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Abstract

In Gong et al. (2020), we proposed an HDG method to approximate the solution of a tangential boundary control problem
for the Stokes equations and obtained an optimal convergence rate for the optimal control that reflects its global regularity.
However, the error estimates depend on the pressure, and the velocity is not divergence free. The importance of pressure-robust
numerical methods for fluids was addressed by John et al. (2017). In this work, we devise a new HDG method to approximate
the solution of the Stokes tangential boundary control problem; the HDG method is also of independent interest for solving the
Stokes equations. This scheme yields a H(div) conforming, globally divergence free, and pressure-robust solution. To the best
of our knowledge, this is the first time such a numerical scheme has been obtained for an optimal boundary control problem
for the Stokes equations. We also provide numerical experiments to show the performance of the new HDG method and the
advantage over the non pressure-robust scheme.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Control of fluid flows modeled by Stokes or Navier—Stokes equations is an important area of research that has
undergone major developments in the recent past. The model poses many theoretical and computational challenges
and there is an extensive body of literature devoted to this subject; see, e.g., [1-9]. In [10] we investigated an HDG
discretization for the tangential boundary control of a fluid governed by the Stokes system and proved optimal
error estimates with respect to the global regularity of the optimal control; however, the numerical method is not
pressure-robust, i.e., the discretization errors depend on the norm of the pressure.

As pointed out by John et al. in the 2017 review article [11], many mixed finite element methods, such as
Taylor—Hood finite element, Crouzeix—Raviart and MINI elements are not pressure-robust. The key for a numerical
scheme to be pressure-robust is the way the null divergence condition is discretized. In the above mentioned review,
at least three ways to obtain pressure-robust mixed methods are described: building H'-conforming divergence-free
schemes, using discontinuous Galerkin methods, or committing some variational crime. In 2014, Linke [12] slightly
modified the classical lowest order Crouzeix—Raviart element with a variational crime by noticing that the Raviart—
Thomas interpolation — see (3.5) below — maps divergence-free vector fields onto divergence-free discrete vector
fields. In this way, the discrete velocity of the numerical solution is not affected when the external force is modified
with a gradient field, which is a property that is satisfied by the continuous solution: if —Ay + Vp = f and
V -y = 0, then for any scalar field ¢, —Ay + V(p +¢) = f + V¢, V- y = 0 and only the pressure is modified.
In 2007, Cockburn et al. [13] had already studied a DG method for the Navier—Stokes equations which yields
divergence-free solutions.

Hybridizable discontinuous Galerkin (HDG) methods were proposed by Cockburn et al. in [14] as an improve-
ment of traditional DG methods; for a recent didactic exposition, see, e.g., [15]. The HDG algorithm proposed and
analyzed in our work [10] is not pressure-robust: although the convergence rate is optimal, the magnitude of the
error strongly depends on the pressures; see Example 4.1 below.

In 2016, Lehrenfeld and Schoberl [16] first proposed a pressure-robust HDG method for the Navier—Stokes
equations and used a divergence-conforming velocity space; see also Lederer, Lehrenfeld, and Schoberl [17] for an
improvement of this method. Recently, Rhebergen and Wells, in [18], used standard cell and facet discontinuous
Galerkin spaces that do not involve a divergence-conforming finite element space for the velocity. They obtained
pressure-robust scheme for the Navier—Stokes equation; see also Kirk and Rhebergen in [19] for a detailed analysis
of this method. For other pressure-robust HDG methods, see [20-23]. In this paper, we propose a new HDG scheme
with less degrees of freedom than that of [16], apply it to a tangential boundary control problem governed by the
Stokes equation, and prove that the method is pressure-robust.

Despite the large amount of existing work on numerical methods for fluid flow control problems, the authors are
only aware of one work dealing with pressure-robustness in the context of optimal control problems, the very recent
preprint [24], where a distributed control problem governed by the Stokes equation is discretized by means of a
pressure-robust variant of a classical finite element discretization. We, on the other hand, propose a pressure-robust
HDG scheme for solving the following tangential boundary control problem:

min J@) = 213, = Yol o + Ll (1.1)
uel 27 R (O R) v ’
where y, is the desired state, y, is the unique solution in the transposition sense (see, e.g., [10, Definition 2.3]) of
—Ay+Vp=finf), V.-y=0in{2, y=uonl, /p:O, (1.2)
7]

y is a positive constant, and we take the control space

U={u=ut:uel*))

with norm ||u|ly = ||ul| 2y and T the unit tangential vector.

Formally, the optimal control u € L>(I") and the optimal state y € L?(£2) satisfy the first order optimality system
—Ay+Vp=finf2, V-y=0in{, y=utronl, (1.3a)
—Az—-Vg=y—y;,inf2, V-z=0inf2, z=0on/, (1.3b)
OnZ-T=yuonl. (1.3¢)
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In [10], we proved that the optimal control is indeed determined by a very weak formulation of the above optimality
system and we proved a regularity result for the solution in 2D polygonal domains. The optimal control satisfies
(see [10, Theorem 2.4]) u € H*(I") with s € (0,3/2). We utilized an existing HDG method to discretize the
optimality system and obtained the following a priori error estimate (see [10, Theorem 4.1]):

lu —unll2ry < CR Uyl gst1200) + N2l gst3rn gy + 1PN gs—1200) + g T gsi200) + 1wl msr)- (1.4)

The error estimate (1.4) implies that the error is dependent on the pressure p and dual pressure q.
In this paper, we propose a new HDG method to revisit the problem (1.1)—(1.2). Our new HDG method is
pressure-robust; i.e., we obtain the a priori error estimate (see Theorem 3.1):

lu —unll2ry < Chs(”_}’”HHl/Z(Q) + ||Z||HS+3/2(Q))- (1.5)

The error estimate (1.5) shows the same convergence rate as obtained in [10], but the errors no longer depend on
the pressures.

As in [18], our method introduces a numerical trace to approximate the pressure on the boundary edge, but in
that reference, the authors use polynomials of degree k 4+ 1 to approximate the trace of the velocity and we use
polynomials of degree k. Hence, the degrees of freedoms of our scheme are less than that in [18]. The price, of
course, is that we obtain lower orders of convergence than those obtained in [19] for the method proposed in [18],
but on the other hand, our error estimates are valid for problems with very low regularity solutions, as the ones we
find when solving Dirichlet control problems.

We find that a pressure-robust method is specially appropriate for the tangential control problem that we address.
Notice that if we perturb y, with a conservative field V¢ for some scalar function ¢, the optimal solution would
not change at all. We should just replace ¢ by g + ¢ to obtain the solution of the optimality system.

The plan of this paper is as follows. In Section 2 we present the functional framework, the optimality system for
the control problem, and the new HDG formulation; we prove that, for any given control, both the discrete velocity
and adjoint velocity are divergence free. Section 3 is devoted to the error analysis; we present and prove our main
result. The scheme of our proof largely follows the structure in our previous work [10], but here we needed to
use new techniques to show in every auxiliary lemma that the obtained estimates are independent of the pressure.
Finally, in Section 4 we provide the results of two numerical experiments to compare the performance of the present
pressure-robust method with the method in [10].

2. Background: Regularity and HDG formulation

In this section, we briefly review the regularity results for the tangential boundary control problem and give the
HDG formulation.

First, we define some notation. Let {2 be a bounded polygonal domain. We use the standard notation H™({2)
to denote the Sobolev space with norm || - ||,,.. In many places, we use || - ||,, to replace | - ||,,.2 if the context
makes the norm clear. Let H"(2) = [H™(2)1**%, H™(2) = [H™(2)]* and H\(2) = {v € H'(2); v =0on I'}.
Let (-, ) denote the inner product in L>(I") and let [-, -] denote the duality product between H ~*(I") and H*(I").
We introduce the spaces

Vi) ={ye H(2):V-y=0, [y -n, 1] =0}, fors >0,
Vi)y={ye H(2):V-y=0, y=0on I'}, fors > 1/2,
Vi)y={ue H (') : (u-n,1)p =0}, for 0 <s < 3/2.

