are the ones that represent disagreement
with a, being ranked at the second position when a; is al-
ready ranked at the first position.

Finally, the fourth element of the second column (04, = 7)
represents the disagreement with a, being ranked over the
alternative a4. This results in a Kemeny distance (recall that
we omit the factor 2, as it does not affect the optimization
problem) of §(r, w}t) =((1+1+4)+ (8+7)+ (7)) =28.

The distances obtained using this simplification from all the
possible rankings to the profile of rankings in Table 1 are shown
in Table 3.

the distance from the ranking to the profile. Notice how, using
Eq. (3), it is possible to associate a common partial distance for
all the rankings that have the same top ¢ alternatives in the same
order.

Definition 2. Let A= {ay,---,ay} be a set of alternatives and let
Ay(1) > Ao 2) > =+ > () > Qg (e42) > -+ > gy De a ranking with
o a permutation of {1,2,...,n}. Then, p=ds) > agz) > - >
s () is a prefix of length £.

Definition 3. Let A = {ay,---,ay} be a set of alternatives. Let p =
A1) > Ay 2) > - > Og(p) be a prefix. The Kemeny partial distance
from a prefix to a profile 7]} is defined as

4 4
8p () = Z Zoa(j)a(i) Kooy Witho (i) #0(j),
i=1 j=1
o a permutation on the alternatives

Given p, there are (n—¢)! rankings on A that start with this
prefix.

Proposition 1. Let p be a prefix of length ¢, then
Sp () < 8(r°, 7wy,
for each ranking 1 = p > a5 (411) > -+ > Ao )

Proof. It is straightforward as all the elements of the outranking
matrix are non negative. Thus, by Def. 3 and Eq. (3)

14 L 14 L
8p(Tm) =D 06(hati) Kooty < D D Oc(hoti)  Xo (o)
iz j=1 izl j=1

n n
+ ) D 0o Xotho() = (7, Th)

i=0+1 j=¢+1
O

Using Example 2 again to illustrate Proposition 1, it is shown
that, if p :=ay > ap, using the profile of rankings nf‘o given in
Table 1, then the distance from this prefix to the profile is ob-
tained from adding 037+ 031+ 041 and then o3, + 04, obtain-
ing ) =1+ 1+44+2+7=15. Further example of this can be ob-
served in Table 3, as the rankings that have the same first and sec-
ond alternative only differ in their distance taking into account the
third alternative a; and a;, so they differ only in the value oj;.

The ranking that minimizes the Kemeny distance to the pro-
file of rankings is typically referred to as the Kemeny ranking. This
ranking has also been referred to as the maximum likelihood rank-
ing by some authors (Young, 1988), as the Kemeny problem can be
reformulated as the problem of seeking for the ranking that maxi-
mizes the agreement with the profile of rankings.

Although along this paper we refer to the Kemeny ranking in
singular, it is necessary to keep in mind that the problem may have
more than one solution depending on the profile of rankings.
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3. Algorithms to solve the Kemeny problem

A naive approach to solve the Kemeny problem would require
to explore all the n! possible rankings over the set of alternatives
A in order to determine the one that is the closest to the pro-
file of rankings. This exploration of all the possible solutions of the
Kemeny problem has a main drawback that prevents practitioners
from using this method in real-life problems, as the computation
of the solution, both in terms of execution time and memory stor-
age, becomes unavoidably. Note that in this work we consider that
the solution to the Kemeny problem is a strict ranking, therefore
not containing tied alternatives, which is a common practice in the
literature. Obviously, the number of possible rankings with tied al-
ternatives is even greater than n! (see, e.g., Bailey, 1998), therefore
the consideration of rankings with tied alternatives as possible so-
lutions would lead to an even less-attractive problem from a com-
putational point of view.

The process of searching the Kemeny ranking can be framed
as a combinatorial optimization problem, as it is based on finding
an optimal solution from a finite set of tentative solutions. Within
this framework, the set of all tentative n! solutions of the prob-
lem is referred to as the search space of the problem and denoted
by S. As already mentioned, this exhaustive search is not tractable,
therefore it is necessary to carefully reduce the search space and
avoid the exploration of some of the possible rankings.

A possible way out for solving the problem is to consider
branch-and-bound (BB). This kind of algorithms aims to optimize
the value of an objective function by recursively splitting the search
space into different branches, which are subsequently pruned
when it is proved that they cannot lead to an optimal solution.
In the context of the Kemeny problem, in order to determine the
winning ranking for a profile of rankings 7} over the set of alter-
natives 4, the search space S is defined as the set of all possible
rankings s on A and the objective function to optimize is the Ke-
meny distance §(s, 7). The aim is to minimize the value of this
function in order to find the Kemeny ranking.

Different branch-and-bound algorithms have been proposed to
find the Kemeny ranking. Emond & Mason (2002) considered also
weak orders as potential solutions and proposed to create branches
for each pair of alternatives defining the three possible pairwise
relations (better, worse, tied) for the pair of alternatives, subse-
quently associating each branch with a correlation measure and
penalty. Amodio, D’Ambrosio, & Siciliano (2016) further explored
this idea. Barthelemy, Guenoche, & Hudry (1989) introduced the
exploration of the rankings with the same prefix, i.e. the branches
group the rankings that rank the first alternatives in the same or-
der. These prefixes have also been used by Muravyov (2007, 2013).
In a recent work, Azzini & Munda (2020) provided a necessary con-
dition for alternatives to be at the top of the winning ranking and
proposed a recursive algorithm based on this condition. Although
they did not frame their algorithm as a BB algorithm, it can be un-
derstood as one, as it is based on pruning the search space accord-
ing to the aforementioned necessary condition for an alternative to
be ranked at the top position. Azzini and Munda’s algorithm will
be explained in detail in the upcoming sections since it will be
used as base for the algorithms proposed in this work.

