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Abstract
Critical thermal limits (CTmax and CTmin) decrease with elevation, with greater change 
in CTmin, and the risk to suffer heat and cold stress increasing at the gradient ends. A 
central prediction is that populations will adapt to the prevailing climatic conditions. 
Yet, reliable support for such expectation is scant because of the complexity of inte-
grating phenotypic, molecular divergence and organism exposure. We examined in-
traspecific variation of CTmax and CTmin, neutral variation for 11 microsatellite loci, and 
micro- and macro-temperatures in larvae from 11 populations of the Galician common 
frog (Rana parvipalmata) across an elevational gradient, to assess (1) the existence 
of local adaptation through a PST-FST comparison, (2) the acclimation scope in both 
thermal limits, and (3) the vulnerability to suffer acute heat and cold thermal stress, 
measured at both macro- and microclimatic scales. Our study revealed significant mi-
crogeographic variation in CTmax and CTmin, and unexpected elevation gradients in 
pond temperatures. However, variation in CTmax and CTmin could not be attributed to 
selection because critical thermal limits were not correlated to elevation or tempera-
tures. Differences in breeding phenology among populations resulted in exposure to 
higher and more variable temperatures at mid and high elevations. Accordingly, mid- 
and high-elevation populations had higher CTmax and CTmin plasticities than lowland 
populations, but not more extreme CTmax and CTmin. Thus, our results support the pre-
diction that plasticity and phenological shifts may hinder local adaptation, promoting 
thermal niche conservatism. This may simply be a consequence of a coupled variation 
of reproductive timing with elevation (the “elevation-time axis” for temperature vari-
ation). Mid and high mountain populations of R. parvipalmata are more vulnerable to 
heat and cool impacts than lowland populations during the aquatic phase. All of this 
contradicts some of the existing predictions on adaptive thermal clines and vulner-
ability to climate change in elevational gradients.
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1  |  INTRODUC TION

Climate change is promoting fast increases in both mean tempera-
tures and the frequency of extreme heat events and temporal anom-
alies, which may jeopardize biodiversity worldwide (IPCC,  2014; 
Pacifici et al., 2015; Parmesan, 2006). Species basically rely on four 
strategies to cope with this crisis: evolutionary changes in their tol-
erance limits, thermal acclimation (phenotypic plasticity), shifts in 
behavior and activity timing, and shifting geographical ranges in 
order to track historical climates (Habary et al., 2017; Hoffmann & 
Sgrò, 2011; Walther et al., 2002). Therefore, the study of popula-
tion variation and phenotypic plasticity in physiological traits, and 
the correct characterization of thermal microenvironments can be 
decisive to predict the consequences of global warming (Camacho 
et al., 2015; Garland et al., 1991; Huey et al., 2012; Somero, 2010).

Spatial variation in thermal physiology (e.g., Critical Thermal 
Limits, CTmax and CTmin) in relation to latitude and elevation has been 
thoroughly described at the interspecific level being often associated 
with environmental thermal heterogeneity (Bozinovic et al.,  2011; 
Pintanel et al., 2019, 2022; Shah et al., 2017; Stevens, 1989; Sunday 
et al., 2019). Compared with longer range climatic variation of lati-
tudinal gradients, elevational gradients change climate over shorter 
distances. That results in predictable changes in air temperatures be-
tween −6.5°C/km and − 3.5°C/km, due to adiabatic cooling, and an 
increase in thermal variability, associated with higher solar radiation 
and the lowering of air density (Hodkinson,  2005). These steeper 
climatic gradients may select for thermal adaptations to local con-
ditions and thermal plasticity, and act as physiological barriers to 
gene flow potentially producing genetic differentiation, particularly 
in non-seasonal tropical latitudes (Janzen, 1967; Polato et al., 2018). 
In turn, under moderate gene flow, populations living at divergent 
climates could introduce maladapted genotypes into each other, 
potentially decreasing the frequency of local adapted genotypes. 
This would determine a reduction in the steepness of the slope of 
adaptive clines, as it has been predicted theoretically (Endler, 1977; 
Slatkin, 1973), and demonstrated empirically in temperate amphib-
ians (Bachmann et al., 2020). Recent intraspecific studies have re-
vealed adaptive clinal variation with elevation in both CTmax and CTmin 
(Bishop et al., 2017; Klok & Chown, 2003; Sørensen et al., 2005) with 
more variation in CTmin than CTmax (Muñoz et al., 2014). In contrast, a 
number of studies did not reveal such elevational trend in physiolog-
ical traits related to thermal tolerances (Buckley et al., 2013; Gvoždík 
& Castilla,  2001; Senior et al.,  2019; Slatyer et al.,  2016; Slatyer 
et al., 2019; Slatyer & Schoville, 2016; Tonione et al., 2020). Yet, reli-
able data to support adaptive clinal variation is still scant because of 

the need and difficulty of integrating phenotypic (PST) and molecular 
divergence (FST) (Brommer, 2011; Leinonen et al., 2008).

Several biotic and abiotic factors may prevent adaptive differen-
tiation in thermal physiology when analyzing mountain clines. Most 
animals experience climate at fine-scale patches, and microenviron-
mental temperatures actually faced by the organism can deviate 
greatly from recorded mean air temperatures obtained at larger spa-
tial scales (Helmuth, 2009; Potter et al., 2013; Suggitt et al., 2011). 
In fact, recent analyses suggest that macroclimatic variables (e.g., 
WorldClim, Hijmans et al., 2005) may only weakly predict tolerance 
limits and physiological niches compared with microclimatic variables 
(Farallo et al., 2020; Gutiérrez-Pesquera et al., 2016; Katzenberger 
et al., 2018; Navas et al., 2013; Pintanel et al., 2019, 2022).

Spatiotemporal changes in microclimate may result, for ex-
ample, from differences in topography and vegetation cover 
(Porter et al.,  2002). Since microclimatic heterogeneity cannot 
be captured by downscaling regional climatic variation (Caillon 
et al., 2014; Diamond & Chick, 2018; Navas et al., 2013; Pincebourde 
et al., 2016), it becomes important to measure it. This is particularly 
important for assessing climatic tolerance in animals living at buff-
ered microhabitats, like ponds (Ex. tadpoles, Gutiérrez-Pesquera 
et al.,  2016; Katzenberger et al.,  2018; Pintanel et al.,  2022). This 
thermal heterogeneity at the microclimatic scales allows organisms 
for behavioral thermoregulation, which may preclude the evolution 
of physiological adaptations in performance by reducing the expo-
sure of organisms to extreme temperatures (i.e., the Bogert effect; 
Huey et al., 2003, 2012; Kearney et al., 2009; Buckley et al., 2015; 
Farallo et al.,  2018; Muñoz,  2022). Otherwise, organisms may be 
non-active year-round, adopting dormant physiological states such 
as diapause, hibernation or estivation, in order to escape stressful 
extreme temperatures (Ragland & Kingsolver,  2008), or because 
breeding habitats or resources are temporarily unavailable (e.g., ice 
covered aquatic habitats, and pond drying). Temporal adjustments 
of activity can be the result of two additive components, one sea-
sonal (or phenological) and one at a finer temporal scale (24-h) that 
can be dependent on season and particular weather conditions. The 
limit for these adjustments will be imposed by the energy demand 
(Kearney & Porter, 2017, 2020).