We denote the L2-inner products on L2(£2), L?(£2), L*(£2) and L*(I") by

2

2 2
L, G)p = Z /QLijGija ¥y, 2o = Z/Qyjzj» (P, Do Z[Ql%], (y,2)r = Z/ Yz
=1

i,j=1 j=1 r
Define the spaces H(div; {2) and L%(.Q) as

H(div, 2) = {K e LX),V - K e L*(2)}, Ly(2) = {p e L*(2),(p, D =0}.
3
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2.1. Regularity

In [10, Theorem 2.8 and Corollary 2.9], we proved the following well-posedness and regularity result for the
tangential Dirichlet boundary control problem (1.1)—(1.2). Set . = Vy and G = Vz, let w be the largest interior
angle of I', and let £ € (0.5, 4] be the real part of the smallest root different from zero of the equation

sin*(Aw) — A% sin’ w = 0. 2.1

Itis known that £ > r/wifw <m and 0.5 <& <m/wif w > 7.

Theorem 2.1. If 2 is a convex polygonal domain, f € L*(2) and y, € H™>)(0), then there is a unique
solution u € L*(I") of problem (1.1)=(1.2). The solution u satisfies u € H*(I") for all 1/2 < s <min{3/2,& —1/2}
and there exists

y e VsHI2(), L e H™Y2(02), pe H )N Ly,
ze Vit ), G e H'(92), g € H ()N L)
for all 1 <r < min{3, £}, and L — pl € H(div, {2) such that

(L, Te +(y,V-Te = (ut, Tn)r, (2.22)
—(V-(L—=pD,v)e=(f,ve, (2.2b)
(V-y,w)p =0, (2.2¢)
G, Mo+ V-Te =0, (2.2d)
(V- (G +4gD,v)o = —y; Vo, (2.2e)
(V-z,w)o =0, (2.2f)
(yut —Gn, ut)r =0 2.2g)

for all (T, v, w, n) € H(div, £2) x L*(2) x L? 5(12) x L*(I"). Moreover,

ue ]_[ H™V2(I) for all r < min{3, £}, (2.3)

i=1

where I'; denotes the smooth segment of I" such that I' = | J/__| I}.
2.2. The HDG formulation

We use the same notation as in [10] to describe the HDG method. Let {7,} be a family of conforming and
quasi-uniform triangular meshes of (2. This assumption on the meshes is stronger than in [10]; there we assumed
{Tx} is a family of conforming and quasi-uniform polygonal meshes. Let 97, denote the set {0K : K € 7,}. For an
element K of the collection 7,, e = dK N I" is the boundary edge if the length of e is non-zero. For two elements
KT and K~ of the collection T, e = K™ N dK ™~ is the interior edge between K+ and K~ if the length of e is
non-zero. Let £ and & denote the set of interior and boundary edges, respectively. We denote by &, the union of
&7 and &. We introduce various inner products:

2 2
M. O7 =Y 0.0k 0.O7,=Y 007 LGx =Y (Lij G,

KeTy, i=1 ij=1

S}

(0. o = Y (0 Ohaks (0, a7, = Z Nir G-
KeTy i=1
The norms induced by the above inner products are defined accordingly.
Let P¥(D) denote the set of polynomials of degree at most k on a domain D. We introduce the following
discontinuous finite element spaces:
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K, == {L € L*(2) : L|x € [PYK)1**?, VK € T5},
V= {veL*2):v|x € [PUK)?, VK € Ty,
Wy = {w e L*(2) : w|x € PXK), VK € Ty},
M, = { € L*(&) : ple € [PX(e)), Ve € &),

My = {u € L*E)) : ul, € PXe), Ve € £V},

Qi = {u € L&) : ple € P (e, Ve € &)

Let M (o) denote the space defined in the same way as M}, but with &, replaced by £;. We use Vv and V - L
to denote the gradient of v and the divergence of L taken piecewise on each element K € 7. Finally, we define

WP = {w e LA2): wix € PXK), VK € Ty and (w, 1)g =0}

The HDG method seeks approximate fluxes Ly, G, € K, states y,, z, € Vy, pressures pj, q, € W,?, interior
element boundary traces ¥7,Z), € M,(0) and Py, i € Qp, and boundary control u;, € M, satisfying

Ln, TO7, + 33 V- T 7, — (97 Tl”)aﬂl\g’(; = (upT, Tin) o, (2.4a)
—(V Ly, v0)7, — (P, V- 01) 75, + (Phs v1 - )y,
0 Py v1)a, — (T vag e = (FL o7 + B uT o) g, (2.4b)
(V- yp w7y =0, (2.4¢)
(yp-n, W)y, =0 (2.4d)
for all (Ty, vy, wy, wy) € Kj x Vi x W x Qp,
(Gn, T2)7;, + zn, V - T2)7;, — (25 TZ”)an\é‘}? =0, (2.4e)
—(V -Gy, v2)75, + (gn, V - v2)7;, — (@n, v2 - 0)y7;,
+(h™ Pyzi, v2)a;, — (h7'Z), v2)amined = n = Yas V)75 (2.41)
(V- zp, w7, =0, (2.4g)
(zp - m, @2)3771 =0 (2.4h)
for all (Ty, v, wa, W2) € Ky x Vi x W x Qp,
(Lun — ™ (Pyy, — V7). A (2.41)
for all u, € M;(0),
(Gam — ™ (Pyzn = 23), adygyes = 0 (2.4j)
for all u, € M;(0),
(Gpn — h™"Pyzin — yupt, uat)er =0 (2.4K)

for all u3 € Mj. Here Py denotes the standard L2-orthogonal projection from L2(E,) onto My; see (3.3¢) below.
This completes the formulation of the HDG method.

Remark 2.2. Our method resembles the one introduced in [18] and analyzed in [19] in the sense that the numerical
trace of the pressure plays the role of Lagrange multipliers enforcing continuity of the normal component of the
velocity across element boundaries. Nevertheless, to approximate the trace of the velocity, we use polynomials of
degree k instead of k + 1. In this way, our method has fewer degrees of freedom, but at the price of a lower order
of convergence. This feature can be seen as a drawback when solving an uncontrolled Stokes problem or even a
distributed control problem governed by the Stokes equation. But for the problem at hand the regularity of the
solution is usually very low, see Theorem 2.1, and the order of convergence will be mainly limited by this fact, so
it makes sense to use a method with suboptimal rates of convergence.

Notice also that the HDG method developed in this paper has more degrees of freedom than the scheme in [10],
since we introduced two more numerical traces pj, and g, to approximate the traces of the pressures p;, and g,
respectively in order to obtain a pressure-robust method.

5
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Next, we show that the discrete system (2.4) yields a globally divergence free state y, and dual state z;.

Proposition 2.3. Let y, and z;, be the solutions of (2.4), then we have y,, z, € H(div; 2) and V-y, =V -z, = 0.

Proof. We only prove the result for y, since the proof for z;, is similar. Let K;, K> € T, be any two adjacent

elements sharing a common edge e. Define 7 € Q) as follows:

ﬂe = _(yh : ne)|K1ﬂe - (yh : ne)leﬂe

ﬂezO

Let ¢g = ﬁ Zken fK V -y, and take (w, wy) = (V -y, — co, T — ¢p) in (2.4c)—(2.4d) to get

0=—(V-y,,V-y,—cor, + (¥, -n.7—coar;
=—(V. Yn» V. yh)77, + (yh 'naﬂan

==V 3 Voydz — 2 1 - mdlk, + 3y - 1l 5.,

0
ee&}

This implies y, € H(div; {2) and V -y, = 0.

3. Error analysis
We assume that the solution of (2.2a)—(2.2g) satisfies
LeH™2), yeH?”\), GeHC), zeH?=),
where
ry>1, r,>2, rn>1/2, rg>1

We now state our main result.