3.1. BB algorithms based on prefixes

Branch and bound algorithms that build the rankings by adding
one alternative in each step are a strong option for solving the Ke-
meny problem. As introduced in Definition 2, a prefix of length
¢ represents the order for the alternatives in the top ¢ positions.
Given a profile of rankings on a set of n alternatives, the search
space is modeled as a rooted tree structure of n levels where each
level ¢ € {1,...,n} of the tree contains nodes representing all dif-
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ferent prefixes of length ¢. Therefore, each node has an associated
prefix p that represents the subset of the search space containing
all the possible rankings beginning with that prefix> (Muravyov,
2013). Each prefix has an associated partial distance §, to the pro-
file of rankings, which defines the lower bound for that branch, i.e.,
all the rankings beginning with that prefix are at least at a distance
8, from the profile of rankings.

Using this structure, the first level of the tree contains n nodes,
where each node has a prefix of length one containing one differ-
ent alternative a; € A. Each node of the tree at the ¢-th level has
n — ¢ successors, that are obtained by adding at the end of the pre-
fix p one of the alternatives in A that had not been added yet to
the prefix p. The leaves of the tree at the (¢ = n)-th level are rank-
ings, therefore their associated §, represents the distance of the
corresponding possible solution to the profile of rankings. If the
tree is not pruned, there are n! leaves and all of them should be
explored in order to determine the solution of the problem. These
solutions are the leaf nodes that minimize §,.

Branch and bound algorithms ensure that no optimal solution is
lost by using lower and upper bounds. Each node has an associated
lower bound and, in case that this lower bound exceeds the upper
bound, then the branch can be safely pruned as it cannot lead to
an optimal solutions.

The nodes are explored in a depth-first fashion, i.e., all the chil-
dren of the node p that can lead to a potential solution are ex-
plored before the siblings of p. The aim of the branch and bound
algorithm is to prune the branches of this tree using information
of the problem in order to reduce the number of explored nodes.

Let 8, =8, (r}}) be the partial distance from the prefix p to
the profile of rankings (see Proposition 1) and let us denote by
8* the best distance for a ranking solution s € S found until the
moment during the exploration of the search space, i.e. the low-
est value of §, found in a leaf node. The value §* is the upper
bound used to prune the tree, as the solutions that exceed this
bound are not optimal solutions because at least one solution with
lower distance to the profile has been found. As it was detailed in
Section 2, the distance 8, associated with a prefix cannot decrease
when a new alternative is appended to the prefix. Therefore, only
the nodes whose associated 3, does not exceed the upper bound
8* (i.e., 8, < 8*) need to be explored, as they are the only ones that
can lead to a solution that improves the current one.

By using this process, §* is modified at the beginning of the al-
gorithm with the distance of the first solution s explored and sub-
sequently updated every time that a leaf node that minimizes the
distance to the profile is reached. At the end of the execution, the
value of §* is the minimum distance to the profile of rankings.

The steps of this branch and bound algorithm using § to prune
the search space are presented in Algorithm 1.

Notice that the default initialization of 6* can be represented as
8* = 400, which makes §* to take the value of the first leaf node
explored as previously explained.

3.2. Necessary condition for the winning alternative

Azzini & Munda (2020) proved in Proposition 1 of their work
that a necessary condition for a ranking to be the Kemeny rank-
ing is that the alternative g; € A at the top position must satisfy
that 37 ;0;; > >} 0j. Let us emphasize that this property is
a necessary but not sufficient condition, meaning that not all the
alternatives that have a row sum greater than or equal to their cor-
responding column sum are top alternatives.

For the sake of simplicity, in the remaining of this paper we
denote by «; the truth value obtained from the Boolean expression

2 Henceforth, p will be used interchangeably for denoting the prefix and the node
associated with the prefix.
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Algorithm 1: BB algorithm based on prefixes with prune
based on §.
input: Initial distance 6*. By default, §* = +oo.
1. Define the empty list of solutions t.
2. Initialize the stack of nodes to explore with n nodes,
each of them contains a prefix p of
length ¢ = 1 with a different alternative g; € A.
3. Take (and remove) the first node p from the stack and
compute the distance 8, := 8, (7T,}).

e If ¢ =nand §, = §* then add this solution to 7.

e If ¢=n and §, < *, then overwrite T with the current
ranking and update §* :=§,.

e If ¢ <n and §, < 6* then add at the beginning of the
stack all the possible children of
this node, obtained by appending each of the n —¢
alternatives that are not already fixed
in p at the end of the prefix.

4, Repeat recursively Step 3 until the stack is empty.

n n
A=y 0=y 0, (4)
=1 =1

which means that «; = True when the alternative g; is preferred
over the remaining alternatives in A at least as many times as the
other alternatives are preferred over g;.

Based on this condition, Azzini and Munda define the Mork-
Exact algorithm to solve the Kemeny problem by recursively ex-
ploring the alternatives verifying that o; = True.> By using this al-
gorithm, they obtain a tractable execution time up to n =13 al-
ternatives. To achieve these results, they perform experiments on
profiles of rankings synthetically generated, reaching profiles with
13 alternatives and with a constant number of 100 voters.

Although they just refer to their algorithm as a recursive ex-
act algorithm, this is in fact a branch and bound algorithm that
has been implemented recursively. In this paper, we characterize
this algorithm as such, in order to focus on how their condition
allows to prune the search space and can be combined with addi-
tional pruning criteria. Furthermore, in Rico, Vela, Pérez-Fernandez,
& Diaz (2021b) a slightly modification of the original definition of
Azzini and Munda’s algorithm in order to ensure that all the solu-
tions of the problem are taken into account. In comparison to the
implementation presented in Rico et al. (2021b), the one presented
right after has been further improved in order to reduce the exe-
cution time. As the sum of all the values at the i-th row and all
the values at the i-th column is constant for any i, the value of ¢;
may be equivalently defined in terms of a threshold, as follows:

o=y 0> %_U (5)
j=1

Notice that the value on the right part of the comparison is
constant for a fixed dimension of the matrix and number of vot-
ers. In this work, these values for all the levels of the recursive
calls are computed in advance. So this computation is done only
once at the beginning of the execution and each recursive call only

3 In their original work, the authors approach this as a maximization problem
that searches for the ranking with a maximum score based on the maximum likeli-
hood interpretation of the problem. We have reformulated their interpretation as a
minimization problem in order to be consistent with the other algorithms that are
discussed within this paper.
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needs to check the row sum of its associated matrix, avoiding the
computation of the column sum.