Therefore, in absence of energetic constraints, populations can 
persist at their spatial locations despite change in thermal conditions, 
without changes in physiological traits. Thus, phenological adjustments 
in activity can modify the strength of directional selection over ther-
mal tolerance limits through altitudinal gradients (Álvarez et al., 2012; 
Phillimore et al., 2010; Socolar et al., 2017). This is important because 
the physiological adjustment of thermal traits may be subjected to 
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severe constraints. For instance, extreme heat stress can occur even at 
high elevations (Sunday et al., 2014), so populations living in mountain 
areas should face both heat and cold extremes, which leads to an un-
likely solution (“master-of-all” superorganism, Remold, 2012).

All these factors can contribute to buffer the realized thermal 
variation (i.e., the range of effective temperatures experienced by 
individuals) along elevational gradients and, ultimately, they can 
promote the pervasiveness and retention of climatic niches; hence, 
organisms would maintain their thermal niches unchanged while 
moving along an elevation gradient. In this context, behavioral track-
ing of the microclimatic niche over space and phenology can allow 
for retention of the microclimatic niche rather than adapting to the 
new local conditions with changes in physiology (Farallo et al., 2020; 
Huey et al., 2003; Kearney et al., 2009; Muñoz, 2022).

Populations living in highly variable thermal environ-
ments would express greater plasticity in their thermal toler-
ances (Angilletta,  2009; Gunderson & Stillman,  2015; Chevin & 
Hoffmann, 2017; Mallard et al., 2020; but see, for deeper discussion, 
Gilchrist,  1995, Enriquez-Urzelai et al.,  2020). Besides behavioral 
thermoregulation and phenological adjustments, thermal acclima-
tion may also prevent directional selection on physiological thermal 
traits, which would constrain thermal adaptation to the new climatic 
conditions. In fact, organisms can retain plasticity enough to allow 
for rapid shifts in thermal tolerances, thus precluding thermal stress, 
death and, likely, the effects of natural selection (Chevin et al., 2010; 
Huey et al., 2012; Levins, 1969).

Here we examined elevational clinal variation in the upper 
(CTmax) and lower (CTmin) critical thermal limits and their plasticity 
in 11 populations of the Galician common frog, Rana parvipalmata 
(Figure 1), across an altitudinal gradient from 40 to 1800 m a.s.l. We 
focus on the aquatic tadpole stage because the breeding aquatic 
habitat of many amphibian species exhibit low thermal heterogene-
ity. This limits tadpole ability for behavioral thermoregulation com-
pared with terrestrial adult stages (see Feder & Hofmann, 1999) and, 
thus, determining that thermal selection on the aquatic phase could 

be a major driver of tadpole variation in critical thermal limits and its 
plasticity. In addition, recent research has identified maximum pond 
temperature as an important range-limiting factor for R. temporaria / 
Rana parvipalmata (Enriquez-Urzelai, Kearney, et al., 2019). Second, 
we analyzed population vulnerability to thermal stress by estimat-
ing warming and cooling tolerances (sensu Sunday et al.,  2014; 
Gutiérrez-Pesquera et al., 2016). Since average temperatures usually 
decline with elevation, and thermal physiology limits are driven by 
peak environmental temperatures (Buckley & Huey, 2016; Gutiérrez-
Pesquera et al., 2016; Overgaard et al., 2014; Pintanel et al., 2019), 
we posit the following two predictions: (1) greater heat impacts are 
expected at the lowlands (Pintanel et al., 2019; Sunday et al., 2014), 
whereas higher cold impacts are forecasted for mountain popula-
tions (Pintanel et al., 2019; Sunday et al., 2014) (elevational thermal 
vulnerability hypothesis); and, therefore, (2) under a scenario of selec-
tion in CTs, higher elevation populations will evolve lower tolerances 
to high temperatures and higher tolerances to low temperatures (el-
evational thermal adaptive hypothesis). In addition, we analyzed the 
among-populations variation in acclimation capacity (i.e., as a form 
of phenotypic plasticity) for thermal tolerances and the potential for 
local adaptation in thermal limits (CTmax and CTmin) by means of PST-
FST comparisons across these populations. Considering that popu-
lations at different elevations may be exposed to different extreme 
temperatures and variable thermal ranges, we hypothesize that 
these populations will also differ in acclimation ability.

2  |  MATERIAL S AND METHODS

2.1  |  Study system, population breeding dynamics, 
and sampling

The Galician common frog (Rana parvipalmata), formerly part of 
the European common frog (Rana temporaria) complex (Dufresnes 
et al., 2020), is endemic to the northwest Iberian Peninsula. Based 
on projected rates of climate change, there is growing evidence that 
common frogs (Rana temporaria and Rana parvipalmata) in north-
western Iberia may experience heat stress associated with heat 
waves in coming decades (Enriquez-Urzelai et al., 2020; Enriquez-
Urzelai, Sacco, et al.,  2019), although the impact on population 
growth would depend on the potential for behavioral thermoregula-
tion of adults and, especially, juvenile individuals (Enriquez-Urzelai 
et al.,  2018, 2020; Enriquez-Urzelai, Sacco, et al.,  2019). Anyhow, 
recent forecasts based on climatic niche models (both correla-
tive and mechanistics approaches), predicted alarming decreases 
in climatic suitability in genetic “hotspots” of the R. temporaria / R. 
parvipalmata complex (e.g., northern Iberian Peninsula and other gla-
cial refuges in southern Europe), and, under the worst scenarios, the 
extinction of R. parvipalmata and the Cantabrian R. temporaria along 
with many populations in central Europe (Enriquez-Urzelai, Kearney, 
et al.,  2019). In fact, under the most extreme climate change sce-
nario, all mountain ranges but the Alps will also become thermally 
unsuitable by 2070 (Enriquez-Urzelai, Kearney, et al., 2019).

