Expert Systems With Applications 215 (2023) 119398

Contents lists available at ScienceDirect Eipert

Systems
wi
Applications &%

An International
Journal

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Check for

Analyzing syntactic constructs of Java programs with machine learning o

Francisco Ortin »**, Guillermo Facundo ?, Miguel Garcia ?

a University of Oviedo, Computer Science Department, c/Federico Garcia Lorca 18, 33007, Oviedo, Spain
Y Munster Technological University, Computer Science Department, Rossa Avenue, Bishopstown, Cork, Ireland

ARTICLE INFO ABSTRACT

Keywords: The massive number of open-source projects in public repositories has notably increased in the last years. Such
Abstract syntax tree repositories represent valuable information to be mined for different purposes, such as documenting recurrent
Programming language syntactic constructs, analyzing the particular constructs used by experts and beginners, using them to teach
Data mining

programming and to detect bad programming practices, and building programming tools such as decompilers,
Integrated Development Environments or Intelligent Tutoring Systems. An inherent problem of source code is
that its syntactic information is represented with tree structures, while traditional machine learning algorithms
use n-dimensional datasets. Therefore, we present a feature engineering process to translate tree structures into
homogeneous and heterogeneous n-dimensional datasets to be mined. Then, we run different interpretable
(supervised and unsupervised) machine learning algorithms to mine the syntactic information of more than 17
million syntactic constructs in Java code. The results reveal interesting information such as the Java constructs
that are barely (and widely) used (e.g., bitwise operators, union types and static blocks), different language
features and patterns mostly (and barely) used by beginners (and experts), the discovery of particular types
of source code (e.g., helper or utility classes, data transfer objects and too complex abstractions), and how
complexity is an inherent characteristic in some clusters of syntactic constructs.

Feature engineering
Programming idiom
Heterogeneous dataset

1. Introduction most language processors use to represent the syntactic information
of the input program, once parsing has taken place (Andrew & Jens,
In the last decade, there has been an important growth in the use of 2002). Each AST node represents a syntactic construct in an input pro-
source code repositories, such as GitHub, SourceForge, BitBucket and gram, such as method definition, field definition, assignment statement
CodePlex (Ortin, Escalada, & Rodriguez-Prieto, 2016). Taking GitHub or arithmetic expression.
as an example, it reached 1 million repositories in July 2010, 2.4 years ASTs represent syntactic information besides the textual data pro-
after its foundation in February 2008 (GitHub, 2022b). Today, GitHub vided in the source code. State-of-the-art machine learning techniques,
hosts more than 200 million repositories and 83 million develop- such as Graph Neural Networks (GNNs), are able to learn not only
ers (GitHub, 2022c). The vast amount of open-source code projects from node features, but also from the structure of ASTs (syntactic

available in such repositories represent important information to learn
from. In fact, different open-source corpora have been utilized to
improve software development scenarios, such as language transla-
tion (Aggarwal, Salameh, & Hindle, 2015), error correction (Bhatia &
Singh, 2016), and automatic code documentation (Barone & Sennrich,
2017), completion (Bhoopchand, Rocktaschel, Barr, & Riedel, 2016)
and generation (GitHub, 2022a).

In textual programming languages, programs are collections of
source code files—together with additional resources—coded as text.
That textual information actually encloses syntactic and semantic infor-
mation that compilers and interpreters, after different analysis phases,
represent internally as trees and graphs (Rodriguez-Prieto, Mycroft, &
Ortin, 2020). Abstract Syntax Trees (ASTs) are tree data structures that

information) and graphs (semantic information) (Allamanis, 2022).
Such capability has been exploited to implement advanced software
development tools, including the detection of bugs not captured by
common program analyzers (Pradel & Sen, 2018), probabilistic type
inference (Allamanis, Barr, Ducousso, & Gao, 2020), and semantic code
search (Arakelyan, et al., 2022).

Although GNNs represent a powerful mechanism to build predictive
models from graph and tree data structures, the trained models act
as black boxes to classify programs, and hence such models are not
straightforwardly interpretable by humans (Allamanis, 2022). On the
contrary, interpretable machine learning algorithms could be used
to extract information from syntactic constructs. Such information

* Corresponding author at: University of Oviedo, Computer Science Department, c/Federico Garcia Lorca 18, 33007, Oviedo, Spain.
E-mail addresses: ortin@uniovi.es (F. Ortin), facundoguillermo@uniovi.es (G. Facundo), garciarmiguel@uniovi.es (M. Garcia).
URL: https://www.reflection.uniovi.es/ortin/ (F. Ortin).

https://doi.org/10.1016/j.eswa.2022.119398

Received 25 June 2022; Received in revised form 17 October 2022; Accepted 1 December 2022

Available online 5 December 2022

0957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:ortin@uniovi.es
mailto:facundoguillermo@uniovi.es
mailto:garciarmiguel@uniovi.es
https://www.reflection.uniovi.es/ortin/
https://doi.org/10.1016/j.eswa.2022.119398
https://doi.org/10.1016/j.eswa.2022.119398
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119398&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Ortin et al.

could be useful for different scenarios. For example, it could be doc-
umented the recurrent constructs written by beginners, average and
expert programmers. Programming lecturers can identify the recurrent
programming patterns used by students, including those that are error-
prone, and explain how they could be improved with better alternatives
(e.g., programming patterns used by experts) (Iyer & Zilles, 2021).
Those patterns would also be useful in the construction of decompilers,
Integrated Development Environments (IDEs) and Intelligent Tutoring
Systems (ITSs) (Losada, Facundo, Garcia, & Ortin, 2022).

The source code could also be used to cluster programmers regard-
ing the syntactic constructs that appear in their programs. Such clusters
may be utilized later to improve the programmer’s skills. For example,
an IDE could suggest the programmer syntactic constructs that barely
occur in her cluster, written by more experienced programmers. To-
gether with the syntactic construct suggested a brief explanation of the
benefits would be provided. The syntactic constructs of those clusters
with the highest number of programmers could also be analyzed to
know which potential IDE features may have a stronger impact.

The analysis of syntactic constructs of source code has been pre-
viously tackled (detailed in Section 2). Some of the works retrieve
information by analyzing the grammar rules used to parse a pro-
gram (Qiu, Li, Barr, & Su, 2017), reducing the information that could be
mined from the AST. Nonparametric Bayesian probabilistic substitution
grammars have shown good results to extract programming idioms (Al-
lamanis & Sutton, 2014). Even though such idioms are parameterized
with metavariables, they represent very specific code fragments rather
than general syntactic constructs (Section 2). Association rules have
also been used to mine syntactic information of source code, producing
too many rules with very low support, being hard to understand,
and representing too specific information (Losada et al., 2022). Other
works use AST similarity measures to numerically compare two ASTs,
but they have only shown benefits when applied to small pieces of
code rather than to whole programs (Choudhury, Yin, & Fox, 2016;
Yin, Moghadam, & Fox, 2015). Various approaches build classifiers of
syntactic constructs, but the resulting models lack interpretability (Al-
lamanis, 2022; Baxter, Yahin, Moura, Sant’Anna, & Bier, 1998; Ortin,
Rodriguez-Prieto, Pascual, & Garcia, 2020).

Given the limitations of the existing works to analyze the syntactic
constructs in source code, we present a system with the following
contributions:

— A feature engineering process to translate heterogeneous tree
structures into n-dimensional datasets (Section 3.1). We apply
that feature engineering process to the particular case scenario of
ASTs. ASTs are translated into a collection of homogeneous and
heterogeneous datasets, so that interpretable machine learning
algorithms could be run.

— An open-source implementation of a Java compiler plugin that
implements the proposed feature engineering process (Section 3).
It takes any compilable Java project and stores its ASTs into seven
homogeneous and five heterogeneous datasets.

— An analysis of the syntactic constructs used by Java programmers
(Section 5). We document those syntactic constructs mostly (and
barely) used, the constructs that categorize programmers’ exper-
tise, and the most influential variables in that categorization.

— An analysis and visualization of the similar recurrent syntactic
patterns found in Java code (Sections 5.3 and 5.6). For example,
the k-means clustering algorithm was able to identify a cluster
that represents the helper and utility classes used in Java projects.

