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The alternative accumulated improvement curve stochastic order is a criterion for the com-
parison of the performance of classifiers that predict binary responses. An explicit optimal 
classifier for this criterion is obtained. That optimal classifier has the largest ROC and CAP 
curves and indexes, that is, it is also optimal for the criteria based on the comparison of 
such curves and indexes. An application of the results to the search of the best classifier to 
predict clients of a bank which will make a transaction in the future is developed.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Statistical classification is devoted to identify which of a set of categories an individual belongs to. That is carried out 
by means of the values of variables or features observed at each individual. A system of classification is said to be binary 
if the number of categories is two. A binary classifier is a method to assign each individual to one of those categories. 
Very basically, it maps the data set of the observed variables at the individuals to one of such categories. Research on 
binary classification has experienced a significant growth in the last years because of the importance of the underlying 
problems.

Binary classification is usually performed by means of a bivariate random vector X = (C X , T X ), the so-called modelling 
vector, where C X is said to be a classifier and T X a target. A target T X is a Bernoulli random variable with parameter q, 
where q denotes the true and unknown proportion of individuals which belong to a specific category. For instance, when a 
bank studies which potential clients will purchase a revolving card, q is the true and unknown proportion of clients which 
will acquire that card. The target takes on value 1 at an individual who will purchase the card, otherwise 0. The value of 
the target at each individual is unknown, and the purpose of any binary classification procedure is the estimation of that 
value. The estimation is carried out in terms of the value of the classifier at each individual. A classifier C X is constructed 
by means of some observable features of the individuals. Each individual is assigned to one of the categories by means of a 
thresholding criterion on the values of C X .
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Different procedures have been created to construct classifiers using different tools, like for instance, neural networks, 
decision trees, random forest, Bayesian techniques, mesh methods or logistic regression, see, for instance, Breiman (2001), 
Wei and Chiu (2002), Hwang et al. (2004), Buckinx and Van den Poel (2005), Hung et al. (2006), Qi et al. (2009), Figini and 
Giudici (2010) or Güunther et al. (2014).

The comparison of the performance of the classifiers is essential for the identification of suitable classifiers to estimate a 
target. Quite a lot of effort has been placed on the development of comparison criteria of classifiers, see, for instance, Lloyd 
(1998), Lee (1999), Hand (2009), Hand and Zhou (2009), Hand (2010), Hand (2012), Hand and Anagnostopoulos (2012), Hand 
and Anagnostopoulos (2013) or Yousef (2013). The most common way to compare classifiers is using a summarised value 
for each classifier. The “identification” of a classifier with a single numeric value reduces all the probabilistic information to 
a unique number what entails a serious loss of information. Moreover, if classifiers are used to predict targets in different 
groups of the population, the rating needs to be reassessed for each group. To avoid those problems, two criteria for the 
comparison of the performance of classifiers were introduced in López-Díaz et al. (2017) and López-Díaz et al. (2019). 
Those systems have two clear advantages with respect to other methods. On one hand, they are defined by means of 
stochastic orders, which provide more detailed and efficient comparisons since they take into account the whole probability 
distributions of the classifiers and targets, instead of a single summarised value of them. On the other hand, the modification 
of the group size where classifiers are applied, does not entail the change of the appropriate classifier. Those orderings 
are the so-called accumulated improvement curve stochastic order and the alternative accumulated improvement curve 
stochastic order. The latter is a refinement and an improvement of the former.

An essential question in the theory of classification is the search of “the best” classifier which can be constructed with 
the available features of the individuals to predict a target T . Such information is modelled by a set of random variables, 
say X1, . . . , Xn . In this manuscript, we obtain classifiers F (X1, . . . , Xn), such that the modelling vector (F (X1, . . . , Xn), T )

is optimal in the alternative accumulated improvement curve criterion, when we consider the set of modelling vectors 
{(H(X1, . . . , Xn), T ) | H :Rn →R is Borel measurable}. Moreover, we will prove that those optimal classifiers are also opti-
mal for the traditional criteria based on the ROC and CAP curves and indexes. The reader is referred, for instance, to Bamber 
(1975), Hsieh and Turnbull (1996), Zhou et al. (2002), Pepe (2003) or Krzanowski and Hand (2009) for an introduction 
to CAP and ROC curves and indexes criteria. Some manuscripts approaching the search of optimal classifiers for different 
optimality criteria under different frameworks are, for instance, Di Martino et al. (2013), Boughorbel et al. (2017), Zhu and 
Wang (2022) or Martínez-Camblor (2022).

A real application of the results of the manuscript will be developed to predict clients of a bank which will make a 
transaction in the future. The result shows the best performance of the method based on the aforementioned optimal 
classifier. The approached problem has been posed by Santander Bank. We will use the database provided by that bank for 
its analysis.

The structure of the paper is the following. Section 2 describes the aforementioned criteria. Section 3 contains the 
preliminaries of the manuscript. In Section 4, we obtain an optimal classifier in the alternative accumulated improvement 
curve criterion. Section 5 is devoted to prove that such a classifier is also optimal when the criteria based on the ROC and 
CAP curves and indexes are considered. We develop an application of the results to a real classification problem posed by a 
bank in Section 6. Conclusions of the manuscript are presented in Section 7.

2. The alternative accumulated improvement curve criterion

For ease of reading of the manuscript, the accumulated improvement curve and the alternative accumulated improve-
ment curve criteria are described in this section.

Let X = (C X , T X ) be a modelling vector. The mapping M X : (0, 1) →R, with

M X (p) = P (T X = 1 | C X ≥ F −1
C X

(1 − p)) for all p ∈ (0,1),

is said to be the accumulated improvement curve of the modelling vector X (F −1
C X

stands for the quantile function of C X ).
The meaning of the mapping is the following. Given any p ∈ (0, 1), we take the smallest group containing at least the 

100p% of the individuals with the largest values of the classifier C X (that group is given by (C X ≥ F −1
C X

(1 − p))), and we 
study the probability that the target takes on value 1 in such a group. That represents the probability of being right when 
we estimate the value of the target as 1 at those individuals.

Let X = (C X , T X ) and Y = (CY , TY ) be modelling vectors where T X and TY follow Bernoulli distribution with parameter 
q (from an applied point of view, usually T X = TY ). The modelling vector X is said to be less than Y in the accumulated 
improvement curve stochastic order, if M X (p) ≤ MY (p) for all p ∈ (0, 1). It will be denoted by X �M Y . Let us analyse 
the meaning of X �M Y . Consider the smallest groups containing at least the 100p% (p ∈ (0, 1)) of the individuals with the 
largest values of the corresponding classifiers C X and CY . Basically, X �M Y means that the probability of carrying out right 
classifications by estimating as 1 the value of the target at those individuals, is greater (at least the same) with classifier CY
than with classifier C X , whatever p ∈ (0, 1).