The resulting algorithm after adding these considerations is re-
ferred to as ME (after the original name MorkExact) and outlined
in Algorithm 2. This algorithm is considered as benchmark in this

Algorithm 2: ME.

input: An outranking matrix O for n > 3 alternatives.

1. Define an empty list of tentative solutions 7.

2. Take O and define the set n containing the alternatives
in O with o; = True.

3. Initialize a stack of nodes to explore. Create one node for
each alternative g; € n.

4. Take (and remove) the first node p from the stack.

5. Consider the submatrix O,, which contains only the
alternatives of A that are not already fixed in p.

o If the dimension of the matrix is 2 x 2. For the two
remaining alternatives a;, a;:

- If 0;; > 0j;, add to 7 the ranking p > a; > a;.

- If 0j; > 0, add to t the ranking p > a; > a;.

- If 0;; = 0j;, add to t both rankings p > @¢; > q;j
and p >a; > a.

o If the number of alternatives in O is n > 3:

- Determine 7 for the subset matrix O, containing
the alternatives in 0, with o; = True and add
one node of the form ‘p > g;’ to the stack for each
aen.

. Repeat Step 4 and Step 5 until the stack is empty.

. Compute §(s;, ;) for all the rankings s; € 7.

. Establish 8y = minger (8(s;, 7T71)).

. Delete all rankings with value §(s;, L) greater than the
minimum value &,,,.

O o0ogom

work.

3.3. ME-RCW algorithm

In Rico et al. (2021b) a preliminary version of a new algorithm
that avoids the exploration of some tentative solutions recursively
checking for the existence of a Condorcet winner is introduced. A
Condorcet winner is an alternative such that it is preferred over all
the other alternatives in the profile by a simple majority of vot-
ers. As in the rankings in the profile of rankings all voters define
the relationship for each pair of alternatives in .4, this means that
the Condorcet winner is the alternative that is preferred over all
other alternatives in the profile by half of votes. It is possible that
the Condorcet winner do not exist and, on the other hand, if it ex-
ists the profile of rankings may have a Condorcet winner even if
it does not have a Condorcet ranking. As a Condorcet method, the
Kemeny method ensures that the Kemeny ranking ranks the Con-
dorcet winner at the first position of the winning ranking when-
ever it exists. Although it is not possible for a profile of rankings
to have more than one Condorcet winner, it is possible to have
more than one alternative a; with «; = True. In this case, in pres-
ence of a Condorcet winner it is not necessary to explore all the
alternatives with «; = True as only the ranking starting with the
Condorcet winner can lead to an optimal solution. The existence of
a Condorcet ranking is guaranteed as follows.

Definition 4. Let O be an outranking matrix associated to z}. The
B-outranking matrix, OB, is a boolean matrix such that o?j =1 and

Olji =0 if and Ol'lly if 0jj > 0jj.
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Proposition 2. Let 7 be a profile of rankings and OF the B-
outranking matrix associated to 0. OF is transitive if 0jj > 0j; and
0ji > Oy then oy > oy for all i, j, k < n.

Proof. if 0;; > 0j; and 0j; > oy; and thus, oy > 0y then it is satis-
fied that if o‘f] =1, o‘j.k =1 then of =1 for all i, j k < n. As conse-
quence 0P is transitive. O

It is straightforward that if O represents a complete, transitive
and asymmetric relation with (g) elements equal to 1, the relation
it represents is a Codorcet ranking. Example 3 illustrates how the
Condorcet ranking can easily be obtained from a complete, transi-
tive and asymmetric OB by avoiding the recursive exploration pro-
cess. Note also that in case that o;; = 0j; for some i, j, then 0F does
not represent a complete relation and thus it is not possible to
reach a Condorcet ranking, even if the relation is transitive.

Example 3. Let us consider the outranking matrix associated with
the profile of rankings shown in Table 1. In Fig. I, the first table
shows the outranking matrix and the right table the B-outranking
matrix. Each alternative g; obtains an associated score by adding all
the elements in the i-th row. The Condorcet ranking is obtained by
sorting decreasingly the values. This process guarantees the profile
to be a Condorcet ranking, as all the alternatives are preferred over
all the other alternatives ranked in a worse position.

Moreover, from the illustrated above, it can be seen that using
this matrix it can also be determined the existence of a Condorcet
winner if any.
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Algorithm 3: ME-RCW.

input: An outranking matrix O for n > 3 alternatives.

1. Define an empty list of tentative solutions .

2. Take O and define the set n containing the alternatives
in O with o; = True.
Initialize a stack of nodes to explore. Create one node for
each alternative a; € 7.
. Take (and remove) the first node p from the stack.
. Consider the submatrix 0,, which contains only the

alternatives of A that are not already fixed in p.

3.

« If the dimension of the matrix is 2 x 2. For the two
remaining alternatives a;, a;:
- If 0;; > 0j;, add to t the ranking p > @; > aj.
- If 0j; > 0;, add to 7 the ranking p > a; > a;.
- If 0;; = 0j;, add to t both rankings p > @; > q;
and p >a; > a;.
o If the number of alternatives in O is n > 3:

- If there is a Condorcet winner q;, add a node for
the prefix p > a; at the beginning of the stack.

- If there is not a Condorcet winner, determine 7 for
the subset matrix 0, containing the alternatives in
0, with o; = True and add one node of the form
‘p > a;’ to the stack for each g; € n.

. Repeat Step 4 and Step 5 until the stack is empty.

. Compute 4 (s;, ) for all the rankings s; € 7.

. Establish 8, = mins;er (8(s, ).

. Delete all rankings with value §(s;, ;) greater than the
minimum value &,;,.