Theorem 3.1. For

sy =min{ry, k + 1}, s, =min{r,, k +2}, sg =min{rg, k + 1}, s; = min{r;, k + 2},

if the regularity assumption (3.1) holds we have

1 _1 _1 _3

e —unlley S AET2NLI @ + A7 2 1yl 0 +HCT2 G, 0 +4%72 2], 0
o 11 oo— L o — L G, —3

|y = ||Th SHE 2Ll + 0272 Iyl 0 + 72 Gl 0 +0%72 izl 0
1 _1 _1 _3

IG = Gally, S T2 LIy @ + 8272 Iyl +BC72 Gl o A2 lizlly,, o

1 1 1 3
Iz =zl S HEF2 LI 0 + A2 72 Iyl 0 + 1672 G0 + A2 lzl,.0-

If k > 1, then

IL = Lollg, S ALl 0 + B2yl 0 + 257 G g 0 1% 72 iz, 0

3.1)

Remark 3.2. The error estimates in Theorem 3.1 are independent of the pressures p and g, which are different
from the error estimates in [10, Theorem 4.1]. Therefore, our HDG method is pressure-robust. We note that the
HDG method considered here has more degrees of freedom than that in [10], since we have introduced numerical
traces for the pressures. We also note that the technique used in [10] cannot be applied here to treat the case when
r, < 1/2. This low regularity for L = Vy may appear when & < 3/2, which corresponds to a value of w greater
than w3/, ~ 0.839138753489667; see more details in Remark 3.11. Moreover, the meshes here are restricted to

be triangular, while in [10] we can use general polygonal meshes.

Noticing that for @ € [7/3, w32) we have that & € (3/2, 4], the application of Theorems 3.1 and 2.1 gives the

following result.
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Corollary 3.3. Suppose y, € H*(12). Let w € /3, w3)2) be the largest interior angle of I', and define rgo by

, 3(§ 1 ca 3]
ro=min{=,& — = =1
@ 2°° 72 )

Then the regularity condition (3.1) is satisfied. Also, if k > 1, then for any r < rg we have
l r
h2L = Lol + 1y = yallz +1G = Gall +llz = zallg + llu —unllgy S A"
Moreover, if k = 0, we have
lu = unllgs + 1y = yillz, + Iz = 2l + G = Gallg, S 072

3.1. Preliminary material

We use the standard L2 projections ITx : L2(2) »> Ky, ITy : L*(2) = Vy, and Iy : L3(2) - W, satisfying

(ITxL, T)x = (L, T)x V T e [PX(K)**?, (3.2a)
(IIyy, vk =(y,v)x  Yove[PHEID (3.2b)
(ITy p, Wk = (p, wg vV w e PYK). (3.2¢)

For all edges e of the triangle K, we also need the L>-orthogonal projections Py onto M, Py onto Qj, and Py
onto M), satisfying

(Pyu —u,u)e =0 Vu e M,, (3.3a)
(Pop—p,u)e =0 Ve O, (3.3b)
(Puy—y.m)e=0 Vp e M,. (3.3¢)
In the analysis, we use the following classical results [25, Section 4.2]:
[TxL —Lil7, <AL, 0. I Tvy — yliz S A1yl 0, (3.4a)
| = Llla, S A% 2Ll 0 1 Tyy = yllom S B2 20y ly.0, (3.4b)
I Iwp — pll7, S B Ipls, 2. 1Puy — yllo7, S h Iyllsy. 2 (3.4¢)
I Py — ully7, S n3 Iyllsy. 2. 1Pop = plla7, S nrz Iplls,, - (3.4d)

We have the same projection error bounds for G, z and gq.
For the error analysis in this section, we need to introduce the classical Raviart-Thomas (RT) space:

RNK) = [P + xPH(K),
and define the RT projection ITXT : H'(K) — R**1(K)
(IT" - n,w), = (v-n,w), Yw e P*e), e C 9K, (3.5a)
(ITI"" v, w)x = (v, w)x Yw e [PK)%. (3.5b)
We also need the following classical results [26, Theorem 3.1]:
Iy =yl S By lsy.0, IRy = yllar, S h~Pllyllsy 0
By the well-known commutative diagram [26, Equation (38)] we have
V- (II") = II(V - v),
where IT is the standard L? projection from L*(K) onto P**!(K). If v € H(div; £2) and V - v = 0, then
V- (II%v) = 0.
Applying [26, Lemma 3.1] we have the following lemma.

Lemma 3.4. For any v € H(div; 2) and V - v =0, we have II""v € V.
7



G. Chen, W. Gong, M. Mateos et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115837

To simplify notation, we define an HDG operator 4. For all (L, ¥;,, pi, Ph» ?,’;) e K, xVy,x W,? X Qn x My(0),

we define

<%(]Lha yh! DPh» ﬁhv’i‘h);Tlv vlawlvwh ILI)
= Ln, TD)7, + 5, V- T 7, — (37 T'n>a’rh\£," — (V- Ly, v)7,

— (P, V- 075, + (Do v1 - Yoy, + (W Paryy, vidar, — (B9, vl)gTh\gg
+ (Ve yp wig, = (0, 007, + Lan = b Py = T 1)y e
for all (Ty, vy, wy, Wi, py) € Ky x Vi, x W x Oy x Mj(0).

(3.6)

By the definition of %, we can rewrite the HDG formulation (2.4) as follows: find (Ly, y,, pi, Phs 35 Gn, 20, Gn,

Gn,29) € [Ky x Vi x WP x Qp, x My(0)]* and u;, € My, such that
B, Yis Phs Dns ¥ Tr, w1, wi, W, py) = (upt, Tin + h_]v1)g;,> +(f,v0)7,

<%(Ghs Zh, _Qh’ _’q\hs?h); T21 V2, W2, wZ’ I"’Z) = (yh - yd! v2)7’hs
(Gyn — K™ ' Pz, M3T)eo =y {un, 13)ed

for all (Ty, vy, wy, Wi, fy; Ta, v2, Wa, Wa, Ry) € [Ky x Vi, x W) x Qp x M(0)]* and pu3 € M.

Lemma 3.5. For any (L, y),, Ph, Ph, ¥3) € K x Vi x Wy x Q x Mj(0),

%(Lha yh’ phv 1’7\]1’ 37(}1; ]L//u yh’ phv ij\h’ 37(};)
— Lol + A [Py, —fv\;:llgn\gg +h! ||PMyh||§£.

Proof. According to the definition of & in (3.6) and integration by parts, we get

%(Lha yh’ phv 1’7\]1’ 37(}1; ]L//u yh’ phr ij\h’ 37(};)
= Ly, L)z, + 00, V- L7, = (35 Lm0 = (V- L, yi),

— (pu: V- 37+ (P ¥ - oy + (B Py, — I, J’h)m\g;;
+ (T Pyyy yi)gr + (Vv T, = (3 1 Padar
+ (Lyn — b~ (P y, = Vi) Yi)amnel
= Ll + A~ Py = il eo + 0 1Pyl
Similarly, for any (Gp, zn, gn, qn, 23) € Ky x Vi x Wy, x Qp x Mp(0), we have

B(Ghu, 2wy —qn, — G- 253 Gus Zns —qn, —qn» 25)
2 -1 2 —1 2
= Gull%7;, +h~ 1P uzn —?Z||BT/1\52 +h ||PMZh||g}z:-

Next we give a property of 2 that is critically important to our error analysis of this method.