A possible drawback of the above procedure is that when discrete classifiers are considered, the subgroups of the pop-
ulation given by (C X ≥ F −1

C X
(1 − p)) and (CY ≥ F −1

CY
(1 − p)) with p ∈ (0, 1), could have different sizes. The comparison of 

classifiers in subgroups which are not similar in size is commonly eluded. To avoid that problem, a refinement of the above 
criterion was introduced in López-Díaz et al. (2019) as follows.
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For any random variable W and p ∈ (0, 1], let pW denote the real value which satisfies that

1 − pW = F W (F −1
W (1 − p))

(F W denotes the distribution function of W ). Note that 1 − pW is the first value greater or equal to 1 − p which belongs to 
Im(F W ), where Im denotes the image set.

The alternative accumulated improvement curve of a modelling vector X = (C X , T X ) is the mapping M̃ X : (0, 1] → R
given by

M̃ X (p) = 1

p

(
pC X P (T X = 1 | FC X (C X ) > 1 − pC X )

+ (p − pC X )P (T X = 1 | FC X (C X ) = 1 − pC X )
)

for all p ∈ (0, 1].
Let us clarify the meaning of this mapping. Given any p ∈ (0, 1], we aim to obtain the probability that the target assumes 

value 1 in the 100p% of the individuals with the largest values of the classifier C X . If there exists exactly a group with that 
percentage (in such a case, p = pC X since 1 − p ∈ Im(FC X )), the above probability is calculated for those individuals. If 
such a subgroup does not exist (that is, p �= pC X ), on one hand, we take the biggest group with the largest values of the 
classifier whose size is lower than 100p% (exactly 100pC X %, that group is given by (FC X (C X ) > 1 − pC X )). On the other hand, 
that group is completed with the following group with the largest values of the classifier (FC X (C X ) = 1 − pC X ), taking the 
appropriate weighting.

Let X = (C X , T X ) and Y = (CY , TY ) be modelling vectors. It will be said that X is less than Y in the alternative accu-
mulated improvement curve stochastic order, if M̃ X (p) ≤ M̃Y (p) for all p ∈ (0, 1]. It will be denoted by X �M̃ Y . Consider 
the 100p% (p ∈ (0, 1]) of the individuals with the largest values of the corresponding classifiers C X and CY . Fundamen-
tally, X �M̃ Y means that the probability of carrying out right classifications by estimating as 1 the value of the target at 
those individuals, is greater (at least the same) with classifier CY than with classifier C X , whatever p ∈ (0, 1]. Thus, mod-
elling vector Y is better than X to classify individuals, whatever sizes of groups in which we compare those modelling 
vectors.

3. Preliminaries

A stochastic order is a pre-order relation on a set of probabilities associated with a measurable space. Basically, a stochas-
tic order is a criterion to rank probabilities (see, for instance, Müller and Stoyan (2002), Shaked and Shanthikumar (2007)
and Belzunce et al. (2016), for an introduction to the theory of stochastic orders).

Given a random vector or a random variable W , its distribution function will be denoted by F W . When W is a random 
variable, the symbol F −1

W will stand for the quantile function of W , that is, F −1
W : [0, 1) → R, with F −1

W (u) = inf {x ∈ R :
F W (x) ≥ u} for all u ∈ [0, 1). Note that F −1

W (0) = −∞. By agreement we define F W (−∞) = 0.
Let (�, F , P ) be a probability space. Let W : � → Rn be a random vector or a random variable. As usual, σ(W ) will 

stand for the σ -algebra generated by W on �. If D and E are σ -algebras on �, σ(D, E) will denote the σ -algebra generated 
by D ∪ E . Moreover, σ(W , D) will represent the σ -algebra generated by σ(W ) and D, that is, σ(σ (W ), D).

Let A ∈ F , we will denote by P (A | W ) the conditional probability of A given W , that is, P (A | W ) : � → R, σ(W )-
measurable, with

P (A ∩ C) =
∫
C

P (A | W )(ω)dP

for all C ∈ σ(W ).
For each w ∈Rn , P (A | W = w) will denote the conditional probability of A given that W = w . That is, P (A | W = ·) is 

any Borel measurable mapping from Rn to R, with

P (A ∩ W −1(B)) =
∫
B

P (A | W = w)dP W

for all Borel sets B ⊂Rn .
When D is a sub-σ -algebra of F , E(W |D) will represent the conditional expectation of W given D. That is, E(W |D) :

� →R, D-measurable, with∫
C

E(W | D)(ω)dP =
∫
C

W (ω)dP

for all C ∈D (see, for instance, Ash (1972) or Billingsley (1995) for the above concepts).
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The Bernoulli distribution with parameter q ∈ (0, 1) will denote by B(q). The uniform distribution on the interval (0, 1)

will be indicated by U (0,1) .
The symbol ∼st will mean the equality in distribution.
The following results appear in López-Díaz et al. (2019) (see Propositions 3.5 and 3.6 in such a reference). They will 

be applied in subsequent developments. Recall that for a random variable W and p ∈ (0, 1], pW stands for the real value 
which satisfies that 1 − pW = F W (F −1

W (1 − p)), that is, 1 − pW is the first value greater or equal to 1 − p which belongs to 
Im(F W ).

Proposition 3.1. Let W be a random variable and p ∈ (0, 1). It holds that P (F W (W ) > 1 − pW ) = pW .

Proposition 3.2. Let W be a random variable and p ∈ (0, 1]. It holds that p = pW when P (F W (W ) = 1 − pW ) = 0.

4. On optimal classifiers in the alternative accumulated improvement curve criterion

In this section, we obtain optimal classifiers in the alternative accumulated improvement curve criterion to predict a 
target T when the set of classifiers is {H(X1, . . . , Xn) | H : Rn → R is Borel measurable}, where X1, . . . , Xn stand for the 
observable random variables of the individuals.

In order to reach a solution to our problem, we introduce the concept of extended modelling vector.

Definition 4.1. A random vector X = (C X , T X , Z X ) is said to be an extended modelling vector, if (C X , T X ) is a modelling 
vector, Z X ∼st U (0, 1), and Z X and (C X , T X ) are independent.

