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Abstract 

The use of molecular methods in plant systematics and taxonomy has increased during 

the last decades, however, the accessibility of curated genetic samples and their 

metadata is a bottleneck for DNA-based genetic studies in botany. Plant biodiversity 

DNA banks and DNA-friendly collections could be critical suppliers of curated genetic 

material for researchers in the current context of plant biodiversity loss. We aim to 

understand the potential of plant DNA banks and DNA-friendly collections to enhance 

the growth and openness of scientific knowledge. The preservation of genetic material 

should become part of a natural collection’s process for the generation of extended 

specimens enabling the preservation of both the phenotype and genotype and 

contributing to the generation of data networks which cross-fertilise other fields. These 

curated collections are advantageous in endangered species research, detecting 

processes related to extinction, giving a genetic dimension to IUCN assessments or 

completing the Leipzig Catalogue of Vascular Plants. Therefore, DNA collections are 

fundamental in producing FAIR data, Responsible Research and Innovation (RRI) and 

meeting the goals of international conservation programs. The completion of natural 

collections is important for current Research efforts and furthermore, vital to support 

future research in an era of ongoing plant biodiversity loss. 
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 Introduction 

Botanical vouchers are well preserved whole, or part, specimens included in a 

permanent collection which is accessible to researchers (Funk et al., 2005, 2017; Pleijel 

et al., 2008). These vouchers are fundamental tools for botanical research since they 

provide a reference for taxonomical and morphological consultations and verifications 

(Funk et al., 2005; Pleijel et al., 2008; Gaudeul & Rouhan, 2013; Buckner et al., 2021). 

During the last decades, the decrease in the costs of molecular methods has made 

molecular evidence the basis of taxonomic changes (e.g. Downie et al., 2010; Banasiak 

et al., 2016), thus giving renewed relevance to the morphological vouchers and their 

associated information as key pieces for understanding the complex and unexpected 

phylogenetic results (Ruedas et al., 2000; Funk et al., 2005; Pleijel et al., 2008; Peña & 

Malm, 2012). Nonetheless, although DNA technology is popular in Botany and is 

quickly advancing thanks to the high-throughput genotyping technologies (HTG), the 

accessibility to high-quality and properly managed genomic samples and their metadata 

is a bottleneck for some biodiversity research projects (Blackmore, 2002; Hodkinson et 

al., 2007; Astrin et al., 2013; Droege et al., 2014; Gostel et al., 2016; Kumar & Kumar, 

2018; McKain et al., 2018). 

In this context, DNA banks or biobanks—biorepositories focused on the long-term 

preservation of high-quality and integrity-guaranteed genomic samples (DNA, RNA or 

DNA-rich tissue) which are associated with specific data about the specimen (such as 

the date of collection, the location or the ecosystem in which it was collected)—and 

other DNA-friendly centralised collections (e.g. tissue collections preserved in silica 

gel) are fundamental suppliers of genetic material for taxonomic and systematic studies 

(Jenkins, 2003; Corthals & Desalle, 2005; Rice, Shepherd, et al., 2006; Astrin et al., 



 
 

2013; Gaudeul & Rouhan, 2013; Watson, 2014; Droege et al., 2016). The role of these 

curated collections is more critical today, as global estimations based on historical 

analyses of genetic diversity indicators of 91 animal species covering an average of 97 

years indicate that around 6% of populations’ genetic diversity has been lost (Leigh et 

al., 2019). No such study has yet been conducted in wild plant species, however we 

might predict that the same amount of biodiversity loss in plants would have a more 

critical effect taking into account the reduced percentage of wild plant species genomes 

have been sequenced (Willis, 2017). Moreover, the current plant biodiversity loss and 

its associated extinctions, whose consequences for other organisms are difficult to 

predict given the vital ecosystemic role of plants (Grime, 2002; Schleuning et al., 2016), 

are aggravated by the insufficient funding for non-commercial endangered plant species 

(Suarez & Tsutsui, 2004; Balding & Williams, 2016; Roberson & Meyer, 2020). 