The rest of this article is structured as follows. The next section
describes the related work, and Section 3 presents the architecture of
our system. Section 4 details the methodology used, and the results and
discussions are depicted in Section 5. Section 6 presents a discussion
about language dependency. Conclusions and future work are presented
in Sections 7 and 8.

Expert Systems With Applications 215 (2023) 119398
2. Related work

Allamanis and Sutton define a method to automatically extract pro-
gramming idioms from the source code, finding similarities recurring
across Java projects (Allamanis & Sutton, 2014). Their system, called
Hagas, retrieves frequent idioms from source code by using nonpara-
metric Bayesian probabilistic tree substitution grammars. They trained
their model with multiple open-source projects and found common
idioms for object creation, exception handling, and resource manage-
ment. The main difference between Haccis and our system is that
they retrieve idioms rather than abstract syntactic constructs. Idioms
represent code fragments that may hold metavariables. For example,
the most common idiom they found was “channel=connection.
createChannel () ;”, whereas its corresponding syntactic construct
would be an assignment statement that stores in a variable the result of
a method invocation with no parameters. Allamanis and Sutton do not
perform other analyses such as anomalous detection, idiom association
to programming expertise and clustering.

Iyer and Zilles studied 12 first-year programming courses in Com-
puter Science degrees, from 9 distinct universities. They manually
analyzed the syntactic patterns that students must handle to pass all the
exams and assignments (Iyer & Zilles, 2021). According to their work,
15 different patterns are needed to solve all the proposed activities.
Nine of those patterns were taught in 9 of the 12 courses, and 5 of them
were only addressed in 3 courses. That shows that students must be able
to use certain syntactic patterns not taught by lecturers. Unlike Iyer and
Zilles, our system automatically retrieves the syntactic constructs from
Java code, making it easier to analyze massive code bases and perform
more analyses.

Baxter et al. used ASTs to create a tool capable of detecting du-
plicate code fragments (Baxter, et al., 1998). They analyzed the ASTs
of program fragments with more than 400,000 lines of code, finding
that around 12.7% of that code was duplicated. Additionally, their
system uses the duplicated code patterns to suggest modifications to
the programmer, assisting them in the refactoring actions needed to
avoid code duplication. Baxter et al. defined a three-step tree similarity
algorithm to compare ASTs. That algorithm is used as a kernel function
for Support Vector Machine (SVM) classifiers. Although the trained
models could be used to classify programmers by their expertise, SVM
models are hard to interpret.

Dong Qiu et al. presented an empirical analysis of the use of
language constructs in Java (Qiu et al., 2017). They focus their study on
three different approaches relative to grammar rules: popularity, usage
over time and dependency among constructs. After analyzing more than
140 million lines of code from open-source repositories, they found
that 20% of the most-used rules account for 85% of all rule usage.
They also discovered that most of the syntactic constructs remain stable
over time and are not influenced by new language features. They also
concluded that 6% of the syntactic constructs strongly depend on other
constructs (e.g., 1/5 of if statements contain another if statement in
their body). Qiu et al. count the number of times each grammar rule is
applied upon parsing. This limits the kind of information to be mined,
compared to our AST analyses. For example, one conclusion is that
method declarations appear in almost every project. However, their
approach is not able to identify which method features are used the
most—such features include method modifiers (e.g., static, final,
abstract, synchronized, strictfp and native), visibility,
annotations, generics, return types and parameters.

Several works have used machine learning to classify syntactic
patterns. In the work carried out by Ortin et al. models are created
to classify programmers by their experience level (Ortin et al., 2020).
They start from a set of ASTs with the same structure, and manually
translate them into tables that represent the characteristics of the tree
nodes. The tables are used to build decision trees. Classification rules
are then extracted from the decision trees and used as new features to
enrich the existing classifiers. The resulting decision trees are formed

F. Ortin et al.

with a combination of the antecedents of classification rules extracted
from other decision trees. The resulting models are very hard to in-
terpret, because they use classification rules with a huge number of
conditions in the antecedent (features of the trees are, in turn, rule
antecedents). Although they lack interpretability, those models provide
very high accuracy, telling novices from experts with up to 99.6%
accuracy when the source code of the whole project is passed to the
classifier.

Choudhury et al. created AutoStyle, a system to automatically pro-
vide students with instructor-authored guidance for their programming
assignments (Choudhury et al., 2016). First, AutoStyle uses the nor-
malized tree edit distance (n-TED) of the ASTs as the similarity metric
to translate ASTs into numeric values. n-TED is a common measure
of similarity between two code fragments (Yin et al., 2015). Then,
they run the k-means, DBSCAN and OPTICS clustering algorithms to
detect groups of similar constructs. Once the clusters are analyzed, the
instructor writes feedback and guidance reports about each cluster,
and hence avoids the analysis of all the programs submitted by the
students. When a student submits a new program, its cluster is found
and automatic feedback is given. This process has to be repeated for
each programming assignment. In their evaluation, they observed that
70% of the students using AutoStyle were able to finally reach the
optimal solution, compared to the 13% of the students in the control
group. The system was only used to evaluate different implementations
of the same function. n-TED measures the number of modifications
necessary to transform an AST into another one, weighting nodes with
values inverse to their distance to the root. This makes n-TED not to
be able to group significantly different programs with many similar
subASTs—a common way to identify expert and novice programmers.

This paper extends the work in Losada et al. (2022), which used
association rules to extract information from Java source code. Such
rules express the relationships among syntactic constructs, but show the
common drawbacks of association rules (Kaur, 2014): a huge number
of rules are generated, most of them hold obvious information, and all
the features in the dataset must be binary. The rules found showed low
support and hence represent too specific information. The discretization
of numeric features also caused rules harder to understand and with too
many conditions in the antecedents. In the present article, we show how
the classification rules obtained with decision tree learning and rule
induction provide rules with fewer conditions and higher support, being
able to retrieve more valuable information from data. Logistic regres-
sion models provide us with information about the syntactic constructs
used by experts and beginners. The most common syntactic constructs
are analyzed. We also discuss the Java patterns found by a clustering
algorithm and analyze if programming expertise is inherent in some
clusters. Syntactic constructs are also visualized as two-dimensional
data to analyze patterns in different language constructs.

3. Architecture

As shown in Fig. 1, we take Java files from GitHub and Java students
enrolled in two year-1 programming courses of a Software Engineering
degree (Section 4.1). The output of our system is a collection of reports
describing the syntactic information extracted from the programs.

The first module of our system is a modification of the Open JDK
compiler. We developed a new plugin that modifies the ASTs created
by the Java compiler (Oracle, 2022b). This is done by implementing
the Visitor design pattern (Gamma, Helm, Johnson, & Vlissides, 1994)
that, traversing the original AST, creates a new AST with more spe-
cific information. We defined new and more specific AST classes. For
example, the general BinaryTree node for expressions is replaced
with Arithmetic, Logical, Comparison and Bitwise, among
others (Losada et al., 2022). The original 56 AST classes were extended
to 111.

A feature engineering process (detailed in Section 3.1) translates
tree structures (ASTs) into n-dimensional datasets, so that interpretable

Expert Systems With Applications 215 (2023) 119398

Table 1
Features defined for the expressions dataset.

Name Type Description

Category Nominal Syntactic category of the current node (e.g.,
Arithmetic, Comparison and Logical).

1st, 2nd and Nominal Syntactic category of the corresponding child node.

3rd child

Parent node Nominal Syntactic category of the parent node.

Role Nominal Role played by the current node in the structure
of its parent node.

Height Integer Distance (number of edges) from the current node
to the root node in the enclosing type (class,
interface or enumeration).

Depth Integer Maximum distance (number of edges) of the
longest path from the current node to a leaf node.

Expertise Nominal Beginner or Expert.

machine learning algorithms can be executed. For Java, we identified
seven types of homogeneous syntactic constructs: programs (a collec-
tion of Java files), type definitions (classes, interfaces, enumerations
and records), field definitions, method definitions, statements, expres-
sions and types. The Visitor design pattern is used to traverse the
ASTs and store their information in the seven homogeneous datasets
(each type of syntactic construct is stored in a different dataset). Then,
five heterogeneous datasets are generated from the homogeneous ones
(detailed in Section 3.1).