Lemma 3.6. For any (L, y,, pus Dhs Y9 Gy 20, qns Gy 25) € [Ki X Vi x Wy x Qp x M (0)1%,

PBLy, Yus Pis D> 53 =Gy 20, Gns Gns 20) = B(Go, 2y, —qns —Gns 20 —Lis Yis Pis Ps Vi)

Proof. By the definition of £ in (3.6) we have

‘%(LI’H yh’ Phs ﬁh’ 37(}1; _Gh9 Zn, Qh,z]\hy,Z\Z)
==L, G, — 0y, V-G, + (77, Gh")an\g}) — (V- Ly, zi)7

— (P V-2, + (P 20 - mYars, + (W Payy, 2ndar, — (B9, Zh)an\gg
+ (VY a7, — (Yn 1 Gn)eT, + (Lan —h (P yy, —3’\2),?2)3771\5}

8
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Rearrange the terms above to get
BLi, Y1 Ps Ps ¥y =G 2, Gy @iy 23)
= —(Gn. L7, — @i, V- L7, + (27, Lhn)wh\gg —(V-Gu, ¥y,
+ @ VT = @ Yo m)om, + S0 Przi, yadom, = (R 20 Ya)agen
—(V 2z, P, + @n - n, Pr)a, + (Gun — h™ (P yza —?Z)7ﬂ>aﬁ\gg
= BGn. Zhs —qn> =G+ Zp: =L, Yioo Phs P Y1)
where we used the fact that z, € H(div; {2) and V - z;, = 0 in Proposition 2.3.

To prove the uniqueness of solution of the HDG formulation, we need to recall the following BDM projection.

Lemma 3.7 ([27, Equation (2.3)]). For any K € T, and v € [HI(K)]Z, there exists a unique ITPPMy ¢ [PF1(K)]?
such that

(IT*PMy - n, wip), = (v - ne, wita), Ywiy € PHl(e), e € 9K, (3.10a)
(IT*™™v, Vi), = (v, Vi) Vpi € PHK), (3.10b)
(11°"Mo, curl (bx pr-1) ¢ = (v, curl (b pr-1)) » Vpi-1 € PUK), (3.10c)

where by = LiAyA3 is a “bubble” function and curlg = [0,¢, —3,¢1". Ifk = 0, then (3.10c) is vacuous and ITBPM
is defined by (3.10a) and (3.10b).

Remark 3.8. In [27, Lemma 2.1], Brezzi, Douglas and Marini proved that the system (3.10) determines [73PM
uniquely. In other words, the matrix formed from the left hand side of (3.10) is non-singular. Hence, for any
z1 € H(e), 22,23 € [Hl(K)]z, we can uniquely determine v;, € [P**!(K)]? such that

(Vh - ey i), = (21, Wet1), Ywiy € PT(e), e € K, (3.11a)
Wn, Vp)x = 22, Vg Vpi € PXK), (3.11b)
(vp, curl (bg pr—1))x = (23, curl (bx pr—1)) » Vpi-1 € PHHEKD. (3.11c)

Theorem 3.9. There exists a unique solution of the HDG discrete optimality system (3.7).

Proof. Since the system (3.7) is finite dimensional, we only need to prove the uniqueness. Therefore, we assume
y4s = f = 0 and we show the system (3.7) only has the trivial solution.
FirSts take (Tl, vy, Wy, wls ”’1) = (_Ghs Zhs —Yqh, _@1122), (T29 V3, W, w21 I’LZ) =
(=Lu, y4s Pn» Pns ¥5), and 3 = —uy, in (3.7), respectively. By Lemma 3.6 we have
<@(]Lha yh’ Ph» ﬁh’ 3’\;,)7 _Gh, Zny —4qh, _zl\hy’iZ) - %(Gh’ Zhy thah:/iz; _th yh’ Ph» i;h’ 3’\2)
== Y7, — v, Mh)gfl3
=0.
This implies y, = u;, = 0 since y > 0.
Next, taking (T, vy, wi, Wi, k1) = Ly, Y5, Pas Prs ¥3) in (3.7a) and (Ta, va, wo, Wa, fy) = (G, Zhs Gns G, Zj)
in (3.7b) and using Lemma 3.5, we obtain L, = G, =0,y) =7Z) = 0.
Next, taking (T, wy, wy, #;) = (0,0, 0,0) and (T, vp, wa, Wy, #,) = (0,0, 0, 0, 0) and applying integration by
parts gives
(Vpr, v)7, + (Ph — Py v1 - m)y7;, = 0. (3.12)
Next, set z; = pp — pp in (3.11a), zo = 0 in (3.11b), and z3 = 0 in (3.11c). Then there exists a unique
v, € [P*1(K)]? such that on each element K we have
(V1 - ne, wig1)e = (Ph — Phs Wit1), Vwirr € P (e), e € 9K,
(01, Vp)g =0 Vi € PH(K).
This implies that (v, Vpy)x =0 and v - n = p, — p, on dK. This gives p, = py.
9



G. Chen, W. Gong, M. Mateos et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115837

Finally, taking v; = Vp, in (3.12) we have Vp, = 0, which together with the fact that pj, is single-valued on
each edge implies py is a constant on the whole domain. Moreover, p, € L3({2) gives p, = p;, = 0. Following the
same idea gives g, = g, = 0.

3.2. Proof of Theorem 3.1

We follow the strategy of our earlier work [10] and split the proof into eight steps. Consider the following
auxiliary problem: find (L, (), y, (), pr(), pr(u), ¥5(u);
G (), 2 (w), gn(u), Gu(w), Zjw)) € [Ky x Vi, x W) x Q) x M,(0)] such that

%(Lh(”), yh(u)v ph(u)a ﬁh(”)a /.)7011(”)1 T], v, Wi, wla I'l'l) = ((PMM)'[, h_lvl + Tl”)g;’:
+(f. o), (3.13a)
B(Gp(u), zn(u), —qn(u), —qn(u), Zu); Ta, v2, wa, Wa, o) = (¥, () — Yy, v2)7, (3.13b)
for all (Ty, vy, wi, Wy, y; Ta, v2, wa, Wa, Ry) € [Kpy x Vi x WP x Q) x M (0)]%.
We also note that although the proof strategy is very similar to [10], a simple rewriting of the proofs for the
settings of this paper is not enough. For each of the following lemmas, we must take care of the spaces of velocity
and pressure so that estimates are independent of the pressure.

We begin by bounding the error between the solutions of the auxiliary problem and the mixed form (2.2a)—(2.2g)
of the optimality system. Define

st =1L — gL, ey = Mgl — Ly (u),

8 =y— 1"y, g =1y — y,(u),

8P =p—Iyp, ey = Iy p — pp(u), (3.14)
87 =p— Pgp. 8;‘? = Pop — pu(u),

8 =y—Puy, &1 = Puy — Fy(),

where 3, (1) = ¥9(u) on & and ¥, (u) = (Pyu)T on &, then ez =0on&.
Step 1: The error equation for part 1 of the auxiliary problem (3.13a)
Lemma 3.10. Ler (IL, y, p) be the solution of the optimality system (1.3). Then we have for all (T, vy, wy, Wy, p,)
eK, x V, x W]? X Qh x M (o) that
‘%(HK]Ls HRT.Y? Hva Pst PM_)’, T], v, Wi, @17 I"’l)
= (f. o7 + {(Pyw)T, Tin +h™"v1)es — (17 Py”, v1)ar,
+ (81 v1)om, — (81 m)ggep + T Py )y e
Proof. Since V -y = 0, by Lemma 3.4 we have II®"y € V. By the definition of the operator Z in (3.6) we
obtain
%(HKLa HRTJH HWpa Pst PM_Y; Th vy, Wi, {Eh IL])
= (ITkL, T])'ﬁl + (HRTy’ V. Tl)ﬁ, —(Pyy, T1n>37'h\gg — (V- IkL, vl)’ﬁ,
— wp, V- v1)7, + (Pop.vi - n)or, + (B Py Iy, v1)o7;
— (W' Puy. vi)ypes + (V- Iy wi)g, — (T¥y -0, D)o,
+ (gL — b (PyII¥"y = Py y), f1)yr -
By definition of the L? projections and the RT projection, we have
B, X"y, Iy p, Pyp. Pyy; Ti, vi, wi, Wi, fy)