O o0 g

al az a3 (14 al
a 0 9 9 6 a 0
o [ 1/0 83 4, |0
| 1203 2] 0
a4 4 7 7 0 a4 O

>—OO>—A§

a

w

a; > ag > a, > as

LIvl

—_— O = =

Fig. I. B-outranking matrix and Condorcet ranking obtained from the profiles of rankings in Table 1.

Proposition 3. In presence of a Condorcet winner, the B-outranking
matrix has exactly one alternative with a total score of n — 1.

Proof. Note that if there is a Condorcet winner, an alternative is
preferred over all the others and thus Eli1/z;’:1 0?1 =n-1. As-

sume there are two different rows, iy, ip, such that

n n
B —n— B —n—
D0 =n=1 ) op=n-1
Jj=1 j=1
Thus,

PG
=1

J

+oh)>n-1,

which is a contradiction by construction of ©8. O

Given a prefix, the ranking that minimizes the total distance to
the profile of rankings must be the ranking created with the sub-
set of alternatives not included in the prefix that minimizes the
distance to the profile. Consequently, in presence of a Condorcet
winner in this subset, this alternative must be the first ranked al-
ternative in the ranking to append to the prefix and there is no
need to explore the remaining alternatives in the branch. The re-
sulting algorithm, presented in Algorithm 3, is hereinafter referred
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to as ME-RCW (after the original name MorkExact and the incor-
poration of checking if there is a Recursive Condorcet Winner). Its
main characteristics are:

« In presence of a Condorcet ranking, the winning ranking can
be determined by using the outranking matrix by counting
how many times each alternative ag; € A is preferred over
other alternatives (because in this case the outranking ma-
trix must be transitive). This property is used as a precon-
dition in the exploration process, as this exploration must
be avoided in presence of a Condorcet ranking. This means
that, Kemeny method always returns Condorcet ranking if
this exists, therefore, the exploration of the rankings is not
necessary and the Kemeny ranking can be computed using
the outranking matrix in polynomial time.

e As a Condorcet method, the Kemeny ranking is such that,
if there exists a Condorcet winner for the profile of rank-
ings, then this alternative will be ranked at the first posi-
tion. Consequently, the exploration of all other alternatives
is no longer needed and it is skipped, even if they fulfill that
o; = True.

As the Algorithm ME, the Algorithm ME-RCW may be divided
also in two different parts. Firstly, all the tentative solutions t that
could lead to the Kemeny ranking are computed. Once this reduced
list of tentative solutions has been obtained, the distance of each
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of these rankings s € T to the profile of rankings is computed. Con-
sidering these distances, it is necessary to filter T in order to keep
only the rankings that are the closest to the profile.

Note that the last three steps in Algorithm 2 and
Algorithm 3 are needed since the property concerning the al-
ternatives such «; = True proved by Azzini & Munda (2020) is
necessary but not sufficient for an alternative to be ranked at the
first position. Therefore, after the recursive process, the solution
cannot be determined until the distance for all the rankings in the
list of tentative solutions has been computed.

The authors of the original Mork-Exact algorithm themselves
realized that these final steps are among the main sources of com-
putational inefficiency of the algorithm. This of course implies also
inefficiency during the recursive process, as unnecessary nodes
have been evaluated.

A more thorough study of the behavior of the algorithm for
different types of profiles of rankings has been conducted in this
work in comparison to the study presented in Rico et al. (2021b).

3.4. Proposed algorithms combining different pruning techniques

The aim of this work is to combine the pruning techniques of
these algorithms in order to obtain a reduction of the execution
time.

The first step is to incorporate the necessary condition for the
top alternative of the Kemeny ranking into the classic BB approach
that prunes the search space based on the upper bound §* pre-
sented in Algorithm 1. This allows to skip the branches that can-
not lead to a solution better than one found during the previous
exploration of the search space. Also, solutions that would require
to append alternatives with «; = False to the prefix are also dis-
carded. This version of the algorithm is referred to as ME-BB after
MorkExact (the original name) adding Branch and Bound based on
the distance, and it is presented in Algorithm 4.

Notice how with this algorithm, the last three steps of Algo-
rithm ME-RCW are no longer needed since at the end of the exe-
cution 7 contains only the list of final solutions.

An additional consideration that may be added to ME-BB is the
one already incorporated to ME-RCW that, in the presence of the
Condorcet winner among the remaining alternatives not fixed in p,
only this alternative is explored. This incorporation results in the
algorithm hereinafter referred to as ME-BBRCW as it incorporates
branch and bound based on the distance and also the recursive
Condorcet winner to the MorkExact algorithm, which is detailed in
Algorithm 5.

Example 4. As an example of the reduction of the search space
performed by the algorithm ME-BBRCW, consider the profile of
rankings shown in Table 4. Note that this profiles holds that a; >
a,, ay = as and az > a;. Therefore, as the outranking matrix asso-
ciated with the profile is not transitive, this profile does not yield
a Condorcet ranking. There is no associated Condorcet winner ei-
ther, as all the alternatives lose at least once against one of the
other alternatives in a pairwise context. Therefore, the algorithm
must explore the search space to determine the ranking obtained
with the alternatives in A that minimizes the distance to the pro-
file. Fig. 1 illustrates the reduction of the search space according to
the proposed algorithms.

First of all, in Fig. 1(a) the complete search space that a naive
algorithm would explore to find the Kemeny solution for the pro-
file of rankings given in Table 4 is shown.

The search space when the branches are pruned according to
the value of § is shown in Fig. 1(b). In this subfigure, the algo-
rithm initializes with a generic value of §* = +co. The first rank-
ing explored modifies this value to 6* = 34. Considering this upper
bound two branches are pruned, and, subsequently, a new ranking
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Algorithm 4: ME-BB.

1. Define an empty list of solutions .

2. Take O and define the set n containing the alternatives
in O with «; = True.

. Initialize a stack of nodes to explore. Create one node for
each alternative q; € 7.

. Take (and remove) the first node p from the stack.

. Compute the distance §, := 8, (}}).

o If §, > 6* go to Step 4.
« If §, < 6* go to Step 6.