Fig. 1 also shows how the n-dimensional datasets are processed
through different steps to generate the final reports of distinct analyses.
First, the datasets are processed to convert data (e.g., normalization and
discretization) before running each machine learning algorithm. Then,
univariate and multivariate anomalies are detected. Some outliers are
removed from the dataset because they do not represent valid programs
(e.g., incomplete assignments of students). Afterwards, we train the in-
terpretable models with the datasets. The parameters of each model are
finally analyzed to emit the final reports about the different syntactic
constructs used by Java programmers.

3.1. Homogeneous and heterogeneous datasets

As mentioned, our system generates seven homogeneous and five
heterogeneous datasets from ASTs. Each type of syntactic construct is
stored in a homogeneous dataset: programs, type definitions, field def-
initions, method definitions, statements, expressions and types. Models
created with homogeneous datasets provide us with information about
each particular type of syntactic construct.

Table 1 shows the structure of the dataset defined for expressions—
for the sake of clarity, the rest of the datasets are shown in Appendix.
The node category feature is a nominal variable that identifies the
AST node type, which is also used to provide information about the
parent and child nodes. Besides the (integer) height and depth of the
node in the tree, the role (nominal) feature indicates the role played
in the parent node (e.g., an assignment node could be part of either
the condition or the body of a while parent statement). The last feature
indicates whether the programmer is either a beginner (year-1 student)
or an expert programmer.

The homogeneous datasets store information about the same type
of syntactic constructs. However, syntactic patterns comprise different
kinds of syntactic constructs. For example, an assignment statement
consists of its left- and right-hand side expressions; a method definition
is made up of the statements inside its body; and a Java program
is a collection of type definitions. Thus, we also create heteroge-
neous datasets that combine the information of different homogeneous
syntactic constructs. The parameters of the models created with the
heterogeneous datasets allow us to analyze the combination of different
kinds of syntactic constructs.

The heterogeneous datasets are built by applying drill-down opera-
tions to the homogeneous tables, producing the following datasets:

F. Ortin et al.

Expert Systems With Applications 215 (2023) 119398

Java Compiler Plugin

Year-1
Students

— | Open)DK

G}

Code

y = =>
Y B
enrichment
Source

Homogeneous
Dataset
Generation 5 programs
type definitions
5 field definitions
method definitions

statements
T expressions

GitHub

Py

I
=
i]
-

Machine Learning
Algorithms

Anomaly Detection

Analysis Reports

——— types

Heterogeneous
Dataset Generation

Heterogeneous
datasets

Homogeneous

Data Processing datasets

Fig. 1. Architecture of the syntactic constructs reports system.

Table 2
Number of entries (AST nodes) of the homogeneous datasets.
Beginner Expert Total

Expressions 3,939,626 7,296, 366 11,235,992
Statements 1,173,327 1,963,408 3,136,735
Types 628, 100 1,131,536 1,759,636
Method definitions 256,562 369,074 625,636
Field definitions 104,579 135,419 239,998
Type definitions 38,452 58,504 96,956
Programs 4515 136 4651
Total 6,145,161 10,954,443 17,099, 604

1. One entry per type definition, including the features of the
corresponding program.

2. One entry per field definition, including the features of the
program and the type used to define the field.

3. One entry per method definition, adding the features of the
program and the return and parameter types.

4. One entry per statement, including the program and method
features it was defined in, together with the first three child
expressions (when applicable).

5. One entry per expression, including the features of its program,
method and statement.

4. Methodology

This section describes how the different datasets were created.
Afterwards, we detail the machine learning and data processing algo-
rithms used.

4.1. Datasets

To build the datasets, we took Java code from different sources and
labeled it as either beginner or expert. In the case of beginners, the code
was gathered from first-year undergraduate students in the Software
Engineering degree at the University of Oviedo. We took the code they
wrote for the assignments in two programming courses. Overall, we
collected 35,309 Java files from 4515 programs (Table 2).

For expert programmers, we took the source code of different public
open-source Java repositories from GitHub. We selected the active
projects with the highest number of contributors: Chromium, LibreOf-
fice, MySQL, OpenJDK and Amazon Web Services. These projects are
implemented with 43,765 Java files in 136 different programs (AWS
comprises 133 distinct projects).

We passed all these files to the Java compiler plugin we developed
(Fig. 1). Their ASTs are enriched with more specific information, and

traversed to generate the seven homogeneous datasets in Fig. 1. Table 2
summarizes the number of entries in those datasets, holding more than
17 million AST nodes.

4.2. Anomaly detection

Anomaly or outlier detection aims to identify unusual data records
which deviate significantly from the majority of the data. In our case
study, outliers represent anomalous syntactic constructs coded by the
programmers. Anomalous samples provide important information to
analyze, and sometimes reflect, invalid data (e.g., programs that should
not be included in the dataset).

For univariate outlier detection, we used Tukey’s fences that identify
as an outlier those instances that do not belong to the interval described
in Eq. (1), where Q,, represents the n quartile.

[0, -3 %x(03 - 0)),

For multivariate anomaly detection, the isolation forest algorithm
was used (Liu, Ting, & Zhou, 2008) (IsolationForest class in
scikit-learn (SciKit-Learn, 2022d)). Isolation forest identifies outliers by
considering how far a data point (instance) is from the rest of the data.
The contamination hyperparameter specifies the proportion of outliers
in the dataset. We found 1% (0.01) as the contamination value that
identified outliers in our datasets the best.

The previous two approaches for identifying univariate and multi-
variate anomalies are applicable to numeric features. For categorical
values, we distinguish anomalous values when the number of occur-
rences is lower than 0.2% divided by the number of possible values. For
example, the value of a binary feature is considered anomalous when
its value occurs in less than 0.1% of all the instances in the dataset.

Section 5.1 analyzes and discusses the anomalous syntactic con-
structs detected in our dataset. When an outlier represents an invalid
program, it is deleted from the dataset (i.e., it is not included as an
input for the machine learning algorithms).

03 +3%x(Q;-0y)] (€8]

4.3. Most frequent syntactic constructs

After analyzing the anomalous syntactic constructs in Java code, we
studied the most frequent constructs. For that purpose, we performed a
frequency analysis of the different features in the dataset. To compute
the frequency of the numeric features, we undertook an equal-with
discretization (each bin has the same width) with three different bins.
Categorical features were not modified.

After converting all the features to categorical values, the following
analysis was performed:

F. Ortin et al.

Table 3
Number of features and clusters of the 12 datasets.
Dataset Features Clusters
Expressions 8 6
§ Statements 12 6
& Types 7 7
% Method definitions 25 5
g Field definitions 10 5
== Type definitions 24 6
Programs 8 5
Type definitions + programs 29 6
§ Field definitions + programs + types 39 4
% Method definitions + programs + types 81 4
50 Statements + programs + method definition + 112 6
§ types + expressions
2 . . e
o Expressions + programs + method definition + % 6

types + statements

1. Types of AST nodes. For those individuals (syntactic constructs)
that hold the type of its AST node (i.e., the category feature
in Tables 1, A.1, A.2 and A.5), we computed the frequency of
each AST node in the dataset. In this way, we can document the
most (and least) frequent expressions, statements, types and type
definitions.

2. Features of syntactic constructs. We undertook the same analysis
for every single feature of all the homogeneous datasets. With
such an analysis, it is possible to know, for example, the most
frequent field and method modifiers, visibility levels, return
types and field initializations.

3. Combinations of different features. Iterating through all the
combinations of 2, 3 and 4 features, we analyzed the frequency
of all the syntactic constructs made up of those combinations.
In this way, it is possible to know the frequency of public
static final (constant) field definitions, what is the most
common type of array, and whether it is more common to
overload methods or constructors.

4.4. Data visualization

Dimensionality reduction is the transformation of data from a high-
dimensional space into a low-dimensional one, retaining meaningful
properties of the original data. Table 3 shows the number of features
of the 12 datasets used in our study. By applying dimensionality
reduction techniques, the high-dimensional datasets can be embedded
in a low-dimensional space for visualization. In those visualizations,
points represent instances (syntactic constructs in our study) in such a
way that similar instances are modeled by nearby points, and dissimilar
instances are represented by distant ones. By plotting the syntactic
constructs coded by experts and beginners with different colors, it is
possible to visually identify different patterns for both groups.