F I G U R E  1 Amplectant pair of Rana parvipalmata and a satellite 
male surrounded by masses of recently spawned eggs and embryos 
in a breeding nucleus in the Color Valley (380 m a.s.l.). A second 
amplexus is under the egg masses. Breeding occurs in a series of 
small, shallow spring pools and ditches (maximum depth <12 cm) 
under complete canopy cover.
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Reproductive timing is strongly conditioned by elevation which 
results in a wide, sequential breeding period over most of the year 
(Figure 2; Álvarez et al., 2012). The observed breeding phenology 
seems to be the result of physical constrains (e.g., pond desiccation, 
winter severity at high elevation) derived from climatic conditions, 
and selection on adults to prevent breeding out of time that ren-
ders reproductive success, rather than the product of natural selec-
tion acting on larval thermal physiology. In the lowlands, breeding 
take place in autumn, extends over weeks or a few months with 
spawning peaks associated with heavy rains, and metamorphs leave 
the aquatic habitat by late-winter and early spring, before the risk 
of pond desiccation increases. In contrast, above 1400 m a.s.l. the 
onset of reproduction delays until snow melting in spring, popula-
tions show explosive breeding (lasting 1–2 weeks), and the larval 
phase can extend until the end of summer (Figure 2). For mountain 
top populations (1800–2200 m a.s.l.), the seasonal activity window 
may be less than 5 months to carry out larval development, juvenile 
growth, and fat storage before the onset of hibernation. Sampling 
was carried out between 2012 and 2014 in Picos de Europa National 
Park and surrounding areas, covering a relatively reduced geo-
graphical area (Figure 2, Table S2). We selected a total of 11 pop-
ulations along an elevational transect between 40 and 1800 m a.s.l. 
All of them belong to the T2 (eastern) lineage of Rana parvipalmata 
(Dufresnes et al., 2020) and were assigned to a maximum of five ge-
netic clusters (Choda, 2014).

For each site, we haphazardly collected 5–7 recently fertil-
ized clutches of R. parvipalmata to obtain a representative sam-
ple of the population. Embryos were transported to the Doñana 
Biological Station (EBD-CSIC), and maintained inside climatic cham-
bers (FitoClima, Aralab) under constant conditions of photoperiod 
(12:12 L:D) and temperature (15°C) until hatching. Thereafter, tad-
poles were kept in plastic containers at a larval density of 20 indi-
viduals · L−1 and constant photoperiod (12:12 L:D) and temperature 
(15°C), until they reached stage 26 (Gosner, 1960) and the tests were 
conducted. Since we assumed no cross-generational effects, this 
common garden approach allowed us to disentangle the effects of 
environment and genetics on physiological thermotolerance.

Animal captures were carried out under permits granted by 
Government of the Principality of Asturias (2010/000371), and Picos 
de Europa National Park (CO/09/121/2012, CO/09/0125/2013, 
CO/09/012/2014). All procedures complied with the country legal 
requirements on animal welfare (RD 53/2013) and were conducted 
in accordance with the guidelines of the Research Ethics Committee 
of the University of Oviedo under authorization #8-INV-2012. The 
members of the research team have approved licenses by the Service 
of Animal Welfare and Production of the Principality of Asturias to 
design and conduct experimental protocols with animals (license 
types C and D to A.G.N). This study was carried out in compliance 
with the ARRIVE guidelines (Animal Research: Reporting in Vivo 
Experiments) for how to report animal research in scientific publica-
tions (https://arriv​eguid​elines.org/arriv​e-guide​lines).

2.2  |  Environmental data

To better characterize potential selective pressures that might 
lead to thermal local adaptation, we obtained micro-  and macro-
environmental thermal data for all the sampled populations. To 
define the thermal profile at each site, we took into account the 
population's phenology, encompassing both the breeding and lar-
val periods (Figure  2; Tables  S1–S5). In order to characterize the 
macroclimatic thermal environments, we used the ‘extract’ func-
tion in the R package raster (Hijmans & van Etten,  2014; R Core 
Team, 2019) to obtain temperature data from WorldClim 2 layers 
(the temperature of shaded air at around 2 m off the ground, 30 s 
or 1 km2 spatial resolutions; records from 1970 to 2000) (Fick & 
Hijmans, 2017). For each population, we assessed monthly maxi-
mum (TMAX) and minimum (TMIN) temperatures restricted to 
the time period with presence of larvae in the ponds (Tables  S2 
and S3). In addition, we calculated seasonal temperature range 
(SR) as the difference between TMAX and TMIN (Supporting 
Information, Table  S4). Since most animals experience climate at 
fine-scale patches (Porter et al., 2002; Suggitt et al., 2011), mac-
roclimatic data may be poorer predictors of thermal physiology 

F I G U R E  2 (a). Study area and geographic locations of 11 populations of Rana parvipalmata (sample points for embryos). (b) Observed 
temporal variation in the breeding and larval period of Rana parvipalmata along the altitudinal gradient for the analyzed populations. Bars 
marked in red indicates population adult breeding activity; black bars show the presence of larvae in the water. Purón adult breeding activity 
is not marked because the scarcity of observations.
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than microclimatic variables (Gutiérrez-Pesquera et al.,  2016; 
Katzenberger et al., 2018; Pintanel et al., 2019; Sunday et al., 2014). 
Hence, we gathered microclimatic data by placing HOBO Pendant 
temperature dataloggers that recorded temperature every 10–
30 min at each pond (Table  S5). All the Hobo data-loggers were 
placed underwater on the bottom of the ponds at a depth of 15–
25 cm. One datalogger (Aliva population, 1420 m) was lost and we 
employed the information from a nearby population with similar el-
evation and pond characteristics (Pandébano, 1220 m). For each lo-
cation, we calculated maximum daily temperature (tmax), minimum 
daily temperature (tmin), seasonal thermal range (sr) (sr =  tmax-
tmin) and average daily temperature range (dr) for the period when 
tadpoles are present in the ponds (Figure 1, Table 1, Table S5).

2.3  |  Estimation of critical thermal limits and 
warming and cooling tolerances