. Consider the submatrix O,, which contains only the
alternatives of A that are not
already fixed in the prefix p:

« If the dimension of the matrix is 2 x 2.
- For the two remaining alternatives a;, a;:
* If 0;; > 0j;, define ry := p > q; > a;.
* If 0ji > 0jj, define rni=p>a>aq.
* If 0;; = 0j;, define ry := p > @; > a; and
) ::p>aj>ai.
- Compute the distance &y, := 8(ry, ):
* If 8y, < 6%, then empty 7 and add ry to it. If r,
is defined add it also to .
Update 6* = §;,.
* If 6, = 6%, then append this solution to 7. If &y,
is defined add it also .
o If the number of alternatives in O is n > 3, determine
n for the subset matrix 0,
containing the alternatives in 0, with o; = True and
add one node of the form
‘o > a;’ to the stack for each g; € n.

7. Repeat steps 4 to 6 until the stack is empty.

with §* = 34 is added to . When a new ranking with §, = 30 is
found, as 6, < d*, the list of solutions is emptied and, next, this
solution is added and the value of §* =30 is updated. The pro-
cess continues until the optimal solution with 6* = 18 is found. For
profiles of rankings for which there exist more than one solution
to the Kemeny problem, only those solutions would have been ex-
plored by the algorithm after this point.

In Fig. 1(c) the search space is defined by exploring only the
nodes with the alternatives that fulfill the property «; = True, as
proposed by Azzini & Munda (2020). In this example, after finding
the optimal solutions, two additional solutions are still added even
if they do not improve the best found solution. At the end of the
exploration, the list 7 contains the four rankings. Thus, the Kemeny
distance must be computed in order to find the optimal value and
thus identify the rankings that are closest to the profile.

Fig. 1 (d) shows the total reduction of the search space achieved
by the algorithm proposed in this paper. Notice that, when fixed
the alternative as, the alternative a4 is a Condorcet winner so it
is the only alternative explored even if other one satisfies that
o; = True. In this case, as the profile of rankings results in a unique
Kemeny ranking, no other complete ranking is explored as the
branches are pruned by using the upper bound §*. If the Kemeny
problem admits more than one solution, only those solutions are
added to the list 7.

The reduction shown in Example 4 is even more accentuated
when both the depth of the tree and the number of recursive calls
increase, causing the number of nodes in the initial search space
to increase and therefore emphasizing the effect of the pruning.
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a > s, (32):a1>a2>a3 (34)4>a1>a2>a3>a4
/ a1>a2>a4(40)*>01>02>a4>a3
0 (22) + ay = ay (30) = @1 7 07 42 (36) @y >z > ag
a1>a3>a4(34)4>a1>a3>a4>a2
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@ > a (34):a2>a1>a3 (36) —— ay > a; >a3 > ay
/ a,>a, >a, (82) —— ay>a; > a, > a3
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ay > ay > ay (20) —— ay > a3 > ay > a;
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a3 >ay>a; (32) —— a3 >ay>a; >a
ay > a, > a, (22) —— a3 > ay > ag > a

N gy (18 @ > 9> @ (18) —— [a> 4> 0, > o]
3 ay > ay > a, (20) —— a3 > ag > a, > a,

a, >ay (34) 2
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"a4>al>a3 (30) —— ay>a; > a3 > ay
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Tag>a,>ay (24) —— ag > ay > az > a;
_ay>a3>a (24)4>a4>a3>a]>a2
a, > a3 > a, (26)4>a4>a3>02>a1

\ a, > as (20) =

(a) Complete search space showing all the possible rank-
ings that can be obtained. The numbers in between brack-
ets represent the partial distance 6, associated with each
node.

say>ay (22) —ay > a, > ay (22) —— a3 > a; > a, > a;

1
900 4 > a0, (1) = a4y > 0y > 0y (18) — [a > @ > @ = ]
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)
B (12)aa4>a2( 2) — ay>ay > ay (24) —— ay > ay > a3 > a
4 say>a3 (20) —»ay>a3>a; (28) ——a, > a3 >a; > a,

(c) Prune using ME. Only the alternatives verifying that
a; = True are added to p as children, as they are the only
ones that may possibly lead to an optimal solution.
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(b) Search space pruned by using the distance bound.
The children of the nodes such that 5, > 6* are no longer
considered, as they may not lead to an optimal solution.

XX
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a5 (10) o oy (14) — 4y > ay = 4y (18) —— [ay > ay > ay > ]
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(d) Total reduction of ME-BBRCW. Branches are pruned
if they try to concatenate an alternative such that o; #
True. Nodes such that 5, > 6* are not expanded. In the
presence of a Condorcet winner, only this alternative is
considered.

Fig. 1. Search space defined in order to determine the Kemeny ranking for the profile of rankings in Table 4 using different algorithms.

3.5. Complexity of the algorithms

The complexity of algorithms is usually studied using the so-
called Big O (Arora & Barak, 2009) notation, which defines how
the algorithm responds, in terms of theoretical efficiency, when the
size of the input changes.

Note that the computation time of the algorithms proposed in
this work depends on a precondition (the existence of a Condorcet
ranking). Thus, the best scenario happens if there is a Condorcet
ranking. In this case the winning ranking is computed using the B-
outranking matrix (Definition 4) in constant time. However, when
there is not a Condorcet ranking, the algorithm must build the
tree for searching the optimal solution according to the Kemeny
method. Then, the complexity of this process must be studied.

The search space explored using BB algorithms heavily depends
on the prune criteria specifically defined for the problem and on
how it can be applied to a concrete input data. As consequence,
the size of the elements to explore cannot be determined before-
hand which makes it impossible to exactly define the complexity.
Instead, the complexity of the best and worst cases are usually
provided as lower and upper bounds.

Regarding the worst case, note that BB algorithms are generally
applied to NP-hard problems (as in this work), for which the com-
plexity associated to the worst case is equal to a brute force ex-
ploration. This means that the worst scenario actually gives no in-
sight into the real performance of the algorithm. According to this,
the worst complexity for the algorithms proposed in this work is
O(n!), as the number of rankings is factorial on the number of al-
ternatives.