Roughly speaking, the random variable Z X will be the tool to select individuals of the group in which (FC X (C X ) =
1 − pC X ) when p �= pC X , as we will check subsequently.

Let us define the alternative accumulated improvement curve of an extended modelling vector X = (C X , T X , Z X ). As we 
will see, that will coincide with the alternative accumulated improvement curve of the modelling vector (C X , T X ) (for ease 
of reading, and without ambiguity, we use the same name for both mappings).

Definition 4.2. Let X = (C X , T X , Z X ) be an extended modelling vector. Let ˜̃M X : (0, 1] →R be the mapping given by

˜̃M X (p) = 1

p

(
P (T X = 1, FC X (C X ) > 1 − pC X )

+ P (T X = 1, FC X (C X ) = 1 − pC X , Z X > k)
)
,

where k = 1 − p−pC X

P (FC X (C X )=1−pC X )
if P (FC X (C X ) = 1 − pC X ) �= 0, otherwise k = 1. The mapping ˜̃M X is said to be the alternative 

accumulated improvement curve of the extended modelling vector X .

Proposition 4.3. Let X = (C X , T X , Z X ) be an extended modelling vector. Then ˜̃M X is equal to M̃ X , that is, ˜̃M X is equal to the alterna-
tive accumulated improvement curve of the modelling vector (C X , T X ).

Proof. Let us see that ˜̃M X (p) = M̃ X (p) for all p ∈ (0, 1]. If p ∈ (0, 1] satisfies that P (FC X (C X ) = 1 − pC X ) = 0, by Proposi-
tion 3.2 p = pC X , and using Proposition 3.1, we obtain that

˜̃M X (p) = 1

p

(
P (T X = 1, FC X (C X ) > 1 − pC X )

)
= 1

p

(
pC X P (T X = 1 | FC X (C X ) > 1 − pC X )

)
= M̃ X (p).

If p ∈ (0, 1] satisfies that P (FC X (C X ) = 1 − pC X ) > 0, note that

P (T X = 1, FC X (C X ) = 1 − pC X , Z X > k)

= P (T X = 1, FC X (C X ) = 1 − pC X )P (Z X > k)

= P (T X = 1, FC X (C X ) = 1 − pC X )
p − pC X

P (FC X (C X ) = 1 − pC X )

= P (T X = 1 | FC X (C X ) = 1 − pC X )(p − pC X ).

On the other hand, by Proposition 3.1, we obtain that
4
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P (T X = 1, FC X (C X ) > 1 − pC X ) = P (T X = 1 | FC X (C X ) > 1 − pC X )pC X ,

which proves the result. �
Thus, we can extend the definition of the alternative accumulated improvement curve stochastic order to extended 

modelling vectors as follows.

Definition 4.4. Let X = (C X , T X , Z X ) and Y = (CY , TY , ZY ) be extended modelling vectors. It will be said that X is less than 
Y in the alternative accumulated improvement curve stochastic order, if ˜̃M X (p) ≤ ˜̃MY (p) for all p ∈ (0, 1]. It will be denoted 
by X �˜̃M Y .

Observe that X �˜̃M Y when (C X , T X ) �M̃ (CY , TY ).
From now on, X ∼˜̃M Y will mean that X �˜̃M Y and Y �˜̃M X hold simultaneously.
The proof of the following result appears tacitly in pages 465-466 of López-Díaz et al. (2019), and so, its proof is omitted.

Proposition 4.5. Let X = (C X , T X , Z X ) be an extended modelling vector. For all p ∈ (0, 1], it holds that ˜̃M X (p) = P (T X = 1 | Ap
X ), 

where

Ap
X = {FC X (C X ) > 1 − pC X } ∪ {FC X (C X ) = 1 − pC X , Z X > k}

and k = 1 − p−pC X

P (FC X (C X )=1−pC X )
if P (FC X (C X ) = 1 − pC X ) �= 0, otherwise k = 1.

The following theorems solve the main issue of this manuscript, that is, the search of optimal classifiers to predict a 
target. To clarify the optimality criterion, the corresponding stochastic orders will be specified in the statements of the 
results.

Theorem 4.6. Let (X1, X2, . . . , Xn, T , Z) be a random vector with T ∼st B(q), Z ∼st U (0,1) , and (X1, X2, . . . , Xn, T ) and Z indepen-
dent. Let X = (X1, X2, . . . , Xn) and ψX = P (T = 1 | X1, X2, . . . , Xn). Then, (ψX, T , Z) is an optimal extended modelling vector in 
the order �˜̃M , when the set of classifiers is {H(X1, X2, . . . , Xn) | H :Rn →R is Borel measurable}.

Proof. Let (�, F , P ) be the probability space in which the random vector (X1, X2, . . . , Xn, T , Z) is defined. Let ψX = P (T =
1 | X1, X2, . . . , Xn), that is, ψX : � →R, measurable with respect to σ(X1, X2, . . . , Xn), which satisfies that

P (T = 1 ∩ C) =
∫
C

ψX(ω)dP

for all C ∈ σ(X1, X2, . . . , Xn).
In the same way, there exists ψ̃X,Z : � →R, measurable with respect to σ(X1, X2, . . . , Xn, Z), with

P (T = 1 ∩ C) =
∫
C

ψ̃X,Z (ω)dP

for all C ∈ σ(X1, X2, . . . , Xn, Z), i.e., ψ̃X,Z = P (T = 1 | X1, X2, . . . , Xn, Z).
Let A be the event T = 1. It holds that

E(I A | σ(X)) = ψX a.s. [P ]
since for all B ∈ σ(X),∫

B

E(I A | σ(X))dP =
∫
B

I A dP = P (A ∩ B) = P (T = 1 ∩ B) =
∫
B

ψX(ω)dP .

Similarly,

E(I A | σ(X, Z)) = ψ̃X,Z a.s. [P ].
Let D = σ(X) and E = σ(Z). Observe that E is independent of σ(D, I A). Thus,

E(I A | σ(D,E)) = E(I A | D) a.s. [P ].