Previous research with tadpoles showed that there is not sig-
nificant variation in CTs across the larval period and only later 
on, at the verge of metamorphosis climax (Gosner stage 42, 
Gosner, 1960), both CTs exhibit a strong decline (e.g., Floyd, 1983). 
Therefore, to determine the CTmax and CTmin of R. parvipalmata 
populations, we haphazardly selected 32 larvae within Gosner 
stages 26–39 from each population pool (a mix of 5–7 families 
per population). Then, each population sample was split into two 
groups of 16 tadpoles for the estimation of CTmax and CTmin, re-
spectively. Tadpoles were kept individually in 400 ml plastic cups 
and acclimated inside environmental chambers (FitoClima, Aralab) 
to a constant temperature of 20°C with a photoperiod of 12 L:12D 
for 4 days before conducting the tolerance assays. This is the time 
required for adult amphibians and in tadpoles (J. Turriago and M. 
Tejedo, unpublished data) to stabilize CTmax after a large change 
in environmental temperature, such as field and laboratory condi-
tions (Hutchison, 1961). Tadpoles were fed ad libitum with Purina 
rabbit chow. Oxygen saturation in the vessels was daily monitored 
with a laboratory multi-parameter probe (WTW CellOx® 325) 
and recorded values were always over 60%. Thermal tolerance 
limits (CTmax and CTmin) were determined using the Hutchison's 
dynamic method (Gutiérrez-Pesquera et al., 2016; Lutterschmidt 
& Hutchison, 1997b). Tadpoles were weighed immediately before 
the beginning of the test and placed in individual 100 ml containers 
with dechlorinated tap water inside a thermal bath of 15 L (HUBER 
K15-cc-NR) previously stabilized to 20°C (acclimation tempera-
ture and start temperature) for five minutes. Afterwards, each ani-
mal was exposed to a constant heating / cooling rate (ΔT = 0.25°C 
min−1; CTmax and CTmin, respectively) until the endpoint was at-
tained. The endpoint for both thermal limits was defined as the 
temperature at which tadpoles become motionless and failed to 
respond to external stimuli (10 consecutive gentle prods with a 
wooden stick applied in 2 s intervals). Since tadpoles were small in 
size, we assumed that body temperature was equivalent to water 
temperature (Gutiérrez-Pesquera et al.,  2016; Lutterschmidt & TA
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Hutchison, 1997a). Hence, CTmax and CTmin were recorded as the 
water temperature beside the tadpole, using a Miller & Weber 
quick-recording thermometer (to the nearest 0.1°C). After the 
tolerance limit was determined, we immediately transferred tad-
poles to water at 20°C, to allow for recovery. Each tadpole was 
tested only once, and its survival was assessed a few minutes and 
24 hours after the experimental procedure. Only those individuals 
who remained alive and exhibited normal behavior 24 h after the 
test were included in subsequent analyses.

For each population, warming tolerances (Deutsch et al., 2008; 
Duarte et al.,  2012) were defined as the difference between 
CTmax and the maximum exposure environmental temperature 
(mean maximum temperature for the warmest month) taken at 
either the micro-  (pond; wt  =  CTmax–tmax) or the macro-scale 
(air; WT = CTmax-TMAX). By doing so, we expect to reduce noise 
associated with extremely low or high temperatures during pe-
riods when larval habitat is lacking (dry or frozen ponds) and 
thus obtain more plausible estimates of thermal hazard (see also 
Duarte et al.,  2012; Gutiérrez-Pesquera et al.,  2016; Hoffmann 
et al., 2013). Similarly, cooling tolerances (ct, CT) were determined 
as the difference between the minimum environmental tempera-
ture taken at either the micro scale pond temperature (tmin), or 
the macro scale minimum air temperature (TMIN), and popula-
tion CTmin (tmin–CTmin and TMIN- CTmin, respectively) (Gutiérrez-
Pesquera et al.,  2016; Pintanel et al.,  2019; Slatyer et al.,  2016; 
Sunday et al., 2014). We used both WorldClim air temperature and 
microenvironmental water temperatures, recorded only during 
the larval period of each population.

2.4  |  Phenotypic plasticity in CTmax and CTmin

We studied temperature acclimation in both thermal limits (CTmax 
and CTmin) of five populations, corresponding to low: Nueva 
(140 m), Cortegueros (650 m); medium: Pandecarmen (1106 m), 
Aliva (1418 m), and high: Llagusecu (1835 m) elevations. For each 
population, tadpoles were individually maintained in 400 ml plas-
tic vessels and randomly separated into four batches, totaling 32 
tadpoles per batch. Each batch was then acclimated to a specific 
constant temperature (6, 13, 20 or 27°C) with a 12 L:12D photo-
period, for four days (Table S6). These temperatures are relevant 
because they cover the thermal range of tadpole exposure along 
the elevation gradient (Álvarez et al., 2012). Although this range 
can be exceeded in natural conditions at some point, it represents 
a reasonable adjustment for acclimation. We set the target tem-
perature treatments in a Binder thermal chamber for 6°C treat-
ments, and FitoClima chambers to obtain the rest of thermal 
treatments. Additionally, we employed Portable Fluid Heaters 
with Regulation Adjustment, (patent licensing U201431698) to re-
duce variability in water temperatures within thermal treatments 
(see caption in Figure 6). CTmax and CTmin were determined follow-
ing the above protocols with a start temperature of 20°C for all 
acclimation temperatures.

2.5  |  Molecular markers. DNA extraction

In order to examine the potential for local adaptation in thermal lim-
its (CTmax and CTmin), we conducted PST-FST comparisons across the 
11 populations by using 11 microsatellite loci to assess neutral varia-
tion (Table S7). We chose microsatellites because these markers are 
suitable to define population structure at the fine scale (Camacho-
Sánchez et al., 2020; DeFaveri et al., 2013; Lemopoulos et al., 2019; 
Saint-Pé et al., 2019). To reduce the likelihood of including closely re-
lated individuals, we obtained the material for genetic analyses from 
breeding adults, either as buccal swabs (Pidancier et al., 2003) or by 
cutting the tip of a toe on the foot. In the few cases where tadpoles 
or embryos were sampled, each tadpole was collected at a different 
pool to avoid sampling of highly related individuals. All samples were 
stored at low temperature in 99% EtOH. Whole genomic DNA was 
isolated from samples with either standard Chelex extraction (500 μl 
of a 10% Chelex solution [Chelex-100, Bio-Rad] incubate with 7 μg 
Proteinase K at 55°C for 60 min and 100°C for 20 min) or an E.Z.N.A 
kit for DNA extraction. We selected 11 polymorphic microsatel-
lite loci whose primers were developed for Rana temporaria. These 
markers included different degrees of polymorphism (Supporting 
Information S7).

2.6  |  Estimates of neutral genetic and phenotypic 
divergences (FST and PST)

We used the MICRO-CHECKER software (Oosterhout et al., 2004) 
to check for genotyping errors and null alleles. No evidence of 
scoring alleles and large alleles dropout was found, but RtU7 was 
excluded due to the possibility of null alleles. In addition, four 
markers (Rtempμ1, RtU4, RtμH, and RtμB) were discarded due 
to failed amplifications. The remainder six markers (Rtempμ2, 
Rtempμ4, BFG072, BFG093, BFG183, and BFG241) were quantifi-
able for the 11 experimental populations and therefore used to es-
timate FST values. Exact tests for departure from Hardy–Weinberg 
equilibrium (HWE) and tests for linkage disequilibrium were 
performed for each population across all loci, and at each locus 
individually, using GENEPOP v2.1 (Raymond & Rousset,  1995). 
Significance was evaluated using the Markov chain methods (Guo 
& Thompson, 1992) with 5000 dememorizations steps and 1000 
batches of 10,000 interactions per batch for HWE, and 5000 in-
teractions for linkage disequilibrium tests.