Unfortunately, despite the recent technical advances, the estimations of extinctions, and 

the pleas of Hodkinson et al. (2007) and Gaudeul and Rouhan (2013) for the integration 

of plant DNA biobanks and DNA-friendly collections in the already existing 

biodiversity preservation facilities, these have not been fully integrated. In this context, 

we aim to conduct bibliographic research to understand the potential of plant DNA 

banks and DNA-friendly collections to enhance the growth and openness of scientific 

knowledge. 

1. DNA preservation and the Extended Specimen 

Webster (2017) applied a holistic view of voucher material when he coined the term 

“Extended Specimen” (ES) to a set of different voucher material derived from the same 

individual which aims to preserve its phenotype, its genotype and its ecological context. 

Although this author created this concept for ornithological collections, plants and fungi 



 
 

collections are not falling behind in creating protocols aiming to transform their 

specimens into ESs by, for example, generating photovouchers (Gómez‐Bellver et al., 

2019). Nonetheless, even when historic natural collections of museums, herbaria and 

botanic gardens contain a large number of well-documented specimens, many of them 

have been treated —with chemical compounds, heat, or alcohol— to preserve their 

phenotype damaging their DNA in the process (Jenkins, 2003; Suarez & Tsutsui, 2004; 

Hanner & Gregory, 2007; Staats et al., 2011; Särkinen et al., 2012; Gaudeul & Rouhan, 

2013; Bradley et al., 2014; Droege et al., 2014; Forrest et al., 2019). As a result, the 

DNA obtained from voucher specimens, especially from the older specimens, is highly 

fragmented (<50pb), making DNA amplification challenging and hindering Sanger and 

next generation sequencing (NGS) methods due to the lack of the necessary quality (Xu 

et al., 2015; Gutaker & Burbano, 2017; Marinček et al., 2022). Other drawbacks 

associated with the use of voucher specimens as a source of genetic material are the 

decay speed (6 times faster than that observed in animals), the cytosine to thymine 

substitution trend of ancient DNA (aDNA) or the presence of exogenous microbial 

DNA (Weiß et al., 2016; Bieker et al., 2020). The latter two aspects can be of relevance 

in phylogenetics and barcoding (Xu et al., 2015), as the necessary destructive sampling 

required for DNA extraction would damage the voucher specimen to obtain incomplete 

and/or modified DNA sequences which could lead to erroneous conclusions. 

The current technology allows the long-term preservation of DNA and DNA-rich 

tissues in various ways: at ultracold temperatures (-80ºC) in mechanical freezers, by 

cryopreservation in liquid nitrogen (LN2), at room temperature in silica gel, in 

stabilizing solutions or in in air-proof containers (Hodkinson et al., 2007; Wan et al., 

2010; Spooner & Ruess, 2014; Zimkus & Ford, 2014). These methods require different 

machinery and level of investment however, the effectiveness and reliability of DNA-



 
 

rich tissue preservation in silica gel (Staats et al., 2011; Wilkie et al., 2013; Forrest et 

al., 2019), means that morphological vouchers could be extended through DNA-friendly 

collections at low costs (Gaudeul & Rouhan, 2013). Thus, the genotype of a 

morphological voucher could be accessed via their DNA-friendly preserved tissue 

sample without having to destroy part of the voucher material. Hence, obtaining DNA 

from herbarium vouchers could be restricted to endangered species when sample 

collection is bound by strict limitations or prohibited, to extinct taxa when no alternative 

source of DNA is available and the use of the voucher material does not represent a 

great loss of phenotypical information or to scientific research aiming to understand the 

historical processes such as domestication (e.g. Roullier et al., 2013) or hybridizations 

events and related to invasive expansion (e. g. Martin et al., 2014). 