5
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On the other hand, σ(D, E) = σ(X, Z), and so

E(I A | σ(D,E)) = E(I A | σ(X, Z)) a.s. [P ].
Therefore,

ψX = ψ̃X,Z a.s. [P ].
Now, let Ỹ = (ψ̃X,Z , T , Z) and X̃ = (H(X), T , Z) be extended modelling vectors, where H : Rn → R is a Borel measur-

able mapping.
To prove the theorem, we should see that ˜̃M X̃ (p) ≤ ˜̃MỸ (p) for all p ∈ (0, 1]. Proposition 4.5 says that ˜̃M X̃ (p) = P (T = 1 |

Ap

X̃
) and ˜̃MỸ (p) = P (T = 1 | Ap

Ỹ
) for all p ∈ (0, 1]. By Propositions 3.1 and 3.2, it is immediately seen that P (Ap

X̃
) = P (Ap

Ỹ
) =

p. Then, we have that ˜̃M X̃ (p) ≤ ˜̃MỸ (p) if and only if P (T = 1 ∩ Ap

X̃
) ≤ P (T = 1 ∩ Ap

Ỹ
).

Observe that Ap

X̃
and Ap

Ỹ
belong to σ(X1, X2, . . . , Xn, Z). Therefore,

P (T = 1 ∩ Ap

X̃
) =

∫
A p

X̃

ψ̃X,Z (ω)dP and P (T = 1 ∩ Ap

Ỹ
) =

∫
A p

Ỹ

ψ̃X,Z (ω)dP .

Write the above integrals as

P (T = 1 ∩ Ap

X̃
) =

∫
A p

X̃
∩A p

Ỹ

ψ̃X,Z (ω)dP +
∫

A p
X̃
∩A p

Ỹ

ψ̃X,Z (ω)dP and

P (T = 1 ∩ Ap

Ỹ
) =

∫
A p

Ỹ
∩A p

X̃

ψ̃X,Z (ω)dP +
∫

A p
Ỹ
∩A p

X̃

ψ̃X,Z (ω)dP .

As a consequence, the result will be proved if we see that∫
A p

X̃
∩A p

Ỹ

ψ̃X,Z (ω)dP ≤
∫

A p
Ỹ
∩A p

X̃

ψ̃X,Z (ω)dP .

Since P (Ap

X̃
) = P (Ap

Ỹ
) = p, we have that P (Ap

X̃
∩ Ap

Ỹ
) = P (Ap

X̃
∩ Ap

Ỹ
), let us denote such a value by p′ .

In accordance with the definition of Ap

X̃
and Ap

Ỹ
, we have that

∫
A p

X̃
∩A p

Ỹ

ψ̃X,Z (ω)dP ≤ p′ F −1
ψ̃X,Z

(1 − pψ̃X,Z ) =
∫

A p
Ỹ
∩A p

X̃

F −1
ψ̃X,Z

(1 − pψ̃X,Z )dP ≤
∫

A p
Ỹ
∩A p

X̃

ψ̃X,Z (ω)dP .

Note that the first inequality is because the first integral is over a subset of A p

Ỹ
in which Fψ̃X,Z

(ψ̃X,Z ) ≤ 1 − pψ̃X,Z , and so, 

ψ̃X,Z ≤ F −1
ψ̃X,Z

(1 − pψ̃X,Z ) a.s. [P ] since 1 − pψ̃X,Z ∈ Im(Fψ̃X,Z
). The second inequality of the formula is due to the fact that 

the second integral is over a subset of Ap

Ỹ
, and so Fψ̃X,Z

(ψ̃X,Z ) ≥ 1 − pψ̃X,Z , equivalently, F −1
ψ̃X,Z

(1 − pψ̃X,Z ) ≤ ψ̃X,Z (see, for 
instance, Propositions 1 and 3 in Shorack and Wellner (1986)).

Thus, ˜̃M X̃ (p) ≤ ˜̃MỸ (p) for all p ∈ (0, 1]. Therefore, (ψ̃X,Z , T , Z) is an optimal extended modelling vector in the order 
�˜̃M , when we consider classifiers in the set {H(X1, X2, . . . , Xn) | H : Rn → R Borel measurable}. Since ψ̃X,Z = ψX a.s. [P ], 
(ψX, T , Z) is optimal in the order �˜̃M . �

The above theorem permits to obtain optimal classifiers for the criterion given by the relation �M̃ .

Theorem 4.7. Let (X1, X2, . . . , Xn, T ) be a random vector with T ∼st B(q). Let X = (X1, X2, . . . , Xn) and ψX = P (T = 1 |
X1, X2, . . . , Xn). Then, (ψX, T ) is an optimal modelling vector in the order �M̃ , when the set of classifiers is {H(X1, X2, . . . , Xn) |
H :Rn →R is Borel measurable}.

Proof. It follows from Theorem 4.6 and Proposition 4.3. �

6
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Observe that Theorem 4.7 implies that there exists a “limit” in the discriminating capacity between classes of any clas-
sifier for some specific input variables X1, X2, . . . , Xn .

Some consequences of the preceding theorems are included now.

Proposition 4.8. Let {(X1, X2, . . . , Xn, T , Zn)}n∈N be a sequence of random vectors where T ∼st B(q), {Zn}n∈N are independent 
variables with distribution U (0,1), and Zn and (X1, X2, . . . , Xn, T ) are independent for any n ∈ N . Let Xn = (X1, X2, . . . , Xn) and 
ψXn = P (T = 1 | X1, X2, . . . , Xn) for each n ∈N . Then, (ψXn , T , Zn) �˜̃M (ψXn+1 , T , Zn+1).

When additional features of the individuals are obtained, the preceding result means that the performance of the new 
optimal classifier is never worse than the performance of the former optimal classifier.

Proposition 4.9. Let {(X1, X2, . . . , Xn, T , Zn)}n∈N be a sequence of random vectors where T ∼st B(q), {Zn}n∈N are independent 
variables with distribution U (0,1), and Zn and (X1, X2, . . . , Xn, T ) are independent for any n ∈ N . Let Xn = (X1, X2, . . . , Xn) and 
ψXn = P (T = 1 | X1, X2, . . . , Xn) for each n ∈N . If Xn+1 is independent of (X1, X2, . . . , Xn, T ), then it holds that (ψXn , T , Zn) ∼˜̃M
(ψXn+1 , T , Zn+1).

Proof. We have that E(I A | σ(X1, X2, . . . , Xn)) = ψXn a.s. [P ] for each n ∈N , where A is the event T = 1. Note that

E(I A | σ(X1, X2, . . . , Xn+1)) = E(I A | σ(σ (X1, X2, . . . , Xn),σ (Xn+1))),

and σ(I A, σ(X1, X2, . . . , Xn)) is independent of σ(Xn+1). Then,

E(I A | σ(X1, X2, . . . , Xn+1)) = E(I A | σ(X1, X2, . . . , Xn)) a.s. [P ],
which implies that ψXn = ψXn+1 a.s. [P ], which leads to the result. �

When a new observable feature is independent of the target and of the other features, Proposition 4.9 ensures that the 
performances of the corresponding optimal classifiers are the same.