To test whether local adaptation or neutral divergence drive 
the elevational variation in CTmax and CTmin, we compared the 
genetic differentiation (FST) and the genetic divergence of quan-
titative traits (QST) among populations, which allow to discern 
whether trait differentiation is due to genetic drift or natural 
selection (Leinonen et al.,  2008). FST estimates were calculated 
according to Weir and Cockerham  (1984), using FSTAT 2.9.3.2 
(Goudet, 2002). As a surrogate for QST data, we used a measure of 
phenotypic divergence of a trait (PST) (Brommer, 2011), which can 
be calculated by the equation:
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where �2
B
 is the phenotypic variance between populations, �2

w
, the phe-

notypic variance within- population, and h2 is the character heritability. 
The constant c represents the proportion of the total variance due to 
additive genetic effects across populations (Leinonen et al., 2006).

To obtain the PST values for each pair of populations, we used a 
linear mixed-effects model (LMM), with population defined as a ran-
dom factor, using the LME4 R-package: CTmax  ~ 1 + (1|Population), 
and CTmin  ~ 1  + (1|Population) (Bates et al.,  2015). We used the 
error variance as a proxy for �2

w
 (within-population variance) and 

the intercept variation for �2
B
 (variance between populations). Thus, 

PST estimates depend on the ratio 
c

h2
. Since these parameters are 

extremely challenging to obtain in the wild and usually unknown 
(Pujol et al.,  2008), we considered a set of values to calculate PST 
(Brommer, 2011). We constructed several matrices for the PST values 
obtained for different values of c and h2. For each possible combina-
tion, the overall mean values (overall PST) and their 95% confidence 
intervals were calculated using a nonparametric bootstrap and com-
pared with the upper limit of the confidence interval for overall FST 
(Supporting Information S7–S9). The value of the c/h2 ratio at which 
the lower confidence interval for PST and the upper FST estimates 
overlap, can be interpreted as a measure of the robustness of the 
difference between FST and PST estimates (see Brommer, 2011). The 
use of PST presents several caveats, since non-additive genetic vari-
ance (epistasis or dominance effects), maternal effects or environ-
mental factors and genotype-environment interaction, can lead to 
a distorted picture of additive genetic variation when studying only 
phenotypic variation in natural conditions (Brommer, 2011; Leinonen 
et al., 2008; Pujol et al., 2008). However, because experimental in-
dividuals were raised and analyzed under the same environmental 
conditions, we can assume a lower risk of unwanted effects.

2.7  |  Statistical analyses

To test for geographic variation in CTmax and CTmin among popula-
tions of R. parvipalmata, we fitted two separate ANCOVA models 
for CTmax and CTmin, as dependent variables, including populations 
as categorical factor, and body mass as a covariate. Tukey HSD post-
hoc tests were conducted to identify which populations differed in 
their thermal limits.

To test for covariation between CTmax and CTmin, thermal vari-
ation and elevation, we assessed linear and quadratic regression 
models using elevation and the thermal data as independent vari-
ables and CTmax, CTmin, WT, wt, CT, ct as dependent variables. This 
allowed to determine the relationship between species' physiologi-
cal limits and environmental thermal predictors, including elevation. 
Paired t-Test and non-parametric test of Kolmogorov–Smirnov (KS) 
were used to assess differences between estimates of vulnerabil-
ity of exposure to extreme temperatures, determined using macro-
climate (WT, CT) or microclimate (wt, ct) thermal data. Finally, we 

ran Mantel tests with 999 permutations in the R-package ‘vegan’ 
(Oksanen et al., 2018) to test the correlations between PST and FST 
pairwise population matrices.

In order to evaluate whether acclimation effects differ among 
populations, we used a two-way analysis of variance of CTmax and 
CTmin, with temperature (6, 13, 20, and 27°C) and population as 
fixed factors. We estimated the Acclimation Response Ratio (ARR) 
that measures the change in thermal tolerance relative to change in 
acclimation temperature (Claussen, 1977; Ruthsatz et al., 2022). In 
the case of ARR for upper thermal tolerance, ARR = [(highest CTmax 
– lowest CTmax) /Δ°C]. Then it provides a metric of thermal plasticity 
capturing acclimation capacity, thus allowing standardized compar-
isons between populations and critical thermal limits, (e.g., whether 
beneficial acclimation is greater for CTmin than CTmax). During CTmin 
estimates at the lower acclimation temperatures (6 and 13°C), water 
often reached crystallization (exothermic freezing reaction) before 
the immobility endpoint was attained. Most of the tadpoles briefly 
exposed to the freezing point recovered activity within a few sec-
onds and survived the 24-h period, indicating resistance to these ex-
treme cold temperatures, but the actual CTmin was inestimable (i.e., 
in these cases CTmin was lower [cooler] than the observed freezing 
point of water). Thus, in order to avoid bias associated with either bi-
ased sample or a biased CTmin estimates, we restricted the statistical 
analyses of CTmin acclimation scope to the 20–27°C range. All the 
statistical analyses were performed in R 3.6.1 (R Core Team, 2019).

3  |  RESULTS

Pond minimum temperatures (TMIN, tmin) changed with altitude ac-
cording to a quadratic function (Figure 3b; Table  2). However, for 
maximum temperatures we found a contrasting pattern of variation 
between macro- and microclimatic indicators along the elevation gra-
dient (TMAX vs tmax, t = −3.1944, df = 19, p < .01; D = 0.64, p < .05). 
While TMAX monotonically decreased with altitude (R2  = 0.97, 
p  < .01; Figure  3a), tmax increased with elevation and peaked at 
mid-altitude (R2  = 0.77, p  < .01; Figure  3a, Table  2). Similarly, both 
seasonal and diel temperature ranges increased with elevation and 
peaked at mid-altitude populations (Table 2, Figure 3c,d).

A preliminary analysis revealed that tadpoles from populations 
between 900 and 1700 m were smaller than tadpoles from low 
elevation (<700 m) and the highest elevation (1800 m) (ANOVA; 
F10,325 = 57.26, p < .0001). In general, critical thermal limits were un-
affected by tadpole size. The effect of tadpole mass on CTmax was 
not significant in any of the populations (Color: p = .07; all the rest 
Ps >0.26). Tadpole mass has a negative effect on CTmin in Nueva 
(F1,11  = 8.91; p  =  .012), Pandecarmen (F1,12  = 8.10; p  =  .015), and 
Pandébano (F1,14 = 6.54; p =  .023) (that is, larger tadpoles reached 
cooler temperatures), but not for Fana (F1,14 = 3.45; p = .084) and the 
rest of the populations (all Ps >0.17).