Lendemer et al. (2020) recently proposed giving another dimension to the ESs, through 

the improvement of the accessibility and the interconnection of the digitalized data 

derived from ESs so as to enhance the scientific potential of the specimens in a process 

called Extended Specimen Network (ESN) (See Fig. 1). In this sense, DNA biobanks 

and DNA-friendly collections could play a fundamental role in enhancing the 

accessibility of ES’s data as they would contribute to nucleotide databases and public 

inventories such as NCBI (https://www.ncbi.nlm.nih.gov/) or the Global Biodiversity 

Information Facility (https://www.gbif.org/) and facilitate international barcoding 

projects such as the International Barcode of Life Project (iBOL) (https://ibol.org/), 

Encyclopedia of Life (EOL) (https://eol.org/) or The Barcode of Life Data System 

(BOLD) (https://www.boldsystems.org/) to achieve their goals of gathering genetic 

information about all possible living forms (Hanner & Gregory, 2007; Astrin et al., 2013). 

Other emerging fields depending on the capacity of identifying taxa based on DNA such as 

environmental DNA (eDNA) or well-established fields like pharmacology would 

https://www.ncbi.nlm.nih.gov/
https://www.gbif.org/
https://ibol.org/
https://eol.org/
https://www.boldsystems.org/


 
 

benefit from the increase in the knowledge and higher accuracy of barcoding technology 

(Chase & Fay, 2009; Schori & Showalter, 2011; Dick & Webb, 2012; Li et al., 2015; 

Bell et al., 2016; Gostel & Kress, 2022). 

2. Future applications of DNA collections 

Under the current scenario of species extinction and genetic biodiversity loss, plant 

biodiversity needs to be further studied and understood, and this must happen at an 

accelerated pace. Therefore, preserving molecular vouchers in DNA biobanks or DNA-

friendly collections should be a central part of the ex situ conservation strategy since the 

future of the current plant populations depends, in part, on their genetic structure and 

our advances in genomic studies. In situ conservation efforts for endangered species 

may thus be complemented with genetic knowledge gained from DNA biobanks or 

DNA-friendly collections, and environmental impacts of invasive species could be 

readily monitored via HTS and barcoding (Rice, Shepherd, et al., 2006; Coissac et al., 

2016; Davis & Borisenko, 2017; Breed et al., 2019). Another engaging subject in which 

the application of genomics would shed light is the detection of events of extinction 

through hybridization (e.g Arrigo et al., 2016; Rita et al., 2018), which may be relevant 

in mountainous areas in the future (Gómez et al., 2015) or when invasive species have 

been introduced (Mooney & Cleland, 2001; Geddes et al., 2021). 

Institutions like DNA biobanks could also contribute to a better plant coverage of the 

IUCN Red List and the Botanic Gardens conservation international threatSearch 

database (https://tools.bgci.org/threat_search.php) by monitoring the changes in 

distribution ranges and evaluating the conservational status of plant species and 

populations based also on genetic parameters (e. g. the effective population size (Ne)) as 

this is one of the weaknesses of the IUCN assessments (Garner et al., 2020). 

https://tools.bgci.org/threat_search.php


 
 

Furthermore, plant DNA banks have already proven useful for fungal biodiversity 

studies as plant tissue preservation methods also preserve associated fungi (i.e. Datlof et 

al., 2017), which means that significant advances in cataloguing fungi could also be 

prompted by establishing more plant DNA banks and other types of DNA curated 

collections. 

Curated collections of DNA material could generate more complete inventories that are 

useful in understanding plant biodiversity patterns and evolutionary history (e.g. 

Molina-Venegas et al., 2017) and future spatial distributions (e.g. González-Orozco et 

al., 2016). Furthermore, their curated information could improve present and future 

conservational efforts in terms of efficiency if it is implemented with geospatial 

information as the NEXTGENDEM project does (Laity et al., 2015; Caujapé-Castells et 

al. 2021). Moreover, DNA banks could concentrate their sampling efforts both on the 

type localities of species and on different locations of species’ distribution range. By 

focusing on these two sampling strategies, phylogenetic studies and conservational 

efforts would become more efficient and accurate in clarifying the taxonomic status of 

taxa, determining genetic diversity, finding and understanding adaptive genetic 

variations and establishing proper conservational units for both ex situ and in situ 

conservational strategies. In this context, both the digitalization and basic research on 

plant taxonomy and phylogenetics would benefit databases and initiatives like the 

Leipzig catalogue of vascular plants (LCVP) (Freiberg et al., 2020), as this list could be 

updated. 