= (L, T)7; + (3. V- Tog, = (3. Tan)yg o0 + (V-85 007,
10
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—(V-L,v)7, — (p, Vo), + (p,vi - n)a7, + (h ' Pyy, vider,
— (W' Py, vi)oz, — (' Puy, vi)ygeo + (V- Ty, wi)g,
— (- n. B)ar, + (Txln, )y e0 + (07 Pud”, )y -
Moreover, integration by parts gives
(V- Iy, w)g, = Iy - n, w)ay, — TNy, Vwyg,
=(y-n,wi)y7, — (y, Vw7,

=V y, w7y,
=0.
Note that the exact solutions L, y and p satisfy
(L T7, + (0, V- Tog, = (3, Tam) g e = (ur, Tam) g,
_(V : (L - pH)5 vl)ﬁ = (f9 v1)7—ha
V-y,w)gy, =0,
(y -n, i)y, =0
for all (T, vy, wy, W) € Ky x Vj, x W,? X Qpand y = ut on S,f. Then we have
BUIKL, 1Ny, Iy p, Py p, Py y: Ti, vy, wy, By, )
= (f o075 Py T, Tin +h™'v1) gy — (h7 Pyd”, v1)ar,
+ (V- st v1)7;, + (I kLn, ”’1)8771\52 + (h_lPMSyv IL1>37’h\g;:-
Since L. € H'L(2) with ri, > 1/2, then (Ln, [L])an\gla = 0. This implies
<%(-II—K]Ls HRTJ’, Hva PMP, PMy’ Tl’ v, Wy, wlv Il'l)
= (f o) +{(Pyw) e, Tin + 0™ 1) ey — (A7 Pyd”, v1)ar,
+ (81 v1)om, — (871 g ep + T Py )y e

where we used the fact that (L. — ITgL, Vv,)7, = 0.

Remark 3.11. In [10], we used L — pI € H(div, {2) when s;, < 1/2. However, L € H(div, {2) does not hold here.
Hence, we assume r, > 1/2 so that L has a well-defined trace. Improving the analysis to handle the case sy, < 1/2
is left to be considered elsewhere.

Subtract part 1 of (3.13a) from Lemma 3.10 to obtain the following lemma.

Lemma 3.12.  For all (Ty, vy, wy, Wy, py) € Ky x Vi x W2 x Q) x Mj(0), we have
Bey i en e € T vn wi B ) = = Pyd”, vi)ar, + (7 Pyd” )y e
+ (8 n, v1)y7, — (8", Kidamne- (3.15)

Step 2: Estimate for 8}];
We first provide a key inequality which was proven in [10, Lemma 4.7].

Lemma 3.13. We have

y . y L -1 y y
Vel +h™ 2 ey, — e lla S eyl +h™ 2P uey, — & llaT, - (3.16)

Lemma 3.14. We have

L -4 y_ 3 ; y—1
lew 7 +h=2 1Py, — ey lla, S A Ll 0 + 22 Iyl 0.
11
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Proof. First, since SZ =0 on &7, the basic property of % in Lemma 3.5 gives

L P . L y L2 -1 )
Beys €15 €4 €hs €0 E1s € €1 €1 €0) = e 17, + A7 I Pwey, — &, 57,

On the other hand, taking (T, vy, p1, P1, ;) = (E,H;, s,{, s,f, 8,’?, SZ) in (3.15) gives
lex %, +h~ ' IPue;, — ey ll5 = (8"n. &) — &)am, — (h7'8Y, Pye) — &)o7-
By Lemma 3.13 and Young’s inequality, we have
_1 5 s so
lei 7 +h~21Pyey —epllom, S BV ILl 0+ 1>yl 0
Step 3: Estimate for &, by a duality argument
Next, we introduce the dual problem
A-VPé=0inf2, —-V-A—-VU=0inf), V- &=0in{f2, @& =0o0naf. (3.17)
Since the domain {2 is convex, we have the following regularity estimate:
A2 + 12l + 1 ¥1he < CllOllo,o- (3.18)
Before we estimate sfl , we introduce the following notation, which is similar to the earlier notation in (3.14):
Sh=A—Igh, 6%=& -, 6V =0—1Iy¥, 8" =0—Py¥, §%°=&—Pyd.
Since @ = 0 on {2, by using Lemma 3.10 we have the following lemma:
Lemma 3.15. Let (A, &, ¥) be the solution of (3.17), then for all (Ty, vy, wy, Wi, py) € K, x V), x W,? X Qp X
M (0), we have
BIA, TN @, [y U, Po W, Py &; Ty, vy, wy, 0y, k)
= (6. v)7, — ("' Pud® vi)ag; + (W™ Pus®, i)y e

+ (0% n, vi)ag, — (8%n, 1)y g0

Lemma 3.16. We have
lepllz S PHILI, 0 + B Iyl 0 (3.19)

Proof. Consider the dual problem (3.17) and let © = ¢; . Since 8;{, =0 on &, it follows from Lemmas 3.6 and
3.15 that

Bk, el el el ef . Iy A, TN ®, [Ty W, Py W, Py &)
= BITghA, TN @, — Iy W, —Po W, Py ®; —¢y, e}, 6l el , 1)
= (8"n. &) —&)om, — (W '8, Pyey —&)ar, + lep 15 -
On the other hand, taking (T4, vy, wy, W1, p;) = (—IHgA, IR &, [Ty ¥, Po ¥, Py ®) in (3.15) gives
Bek el el el e —ITxA, T ®, [Ty W, Py, Py &)
= (8"n, IX"® — Py ®)y7. + (h'8”, Pyd®)or .
Then we have
lep )5 = (8"n, IN"® — Py ®)y7, — (8%n. &) — &))om
+ (h'8%, Pyej — &)om, + (h7'87, Pyd®)am

which together with the approximation properties of the L?-orthogonal projection and the projection ITRT and
Lemma 3.14 gives the desired result.

As a consequence of Lemmas 3.14 and 3.16, a simple application of the triangle inequality gives optimal
convergence rates for ||L — Ly(u)|l7; and ||y — y, ()|l 7;:

12
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Lemma 3.17. Let (L, y, p) and (Ly(u), y,(u), pr(®)) be the solution of (1.3) and (3.13a), respectively. We have
IL — Lol 7, SA LI, o + B> Iy, (3.202)
ly = yu@ll7 S HELI o + 2 Iyllsy.c- (3.20b)

Step 4: The error equation for part 2 of the auxiliary problem (3.13b)

We continue to bound the error between the solutions of the auxiliary problem and the mixed form (2.2a)—(2.2g)
of the optimality system. In steps 4-5, we focus on the dual variables, i.e., G, z and g. We use the following notation

8¢ =G — kG, gy = IIgG — Gy(u),

8 =z — TNy, gl = Yz — 7,),

81 = q — Ilwq, ep = Ilwq — qn(u), (3.21)
87 =q — Pyq, el = Poq — Gi(u),

8 =z — Pz, &8 = Pyz —Z(u).

The derivation of the error equation for part 2 of the auxiliary problem (3.13b) is similar to the analysis for part
1 of the auxiliary problem in step 1. Therefore, we state the result and omit the proof.
Lemma 3.18. For all (T,, va, wa, Wa, K,) € Ky x V), x W,? X Qn x Mj(0), we have
%(8;’?’ 82’ _827 _825 85; TZ’ VU2, Wy, @2, I’l’2)
= —(h™"Pu&* v2)ar; + (h™ Pu&*, M)y e (3.22)
+0%n, va)or, — (851, W)y e0 + (¥ — Y4 (w), v2)7;.
Step 5: Estimate for 8;5;
Before we estimate 8?, we give the following discrete Poincaré inequality from [28, Proposition A.2].
Lemma 3.19. We have
l -~
leplln < CAIVeRllr +h™2lle; — eillar,)- (3.23)

Lemma 3.20. We have
_1 e
legll7, +h™2IIPued — &l
SHL 0 + 52 13 ly,0 + B 1Gli.0 + 17 zll.0, (3.240)
leillz < AL @ + B2 1yl 0 +hC 1Clg.e + 2% izl o (3.24b)

Proof. First, we note the key inequality in Lemma 3.13 is valid with (L, y, y) in place of (G, z, z). This gives
IV lizy +h 2 lef = eillar SIef i, +h2 I P el — &7, (3.25)
which we use below. Next, since SE =0 on 5,?, the property of % in (3.9) gives
Bley, et —ef, —82, sg; ey, e, —ef, —EZA, sg) = ||8}(f’||%71 +h Y|P yel — 85”577’. (3.26)
Next, we take (T», v2, wo, Wy, Ky) = (sf’, 8;, —sz, —ez, sg) in (3.22) gives
Bey, &%, —el, —sg, SE; R —eg, 85)
= — (&% Puef — &3)om, + (6%n. €f — &1)om, + (0 = i), €))7,
The estimate in (3.25), Lemmas 3.17 and 3.19 and Young’s inequality give the desired result.