Critical thermal limits significantly differed between popula-
tions (CTmax, ANCOVA F10,149  = 8.83, p  < .001; CTmin, ANCOVA 
F10,149 = 15.39, p < .001) (Tables 1 and Table S1) although they were 

PST =
c�2

B

c�2
B
+ 2h2�2

w
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not affected by either elevation or any or macro- and microclimatic 
predictor (Figure 4; Table 2). Regarding vulnerability to heat stress, 
we also found contrasting differences between warming tolerance 
estimates based on macro- (WT; WorldClim) and micro-climate data 
(wt) (t = 2.74, df = 10, p = .02; D = 0.82, p < .01). These differences 
were remarkable in two ways. First, WT was consistently higher than 
wt, except for two populations at the lowest elevation (Figure 5a). 
Second, WT increased linearly with altitude (R2  = 0.95, p  < .01), 
whereas wt showed a minimum at mid-altitude sites (R2  = 0.71, 
p < .01) (Table 2, Figure 5a). In contrast, cooling tolerances exhibit 
a non-linear decrease with elevation using both micro and macro-
climatic estimators, Table  2, Figure  5b. Finally, both warming (wt) 
and cooling (ct) tolerances decrease with increasing daily tempera-
ture range (dr) (Table 2).

The overall value of neutral differentiation (FST) of R. parvipal-
mata was 0.066 (95% CI: 0.058–0.075) and revealed significant ge-
netic differentiation among the 11 populations (Table S8). Under the 

null hypothesis c = h2, both CTmax and CTmin showed higher overall 
PST values than the upper confidence interval for FST (PST CTmax, 95% 
CI: 0.12–0.21; PST CTmin, 95% CI: 0.17–0.30) (Figure S1, Tables S9 
and S10). However, the significance of this difference was not very 
robust, as the lower confidence estimate of PST overlaps with the 
upper limit of FST when c/h2 = 0.51 for CTmax, and when c/h2 = 0.29 
for CTmin. The pairwise PST and FST matrices were not correlated 
for either CTmax or CTmin under the null hypothesis (c = h2) (CTmax 
r = 0.066, p = .40; CTmin r = −0.1695, p = .75).

We found significant divergence among populations in the level 
of plasticity of CTmax and CTmin to variation in acclimation tempera-
ture (population × acclimation interaction; Table  3). Acclimation to 
warm temperatures resulted in higher CTmax and CTmin (Table  4, 
Figure  6). Mid and high-altitude populations showed the highest 
phenotypic plasticity for CTmin (ARR; mean ± 1SD, 0.32 ± 0.05, n = 3, 
Table  4), being twice greater in magnitude when compared with 
the ARRs of lowland populations (mean ± 1SD, 0.16 ± 0.01, n  =  2; 

F I G U R E  3 Elevational variation in: Absolute maximum (a) and minimum temperatures (b) using the WorldClim database (TMAX and 
TMIN), and microenvironmental pond datalogger information (tmax and tmin). Absolute seasonal temperature range (c) (st = tmax-tmin) and 
mean daily temperature range (dr) (daily tmax-tmin) (d), based in microenvironmental pond datalogger information. Thermal information 
corresponds only to the larval period for each studied location (see Figure 1b).
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TA B L E  2 Results for the linear and quadratic regressions between temperature data, critical thermal limits elevation, warming tolerance 
(WT, wt) and cooling tolerance (CT, ct).

Model

Dependent Predictors Equation F-value df R2 p-value

TMAX~ Elevation+Elevation^2 y = 21.76–0.006x + 9.25E-7x^2 162.17 2,8 0.97 .0000001

tmax~ Elevation+Elevation^2 y = 12 + 3.12E-2x-1.36E-05x2 13.77 2,8 0.77 <.01

TMIN~ Elevation+Elevation^2 y = 5.85–9.81E-3x + 3.79E-6x^2 49.44 2,8 0.93 .0026

tmin~ Elevation+Elevation^2 y = 8.63–1.35E-2x + 5.89E-6x^2 8.12 2,8 0.67 .012

SR~ Elevation+Elevation^2 y = 7.03 + 1.14E-3x-1.01E-6x^2 5.81 2,8 0.59 .028

sr Elevation+Elevation^2 y = 3.14 + 0.046x-2.01E-5x^2sr 66.68 2,8 0.74 .00001

dr~ Elevation+Elevation^2 y = −2.44 + 0.024x-1.16E-5x^2 15.71 2,8 0.60 .002

CTmax~ Elevation y = 36.7 + 1.92E-4x 1.61 1,9 0.15 .236

CTmax~ TMAX y = 37.55–0.04x 0.99 1,9 0.10 .346

CTmax~ tmax y = 36.48 + 0.01x 1.06 1,9 0.11 .330

CTmax~ SR y = 38.62–0.26x 3.72 1,9 0.29 .086

CTmax~ dr y = 36.76 + 0.02x 0.44 1,9 0.05 .524

CTmin~ Elevation y = −1.62–1.5E-4x 0.55 1,9 0.06 .477

CTmin~ TMIN y = −1.80 + 0.03x 0.25 1,9 0.03 .629

CTmin~ tmin y = −1.91 + 0.05x 1.69 1,9 0.16 .226

CTmin~ SR y = −3.77 + 0.29x 2.75 1,9 0.23 .132

CTmin~ dr y = −1.75–0.002x 0.004 1,9 <0.01 .951

WT~ Elevation y = 15.38 + 4.18E-3x 157.50 1,9 0.95 .000001

WT~ SR y = 37.06–2.60x 6.64 1,9 0.42 .03

wt~ Elevation+Elevation^2 y = 24.63–3.08E-2x + 1.34E-5x^2 13.26 2,8 0.71 .003

wt~ dr y = 20.34–1.47x 24.49 1,9 0.73 .0008

CT Elevation+Elevation^2 y = 7.38–9.31e-3x + 3.59E-6x^2 24.36 2,8 0.86 .0004

CT SR y = 1.38 + 0.25x 0.05 1,9 0.01 .828

ct Elevation+Elevation^2 y = 10.15–1.32E-2x + 5.68E-6x^2 8.17 2,8 0.67 .012

ct dr y = 8.70–0.71x 24.89 1,9 0.73 .0007

TMAX and TMIN (maximum and minimum temperatures from macroclimate); tmax and tmin (maximum and minimum temperatures from dataloggers; 
sr, seasonal temperature range (tmax-tmin); dr, diel temperature range

F I G U R E  4 Boxplot showing the 
variation of thermal tolerance limits 
along the elevational gradient. The first 
and third quartiles (“hinges”) and the 
95% confidence interval of the median 
(“notches”) are shown. The dashed 
line indicates the mean CT values of R. 
parvipalmata for the overall data, and 
dots placed past the line edges indicate 
outliers.
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Table 4). Greater ARR indexes for CTmax were obtained for the mid- 
elevation populations (Table 4).