We used four different algorithms: Principal Component Analy-
sis (PCA) (Jolliffe & Cadima, 2016), NonNegative Matrix Factoriza-
tion (NMF) (Lee & Seung, 2000), t-distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten & Hinton, 2008) and Kernel
PCA (Scholkopf, Smola, & Miiller, 1997) (with radial basis as the kernel
function)—the PCA, NMF, TSNE and KernelPCA classes in scikit-learn
were utilized (SciKit-Learn, 2022a). The first two algorithms are linear
and the two last ones are nonlinear.

The datasets were reduced to two-dimensional data, and the re-
sulting data were visualized to graphically analyze the existence of
different patterns related to the programmer’s expertise. Before running
the algorithms, the categorical features were translated to one-hot
encoding. The numeric features were normalized to values between
0 and 1 with Eq. (2), where vector x represents all the values of the
numeric feature x, and x; the value of the i sample or instance.

normalized _ x; — min(x)

i (2)

x It et
max(x) — min(x)

Expert Systems With Applications 215 (2023) 119398

4.5. Logistic regression

After applying the data transformation and normalization described
in the previous paragraph, we built 12 logistic regression models (one
per dataset) to classify programmers regarding their expertise. The aim
is not only to obtain classifiers, but also to interpret the information
provided by the classifiers to analyze the syntactic constructs used by
programmers (the objective of this article).

Logistic regression is a statistical model that outputs the probability
of one sample being classified as one of two possible groups (Cabrera,
1994). By choosing a cutoff value, the probability can be used to obtain
a binary classifier. The model applies the logistic function to a linear
combination of all the independent variables (features), as depicted
in Eq. (3).

p(y = 1) = logistic(ﬂo + ﬂ]x| + +ﬂnxn) (3)

In Eq. (3), §; are the model parameters to be learned from data, x;
are the independent variables and y is the target or dependent variable.
The p; coefficients can be interpreted as the expected change of having
the outcome per unit change in x; (Peng, Lee, & Ingersoll, 2002). That
is, when g, is greater than zero, larger (or smaller) values of x; are
associated with larger (or smaller) probabilities of y = 1 (positive
classification). Conversely, if §; is lower than zero, larger (or smaller)
values of x; are associated with larger (or smaller) probabilities of y =
0 (Peng et al., 2002). This interpretation of the g; coefficients provides
us with valuable information to interpret which syntactic constructs
positively and negatively influence the expertise of the programmer.

We used L, (Lasso) and L, (Ridge) regularization penalties (Elastic
Net) (Zou & Hastie, 2005) provided by the LogisticRegression
model implemented by scikit-learn (SciKit-Learn, 2022f). A strati-
fied split of the datasets was performed, using 80% for training and
20% for testing. The best hyperparameters are found with exhaustive
parallel search across common parameter values (GridSearchCV),
using stratified randomized 10-fold cross-validation (Stratified-
ShuffleSplit) against the training set.

4.6. Classification rules

We used two different mechanisms to mine classification rules that
provide information about the syntactic constructs. Decision tree clas-
sifiers and rule induction were the two machine learning models built
for that purpose. Categoric features were encoded as one-hot vectors.

Decision tree learning is a supervised learning technique to predict
values from previous observations. Decision trees are used to foresee
one target value from the known features of a given sample. When
the values to predict are discrete, decision trees act as classifiers; for
continuous values, they become regressors.

A good characteristic of decision trees is that they are easy to
understand and interpret. That is why they are useful for both machine
learning and data mining. For example, the decision tree in Fig. 2
classifies type definitions (classes, interfaces, enums or records). When
a type is not defined in the default package, and it has one or more
annotations, then the programmer is classified as expert.

Each path from the root node to a leaf (i.e., a tree branch) represents
a classification rule. For example, the following rule can be obtained
from the decision tree in Fig. 2: default package = False AND number of
annotations > 1 = Expert.

Support and confidence are two widespread metrics to measure the
performance of classification and association rules. Being X = Y a
classification rule with X the antecedent (a list of conjunctions) and Y
one value of the binary target variable to be classified (e.g., beginner
or expert), its support is defined with Eq. (4) and its confidence
with Eq. (5). Support refers to how often a rule appears in the dataset,
while confidence refers to the number of times the rule is fulfilled. Our

F. Ortin et al.

11204

Expert Systems With Applications 215 (2023) 119398

1 Beginner

HEl Expert

-

° &

0.50 1

type defined in the default package

False
7880

number of annotations

<1/ le

¢

Expert
N=7880
Support=66.55%
Confidence=72.38%

Expert
N=3324
Support=25.34%
Confidence=99.21%

True

1693 ﬂ
0

A T
1.11 100

percentage of static methods

< 1.11/ \ >1.11
y \

~®

Beginner
N=1682
Support=12.92%
Confidence=90.9%

Expert
N=128
Support=0.98%
Confidence=85.93%

Fig. 2. Example decision tree (max depth 2) for the type definitions dataset.

previous classification rule has 25.34% support and 99.21% confidence.

number of instances containing X and Y

Support(X = Y) = @

total number of instances

number of instances containing X and Y
Confidence(X = Y) = S - ==)
number of instances containing X

An important hyperparameter in a decision tree is its maximum
depth (the tree in Fig. 2 was created with a maximum depth of 2).
Too deep trees tend to overfit, since one branch per sample could be
created. Such over-complex models do not generalize well for the train-
ing data, and hence they do not produce useful information. For this
reason, we created decision trees with maximum depths from 1 to 3 and
analyzed the classification trees extracted from them (see Section 5.5).
CART was the algorithm used to build the decision trees (Breiman,
1984), implemented by the DecisionTreeClassifier class in
scikit-learn (SciKit-Learn, 2022c).

The second classification rule mining technique we used was rule
induction. Rule induction is a technique in which formal rules are
obtained from a set of observations. A classification rule is a collection
of propositional predicates associated with a given value of the target
feature, similar to the ones obtained from decision trees.

There exist different algorithms for classification rule induction.
We used the RIPPERk (Cohen, 1995) and IREP (Fiirnkranz & Wid-
mer, 1994) algorithms. The former usually obtains error rates lower
than the C4.5 algorithm, scales nearly linear to the number of train-
ing instances, and is able to efficiently process noisy datasets (Co-
hen, 1995). The latter includes an incremental reduced error pruning

process that avoids overfitting with noisy data and provides good
generalizations (Fiirnkranz & Widmer, 1994).

We ran the decision tree, RIPPERk and IREP machine learning
algorithms, obtained the classification rules, and analyzed only those
with at least 90% confidence, 5% support and three or fewer conditions
in the antecedent (too specific rules are ignored). We used the RIPPER
and IREP classes of the wittgenstein Python module (Moscovitz,
2022).

4.7. Clustering

We also applied clustering algorithms to detect groups of similar
syntactic constructs (clusters). Clustering algorithms are unsupervised
machine learning techniques that find similar groups of instances from
unlabeled datasets. We automatically gathered the clusters of similar
constructs from the different datasets of our study, suppressing the
programming expertise variable. The centroids of each cluster were
analyzed to document the similar syntactic constructs features of each
group (intra-cluster analysis), and what makes each cluster to be dif-
ferent from the rest of the clusters (inter-cluster analysis). We also
analyzed whether each cluster is made up of expert or beginners and
their support.

Although we executed the k-means (Bock, 2007)—Kmeans class
in scikit-learn (SciKit-Learn, 2022e)—, DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) (Ester, et al., 1996)—DBSCAN
(SciKit-Learn, 2022b)—and OPTICS (Ordering Points To Identify the
Clustering Structure) (Ankerst, Breunig, Kriegel, & Sander, 1999)—
OPTICS (SciKit-Learn, 2022g)—algorithms, our server (Section 4.8)

F. Ortin et al.

SM

8M

™

6M

5M

Inertia (distortion score)

4M

3M

2M

8

Expert Systems With Applications 215 (2023) 119398

= = Elbow at k=7, inertia=3.34M

10 12 14

Number of clusters (k)

Fig. 3. Visual elbow method to find the optimal number of clusters in k-means for the types dataset.

ran out of memory with all the algorithms but k-means. Centroids were
initialized with random values and we used the Euclidean distance.