As a consequence of Lemma 3.20 and a simple application of the triangle inequality we obtain the optimal
convergence rates for |G — G, (u)|l7;, and ||z — zx(w)ll7;:

n
13
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Lemma 3.21. Let (G, z, q) and (Gj,(u), z2;,(u), pr(u)) be the solution of (1.3) and (3.13b), respectively. We have

IG — Gu@ll7, S B Ll 0 + 2% 19l 0 + 7 Gl 0. (3.27a)
Iz — za@ll7 < KLl o0 + B2 Iyl 0 + 1 G0 + 2% 2, 0 (3.27b)

Step 6: Estimates for |\u — uh||52 and ||y — yn ”77.

Next, we bound the error between the solutions of the auxiliary problem and the HDG problem (3.7). We use
these error bounds and the error bounds in Lemmas 3.17 and 3.21 to obtain the main results. For the next step, we
denote

w=Lu) =Ly, & =y,0) =Yy, & =prw)—pr, 5= pru) — P,

e =Guu) =Gy, & =zp(w) =z, &g =qn) —aqn, &G =qnu) —qn,
and

& =Y,w)—7y, on & and ¢ = Pyut —u,t on &,

tz=70(u)—7Z, on & and & =0 on &
Subtracting the auxiliary problem and the HDG problem gives the following error equations

B, Ly, Epr Tps T3 Tr, v, w1, B, ) = (Pagte — 1), b0y + Tym) g, (3.284)

B(LG Sz —Lqs =85 823 T, 02, wa, W, ) = (§y, V2)7;, (3.28b)

for all (T4, vy, wy, Wy, fy; Tz, Va2, W, Wa, fy) € [Ky x Vi x W,? x Qn X Mj(0)]?.

Lemma 3.22. We have
yllu—willZy + 165117 = (yur = Ga@n + ™ Puzp@), (0 = un)7) g 329)
— {yu,t —(Grhn+h’1PMzh,(u —uh)‘l,')g}zl). .
Proof. First, we have
(yut — Gpun + h™'Pyzp(u), (u — uh)T>52
— (yupt —Gpn+h= ' Pyzp, (u — uh)t>5;‘3
=yl —unllgy + (=gem +h~ Pute, (e —up)7)gp.
Next, Lemma 3.6 gives
By Eys Eps E &35 =865 82y 8§50 §2) = BLGs Coo —Eq0 =855 823 =81, 8y, Cps $5 65)-
On the other hand, from (3.28a) and (3.28b) we have
BQL Cys Eps §55 833 =86 620 80§30 §2) — B §zy =gy =85, §25 —CLs 8y Sy §55 85)
= Gy, )7 + (Pu = up)T, —fen +h™'5) o
=~y )7y + (= up)T, —Gem + h™ Pyt
Comparing the above two equalities gives

@y 8)7 = (W —un)T. —Gen + h™ Pyls) e,

Theorem 3.23. Let (y, u) and (y,, uy) be the solutions of (1.3) and (3.7), respectively. We have
. syt so—t P
e = unlgy S A3 Ll + 02 Iyl 0 + B2 G 0 +07 izl 0, (3.30)

1 _1 _1 _3
|y = yull7, S B2 LI @ + A2 1y l.0 + HE72 (Gl @ +h%72 Izl 0 (3.30b)
14
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Proof. Since yut — Gn =0 on &) and yu,t — Gun + h='Pyz, =0 on £ we have
2 _
vl —uwnlZy + &5, = vur = Guon + k™' Pyzaw), (= u)t)gg
= (G = Gu)n + h™" Pyza(u), (4 — up)t) i
Next, since Zj,(u) = z = 0 on & we have
1Puzillgs = I1Pyzn@) — Py Iz + Py 1Nz — Pz + Pyz —Zu(w)ll g
< I1Puef = &;llom + 11Nz =zl 5.
This together with Lemma 3.21 gives
_1 _1
lu = unllgy +116yll7 S 72 €5 | + 1572 1Glgg 0
+h Py — e llaz+h~ TRz — zllgp-
By Lemma 3.20 and properties of the L? projection, we have
o 1L S oo — 1 6, —3
lu = unllgp + 18yl < Rl o + B2 72yl 0 + T2 Gl 0 + 772 izl 0
Then, by the triangle inequality and Lemma 3.17 we obtain

1 _1 1 _3
1y = yully, SHVT2 Ll o + R 72 Iylly,.0 + 172 1Gllsg. 0 +h%72 N2l o
Step 7: Estimates for |G — Gy |7, and ||z — z4 |7,

Lemma 3.24. We have
I¢allz; S R Ll 0 + A7 2 Ipllg o + B2 Iyl o
BTGl + 52 gl + 153 2l 0 (3.31a)
I&:ll7 S B2 Ll 0 + B2 1pll o + 0272 1yl 0
F R Gl + 52 gl g+ 13 2l 0 - (3.31b)

Proof. By Lemma 3.5, the error equation (3.28b), and since & = 0 on 5,? , we have
(6. 67 + h I Pue: — Gl
= B $or —8qs =855 825 865 &2 —8g, =83, §2)
= (&y, &),
< &yl Ml
S el AVEly +h™2e — glar)
< el (zeliz + A2 1P — &llom).
where we used the discrete Poincaré inequality in Lemma 3.19 and also (3.16). This implies
el + 2Py — Gllan < 6,
SV Lo + 8272 3l 0
+ 102 Gl +1%73 Nzl 0
The discrete Poincaré inequality in Lemma 3.19 also gives
1Zzll7 S IVEdy + W2 g — Gl
S Nealy, +h 2Pt — &llo;
I Lo + 72 1yl 0 + B2 Gl 0 +557 2l 0.
15
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The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 gives the next part of the main
result:
Theorem 3.25. Let (G, z) and (Gy, z;) be the solutions of (1.3) and (3.7), respectively. We have
Ltd sy 1 sg—1t 5o 3
IG = Gally, S A2 LIy @+ 72 Iyl 0 +BC72 Gl o +h%72 lizlly,. o (3.32a)
_—l sy 1 se—L 5,3
Iz = zully, SHEF2 LG @ + A2 72 Iyl 0 + 172 Gl 0 +1%72 |zl 0 (3.32b)

Step 8: Estimate for || — Ly |7,

Lemma 3.26. If k > 1 holds, then
Ielg S A% Ll 0 + A2 3l 0 + RS Gl 0+ 2 Nzl 0- (3.33)

Proof. By Lemma 3.5 and the error equation (3.28a), we have
(é‘]L, §L)7’h + (h_l(Png - fi), Cy - C?)an\gg + (h_IPMCy, PMCy)gﬁ

= '%(;]Ls C_Y’ é-P’ §§9 ;]Lv {ys ;pv {?)
= ((Pytt — up)T. 5L -1+ h7'gy) g

= ((u —up)T, L N +h_]PM§y>gg
-1
< lu—wnllgy (el +h7" | Party o)
_1 _1

SH2 = unllgy (Nl + 072 | Puty] ),

which gives
_1 Gy — (— —
ISl S A2 u = unllgp S AL o + 2% YIylly, 0 + B Gl 0 +1% 2 Nzl 0
The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 completes the proof of the main

result:
Theorem 3.27. Let IL and 1Ly, be the solutions of (1.3) and (3.7), respectively. If k > 1 holds, then

IL = Lollg S ALl 0 + B2yl 0 + 25 G g 0 %72 izl 0

4. Numerical experiments

In this section, we present some numerical experiments to illustrate our theoretical results (see Theorem 3.1).
We use uniform triangular meshes and define

1
le(yh) Ilglea’f)_](l |K| /I; | yh| dx

Example 4.1. We begin with an example which has an analytical solution. The domain is the unit square
2 = (0, 1)? and the data is chosen as
yi = =272 sin®(7wx) cos(mxz) — 272 sin(rxp) sin(27w x,),
Yo = 272 cos(mxy) sinz(nxz) + 277 sin(r x,) sin(2w xy),
1= sin2(71x1) sin(2wxy), zp = -7 sinz(nxz) sin(2m x1),
p =10"cos(wx;), g =10"cos(mwx;), y = 1.
Here n is a parameter.