4  |  DISCUSSION

Thermal limits (CTmax, CTmin) of tadpoles varied between Rana parvipal-
mata populations across the elevation gradient. However, CTmax and 
CTmin did not correlate with elevation nor with any of the macro- and 
microclimate predictors, suggesting niche conservatism. We did find 
some indications of directional selection as the divergence in thermal 
physiology limits (PST) tended to be slightly greater than the neutral 

differences among populations (FST). Yet, since the differentiation 
matrices FST-PST were not correlated, and thermal physiology limits 
were not related to elevation or any of the environmental variables, 
our data did not support the hypothesis of local adaptation in ther-
mal limits. The neutral genetic differentiation observed among the 
studied populations of R. parvipalamata (FST = 0.066) is weak but well 
within the values of global FST reported for other amphibians over a 
wide spectrum of geographical scales and structured systems (Seppä 
& Laurila, 1999: 0.068; Luquet et al., 2015: 0.046, 0.024, and 0.011; 
Lenhardt et al., 2017: 0.041, 0.0159, 0.0215 and 0.0987).

The prevalence of intraspecific adaptive clinal variation with 
elevation in thermal traits is still a contentious topic in current 

F I G U R E  5 Estimates of Warming 
Tolerance: CTmax minus TMAX or tmax, 
for either WorldClim or microclimate 
pond maximum temperature estimates 
(datalogger), respectively (a), and Cooling 
Tolerances: TMIN or tmin, for either 
WorldClim or microclimate pond minimum 
temperatures (datalogger), respectively, 
minus CTmin (b), for 11 populations of R. 
parvipalmata, considering only the larval 
period. Triangles: estimates based on air 
temperature from WorldClim. Squares: 
estimates based on water temperatures 
registered in ponds with dataloggers.
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literature. Although several studies have found support for this 
pattern in both Critical Thermal Limits (Bishop et al., 2017; Klok & 
Chown, 2003; Miller & Packard, 1977; Sørensen et al., 2005) with 
greater variation in CTmin than CTmax (Gilbert & Miles, 2019; Muñoz 
et al., 2014), many others did not (Buckley et al., 2013; Gvoždík & 
Castilla, 2001; Slatyer et al., 2016; Slatyer & Schoville, 2016; Senior 
et al.,  2019; Slatyer et al.,  2019; Tonione et al.,  2020; Enriquez-
Urzelai et al., 2018, 2020). The lack of clinal variation in R. parvipal-
mata contrasts with the observation of local adaptation in larval 
life history traits of other temperate amphibians in seasonal ther-
mal gradients (Berven et al.,  1979; Luquet et al.,  2015; Richter-
Boix et al.,  2015), including the closely related Rana temporaria 
(Laugen et al., 2003; Lind et al., 2011; Muir et al., 2014). However, 
our findings were consistent with the absence of elevational vari-
ation in thermal sensitivity of locomotion and thermotolerance 
reported for post-metamorphic and adults of Rana parvipalmata 
in the same study system (Enriquez-Urzelai et al., 2018, 2020). In 
that case, the terrestrial stages of amphibians can thermoregulate 
via micro-habitat selection or activity timing, sheltering under-
ground in crevices and rodent burrows to avoid peak temperatures 
(Enriquez-Urzelai et al., 2020). This is parallel to the known Bogert 
effect in many ecotherms, (Bogert,  1949; Buckley et al.,  2015; 
Farallo et al.,  2018; Huey et al.,  2003; Muñoz,  2022; Muñoz & 
Losos, 2018). However, the scope for behavioral thermoregulation 
in water is much more limited than in the terrestrial environment 
due to its high specific heat capacity and conductivity that reduces 
spatial thermal heterogeneity. Amphibian tadpoles, although able 
to thermoregulate (Hutchison & Dupré, 1992), can be exposed to 
unavoidably thermal stress, particularly in sunlit ponds without 
canopy cover (Duarte et al.,  2012). Exposure to sunlight is prev-
alent in the breeding habitats of mid- and high-elevation popula-
tions of R. parvipalmata, which are exposed to relatively stressful 
high temperatures with warming tolerances <8°C (Figure 5a) and 
a wide range of both seasonal and short-term thermal variation 
(Figure 3d).

Shifts in the reproductive period and microclimatic conditions 
that are conditioned by elevation may dampen temperature changes 
along the gradient and prevent the expected linear decrease in both 
critical thermal limits. Therefore, thermal conservatism in tolerance 
limits together the absence of local adaptation may simply be a con-
sequence of a coupled variation of reproductive timing with eleva-
tion (the “elevation-time axis” for temperature variation, in contrast 
with the elevation axis). In montane areas, altitudinal variation in 
the timing of reproduction seems to be constrained by hydroperiod 
rather than temperature itself, with higher altitude populations de-
laying breeding until snow melting (Álvarez et al., 2012; Corn, 2003). 
In addition, the time of spawning may be genetically determined in 
mountain populations (Álvarez et al., 2012; Phillimore et al., 2010; 
Wilczek et al., 2010). In this sense, it appears that during warm win-
ters, when early snow melting occurs, frogs still delay reproduction 
until a threshold time is reached (Álvarez et al., 2012).

Phenotypic plasticity of thermal limits matched the observed 
variability in temperature through the elevation gradient. Populations 
from mid and high-elevations showed higher levels of plasticity than 
low-elevation populations, especially for CTmin. These populations, 
particularly those from mid-elevation, are also exposed to greater 
seasonal and daily thermal ranges, which supports the idea that phe-
notypic plasticity in critical thermal limits can be a response to the 
increased environment thermal variability. Similar adaptive plasticity 
in thermal tolerances are shown by populations of two toad spe-
cies exposed to more variable climates (Alveal-Riquelme et al., 2016; 
McCann et al., 2018). Furthermore, since mid-elevation populations 
showed the lowest warming and cooling tolerances, and both ther-
mal limits showed no clear clines, our data suggest the existence of 
a trade-off between phenotypic plasticity and tolerance to environ-
mental temperatures (Stillman, 2003). Acclimation to low tempera-
tures allowed tadpoles to achieve tolerance to extreme cold beyond 
the physical freezing point of water. The common frogs are among 
the most cold-tolerant amphibians of Europe (Gutiérrez-Pesquera 
et al., 2016; see also Enriquez-Urzelai et al., 2020) and, in northern 

TA B L E  3 Two-way ANOVA for changes in critical thermal limits (CTmax and CTmin) in five populations acclimated to several temperatures 
(6, 13, 20°C and 27°C for CTmax; 20 and 27°C for CTmin)

CTmax

Df Sum Sq Mean Sq F value Pr(>F)

Population 4 6.298 1.574 10.957 <0.001

Acclimation temperature 3 222.322 74.107 515.7394 <0.001

Population × temperature 12 4.382 0.365 2.5413 0.003

Residuals 274 39.371 0.144

CTmin

Df Sum Sq Mean Sq F value Pr(>F)

Population 4 10.342 2.585 11.087 <0.001

Acclimation temperature 1 116.51 116.51 499.652 <0.001

Population × temperature 4 11.105 2.776 11.906 <0.001

Residuals 130 30.314 0.2333
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Iberia, likely expanded during the cold glacial cycles (Dufresnes 
et al., 2020). Thus, it is possible that these extremely low CTmin are 
remnants of adaption to environmental conditions from that period, 
resulting in no current micro-geographic adaptive differentiation 
along elevation gradients. This hypothesis of ‘evolutionary anachro-
nism’ (Janzen & Martin, 1982; see also Qu & Wiens, 2020, Moreira 
et al., 2021) was supported by our finding that lowland populations 
showed extreme cold tolerances (e.g., Color, 380 m) although they 
presented the higher minimum temperature recorded.