Proposition 4.10. Let X = (C X , T X ) be a modelling vector. It holds that (C X , T X ) �M̃ (P (T X = 1 | C X ), T X ).

Consider a random vector (X1, X2, . . . , Xn, T ) with T ∼st B(q). Let X = (X1, X2, . . . , Xn), ψX = P (T = 1 | X1, X2, . . . , Xn)

and G(X) an optimal classifier. We cannot assure that G(X) = ψX a.s. [P ]. Note that (C, T ) ∼M̃ (C + λ, T ) for any λ ∈ R. 
Therefore, (ψX + λ, T ) is also an optimal element.

5. Optimality in the CAP and ROC curves and indexes criteria

In this section, we will prove that the optimal classifier based on the conditional probability ψX has the largest ROC and 
CAP curves and indexes. That is, ψX is also optimal when we compare classifiers by means of the ROC and CAP curves and 
indexes. As a consequence, the ROC and CAP curves and indexes of ψX can be viewed as models of reliable performance, 
when they are compared with the ROC and CAP indexes of other classifiers.

Let (C, T ) be a modelling vector where C can take on only the values 0 and 1. The sensitivity of (C, T ) is the proportion 
of actual positives that are correctly identified, that is, P (C = 1 | T = 1).

Given (C, T ) a modelling vector and k ∈ R, let (Ck, T ) be the modelling vector given by Ck = 1 when C ≥ k, otherwise 
Ck = 0. For each (Ck, T ) with k ∈R, consider its sensitivity, denoted by Sens(k), that is, P (C ≥ k | T = 1). The CAP curve of 
(C, T ) is defined by means of the set of points {(P (C ≥ k), Sens(k)) | k ∈R}. Typically the CAP curve of (C, T ) is considered 
when the classifier C is continuous, and so, the set {P (C ≥ k) | k ∈ R} is the whole interval (0, 1). For classifiers which are 
not continuous, different methods can be found in statistical literature to “fill” the interval (0, 1), most of them based on 
some kind of interpolation. Our procedure to define the CAP curve will be based on the following result and on interpolation.

Proposition 5.1. Let (C, T ) be a modelling vector and let p ∈ (0, 1). If there exists k ∈R such that P (C ≥ k) = p, the value of the CAP 
curve of (C, T ) at p satisfies that (P (C ≥ k), Sens(k)) = (p, ̃M(C,T )(p)

p
q ).

Proof. Let pk = P (C > k). Thus, 1 − pk ∈ Im(FC ), which implies that pk = pC . Moreover, p − pk = P (C = k). Note that the 
events (FC (C) ≥ 1 − pC ) and (C ≥ k) are equal a.s., and the same holds with the events (FC (C) = 1 − pC ) and (C = k). 
Therefore,

M̃(C,T )(p)
p

q
= 1

q
(pC P (T = 1 | FC (C) > 1 − pC ) + (p − pC )P (T = 1 | FC (C) = 1 − pC ))

= 1
P (FC (C) ≥ 1 − pC , T = 1)
q

7
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= 1

q
P (C ≥ k, T = 1)

= P (C ≥ k | T = 1)

= Sens(k).

Thus, (P (C ≥ k), Sens(k)) = (p, ̃M(C,T )(p)
p
q ). �

The above proposition proves that the CAP curve of a continuous classifier C is the set of points {(P (C ≥ k), ̃M(C,T )(P (C ≥
k))

P (C≥k)
q ) | k ∈R} = {(p, ̃M(C,T )(p)

p
q ) | p ∈ (0, 1)}.

Based on this result, we consider the CAP curve of any classifier C as the linear interpolation of the set of points

{(P (C ≥ k), M̃(C,T )(P (C ≥ k))
P (C ≥ k)

q
) | k ∈R} ∪ {(P (C > k), M̃(C,T )(P (C > k))

P (C > k)

q
) | k ∈R}.

Note that this is a natural extension of the CAP curve to the points whose abscissa is P (C > k) for some k ∈ R because 
taking a decreasing sequence {kn}n with limn kn = k, then

lim
n

(P (C ≥ kn), Sens(kn)) = lim
n

(P (C ≥ kn), M̃(C,T )(P (C ≥ kn))
P (C ≥ kn)

q
)

= (P (C > k), M̃(C,T )(P (C > k))
P (C > k)

q
)

since the alternative accumulated improvement curve of any classifier is continuous (see Proposition 4.3 in López-Díaz et 
al. (2019)).

Lemma 5.2. Let X = (C, T ) be a modelling vector. Let SC = {p ∈ (0, 1) | there is not k ∈ R with p = P (C ≥ k) or p = P (C > k) }. If 
p ∈ SC , there are p1, p2 ∈ (0, 1) with p1, p2 /∈ SC such that p1 < p < p2 and for all p′ ∈ (p1, p2), it holds that p′ ∈ SC . Namely, 
p1 = pC and p2 = pC + P (FC (C) = 1 − pC ).

Proof. Let p ∈ SC . Note that p �= 1 − FC (k1) and p �= 1 − FC (k−
2 ) for any k1, k2 ∈ R. Hence, 1 − pC > 1 − p since 1 − p /∈

Im(FC ). Take p1 = pC . On the other hand, let m = P (FC (C) = 1 − pC ). Since p ∈ SC , m > 0. Let p2 = pC + m.
Observe that 1 − pC = FC (F −1

C (1 − p)), and so pC = P (C > F −1
C (1 − p)), thus p1 /∈ SC . Notice that

1 − p2 = 1 − pC − m = P (C ≤ F −1
C (1 − p)) − P (C = F −1

C (1 − pC ))

= P (C < F −1
C (1 − pC )).

Therefore, p2 = P (C ≥ F −1
C (1 − p)), which implies that p2 /∈ SC and 1 − p2 < 1 − p, and so, p < p2.

Let p′ ∈ (p1, p2). Note that p′ C = pC and p′ �= pC + m. This implies that there is not k ∈ R with p′ = P (C ≥ k) or 
p′ = P (C > k), thus, p′ ∈ SC . �
Proposition 5.3. Let X = (C, T ) be a modelling vector. Consider the curve given by the set � = {(p, M̃(C,T )(p)

p
q ) | p ∈ (0, 1)}. Then, 

the CAP curve of X is the set �.