To make a comparison, we first solve the optimality system (1.3) by using the HDG method proposed in [10],
with n = 2,4, 6 and k = 0. The errors for all variables are shown in Tables 1 and 2. Although the convergence
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Table 1
Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the control u, pressure p, state y, and its flux L by
using the HDG method in [10].

k n % div(yy) Iy = yull2o) IL = Lall ;20 lp = pull2) llu = unllz2cr)
Error Rate Error Rate Error Rate Error Rate
4 7.52E+01 1.18E+01 5.58E+01 3.63E+01 1.77E+01
8 3.36E4-01 3.58E+00 1.72 2.80E+4-01 0.99 2.45E+401 0.56 6.33E4-00 1.48
0 2 16 1.59E+01 1.51E+00 1.24 1.39E+01 0.99 1.43E+01 0.78 1.89E+00 1.74
32 7.79E+4-00 1.03E4-00 0.54 8.92E+00 0.64 1.14E4-01 0.32 5.65E—01 1.74
64 3.87E+00 9.31E-01 0.15 7.49E+00 0.25 1.10E+01 0.04 2.69E—01 1.06
4 2.74E+03 6.17E+02 4.49E+-03 3.43E+03 1.74E+03
8 1.17E4-03 1.69E+4-02 1.86 2.21E+403 1.09 2.19E4-03 0.64 6.24E+4-02 1.48
0 4 16 4.78E+402 4.56E+4-01 1.89 8.30E+02 1.34 9.17E+4-02 1.25 1.83E+02 1.76
32 2.14E4-02 1.19E401 1.93 3.33E402 1.31 3.14E402 1.54 4.95E+01 1.89
64 1.03E4-02 3.15E400 1.91 1.46E4-02 1.18 1.00E+4-02 1.65 1.28E4-01 1.94
4 2.74E+05 6.17E+04 4.49E+-05 3.43E+05 1.74E+05
8 1.17E4-05 1.69E+4-04 1.86 2.21E4-05 1.09 2.19E4-05 0.64 6.24E4-04 1.48
0 6 16 4.78E+04 4.56E+4-03 1.89 8.30E+04 1.34 9.17E+4-04 1.25 1.83E+04 1.76
32 2.14E4-04 1.19E4-03 1.93 3.33E404 1.31 3.14E+04 1.54 4.95E+4-03 1.89
64 1.03E4-04 3.15E+02 1.91 1.46E4-04 1.18 1.00E+4-04 1.65 1.28E4-03 1.94
Table 2

Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the dual pressure ¢, dual state z, and its flux G by
using the HDG method in [10].

k n 2 div(zy) Iz — zall 2 IG — Gall 20 lg = anll 20
Error Rate Error Rate Error Rate
4 1.19E401 3.21E+00 1.35E401 9.28E+00
8 5.62E+00 8.98E—01 1.83 7.80E4-00 0.79 3.31E+00 1.48
0 2 16 2.76E+00 2.30E—01 1.96 4.06E+4-00 0.94 1.00E4-00 1.71
32 1.38E+00 5.74E—02 2.00 2.05E4-00 0.98 3.16E-01 1.67
64 6.89E—01 1.96E—02 1.54 1.03E4-00 0.98 1.20E—-01 1.39
4 1.12E+03 3.08E+02 1.31E+03 9.15E4-02
8 5.11E402 8.66E+01 1.83 7.59E+4-02 0.79 3.21E+402 1.50
0 4 16 2.51E+02 2.25E401 1.94 3.95E+02 0.94 9.27E+01 1.79
32 1.25E+02 5.68E4-00 1.98 1.99E+4-02 0.98 2.45E+401 1.91
64 6.26E4-01 1.42E4-00 1.99 1.00E+4-02 0.99 6.25E4-00 1.97
4 1.12E+05 3.08E+04 1.31E+05 9.15E4-04
8 5.11E4+04 8.66E+03 1.83 7.59E+4-04 0.79 3.21E+04 1.50
0 6 16 2.51E+04 2.25E403 1.94 3.95E+04 0.94 9.27E+403 1.79
32 1.25E+04 5.68E+4-02 1.98 1.99E+-04 0.98 2.45E+03 1.91
64 6.26E+4-03 1.42E4-02 1.99 1.00E+4-04 0.99 6.25E4-02 1.97

rates are optimal and consistent with the error analysis in [10] for n = 4, 6, the magnitude of the errors strongly
depend on the pressures. This shows that the algorithm proposed and analyzed in [10] is not pressure-robust.

Now we use the new HDG method (see the formulation (2.4)) to test the same problem. The errors for all
variables are shown in Tables 3 and 4. We see that the error magnitudes of the state y, dual state z and control u
are independent of the pressure p and the dual pressure g. We also notice that the convergence rates are higher than
predicted by our error analysis; a similar phenomena has been observed for other numerical methods for Dirichlet
boundary control problems involving elliptic equations [25,29,30] and Stokes equations [10,31]. To the best of our
knowledge, only one work explained the above phenomena: May, Rannacher, and Vexler in [32] used a duality
argument to obtain improved convergence rates for the state and dual state with the standard finite element method.
It is not clear how to apply this technique to the HDG methods.
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Table 3
Example 4.1: Pressure-robustness: Errors and observed convergence orders for the control u, pressure p, state y, and its flux L by using
the new HDG formulation (2.4).

k n % div(y,) ly =y, ”LZ(Q) IL — Ly HLZ(_Q) lp — pn ||L2(Q) [l — uy, ||L2(1")

Error Rate Error Rate Error Rate Error Rate

4 8.88E—16 8.76E+00 5.33E+01 1.47E+01 6.30E4-00
6.66E—16 2.20E+00 2.00 2.79E+401 0.93 7.20E4-00 1.03 3.15E4-00 1.00
0 2 16 3.33E—16 5.41E-01 2.02 1.41E+01 0.99 3.64E+00 0.99 1.64E+4-00 0.94
32 3.05E—16 1.34E-01 2.01 7.05E400 1.00 1.80E+4-00 1.02 8.06E—01 1.03
64 1.94E—16 3.34E-02 2.00 3.52E+00 1.00 8.86E—01 1.02 3.98E—01 1.02

4 1.78E—15 8.76E+00 5.33E+01 1.30E+03 6.40E4-00
8 6.66E—16 2.20E+00 2.00 2.79E+4-01 0.93 6.53E+02 0.99 3.42E4-00 091
0 4 16 3.87E—16 5.41E-01 2.02 1.41E+01 0.99 3.27E+02 1.00 1.58E+00 1.11
32 2.91E—-16 1.34E-01 2.01 7.05E400 1.00 1.64E+4-02 1.00 7.53E—01 1.07
64 1.87E—16 3.34E-02 2.00 3.52E+00 1.00 8.18E+01 1.00 3.96E—01 0.93