Regarding the best case, let us try to further study the complex-
ity by modeling the search space like the tree graph that is defined
by the algorithms. The theoretical complexity time can be given in
terms of k, which corresponds with the remaining number of al-
ternatives left to add to the prefix being currently explored, and
therefore it varies at each level of the tree. Consider ¢t the time re-
quired to access one element of the outranking matrix. Then, the
time complexity can be expressed using the following formulas.

t when k =1
kt +kT(k—1) when1l<k<n
kT(k—-1) when k=n

T(k) =

To illustrate this behavior, an example with a set of n =4 al-
ternatives A = {ay, a,, as, ag} is shown in Fig. 2. In the root node
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Algorithm 5: ME-BBRCW.

input: An outranking matrix O for n > 3 alternatives.

1. Define an empty list of solutions .

2. Take O and define the set n containing the alternatives
in O with o; = True.
Initialize a stack of nodes to explore. Create one node for
each alternative a; € n.
. Take (and remove) the first node p from the stack.
. Compute the distance §, := 8, (7}}).

e If 6, > §* go to Step 4.
e If §, < 6* go to Step 6.

. Consider the submatrix 0,, which contains only the
alternatives of A that are not already fixed in p:

3.

o If the dimension of the matrix is 2 x 2.
- For the two remaining alternatives a;, a;:
 If 0;; > 0j;, define ry := p > a; > a;.
x If 0j; > 0, define ry := p > a; > a;.
* If 0;j = 0j;, define ry := p > g; > a; and
i) ::p>aj>ai.
- Compute the distance &y, := 8(ry, ):
* If 8y, < &%, then empty 7 and add ry to it. If
is defined add it also to . Update 6* = §r,.
« If 8;, = 6%, then append this solution to 7. If &y,
is defined add it also 7.
o If the number of alternatives in O is n > 3:

- If there is a Condorcet winner g;, add a node for
the prefix ‘p > g;’ at the beginning of the stack.

- If there is not a Condorcet winner, determine 7 for
the subset matrix 0, containing the alternatives in
0, with o; = True and add one node of the form
‘p = a;’ to the stack for each g; € .

7. Repeat steps 4 to 6 until the stack is empty.

Table 4
Profile of rankings 7y given by ten voters on the set of four alternatives A =
{aq,a,, a3, as} (left) and corresponding outranking matrix (right).

Number of voters Ranking ay|a,|a;|a
4 a, > ay > a, > a, @ 0]6/2]0

: a,| 41064

4 a;>ay>a; >a, ol 84|08

2 a, > a; > a, > az a,|10]6 1270

of the tree, four alternatives are left to explore. Therefore k =n =
4, This node is an special case because neither a ranking nor a
distance is associated to it. Then, a prefix p is fixed using the
first alternative of the set. When this alternative is fixed, using
Definition 3 the three elements of the matrix 0, 1, 03 1, 041 must
be added to the distance associated to the prefix. The same pro-
cess is followed when new alternatives are added at other levels
of the tree. Note that this should be repeated on the k alternatives
in each level of the tree, obtaining the complexity.

The results of the time complexity are shown in terms of t for
each level of the tree below:

T1) =t
T(2) =2t +2T(1) = 2t + 2t = 4t

T(3) =3t +3T(2) = 3t + 3(4t) = 3t + 12t = 15t
T(4) = 4t + 4T (3) = 4t + 3(15t) = 49t
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Fig. 2. Exploration path for the first ranking in lexicographical order of the search
space and showing the number of branches expanded by each node depending on
its level.

However, let us recall that the BB algorithms prune the search
space. During this process, the number of branches is reduced in
each node by a factor fi, being f, the number of branches that
can be discarded in each node of the search space with 0 < f, <k.

t when k =1
Tk)y=1{ kt+ (k- fi)T(k—1) when1l<k<n
(k—f)T(k—1) when k=n

Notice that, because of how the tree is created, there is at least
one node in each level which f; < k, which guarantees that at least
one leaf node is reached. The best case complexity in this situa-
tion happens when the two following conditions occur at the same
time: 1) the first leaf node explored of each level has f, =k—1
and the remaining ones have f, =0, and 2) the ranking reached
has the minimum distance to the profile and moreover it is the
only solution. This leads to explore the first leaf, which corre-
sponds with the lexicographical order of the set of the alternatives.
The best case scenario is found when this ranking is the optimal
and unique solution. In addition, its associated distance must be
lower than the distance associated to all the nodes with k =n — 1.
Furthermore, this distance is smaller than the distance associated
to all the nodes with the same prefix of any length. In this case
the complexity is linear on the number of alternatives, which rep-
resents the lower bound.

Some other considerations can be highlighted with regard to
the complexity. In fact, although it is impossible to determine the
number of branches that will be pruned from the search space us-
ing these algorithms, some properties of the problem can be used
in order to bound it. Consider the complementary ranking, that is
the one that has exactly the opposite relation for each pair of al-
ternatives (given r; :=a, > a3 > a; > 4y, its complementary rank-
ing is 71 := a4 > ay > az > ay). Taking into account Eq. (3), the el-
ements of the outranking matrix considered for determining the
distance §(ry, ) are exactly the opposite to the elements used for
determining the distance & (77, 7). This makes constant the sum of
the distances of two complementary rankings:

n2—-n

- (6)

Thus, only those alternatives a; which «; = True are explored,
which always leads to the complementary ranking with minimum
distance. In addition, it can be guaranteed that only half of the
rankings are explored. Although this does not affect the theoretical
complexity as the exploration of ”7' rankings instead of n! rankings
still has a complexity O(n!), this has an impact on the execution
time.

Another consideration is that, given the outranking matrix, the
branches of the search space pruned in the first level of the tree
that define the search space when k=n—1 can be known prior
to execution, as it is equal to the number of rows that have o =
True (see Eq. (5)), and thus f,_,_; is known. However, for deeper
branches, the reduction is also improved but the value of fi can-

S(ri,m)+6(r,m) = -m.
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not be known in advance. Moreover, more branches will be dis-
carded also considering the upper bound defined according to the
distances previously obtained. The complexity of the operations re-
quired for branching and compute the bounds of the algorithm
is, in the worst case, quadratic. Moreover notice how the number
of alternatives decreases when the tree is deeper, meaning that
the execution time also decreases even if the operations are still
quadratic.