The contrasting estimates of warming tolerances derived from 
macro-  and microclimate data highlight the importance of mon-
itoring the microhabitat when assessing vulnerability to global 
warming (Baudier et al.,  2015; Gutiérrez-Pesquera et al.,  2016; 
Katzenberger et al., 2018; Enriquez-Urzelai, Kearney, et al., 2019; 
Pintanel et al., 2019, 2022; see also Sunday et al., 2014). Warming 
tolerances estimated from macroclimate data supported the el-
evational thermal vulnerability hypothesis (risk of heat stress at 
low elevations and risk of cold stress at high elevations) (Pintanel 
et al., 2019, 2022; Sunday et al., 2014). Cooling tolerance (CT and 
ct) and warming tolerance estimated with microclimate data (wt), 
showed that mid-elevations populations are more likely to suffer 
both cold and heat acute stress than populations from low and 
high elevations. These deviations from the expected patterns 
arise from two factors. First, despite both CTmax and CTmin can 
vary between populations this variation was very weak (1.1 and 
1.4°C for CTmax and CTmin, respectively). Besides, there was no dis-
tinct pattern across the elevation gradient and neither CTmax nor 
CTmin were related to any of the macro- and microclimate data (see 
also Richter-Boix et al., 2015; Schou et al., 2017; Enriquez-Urzelai, 
2018; Enriquez-Urzelai et al.,  2020). Second, because of such 
weak variation in CTmax and CTmin, the elevation variation in warm-
ing and cooling tolerances matched the pattern of variation in en-
vironmental temperatures, with only minor influence of thermal 

physiology limits. Only TMAX, used to determine WT, varied with 
elevation as expected, being lower at high elevation populations. 
However, both the lower minimum temperatures (TMIN and tmin) 
and higher tmax were found in mid-elevation populations and not 
at the high-peak populations. This a priori unexpected outcome is 
likely the result of phenological shifts in these local populations 
and differences in habitat structure (i.e., canopy cover, topograph-
ical shadow) between low-, mid-, and high-elevation wetlands. In 
the study area, the breeding habitat of lowland (below 500–700 m) 
common frogs consists of very small and shallow waters scattered 
on a rather humanized landscape (e.g., track pools, ditches, and less 
often small temporary ponds), and located in valley bottoms with 
dense canopy cover, which prevents direct beam solar radiation. In 
contrast, breeding habitats in mid-altitude areas (700–1200 m) are 
small, shallow, temporary ponds, most often located on high plains 
and hills without canopy cover, and therefore, exposed to high lev-
els of direct solar radiation and a low thermal buffering. Finally, 
although high altitude wetlands (1300–2100 m) can be affected by 
topographic shading, most often they lack canopy cover, which 
besides a thinner atmosphere leads to low thermal buffering. This, 
along with the change in reproductive phenology (the elevation-
time axis), may reduce the actual differences in temperatures ex-
perienced by larvae at different elevations.

Phenological shifts and microgeographic variation in habi-
tat structure can determine the thermal regimes experienced by 
populations along mountain gradients (see Muñoz & Losos, 2018). 
Seemingly, frog populations have responded to natural selection 
on breeding phenology, likely due to low reproductive success of 
too late breeders (high risk of pond drying in late winter/spring) in 
the lowlands and both early and late breeders in medium and high 
elevation populations (high risk of crushing due to late snowfall, 
pond drying in summer, and time constraints for the year recruits). 
In turn, this pattern of temporal displacement with elevation 

F I G U R E  6 Phenotypic plasticity of critical thermal limits, CTmax (left) and CTmin (right), in five Rana parvipalmata populations: Nueva 
(140 m), Cortegueros (650 m), Pandecarmen (1106 m), Aliva (1418 m) and Llagusecu (1835 m), acclimated to different constant temperatures. 
Data of plasticity in CTmin at 6°C and 13°C were excluded from statistical analyses because in most occasions water was frozen once it 
reaches crystallization point. Here, they are shown as an upper bound for CTmin (‘true’ CTmin were below the values showed for 6°C and 13°C 
acclimation temperature). Values for each population / acclimation treatment are Means ±1 SE.
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has reduced the thermal differences between populations, thus 
hindering physiological evolution (see also Enríquez-Urzelai 
et al., 2018; Muñoz, 2022).

5  |  CONCLUSIONS

Directional changes in reproductive phenology and phenotypic 
plasticity can block local thermal adaptation by lowering selec-
tive pressures for population differentiation, (consistent with 
niche conservatism hypothesis; Muñoz & Losos, 2018). Therefore, 
although “phenological buffering” may override thermal stress 
under current conditions, it could hinder long-term adaptation 
to climate change, potentially compromising long-term popula-
tion sensitivity (Buckley et al., 2015; Enriquez-Urzelai et al., 2018; 
Kearney et al., 2009). This agrees with the idea that phenotypic 
responses do not occur in selective vacuums, and therefore, any 
adjustment in one response can cause an evolutionary ripple in 
others (Muñoz,  2022). For instance, if the timing of breeding is 
under genetic control, rapid climate change could cause tempo-
ral mismatches between physiological traits and the new thermal 
conditions with still unknown consequences. Our previous work 
on R. parvipalmata using biophysical models of thermal expo-
sure indicated that the risk of reaching body temperatures be-
yond the species' thermal tolerance is similar across elevations, 
but mountain populations can face the worst climatic scenario 
because of their narrow seasonal activity windows (Enriquez-
Urzelai et al.,  2018, 2020) and conflicting selection on breeding 
phenology. Present results reinforce this view: mountain popula-
tions of R. parvipalmata are also the most vulnerable during the 
aquatic phase. Therefore, future research should focus on the 
genetic component of reproductive phenology, the physiological 
responses of mountain populations, and the effects of space–time 
covariations in biological processes that can determine how the 
species face climate change.
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