K-means requires us to pass the number of clusters. Therefore,
we ran k-means from 2 to 20 clusters and apply the elbow method
(kneedle algorithm) to find the optimal number of clusters (Satopaa,
Albrecht, Irwin, & Raghavan, 2011). Fig. 3 shows one example for
the types dataset. When the number of clusters grows, the sum of
squared distances of samples to their closest cluster center (called
inertia) increases. Since we look for a tradeoff between the number of
clusters and inertia (when the number of clusters is the same as the
number of samples, we have very low inertia but clusters are useless),
the elbow of the graph visually represents such a tradeoff. The number
of clusters found for each dataset is depicted in Table 3.

Once the optimal number of clusters is found, their centroids were
computed as the average values of their instances. For numeric vari-
ables, we also computed the 95% confidence intervals. ANOVA analyses
were run for the numeric features of each dataset to see if there
were significant differences among the clusters (inter-cluster analysis).
When those differences exist (p-value<0.05), we used Tukey’s Honest
Significant Difference (HSD) post-hoc tests to see exactly where those
differences lie (i.e., to find out which specific variables are different
from one another) (Abdi & Williams, 2010).

4.8. Experimental environment

All the experiments were executed in an AMD Ryzen Threadripper
2990WX (64 cores) with 128 GB DDR4 3200 MHz RAM, Nvidia Quadro
RTX 4000 (8 GB GDDR®6), running CentOS operating system 7.4-1708
for 64 bits. All the code was implemented using Python 3.8.2, scikit-
learn 1.0.2 and wittgenstein 0.3.2. Datasets were stored in a PostgreSQL
10.15 database.

5. Results and discussions

We ran the algorithms described in Section 4 to retrieve informa-
tion about the syntactic constructs used by Java programmers. In this
section, we analyze and discuss the results. All the data is available for
download at Ortin, Facundo, and Garcia (2022).

5.1. Anomaly detection

Univariate and multivariate outliers were detected with the sta-
tistical methodology described in Section 4.2. After the analysis of
the anomalous syntactic constructs, we found out that seven program
instances (together with their types, methods, fields, statements and
expressions) do not represent valid Java projects:

(a) Five of the beginner projects were made up of just a collection
of interfaces, with no classes. That is because one of the student
assignments consisted in implementing some given interfaces.
Some students just delivered the original collection of interfaces,
without any class, enum or record implementation.

The multivariate outlier detection algorithm identified as
anomalous two programs with the combination of two values:
number of classes lower than 34% of the types defined in
the program, and number of interfaces greater than 65%. This
is a similar case scenario as in (a); students who delivered
incomplete Java programs.

(b

The two previous groups of outliers (10,901 AST nodes of 7 pro-
grams) were deleted from the datasets, since they do not represent
proper Java projects. Thus, we did not consider any of the AST nodes
belonging to those programs.

The rest of the anomalies denote unusual syntactic constructs used
by Java programmers. What follows is a summary of the information
inferred from the results:

— Expressions. The anomalous syntactic constructs are multiple as-
signments (expression = expression = expression) as expressions
(not as statements), the prefix and postfix —— operator, bitwise
operators (|, & ~ and ~) and Type: : member references.

— Statements. Prefix decrement (——expression;) is the only state-
ment construct detected as anomalous. Regarding its height and
depth inside their method definitions, outliers are those with
values greater than, respectively, 6 and 9.

— Types. The only anomalous type is the union type included in
Java 7+ to catch multiple exception types (catch (Exception, |
Exception, id)).

F. Ortin et al.

— Method definitions: native and synchronized methods are
outliers, and so are those written in capitals. Default implementa-
tions of interfaces (Java 8+) are barely used, and only by experts.
A method is anomalous if it has more than 17 statements, 5
parameters or local variables, 4 annotations, or it is overloaded
more than once.

— Field definitions: volatile, transient and field annotations
are outliers, and they are never used by beginners.

— Type definitions: no class was defined as strictfp. Nested
classes and static blocks are barely used, only by experts.
Classes are anomalous when they have more than 25 methods,
12 fields, 4 annotations or implement more than 4 interfaces.

— Programs: those Java projects that define more than 17.4% of
non-class types (enums, interfaces and records) were detected as
anomalous.

Our translation method of tree structures to n-dimensional datasets
has shown an important benefit in detecting anomaly constructs com-
pared to the rule-based in Qiu et al. (2017). The only construct we
detect that is also included in their study as anomalous is union types.
They identified labeled statements as highly infrequent, whereas we did
not include labels as a statement feature. They also consider the empty
statement as anomalous, showing a limitation of their dataset because,
as we discuss in Section 5.4 (Table 6), beginners commonly use that
syntactic construct.

5.2. Most frequent syntactic constructs

Table 4 shows the most frequent syntactic constructs found with
the method described in Section 4.3. For each type of AST node
(i.e., category feature), we show the first ten most frequent constructs.
For the rest of the constructs, we only show those with a percentage
greater than 10% and that provide remarkable information.

Table 4 is self-explicative, so we only highlight those results that we
think are more remarkable:

— Comparison expressions (<, >, <=, >= == and ! =) are used more
than arithmetic ones (+, —, *, / and %); so is the null expression.
Variables (identifiers) represent the most common expression.

— Method invocation is the most widespread statement, due to
the object-oriented paradigm of the Java programming language.
return is the third most used statement, and the postfix ++
statement (i.e., expression++;) occurs more than the for and
while loops.

— References (objects excluding String) are used much more than
the rest of the types (int and String are the next ones). long is
used more than char and float. Types appear more as method
parameters than as local variable definitions. 9.3% of the types
used are generic, but only 1.6% are arrays—programmers use the
generic Java collections more than arrays.

— For method definitions, the native modifier is used more than
synchronized. Only 0.21% of the methods are generic and
the most common return type is void, reducing the benefits
of functional programming. 84.1% of the methods are public,
which seems to go against the “minimize the accessibility of
classes and members” recommendation (Bloch, 2008).

— Fields are mostly defined as private to obtain the benefits of
information hiding. final and static modifiers are widely
used—46.7% and 24.6%, respectively. The majority of fields
are not initialized, and generic types are used 13.4% of the
time (more than boolean). The common public static
final constant definition pattern represents 21% of all the field
definitions.

— Only 3.4% of the types defined are interfaces and 2.6% are enu-
merations. The “minimize the accessibility of classes and mem-
bers” good practice to reduce coupling does not appear to be

Expert Systems With Applications 215 (2023) 119398

followed in type definitions (84.8% are public). Other remark-
able results are that 38.1% of the types have any annotation,
16.2% of them are defined within another class, and 15.5%
are implemented in the default package—those types cannot be
imported from another project.

— Most of the projects do not define any interface or enum,
and almost half of them define one or more types in the default
package.

The method described in Section 4.3 generates more data than the
results summarized in Table 4. It also analyzes multiple combinations
of different features. Some of those combinations produced interesting
results, although their frequencies tend to be low. What follows are
some of those results:

— In statements, the combination of the type of statement and
its first child shows that return boolean literal (e.g., return
true;) is quite common (4.4%). In fact, the frequency of re-
turn boolean literal is very close to the most common return
statement: return variable (5%). return true and return
false constructs represent 29.6% of all the return statements
—used by both experts and beginners.

— Arrays are barely used (1.6%). Arrays of references are the most
common ones, and then comes the arrays of strings, 85.9% more
common than the array of integers.

— For field definitions, almost every public static final field
is defined with identifiers written in capital letters. Only 5,696
instances (out of 240 K) do not follow that naming convention.
Surprisingly, just 11.7% of those instances were code written by
students, who showed better fulfillment of the all-uppercase Java
naming convention of constants (Oracle, 2022a).

- 10.5% of the constructors are private. Most of the occurrences
appear when implementing the Singleton design pattern (Gamma
et al., 1994).

— Methods are overloaded 13.7% of the time, while 44.2% is the
percentage of overloaded constructors. Thus, method overload-
ing seems to be more appropriate to provide different ways to
initialize objects’ states.

Our AST-based system shows distinct benefits compared to the
analysis of Qiu et al. based on grammar rules (Qiu et al., 2017). First,
they cannot analyze the syntactic constructs that involve more than one
feature of AST nodes, such as the examples in the previous enumera-
tion. Second, they do not manage to analyze those constructs that are
not represented in a single rule, such as literal and null expressions,
and method invocation, assignment and catch statements. Moreover,
they are not able to analyze aggregated values such as the percentage
of interfaces defined in a project or the number of types in the default
package.