4. Experiments and results

In order to test the proposed algorithms, a synthetic dataset
containing different profiles of rankings has been created. It con-
tains only profiles of rankings that do not have a Condorcet winner
(and consequently, neither a Condorcet ranking). These profiles of
rankings consider numbers of alternatives n € [8, 14] and numbers
of voters m e {10, 50, 100, 250, 500, 1000, 2000}. The same num-
bers of voters plus one has also been considered in order to com-
pare the behavior for an even or odd number of voters. For each
different combination of (n, m), a total of 200 profiles are consid-
ered. Each of the profiles has been created according to the follow-
ing steps (1) Randomly select the number d < m of different rank-
ings in the profile. (2) Obtain d random different permutations of
the n alternatives. (3) A random vector of d elements whose sum is
equal to m is generated where each element represents the num-
ber of voters associated to each ranking generated in the second
step. (4) If the profile do not have a Condorcet winner, create the
outranking matrix and add this to the dataset.

The experiments have been conducted in two separate parts.
Firstly, the proposed algorithms have been compared with the
original algorithm for values of n € {8,9, 10} in order to check the
reduction in the execution time. Secondly, the execution time for
the profiles of rankings with greater values of n are calculated by
using the best of the proposed algorithms.

All the results presented in this paper have been obtained using
a MacBookAir10,1 with a chip Apple M1 of 8 cores (with 4 perfor-
mance cores and 4 efficiency cores) and 16 GB of RAM memory.

4.1. Comparison with the original method

The execution times obtained for the algorithms ME-RCW,
ME-BB and ME-BBRCW are compared with that for the original al-
gorithm ME. A thorough study has been carried out for the pro-
files of the aforementioned synthetic dataset corresponding to the
number of alternatives n € {8, 9, 10}. This study has been restricted
to these lower numbers of alternatives as the execution time is
very fast, whereas for greater numbers of alternatives the execu-
tion time becomes too slow for the benchmark algorithm ME. For
each profile of rankings and algorithm, the execution time required
to determine the Kemeny ranking has been measured three times
and the median value has been obtained with the aim of minimiz-
ing the impact that other processes being executed on the com-
puter may have.

A general comparison of the average time required by each al-
gorithm for each number of alternatives is shown in Fig. 3, show-
ing the improvement of the algorithms proposed in this paper in
comparison to the original algorithm. The left-hand side of the fig-
ure shows the execution times on a shared scale for all the num-
bers of alternatives. Note that this figure evidences the exponential
growth of the execution time of the algorithms as the number of
alternatives increases. The right-hand side of the figure shows the
percentage of time required by the proposed algorithms to solve
the Kemeny problem on average in comparison to the execution
time for the Algorithm ME. Although it reduces the execution time,
Algorithm ME-RCW is the worst of the three algorithms proposed
in this paper, as in the worst-case scenario it requires on average
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a 33% of the execution time taken by the Algorithm ME. The Al-
gorithm ME-BB requires percentages of time lower than 24% in
average in comparison to the original Algorithm ME. The best im-
provement is achieved by ME-BBRCW, the one that combines all
the pruning criteria. Its execution time is lower than the 11% of
the original algorithm, independently of the number of alterna-
tives tested. Furthermore, the improvements with respect to the
Algorithm ME seem to be larger as the number of alternatives in-
creases.

Fig. 4 shows the percentage of time required by each of the
proposed algorithms in comparison to the original Algorithm ME
for different numbers of alternatives and voters. Note that the be-
havior of Algorithm ME-RCW depends on whether the number of
voters is odd or even. In addition, its execution time decreases as
the number of voters increases. In contrast to Algorithm ME-RCW,
the execution time for Algorithm ME-BB increases for larger num-
bers of voters, as recursively checking the existence of the Con-
dorcet winner is not applied in this case. Algorithm ME-BBRCW,
that combines all the pruning criteria, achieves a much more sta-
ble execution time when the number of voters varies within each
number of alternatives. Nevertheless, this algorithm still presents
a slight difference depending on whether the number of voters is
odd or even. Furthermore, the reduction in the execution time for
this algorithm is close to 10% of the execution time of the origi-
nal algorithm for any combination of number of alternatives and
number of voters. In addition, the improvement seems to be more
substantial as the value of n increases.

Paired t-tests have been performed to compare the execution
time obtained by the ME-BBRCW and by the other algorithms. The
p-value obtained is lower than 2.2e-16 in all the test, showing that
ME-BBRCW execution time is statistically lower than the obtained
by the other algorithms.

4.2. Results for larger numbers of alternatives

The execution time of Algorithm ME drastically increases as
the number of alternatives increases, making the comparison
more difficult for large datasets. In this section, results for n e
{11, 12, 13, 14} are shown only for the Algorithm ME-BBRCW, as it
has been proved to be the fastest of all the proposed algorithms,
as detailed in the previous subsection.

Fig. 5 illustrates the increment of the mean execution time as n
increases. Note that the value of these execution times is affected
by the behavior of some profiles of rankings that present a larger
execution time than the others. If instead of the mean, the median
execution times were considered, the results for the values of n
equal to 11, 12 and 13 would be 0.246, 1.13 and 5.218, respectively.
This results in almost half of the values obtained when considering
the mean.

The execution time for Algorithm ME-BBRCW for different num-
bers of alternatives and voters is illustrated in Fig. 6. These plots
show the mean execution time for each pair (n, m). The horizontal
line shows the mean execution time for all the profiles of rankings
with the same value of n in the dataset. For all values of n, the
mean execution time for profiles of rankings with an odd and even
number of voters with one unit of difference is in general lower
for the odd value. Notice however how this difference tends to de-
crease as the number of voters increases. Although the execution
time varies for each m within each plot, this variation becomes less
relevant as the number of voters increases, barely changing the ex-
ecution time for some values of n for the profiles of rankings with
2001 voters in comparison with the profiles of rankings with 10
voters.