Proof. Let p ∈ (0, 1). If p /∈ SC , the result is clear by the definition of the CAP curve. Let p ∈ SC . Let us see that M̃(C,T )(p)
p
q is 

the value at p of the linear interpolation constructed with the points (pC , ̃M(C,T )(pC )
pC

q ) and (pC +m, ̃M(C,T )(pC +m)
pC +m

q ), 
where m = P (FC (C) = 1 − pC ). Observe that by Lemma 5.2, pC , pC + m /∈ SC , pc < p < pC + m and for all p′ ∈ (p1, p2), we 
have that p′ ∈ SC .

Note that pC C = pC and (pC + m)C = pC . Thus,

M̃(C,T )(pC )
pC

q
= pC

q
P (T = 1 | FC (C) > 1 − pC ) and

M̃(C,T )(pC + m)
pC + m

q
= 1

q
(pC P (T = 1 | FC (C) > 1 − pC ) + mP (T = 1 | FC (C) = 1 − pC )).

As a consequence,

M̃(C,T )(p)
p

q
= (1 − p − pC

m
)M̃(C,T )(pC )

pC

q
+ p − pC

m
M̃(C,T )(pC + m)

pC + m

q
,

which proves the result. �
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Recall that the CAP index of (C, T ) is defined as the area under the CAP curve.

Proposition 5.4. Let X = (C X , T ) and Y = (CY , T ) be modelling vectors such that X �M̃ Y . Let C A P X (p) and C A P Y (p) stand for 
the CAP curves of X and Y at the point p, respectively. Then,

i) C A P X (p) ≤ C A P Y (p) for all p ∈ (0, 1),
ii) the CAP index of X is lower than or equal to the CAP index of Y .

Proof. In relation to i), Proposition 5.3 ensures that for all p ∈ (0, 1), it holds that C A P X (p) = p
q M̃(C X ,T )(p) and C A P Y (p) =

p
q M̃(CY ,T )(p). The condition X �M̃ Y leads to the conclusion.

Regarding ii), recall that the CAP index of a modelling vector is the area under its CAP curve, and so the result follows 
from i). �

Let (C, T ) be a modelling vector with C taking only the values 0 and 1. The specificity of (C, T ) is defined as the 
proportion of actual negatives that are correctly identified as such, that is, P (C = 0 | T = 0).

Let (C, T ) be a modelling vector, k ∈ R and let (Ck, T ) be the modelling vector given by Ck = 1 when C ≥ k, otherwise 
Ck = 0.

The specificity of (Ck, T ) with k ∈ R, denoted by Spec(k), is P (C < k | T = 0). The ROC curve of the modelling vector 
(C, T ) is defined by means of the set of points {(1 − Spec(k), Sens(k)) | k ∈R}.

Note that 1 − Spec(K ) = P (C≥k)−qSens(k)
1−q = P (C≥k)−P (C≥k)M̃(C,T )(P (C≥k))

1−q . That is, the ROC curve is given by the set of points

{( P (C ≥ k) − P (C ≥ k)M̃(C,T )(P (C ≥ k))

1 − q
, M̃(C,T )(P (C ≥ k))

P (C ≥ k)

q
) | k ∈R}.

By analogy with the procedure considered in the case of the CAP curve, the ROC curve is defined as the linear interpolation 
of the points of the set

{( P (C ≥ k) − P (C ≥ k)M̃(C,T )(P (C ≥ k))

1 − q
, M̃(C,T )(P (C ≥ k))

P (C ≥ k)

q
) | k ∈R}

∪{( P (C > k) − P (C > k)M̃(C,T )(P (C > k))

1 − q
, M̃(C,T )(P (C > k))

P (C > k)

q
) | k ∈R}

The ROC index of (C, T ) is the area under the ROC curve.

Proposition 5.5. Let X = (C, T ) be a modelling vector. Consider the curve given by the set � = {( p−pM̃(C,T )(p)

1−q , M̃(C,T )(p)
p
q ) | p ∈

(0, 1)}. Then, the ROC curve of X is the set �.

Proof. Let p ∈ (0, 1). If p /∈ SC , the result follows from the definition of the ROC curve. Let p ∈ SC . Recall that pC < p <
pC + m with m = P (FC (C) = 1 − pC ), pC , pC + m /∈ SC and for all p′ ∈ (pC , pC + m), we have that p′ ∈ SC (see Lemma 5.2).

Note that

(
pC − pC M̃(C,T )(pC )

1 − q
, M̃(C,T )(pC )

pC

q
)

is the point which is assigned to pC by the ROC curve, and

(
pC + m − (pC + m)M̃(C,T )(pC + m)

1 − q
, M̃(C,T )(pC + m)

pC + m

q
)

is the point which is assigned to pC + m by such a curve.
Then, it is not hard to see that

(
p − pM̃(C,T )(p)

1 − q
, M̃(C,T )(p)

p

q
)

is the point which corresponds to p by linear interpolation, which proves the result. �
Proposition 5.6. Let X = (C X , T ) and Y = (CY , T ) be modelling vectors such that X �M̃ Y . Let R O C X (x) and R O CY (x) stand for 
the ROC curves of X and Y at the point x, respectively. Then,
9
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i) R O C X (x) ≤ R O CY (x) for all x ∈ (0, 1),
ii) the ROC index of X is lower than or equal to the ROC index of Y .

Proof. The relation X �M̃ Y means that M̃ X (p) ≤ M̃Y (p) for all p ∈ (0, 1). As a consequence,

p − pM̃ X (p)

1 − q
≥ p − pM̃Y (p)

1 − q
and M̃ X (p)

p

q
≤ M̃Y (p)

p

q

for all p ∈ (0, 1). Since ROC curves are increasing, we immediately derive statement i) and thus ii). �
The following result solves the aim of this section.

Theorem 5.7. Let (X1, X2, . . . , Xn, T ) be a random vector with T ∼st B(q). Let X = (X1, X2, . . . , Xn) and ψX = P (T = 1 |
X1, X2, . . . , Xn). Then, (ψX, T ) has the largest ROC and CAP curves and indexes, when the set of classifiers is {H(X1, X2, . . . , Xn) | H :
Rn →R is Borel measurable}.

Proof. The result follows from Theorem 4.7, Proposition 5.4 and Proposition 5.6. �
6. An application to the identification of clients of a bank which will make a transaction

This section approaches the comparison of the performance of some classifiers for the identification of clients of a 
bank which will make a transaction in the future. The procedure based on the optimal classifier given by the conditional 
probability shows the best behaviour among those classifiers.

Our study analyses the problem posed by Santander Bank in the web page https://www.kaggle .com /c /santander-
customer-transaction -prediction entitled Santander Customer Transaction Prediction.