The most frequent idioms retrieved by Allamanis and Sutton also
show differences from our analysis. First, they do not indicate any
measure of frequency—they just show the 19 top idioms. Second, the
idioms they infer have too specific values, such as particular names
of classes, methods and even variables. Such idioms show common
source code fragments instead of syntactic constructs. Moreover, they
include neither aggregated values nor features of AST nodes. Some
idioms manage to combine different types of statements such as if and
try/catch because they do not generalize all the syntactic constructs
involved in that idiom (i.e., they use specific values of the source code).

5.3. Data visualization

We reduced to two dimensions the 12 datasets with the 4 algorithms
described in Section 4.4. To have an estimate of how much information
is lost in the dimensionality reduction, we computed the explained
variances for the PCA algorithm. The explained variance is defined
as the ratio of the two principal component eigenvalues to the total

F. Ortin et al.

Table 4

Most frequent syntactic constructs found in Java source code.

Expert Systems With Applications 215 (2023) 119398

Dataset Construct Most frequent values Dataset Construct Most frequent values

Statements AST node type Method invocation (27.5%), Expressions AST node type Variable (36.4%), member selection
variable definition (26%), (19.17%), method invocation (13.1%),
return (14.7%), if (12.3%), String literal (5.2%), int literal
assignment (9.7%), throw (4.8%), comparison expression (4.5%),
(2.1%), try (1.7%), catch null (3%), new (2.7%), arithmetic
(1.5%), postfix ++ statement expression (2.7%), boolean literal
(0.9%), for (0.8%) (2.4%)

Parent AST node Method definition (67.2%), if Method Visibility public (84.1%), private (8.4%),
(17%) definitions package (5.5%), protected (2%)
Type definitions AST node type class (94%), interface Modifiers final (0.97%), static (4.9%),
(3.4%), enum (2.6%) abstract (5.5%), strictfp (0%),
native (0.61%), synchronized
(0.1%), @0verride (20.4%)
Visibility public (84.8%), package Generic methods 0.21% of the methods are generic
(15.2%)
Modifiers final (1.5%), abstract throws clause 5.3% of the methods have throws
(2.2%), strictfp (0%),
static (3.6%)
Extends 24.4% of the types extend Return type void (37%), reference type (23.2%),
another class String (10.2%)
Implements 30.5% of the types implement Parameters 48.4% of the methods have no
one or more interfaces parameters
Annotations 38.1% of the types have Annotations 68.3% of the methods have no
annotations annotations
Default package 15.5% of the types are defined in Constructor 8% of the methods are constructors
the default package
Generics 1.3% of the types are generic Method overloading 12.6% of the methods are overloaded
Nested classes 16.2% of the types are nested Types AST node type Reference type (64.3%), int (14.1%),
classes String (13.9%), boolean (4.2%),
double (1.4%), long (0.7%), char
(0.6%), byte (0.4%), £loat (0.4%),
short (0.1%)
static block 0.37% of the types include a Built-in types 21.2% of the types are built-in (String
static block is not considered built-in)

Field definitions Visibility private (71.2%), public Parent AST node Method parameter (24.2%), local
(23.1%), package (4.2%), variable definition (22.2%), method
protected (1.5%) return type (19.6%), constructor

invocation (17.1%), field definition
(12.8%)
Modifiers final (46.7%), static Generic types 9.3% of the types used are generic
(45.6%), volatile (0.07%),
transient (0.15%)
Initial value No initial value (53%), int Array types 1.6% of the types used are arrays
literal (13.7%), constructor
invocation (10.8), method
invocation (10.4%)
Type Reference type (33.4%), int Programs Class percentage 72.4% of the projects only contain
(20.2%), String (13.4%), classes
generic type (13.4%), boolean
(6.2%)
Annotations 99.1% of the fields have no Interface percentage 78.2% of the projects do not define any
annotations interfaces
Visibility private (43.7%), public enum percentage 86.2% of the projects do not define any
+ static static final (21%), private enumerations
+ final static final (18.8%)

Default package

49% of the projects define types in the
default package

eigenvalues. It represents the information explained by the two features
obtained after applying PCA.

Fig. 4 presents the two-dimensional visualizations of the programs
dataset after applying the four dimensionality reduction algorithms.
The programs dataset is the one that showed the highest explained
variance (99.75%)—i.e., the one with the highest information kept after
reducing the dimensions. This dataset is not balanced (Table 2) and
most samples represent beginner programs. For Linear PCA and NMF,
no clusters with sufficient points can be clearly identified; experts and
beginners are not separated either. Clustering and program separation
by expertise is better performed by t-SNE. Kernel PCA is able to separate
many experts, but clusters cannot be clearly identified.

Performing the analysis described in the previous paragraph with
the 12 datasets, we detected that t-SNE is the visualization that provides
the best clustering and program separation by expertise—all the figures
are available at Ortin et al. (2022). Fig. 5 shows the t-SNE visualization
of all the datasets but programs. Field definitions, types and type
definitions are the datasets with the clearest identification of clusters
with close syntactic constructs (Euclidean distance). They also appear
to be the best ones at separating experts from beginners. Heterogeneous
datasets do not identify any cluster, but there are regions with many
points belonging to the same level of expertise.

The visualization of homogeneous and heterogeneous syntactic
constructs provides us with more information than the n-TED AST-
similarity measure used by Yin et al. (2015). n-TED has only shown

F. Ortin et al.

PCA (explained variance 99.75%)

(<]

120
100
80
60
40 -
20
)

® C
® o [] Ol e Y @00 @

-75 -50 =25 0 25 50 75

KernelPCA (radial basis)

0.6 1

0.4 1

0.2 A

0.0 A

_0.2 -

-0.50 -0.25 0.00 0.25 0.50 0.75

Expert Systems With Applications 215 (2023) 119398

t-SNE

40

e

‘o~

B Expert

40
4 4
00 _
C/‘ 4
®
31e %
[
o
[}
2 o
o
1_
)
01 SR
0 1 2 3 4 5
Beginner

Fig. 4. Visualization of the four dimensionality reduction algorithms used for the programs dataset.

benefits to detect clusters of small code fragments, namely different
implementations of the same function (Choudhury et al.,, 2016). On
the contrary, we visualize groups of seven similar types of syntactic
constructs and five different combinations of bigger ASTs.

5.4. Logistic regression

We built as many logistic regression models as datasets. Table 5
shows the classification performance of each model. We can see how
the types written by a programmer are the syntactic constructs that
hold lesser information about their expertise. The second worst classi-
fier is method definition. Notice that the method body is not included
in the dataset; when it is included (heterogeneous 3), the F,-score
obtained is 98%. The rest of the classifiers have a minimum F,-score of
90.1%. Heterogeneous datasets have the highest performance because
they aggregate more features (programs is an exception, because it is a
highly unbalanced dataset).

Table 5 also shows the accuracies of the models built by Ortin
et al. to classify syntactic constructs (discussed in Section 2). For all
the homogeneous datasets but method and type definitions, our logistic
regression models provide higher accuracy. The same occurs for the
first three heterogeneous datasets, while we provide lower accuracy
for the two last ones. While there are no important differences in the
accuracy of both approaches, the logistic regression models provide
much more interpretability than the complex classifiers obtained by
Ortin et al. (see Section 2).

10

Table 5

Performance of the 12 logistic regression models. The column “Accuracy (Ortin et al.,
2020)” shows the performance of similar classifiers in the related work of Ortin et al.

discussed in Section 2.

Dataset Accuracy Accuracy Precision F,-score

(Ortin et al.,

2020)
Expressions 0.8593 0.9484 0.7812 0.8841 0.9152
Statements 0.8393 0.9565 0.8101 0.8595 0.9054
Types 0.7182 0.8528 - 0.7455 0.7956
Method definitions 0.8184 0.9837 0.8499 0.8223 0.8958
Field definitions 0.8427 0.9242 0.8344 0.8824 0.9028
Type definitions 0.9032 0.9282 0.9620 0.9353 0.9317
Programs 0.9710 0.9710 0.9401 0.9710 0.9710
Heterogeneous 1 0.9504 0.9531 0.8830 0.9678 0.9604
Heterogeneous 2 0.9763 0.9782 0.9136 0.9827 0.9805
Heterogeneous 3 0.9759 0.9769 0.9519 0.9831 0.9800
Heterogeneous 4 0.9823 0.9833 0.9945 0.9877 0.9855
Heterogeneous 5 0.9846 0.9851 0.9958 0.9894 0.9872

As mentioned in the methodology, the g; coefficients of the logistic
regression models provide us with information about the influence of
the features. Higher g, values are associated with higher probability of
being an expert programmer. Zero p; coefficients represent no influence
on programming expertise. Lower negative f; values represent higher
probability of beginner.