The implemented method also runs for profiles of rankings with
n =14 and n = 15 alternatives. To illustrate the computational ef-
ficiency of the method, 200 profiles of rankings with the constant
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value of m = 11 voters have been evaluated. The results of the ex-
ecution time for these profiles are shown in Fig. 7. For 14 alter-
natives, notice how the execution time on most of the profiles is
below the one-minute threshold. However, there are some outliers
for which the execution time is considerably larger. For 15 alter-
natives, the execution time on half of the profiles of rankings is
below the one-minute threshold, whereas the execution time on
three-fourths of the profiles of rankings is below the three-minute
threshold. In this case, we also observe some outliers, leading to
an even higher execution time than in the case of 14 alternatives.
Overall, this figure hints that the execution time varies largely,
even for profiles of rankings with the same number of alternatives
and voters. Therefore, there must be other factors that affect the
difficulty of determining the winning ranking.

5. Factors influencing the execution time

As has been shown in the previous section, the number of al-
ternatives and voters are not the only factors influencing the exe-
cution time. Some authors have pointed out that the difficulty of
the profile of rankings may have a large influence on the execu-
tion time required to determine the winning ranking (Ali & Meila,
2012). However, the measurement of this difficulty and the identi-
fication of the factors influencing the execution time are not trivial
problems, specially bearing in mind that not all algorithms for the

computation of the Kemeny ranking might be affected in the same
manner.
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For example, in algorithms such as ME, the number of alterna-
tives in the outranking matrix which have «; = True has a great
impact on the execution time, as it dominates the number of re-
cursive calls (which is analogous to the number of solutions ex-
plored). For this reason, larger values of alternatives rocket the ex-
ecution time for the algorithm (Rico et al., 2021b). In the profiles
of rankings used in this work, every group of 200 profiles with the
same number of alternatives and voters in the dataset show a nor-
mal distribution of the number of alternatives that fulfill the prop-
erty «; = True. However, the impact of this factor is not so relevant
when new prune criteria are added that allow to discard branches
even if they have alternatives with this condition, as happen in the
two algorithms proposed in this paper.

Another interesting point about the execution time can be ob-
served in the results shown for larger values of n in Fig. 6. This
figure illustrates that, although the execution time seems constant
for profiles of rankings with an even number of voters, a gentle in-
creasing trend appears for profiles of rankings with an odd number
of voters.

Betzler, Fellows, Guo, Niedermeier, & Rosamond (2009) propose
to use the average Kendall distance between the rankings in the
profile to measure the difficulty to determine a winning ranking.
This can be defined in terms of the outranking matrix O as follows:

1 n-1 n
A= > 005,
i=1 j=i+1
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the number of voters.

where h = @ is the triangular number of the number of vot-

ers. The value of the average Kendall distance in comparison to
the execution time is illustrated in Fig. 8 for the profiles of rank-
ings with 13 alternatives. It can be observed that the profiles of
rankings leading to a higher execution time are typically those
for which the average Kendall distance is greater. This fact sug-
gests that the disagreement between voters and the execution time
may be related to the number of rankings pruned from the search
space.

Furthermore, as can be observed both in Figs. 4 and 6, the be-
havior of the algorithm strongly depends on whether the number
of voters is odd or even. In fact, Fig. 4 shows how this different
behavior for profiles of rankings with an odd and even number of
voters appears when pruning according to the Condorcet winning
criterion. A potential explanation for the difference between the
profiles of rankings with an odd and even number of voters is the
lowest margin that can be obtained in the pairwise comparison.
When the number of voters is even, alternatives can be tied in the
pairwise comparison and, therefore, the lower margin that can be
attained in a pairwise comparison is 0. This implies that for two
such alternatives the same points will be added to the distance of
the ranking to the profile. For this reason, it would be necessary to
explore both alternatives rather than one, as would be the case for
an odd number of voters.

Another possibility to measure the disagreement between vot-
ers is to consider the index introduced in (Rico, Vela, & Diaz, 2022;
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Rico, Vela, & Diaz, 2021a). This index measures the number of
times that voters have the maximum possible disagreement for a
pair of alternatives. This means that half of voters prefer one al-
ternative over the other one, whereas the other half of voters has
the opposite preference. This pairwise maximum disagreement is
linked to the lowest margin p for a pairwise comparison, which
equals 0 when m is even and equals 1 when m is odd. The index
is formally defined as follows

n-1 n
o= 2 Vi

(7)
i=1 j=i+1
where
Vi = 1, if Jo;; — 0l = u,
Y710, otherwise.

The distribution of the index o for each number of voters for
the profiles of rankings with 13 alternatives is shown in Fig. 9. The
displayed density plot shows a different behavior for even numbers
of voters than for the corresponding odd numbers of voters within
a unit difference.

6. Conclusion
In this paper, we have proposed different exact algorithms for

solving the Kemeny problem. The proposed algorithms improve the
execution time of the one proposed by Azzini & Munda (2020), one
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of them even reducing at least an 88% its execution time in aver-
age. Furthermore, this improvement appears to be even more pro-
nounced as the number of alternatives increases. The best of the
proposed algorithms guarantees an assumable execution time up
to n = 14 alternatives.

Moreover, some factors potentially impacting the execution
time have been studied. Special focus has been given to some as-
pects of the profiles of rankings that may have an impact on the
execution time. Further research along this direction may be of in-
terest, as we have provided empirical evidence that hints that pro-
files of rankings with the same number of alternatives and vot-
ers might differ greatly in their execution time, specially for larger
numbers of alternatives. The identification of these factors would
allow to parametrize the algorithm and further refine the study of
the execution time for profiles of rankings with a greater number
of alternatives.

A possible extension of this topic includes the development
of parallel algorithms or the exploitation of approximate meta-
heuristic techniques with the aim of speeding up the execution
time, which is often necessary in many real-life applications.
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