The description of the problem is as follows (taken from such a page) “At Santander our mission is to help people and 
businesses prosper. We are always looking for ways to help our customers understand their financial health and identify which products 
and services might help them achieve their monetary goals. Our data science team is continually challenging our machine learning 
algorithms, working with the global data science community to make sure we can more accurately identify new ways to solve our most 
common challenge, binary classification problems such as: is a customer satisfied? Will a customer buy this product? Can a customer 
pay this loan? In this challenge, we invite Kagglers to help us identify which customers will make a specific transaction in the future, 
irrespective of the amount of money transacted. The data provided for this competition has the same structure as the real data we have 
available to solve this problem.”

The challenge proposed by Santander Bank tries to estimate the target variable T = “the client will make a transaction 
in the future”.

For that analysis, Santander Bank makes available the database train.csv (https://www.kaggle .com /c /santander-customer-
transaction -prediction /data). This database contains 200 input variables (from Var_0 to Var_199) of 200.000 clients, as well 
as the value of the target variable of each client.

To approach the problem, we have generated 18 random samples of clients in the database train.csv, each of them with 
100.000 observations, generating 1.800.000 observation in total.

Those observations are divided at random into two groups, a training group containing 1.500.000 observations, and a 
testing group with 300.000 individuals. The training group is used for the construction of the classifiers, whereas the testing 
group is used for the comparison of the performance of the classifiers.

For the development of the different classifiers, and because of its high computational cost, we have considered four 
input variables, those with the largest predictability measured by the accuracy rates provided by Santander Bank. Namely, 
those variables are Var_6, Var_12, Var_81 and Var_139. Among them, Var_81 was taken for the design of all the classifiers 
since it has the largest predictability.

The classifiers Ci are constructed taking three of the above variables, as

Ci = Hi(V ar_a, V ar_b, V ar_c),

where a, b, c ∈ {6, 12, 81, 139} are different values and Hi is developed using different techniques, namely, by means of 
logistic regression, decision trees and conditional probabilities. We have considered the following classifiers:

Classifier C1: constructed by means of logistic regression with the variables V ar_12, V ar_81 and V ar_139 and stepwise 
selection method,

Classifier C2: constructed by means of logistic regression with the variables V ar_6, V ar_81 and V ar_139 and stepwise 
selection method,

Classifier C3: constructed by means of logistic regression with the variables V ar_6, V ar_12 and V ar_81 and stepwise 
selection method,

Classifier C4: developed with a decision tree with the variables V ar_12, V ar_81 and V ar_139, 2 branches per division, 
maximum depth of 6,
10
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Fig. 1. Sample alternative accumulated improvement curves of the classifiers. Depicted by means of interpolation with 20 points (p) of the interval (0, 1), 
from 0.05 to 1 with a step of 0.05. Horizontal axis for the values of p, vertical axis for the values of the sample counterpart of M̃(Ci,T )(p), 1 ≤ i ≤ 7. (For 
interpretation of the colours in the figure, the reader is referred to the web version of this article.)

Classifier C5: developed with a decision tree with the variables V ar_6, V ar_81 and V ar_139, 2 branches per division, 
maximum depth of 6,

Classifier C6: developed with a decision tree with the variables V ar_6, V ar_12 and V ar_81, 2 branches per division, 
maximum depth of 6,

Classifier C7: based on the conditional probability of the target given the three variables with the largest predictability, 
specifically, V ar_12, V ar_81 and V ar_139. For the development of this classifier, a mesh technique was used. The training 
group was divided by means of the deciles of the three variables (initially, 103 groups). Those groups whose sizes were less 
than 100 were joined to groups with at least 100 customers and with the nearest standard centroids. The classifier was 
calculated with the proportion of the event T = 1.

Propositions 4.3 and 4.5 say that given an extended modelling vector X = (C, T , Z), we have that M̃(C,T )(p) = P (T =
1 | Ap) for all p ∈ (0, 1], where Ap = {FC (C) > 1 − pC } ∪ {FC (C) = 1 − pC , Z > k} and k = 1 − p−pC

P (FC (C)=1−pC )
if P (FC (C) =

1 − pC ) �= 0, otherwise k = 1.
On one hand, this result says that M̃(C,T )(p) is a population proportion, namely, P (T = 1 | Ap) with T a Bernoulli random 

variable. On the other hand, it permits to calculate the sample version of M̃(C,T )(p) as the proportion of ones of the variable 
target T in the sample counterpart of Ap .

The sample version of the set Ap is given by those individuals in which the value of the classifier at the empirical 
distribution function of C is greater than one minus the sample version of pC (this corresponds to {FC (C) > 1 − pC } in the 
definition of Ap ). For those individuals in which the equality holds (that corresponds to {FC (C) = 1 − pC }), they are included 
or not in the sample version of Ap using the value of the random variable Z . Namely, they are included if Z is greater than 
the sample value of k.

That allows the inferential comparison of M̃(Ci ,T )(p) and M̃(C j ,T )(p) for any two classifiers Ci and C j and any value 
p ∈ (0, 1], since that inferential procedure is reduced to a simple comparison of two proportions.

The graphical representation of the sample alternative accumulated improvement curves appears in Fig. 1. The whole 
testing group was taken for that representation. The graphic is depicted by means of interpolation with the sample values 
of the alternative accumulated improvement curves at the values of p from 0.05 to 1, with a step of 0.05 (20 points).

Such a representation suggests that classifier C7 could be better than the remaining classifiers to predict customers 
which will make a transaction, since the corresponding curve (in red colour) seems to be greater than the curves of the 
other classifiers.

For the comparison of any two classifiers Ci and C j , we will study

i) if Ci and C j are equally efficient to estimate clients which will make a transaction, equivalently, (Ci , T ) ∼M̃ (C j, T ), that 
is, M̃(Ci ,T ) = M̃(C j ,T ) ,

ii) if Ci is more efficient than C j to predict clients which will make a transaction, which is the same as (C j, T ) �M̃ (Ci, T ), 
or M̃(C j ,T ) ≤ M̃(Ci ,T ) (in the event of rejection of the same efficiency).

To compare any two classifiers Ci and C j , the testing group was divided at random one hundred times into two groups 
of size 150.000. Each part was assigned at random to one classifier. This procedure tries to avoid the possible influence of a 
particular division in the conclusions.
11
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Table 1
For each row (Ci ) and each column (C j ), the median p-
value×20 (Bonferroni correction) for the null hypothesis H0 :
M̃(C j ,T ) = M̃(Ci ,T ) is displayed.