4 1.78E—15 8.76E+00 5.33E+01 1.30E+05 6.49E4-00
0 8 6.66E—16 2.20E+-00 2.00 2.79E+4-01 0.93 6.53E+04 0.99 3.42E4-00 0.93
6 16 4.44E—16 5.41E-01 2.02 1.41E+01 0.99 3.27E+04 1.00 1.66E4-00 1.04
32 3.19E—16 1.34E-01 2.01 7.05E4-00 1.00 1.64E+-04 1.00 7.90E—01 1.07
64 1.87E—16 3.34E-02 2.00 3.52E+00 1.00 8.18E+03 1.00 3.98E—01 0.99

4 1.88E—15 1.18E+00 1.40E+01 5.53E+00 1.61E+00
8 1.79E—15 1.52E-01 2.96 3.78E+4-00 1.89 1.19E4-00 2.22 4.37E—-01 1.89
1 2 16 1.05E—15 1.94E-02 2.97 1.03E+00 1.88 2.74E-01 2.12 1.11E-01 1.98
32 8.90E—16 2.45E-03 2.98 2.91E-01 1.82 6.89E—02 1.99 2.77E—-02 2.00
64 4.72E—16 3.12E-04 2.98 8.73E—02 1.74 1.86E—02 1.89 6.98E—03 1.99

4 1.72E—15 1.18E+00 1.40E+01 1.25E+02 1.65E4-00
8 1.78E—15 1.52E-01 2.96 3.78E+4-00 1.89 3.14E401 1.99 4.37E—-01 1.92
1 4 16 1.07E—15 1.94E-02 2.97 1.03E+00 1.88 7.87E+4-00 2.00 1.11E-01 1.98
32 8.90E—16 2.45E—-03 2.98 2.91E-01 1.82 1.97E4-00 2.00 2.79E—-02 1.99
64 4.55E—16 3.12E-04 2.98 8.73E—02 1.74 4.92E-01 2.00 6.98E—03 2.00

4 1.65E—15 1.18E+00 1.40E+01 1.25E+04 1.65E4-00
1 8 1.78E—15 1.52E-01 2.96 3.78E+4-00 1.89 3.14E4-03 1.99 4.37E—-01 1.92
6 16 1.03E—15 1.94E-02 2.97 1.03E+00 1.88 7.87E+4-02 2.00 1.11E-01 1.98
32 8.92E—16 2.45E—-03 2.98 2.91E-01 1.82 1.97E+4-02 2.00 2.79E—-02 1.99

64 4.58E—16 3.12E-04 2.98 8.73E—-02 1.74 4.92E+01 2.00 6.98E—03 2.00

Example 4.2. Next, we test the problem with unknown true solutions. We use the same data from [10, Example
5.1]. We set 2 = (0, 0.125)2, f =0, and y = 1. To show that our HDG method is pressure-robust, we perturb the
target state y, by a large gradient field. We take

¥4 =200 x 8[x*(1 — 8x)?y(1 — 8y)(1 — 16y), —x(1 — 8x)(1 — 16x)y*(1 — y)*]",

Y=y +10°71, 177
We denote the corresponding velocity by y and y. We know the fact that perturbing the external force by a gradient
field affects only the pressure, and not the velocity; this was shown in [12]. Hence, y =y.

We first solve the optimality system (1.3) by using the HDG method proposed in [10] with & = % and k =1
for both y, and y,, we compute the difference of y, and y}:

”yh - j;;;”LZ(Q) =214.
Next, we use the HDG formulation (2.4) in this paper, and we have
vy = Full 2o = 6.94 x 1077

We see that the algorithm proposed and analyzed in [10] is not pressure-robust; while the algorithm (2.4) is
pressure-robust.
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Table 4
Example 4.1: Pressure-robustness: Errors and observed convergence orders for the dual pressure ¢, dual state z, and its flux G by using the
new HDG formulation (2.4).

k n ¥ div(z) Iz = zall 202 IG — Gall 2 lg — anll 20

Error Rate Error Rate Error Rate

4 1.11E—16 8.51E-01 6.27E4-00 1.31E401
8 5.55E—17 2.47E-01 1.78 3.37E+00 0.90 6.59E+4-00 0.99
0 2 16 3.23E—-17 6.55E—02 1.92 1.71E4-00 0.97 3.29E+00 1.00
32 2.31E—17 1.68E—02 1.96 8.60E—01 1.00 1.64E+4-00 1.00
64 1.61E—17 4.24E—03 1.98 4.30E—01 1.00 8.20E—01 1.00

4 1.11E—16 8.51E-01 6.27E400 1.30E+4-03
8 5.55E—17 2.47E-01 1.78 3.37E+00 0.90 6.53E4-02 0.99
0 4 16 4.36E—17 6.55E—02 1.92 1.71E4-00 0.97 3.27E+402 1.00
32 2.29E—17 1.68E—02 1.96 8.60E—01 1.00 1.64E+402 1.00
64 1.39E—17 4.24E—03 1.98 4.30E—01 1.00 8.18E+01 1.00

4 1.11E—16 8.51E-01 6.27E+4-00 1.30E+4-05
0 8 5.55E—17 2.47E-01 1.78 3.37E+00 0.90 6.53E4-04 0.99
6 16 3.72E—17 6.55E—02 1.92 1.71E4-00 0.97 3.27E+04 1.00
32 2.08E—17 1.68E—02 1.96 8.60E—01 1.00 1.64E+4-04 1.00
64 1.39E—17 4.24E—03 1.98 4.30E—01 1.00 8.18E+03 1.00

4 1.59E—16 1.62E—01 1.93E+4-00 1.49E+4-00
8 1.34E—16 2.12E—-02 2.93 5.06E—01 1.93 3.60E-01 2.05
1 2 16 9.26E—17 2.70E—03 297 1.28E—01 1.99 8.76E—02 2.04
32 6.39E—17 3.41E-04 2.99 3.20E-02 2.00 2.17E—-02 2.02
64 3.92E—17 4.27E-05 3.00 8.01E—03 2.00 5.39E—-03 2.01

4 1.64E—16 1.62E—01 1.93E+4-00 1.25E+402
8 1.30E—16 2.12E—-02 2.93 5.06E—01 1.93 3.14E+401 1.99
1 4 16 8.68E—17 2.70E—03 297 1.28E—01 1.99 7.87E+00 2.00
32 6.72E—17 3.41E-04 2.99 3.20E-02 2.00 1.97E+4-00 2.00
64 3.84E—17 4.27E-05 3.00 8.01E-03 2.00 4.92E—01 2.00

4 1.64E—16 1.62E—01 1.93E+4-00 1.25E+-04
1 8 1.26E—16 2.12E—-02 2.93 5.06E—01 1.93 3.14E+403 1.99
6 16 8.52E—17 2.70E—03 297 1.28E—01 1.99 7.87TE+02 2.00
32 6.37E—17 3.41E-04 2.99 3.20E-02 2.00 1.97E+402 2.00
64 3.95E—17 4.27E—05 3.00 8.01E-03 2.00 4.92E+01 2.00

5. Conclusion

In [10], we used an existing HDG method to approximate the solution of a tangential Dirichlet boundary control
problem for the Stokes system. The velocities were not in H(div; {2) and the error estimates depended on the
pressures. In this work, we devised a new globally divergence free and pressure-robust HDG method for solving
this problem. We proved that the discrete velocity belongs to H (div; {2) and is globally divergence free. Furthermore,
our error estimates show that the errors for the control and velocities do not depend on the pressures.

As far as we are aware, this is the first work to obtain a global divergence free and pressure-robust numerical
method for an optimal boundary control problem involving Stokes equations. In the future, we will consider devising
pressure-robust numerical methods when using an energy space for the control [31]. Besides that, we plan to
devise divergence free and pressure-robust HDG schemes for more complicated PDEs, such as the Oseen and
Navier—Stokes equations; and apply the methods to other PDE optimal control problems.
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