3. DNA collections and FAIR data 

DNA collections and DNA-friendly collections are fundamental for creating Findable 

Accessible Interoperability and Reusable (FAIR) data within DNA sequences databases, 



 
 

but they are also new tools to implement legislation regarding the use of genetic patrimony 

as contemplated in the Nagoya Protocol (Ebert et al., 2006; Rice, Henry, et al., 2006; 

Wilkinson et al., 2016; Lannom et al., 2019). For instance, managing this kind of 

collection could accelerate and improve the implementation of the Access and Benefit-

Sharing (ABS) established by the Nagoya Protocol at a national level, since the law 

reinforcements required by national legislation regulating the terms of the required Prior 

Informed Consent (PIC) and Mutually Agreed Terms (MAT) would be clarified (Global 

Genome Biodiversity Network (GGBN), 2015; Davis & Borisenko, 2017; Consortium 

of European Taxonomic Facilities (CETAF), 2020). In this sense, encouraging national 

implementations could have a energising effect when it comes to establishing new legal 

agreements between countries that share valuable natural areas (e.g. the Pyrenees, the 

Alps) regarding the application of ABS. Besides, the curated collection of DNA would 

also create more FAIR data, as many researchers would have access to the original 

material from which molecular data derive. Furthermore, the generation of more FAIR 

data and the implementation of the  Nagoya Protocol would promote research ethics and 

open access, while contributing to achieve the targets of adequate assessment of plant 

species’ conservation status, preservation of their genetic diversity and effective 

populations’ management and restoration of the objectives for the documentation and 

conservation of plant biodiversity of the United Nations’ Global Strategy for Plant 

Conservation (GSPC) (Sharrock, 2012; Botanic Gardens Conservation International 

(BGCI), 2021; United Nations, 2021) and the target European Union’s Horizon Europe 

(European Union, 2021) for research improvement and sustainability, while addressing 

the current major issue for phylogenetic and conservational advances—sampling 

strategy, cost and availability of samples (Rice, Shepherd, et al., 2006; McKain et al., 

2018). Hence, researchers’ requirements for plant material would be addressed, while 



 
 

reinforcing research ethics through compliance with the Nagoya Protocol and the 

applications of some of the principles of Responsible Research and Innovation (RRI) 

(Owen et al., 2012; Williams et al., 2020). In this sense, the RRI principles of public 

participation in science, the involvement of institutions, and the establishment of the 

framework in research (Owen et al., 2012) would be achieved by, for instance, the 

generation of educational programs oriented to citizens with or without a scientific 

background (e.g. Funk et al., 2017), the diagnosis and coverage of the existing gaps in 

scientific knowledge of plant biodiversity and genetics or the generation of FAIR data 

(Williams et al., 2020). 

 Conclusions 

Extending morphological vouchers through DNA curated collections would help the 

advances of taxonomy and phylogenetics on a global scale by addressing the voids in 

scientific knowledge, for instance, sampling on the type location of the taxa. In the 

current context of Biodiversity Loss and Climate Change, collecting and preserving 

DNA or DNA-rich tissues is critical to add the genetic dimension to the current 

conservational status assessments, thus developing more efficient conservation 

strategies in the long term. In this sense, generating more FAIR data is not only 

beneficial for present-day researchers but also aids to achieve global targets of plant 

conservation and preserving and managing  plant genetic heritage. Moreover, as DNA 

technology has advanced so much that herbarium vouchers more than 100 years old can 

be subject to DNA studies, the material preserved today can be of use for diverse 

studies in the future without having to damage a voucher specimen. Thence, in an 

uncertain future, completing natural collections with DNA collections today means 

preserving genetic biodiversity for future generations. 
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