C1 C2 C3 C4 C5 C6 C7

C1 – 1.00 1.00 0.00 0.00 0.00 0.00
C2 1.00 – 1.00 0.00 0.00 0.00 0.00
C3 1.00 1.00 – 0.00 0.00 0.00 0.00
C4 0.00 0.00 0.00 – 1.00 0.00 0.00
C5 0.00 0.00 0.00 1.00 – 0.00 0.00
C6 0.00 0.00 0.00 0.00 0.00 – 0.00
C7 0.00 0.00 0.00 0.00 0.00 0.00 –

Table 2
For each row (Ci ) and each column (C j ), the median p-
value×20 (Bonferroni correction) for the null hypothesis H0 :
M̃(C j ,T ) ≤ M̃(Ci ,T ) is displayed.

C1 C2 C3 C4 C5 C6 C7

C1 – 1.00 1.00 1.00 1.00 1.00 0.00
C2 1.00 – 1.00 1.00 1.00 1.00 0.00
C3 0.76 0.99 – 0.22 0.96 1.00 0.00
C4 0.00 0.00 0.00 – 1.00 1.00 0.00
C5 0.00 0.00 0.00 1.00 – 1.00 0.00
C6 0.00 0.00 0.00 0.00 0.00 – 0.00
C7 1.00 1.00 1.00 1.00 1.00 1.00 –

For each division of the testing group, the sample alternative accumulated improvement curve of each classifier was 
calculated in a mesh of twenty points (20 values of p), from 0.05 to 1 with a step of 0.05, using the corresponding part 
of the division. For each classifier C and each of the values of p, the sample alternative accumulated improvement curve 
was obtained using the extended modelling vector, by means of the percentage of clients which made a transaction in the 
corresponding subgroup.

Regarding the same efficiency problem, we considered tests for the equality of the alternative accumulated improvement 
curves of both classifiers at the corresponding 20 values of p. The null hypothesis of those tests is H0 : M̃(Ci ,T )(p) =
M̃(C j ,T )(p). Note that this is a test for the equality of two independent proportions.

We obtained 20 p-values associated with the 20 values of p. As a representative p-value of the hypothesis M̃(Ci ,T ) =
M̃(C j ,T ) , we took the smallest one among the 20 p-values, that is, the p-value showing more evidence that the relation 
M̃(Ci ,T ) = M̃(C j ,T ) is false. A Bonferroni correction to reduce the chances of obtaining false positive results was considered. 
Taking the usual level of significance α = 0.05, p-values should be compared with 0.05/20.

Since this procedure was repeated 100 hundred times (100 divisions of the testing group for any pair of classifiers), 100
p-values for the null hypothesis H0 : M̃(Ci ,T ) = M̃(C j ,T ) were obtained. We took as a summarised p-value, the median of 
those values because of the robustness of that measure.

Table 1 shows the inferential conclusions. For ease of reading, it contains summarised p-values multiplied by 20 (to 
be compared with 0.05 because of Bonferroni correction). For each row (Ci ) and each column (C j), the table displays the 
summarised p-value×20 for the null hypothesis H0 : M̃(C j ,T ) = M̃(Ci ,T ) .

We conclude that classifiers C1, C2 and C3 are equally efficient to predict clients which will make a transaction in the 
future. The same happens with classifiers C4 and C5. Note that the classifier based on the conditional probability (C7) shows 
a performance different from any other classifiers, that also occurs with classifier C6.

In relation to the more efficient classifier question, that is, the tests with null hypothesis H0 : M̃(C j ,T ) ≤ M̃(Ci ,T ) , we 
followed the same steps. In this case, we used a test for the comparison ≤ of two independent proportions at each value of 
p.

Table 2 contains the results. For each row (Ci ) and each column (C j), we have the summarised p-value multiplied by 20 
(to be compared with 0.05 because of Bonferroni correction) for the null hypothesis H0 : M̃(C j ,T ) ≤ M̃(Ci ,T ) .
The conclusions on the performance of the classifiers can be summarised as follows

(C6, T ) �M̃ (C5, T ) ∼M̃ (C4, T ) �M̃ (C3, T )

∼M̃ (C2, T ) ∼M̃ (C1, T ) �M̃ (C7, T ).

That corroborates the theoretical conclusions of the manuscript on the optimal classifier based on the conditional probabil-
ity. The performance of such a classifier is better than the performance of any other classifiers to predict clients which will 
make a transaction in the future. Moreover, by the results in Section 5, we conclude that classifier C7 has the largest ROC 
and CAP curves and indexes among the set of classifiers considered.
12
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In this application, it has been seen how the optimal classifier improves the ability to distinguish between classes of the 
remaining classifiers. Fig. 1 provides a visual idea in terms of the area under the sample alternative accumulated improve-
ment curve of a classifier, of its “distance” to the optimal classifier. This can serve to analyse if a classifier is far away from 
the optimal one, and so, there is room for improvement with the current input variables. If the classifier is close to the 
optimal, new input variables should be added to the model to achieve better results.

7. Conclusions

Binary classification is a relevant problem in multiple applied fields like medical diagnosis, biological classification, design 
of marketing strategies, credit scoring, insurance, commercial banking, etc. The comparison of the performance of classifiers 
is crucial since it permits the identification of appropriate classifiers, and so reaching more reliable results in the classifica-
tion of individuals. Common methods for the comparison of classifiers are based on the comparison of a single global value 
for each of them. That entails a noteworthy loss of information. The alternative accumulated improvement curve stochastic 
order aims to compare classifiers. That criterion has important advantages with respect to traditional systems. Significant 
probabilistic information of classifiers and targets is used for the rating instead of a unique summarised value. Moreover, 
the modification of the sizes of the groups of the population where classifiers are applied, does not entail the change of the 
suitable classifier. The manuscript provides solution to a relevant problem in statistical classification theory. An explicit op-
timal classifier for the above comparison criterion is obtained when classifiers are constructed by means of a set of random 
variables. Moreover, we have proved that such an optimal classifier has the largest ROC and CAP curves and indexes among 
the above set of classifiers, that is, it is also optimal for the criteria based on the comparison of such curves and indexes. It 
is interesting to note that the results of the manuscript do not require classifiers or random variables to be continuous or 
discrete since they may have any kind of distribution. An estimation of clients of a bank which will make a transaction in 
the future is developed. The estimation given by the optimal classifier shows the best performance among the considered 
classifiers.
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