F. Ortin et al.

Type Definitions (86.66%)

Expert Systems With Applications 215 (2023) 119398

Field Definitions (47.81%)

60
e o
40 A
20 1
B Expert
O -
~20 Beginner
—40 4
-60 +— . . . :
-50 =25 0 25 50
Method Definitions (91.83%) Types (75.56%) Statements (67.68%)
60
®cge .,) 60
40 4 ® ()
n‘ - 4 ® ° e 40 4
@ "1
201 5 @« > . '. 20
o an L ®
SR 1 .
—20 A s O q;} “@’. —20 1
‘ t?!a Py »
» &P ’ —40 4
—401 ':’Q e 9%,
. . . _60 -
T T T _60 1 T T T T T
-50 0 50 -50 -25 0 25 50
60 751 1
60 -
J 50 4
40 40 1
20 254 204
0 A 01 01
-20 1 _>5] =20 1
—40 4
—401 -50
| —60 -
-60 —75 a5l
50 0 50 50 0 50 50 0 50
Heterogeneous 4 (64.85%) Heterogeneous 5 (61.23%)
80 -
A
60 -
404
20 A
0 -
_20 .
—40 4
_60 -
_80 “

=50

=50

0

T T

=50 0

Fig. 5. Visualization of the remaining datasets after t-SNE dimensionality reduction. Values between parenthesis represent the explained variance after PCA.

Table 6 shows the highest and lowest g; coefficients for all the
datasets (those greater than 1 and lower than —1). We do not include
information that is redundant (e.g., complementary values) or has
been previously discussed in the outliers analysis (Section 5.1). The g;
coefficients of the heterogeneous models did not add new information
not previously inferred from the homogeneous ones.

As the depth and height of the ASTs representing an expression
grow, it increases the probability to be written by an expert. float
and long literals (e.g., 2.3F and 3L), new array initializers (new
int[]{1,2,3}) and assignments as expressions are much more
probable for experts. The use of instanceof is most common in
beginners, sometimes denoting the wrong use of types and the ab-
sence of polymorphism. They also use boolean literals as child nodes

11

of comparison expressions, where they are actually not necessary
(e.g., boolVariable==true).

As in expressions, higher height and depth of statements ASTs
mean higher probability of expert programmer. The assert, syn-
chronized and continue statements and statements inside lambda
expressions are also more common in code written by experienced pro-
grammers. Empty statements (i.e., just ;) and constructor invocations
as statements (e.g., new MyClass() ;) are more likely written by
beginners. The former is because they write more ; than necessary. The
latter is because they use constructors as methods, not just as object
state initializers.

When defining methods, experts are more likely to write more
inner classes, exceptions in throws clauses, annotations and generic

F. Ortin et al.

Expert Systems With Applications 215 (2023) 119398

Table 6
Most significative § coefficients of the logistic regression models.
Dataset Feature s
Expressions Height inside the whole expression 10.97
Depth inside the whole expression 2.35
float literal 2.30
long literal 2.22
new array initializer 1.30
Use assignments as expressions 1.17
instanceof expression -1.75
Use boolean literals as child nodes of -2.34
comparison expressions
Statements Height of the statement inside the 15.05
method body
assert statement 3.50
synchronized statement 2.86
Statement inside a lambda expression 2.38
continue statement 1.67
Constructor invocation as a statement -1.04
Use ; as an empty statement -1.35
Methods Number of inner classes 8.71
Number of exceptions in throws 6.25
synchronized method 4.07
Number of annotations 3.85
final method declaration 3.39
Number of generic variables 3.34
native method declaration 2.70
public method declaration -1.08
Number of local variables -1.13

Dataset Feature p

Types Height of the type inside the whole type 90.58
Number of generic variables 6.35
short type 5.56
long type 2.34
byte type 1.08

Fields Number of annotations 2.28
long field type 2.22
short field type 1.38
The field is initialized with a method 1.14
invocation
final field declaration 1.14
Field name with lowercase letters (no -1.09
camel-case)

Type defs. Number of annotations 12.47
Number of interfaces implemented by a 6.48
class
Number of fields 5.40
Number of static nested types 3.87
Number of methods 3.67
final class declaration 3.58
Type named with all capitals -1.33
public types —2.24
Type name camel-cased, first char —2.46
lowercased
Number of overloaded constructors -3.61

Programs Percentage of enums 8.74
Percentage of types defined in the 3.50
default package
Percentage of interfaces -9.79

variables. They also use more synchronized, final and native
method qualifiers. On the contrary, a higher number of local vari-
ables are associated with beginners—instead of using bigger expres-
sions, they write simpler ones and store their values in local variables.
Students also declare methods as public when it is not necessary.

For types, all the significant f; coefficients are associated with
experts: the height and depth of the type structure, generic vari-
ables, and the use of short, long and byte types (they are barely
used by students). In field definitions, the number of annotations and
generic variables, long and short types, the final field qualifier,
and field initializations with method invocation (e.g., int field =
obj.method () ;) are more likely written by experts. Beginners are
more likely to write no camel-case field names, all lowercased.

When defining a new type (method, class or enum) the number
of annotations, interfaces implemented by a class, fields, static
nested types and methods increase the probability of being an expert.
The same occurs when the class is declared final. On the other
hand, beginners are more likely to write public types (they do not
hide types outside the package) and choose type names not starting
with a capital letter or with all letters capitals. If the class has many
implementations of constructors, it is more likely it was written by a
beginner (they create unnecessary constructor implementations).

For programs (Java projects), experts use more enumerations. They
are also more likely to write types in the default package. After speak-
ing to the lecturers of the year-1 programming courses used to create
the dataset, they told us that they forbid the use of the default package.
Therefore, the percentage of types in the default package feature is not
actually associated with the programming expertise. The same occurs
with the percentage of interfaces: as we mention, some assignments
consist in implementing various interfaces.

5.5. Classification rules

We ran the three supervised machine learning algorithms described
in Section 4.6 to mine classification rules, obtaining 2521 rules (164

12

inferred with decision trees, 1921 with RIPPERk and 573 with IREP!).
To filter too specific rules with lower information, we only consider
those with minimum support of 5% and 3 or fewer conditions in the
antecedent. Likewise, the minimum confidence is 95%. We do not
include in the analysis those rules that only combine the features
already extracted from the logistic regression models (Table 6).

A rule r| is more general than r, when all the instances fulfilling the
antecedent of r, are also fulfilled by the antecedent of r; (e.g., a = ¢
is more general than a AND b = ¢). When we find two rules, r; and
r,, that fulfill the conditions in the previous paragraph, and r; is more
general than r,, then we only consider r; since it provides more general
information (higher support with lower but sufficient confidence).

The previous filtering process is aimed at discussing only the new
relevant information, not discussed before. All the rules and the source
code used to produce them are available for download at Ortin et al.
(2022).

Table 7 shows the classification rules obtained, which are self-
explanatory. All the rules taken from the homogeneous datasets (1 to
9) represent syntactic constructs written by experts. As with the logistic
regression models, there are more syntactic patterns for experts than for
novice programmers—most of the constructs used by beginners are also
used by experts.

The classification rules mined from the heterogeneous datasets (10
to 13) combine information from different syntactic constructs. For
example, rule 11 classifies as beginner the code that has no final
fields, declared in class with no annotations, and defined in a program
that contains no type in the default package.

There are notable differences between the rules mined with our
approach and the one described in Losada et al. (2022). The association
rule mining approach followed by Losada et al. retrieves a huge number

1 The sum of the number of rules extracted with the three methods (2658)
is not the same as the total number of rules (2521) because some of the rules
are repeated.

F. Ortin et al.

Table 7

Expert Systems With Applications 215 (2023) 119398

Classification rules obtained after the filtering process. Support values are computed considering the number of instances of the dataset the rule was extracted from. DT stands for

Decision Tree.

Rule Support Confidence Algorithm

1 Field named with snake-case convention => Expert 8.63% 92.17% IREP

2 Field is final AND not public AND not static => Expert 8.63% 92.17% RIPPERK

3 Method named with camel-case convention AND number of => Expert 28.75% 93.33% DT
parameters > 3

4 First parameter of a method is a reference (arrays and strings are => Expert 31.75% 91.11% IREP
not considered as references)

5 Return type of a method is a reference => Expert 8.99% 91.01% IREP

6 Type not defined in the default package AND has 1 or more => Expert 25.54% 99.22% DT
annotations

7 Percentage of static fields in a type < 20% AND that type is not => Expert 12.01% 95.46% IREP
public

8 Type defined in the default package AND number of constructors < => Expert 5.90% 99.87% RIPPERK
1 AND it is final

9 Type defined with one or more annotations AND has extends => Expert 9.76% 99.56% RIPPERK

10 Type defined with no annotations AND its program has less than => Beginner 24.82% 98.8% DT, IREP
0.18% of enums

11 Field is not final AND it is defined in a class with no annotations => Beginner 21.39% 90.45% IREP
AND the program does not define any type in the default package

12 Type defined with no annotations AND no snake-case name AND its => Beginner 33.79% 99.53% DT
program has less than 0.18% of enums

13 Method returning a reference type AND written in a program with => Expert 5.15% 99.20% IREP

more than 1.94% of enums

of rules with obvious information (e.g., if the percentage of classes in a
program is 100%, the percentage of enumerations is 0%) (Losada et al.,
2022). Since association rules require all the features to be binary, the
numeric features must be discretized, producing highly multidimen-
sional datasets. Such a huge number of features involves association
rules with too many conditions in the consequent, hard to understand.
Another drawback of the highly sparse data is the low support of the
extracted rules. The result is that the rules mined with our approach
are easier to understand, provide more valuable information and have
higher support. In fact, none of the rules in Table 7 are detected by
Losada et al. using the same Java projects.

5.6. Clustering

We run k-means against the 12 datasets, following the method
described in Section 4.7. The kneedle algorithm found the number
of clusters depicted in Table 3. ANOVA and Tukey’s HSD tests were
computed to see if there were statistical differences among clusters for
the values of each variable. We show an example in Fig. 6, where mean
values and 95% confidence intervals of some features are depicted
for the 6 clusters found in the type definitions dataset. This is the
information inferred from the analysis of the clusters retrieved from
the syntactic constructs of type definitions (Fig. 6):

— Cluster 3 in Fig. 6 represents a low number of instances (1.51%)
with the highest number of methods, constructors, nested types
and inner types. It represents classes with high complexity, which
would probably be better redesigned.

— Cluster 4, with less than 2% instances, holds simple classes with
the lowest number of annotations, implemented interfaces and
fields, but with the highest number of static methods. Helper
and utility classes are included in Cluster 4.

— Cluster 6 represents classes holding configuration data (the lowest
number of methods and the highest number of static fields).

— Cluster 5 may be characterizing classes to instantiate Data Trans-
fer Objects (DTOs), because they hold the greatest number of
fields.

— Types with the highest number of annotations belong to Cluster 2,
representing code written by experts (98.61% of its instances).

— Finally, Cluster 1 is the group with the most instances (62.63%).
It defines types with a low number of static members, and
an average number of methods, constructors, fields, annotations,
and nested and inner classes. It groups the collection of common
classes.

13

Similar analyses were undertaken for all the clusters obtained (Ortin
et al., 2022). We summarize here those that imply new information, not
discussed before:

— Fields initialized with reference values (not including strings or
arrays) and with the highest number of annotations are clustered
together. 90% of their instances are expert syntactic constructs.

- private, final, static fields with uppercased names com-
prise a cluster of 96% expert samples.

— Most fields (53.13%) are not £inal, not initialized and camel-
cased, written by both experts and beginners.

— One cluster of method definitions represents only 0.05% of the
methods with too dense bodies: the highest number of local
variables and statements.

— The clustering algorithm groups those expressions with the great-
est height and weight in the same cluster, with 100% of their
instances written by experts.

— AST representing types with the greatest height and not repre-
senting a primitive type are grouped together (all of them coded
by experts).

— One heterogeneous cluster represents programs with the highest
percentage of classes and fields per class, probably representing
data management applications.

— The programs composed of a high number of enumerations and
types with multiple annotations, written by experts (98.61%), are
grouped together by the clustering algorithm.

— A cluster is found for programs that require the highest number of
enums and interface types, interfaces implemented by classes, and
methods, fields, inner and nested classes per type definition. This
group represents complex programs and 100% of the instances
were written by experts. Similar clusters are found in multiple
heterogeneous datasets.

Out of the 66 clusters found by k-means, 21 and 5 of them hold more
than 90% syntactic constructs written by, respectively, experts and
beginners. Thus, programming expertise seems to be a characteristic in-
trinsic in many syntactic constructs, since 39.4% of the clusters created
by the unsupervised machine learning algorithm have the same level of
expertise. Likewise, experts write more particular syntactic constructs
than novice programmers. As discussed before, this is because most of
the constructs used by beginners are also used by experts.

An important benefit of our method compared to the clustering ap-
proach proposed by Choudhury et al. is the easier interpretation of the

F. Ortin et al.

Number of Annotations

Number of Implements

Expert Systems With Applications 215 (2023) 119398

Number of Generics

c6 . c6{ ® c6 —e—
cs . 5 o c54 ——
2 3 2
gCiq @ gCiq1 ® £ C4q r—o—
5 5 5
z z z
& b g
g C3 o g c3 .- g C3 —_——
o o o
c2 ° c2 ° c2{ e
c1 ° C1 L] C1 -~
00 02 04 06 08 10 12 0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.01 0.02 0.03
Number of Methods Percentage of Overloaded Methods Number of Constructors
c6{® c6{® C6 4 .
C5 ° Cc5 o C54]
i 5 b
£Ca{ @ £C4{ ® £Ci{ ®
5 5 E
=z 4 =
g g g
wC3 —— % C3 L] 2 C3 ——
o o o
c24{ ® c2qe c2qe
c1 . c1{ e c1{ e
5 10 15 20 25 0 20 40 60 80 0.5 1.0 15 2.0 25
Number of Fields Number of Nested Types Number of Inner Types
c6 o c6{ ® c61 @
cs - cs{ e cs{ ®
o o .
3]]
£C4| ® £C4{ ® £C4q ®
5 5 E
4 = z
g g g
@ C3 o % €34 % c3
o s} o
c2 ° c2qe c24e
c1 ° c1{ e c1{ ®
1 2 3 4 5 6 7 0 1 2 3 0 1 2 3
Percentage of Static Fields Declared as strictfp Percentage of Static Methods
c6 ° C6 ° c6{®
cs . cs ° csH e
5 2 2
gcC4q @ £ C4 . £ C4 .
5 5 5
z < z
b b g
g C3 o g C3 ° gC3{e®
s} [} s}
c2 ° c24 ° C2 °
ci{e (ol . ci{e
0 20 40 60 80 100 -0.04 -0.02 0.00 0.02 0.04 0 20 40 60

Fig. 6. Distribution of feature values per cluster for the type definitions dataset (inter-cluster analysis). The dashed line represents the average value for the whole dataset. Dots
describe the average value for one cluster, and whiskers the 95% confidence intervals. C, denotes Cluster n.

retrieved clusters. Their clustering system is based on n-TED, a numeric
measure of similarity between ASTs (Choudhury et al., 2016). After
finding the clusters, they have to manually analyze the ASTs in each
cluster to find their common patterns (and also the differences among
clusters). In our case, that process is automatically done by running
ANOVA and Tukey’s HSD tests. Unlike n-TED, our feature engineering
method to translate ASTs into datasets is highly interpretable, since
the features (columns) in the datasets represent characteristics of the
syntactic constructs. Another limitation of the proposal of Choudhury
et al. is that it has only been proven to be beneficial in short pieces of
code implementing the same problem (Section 2).

14

6. Discussion

We have shown a mechanism to analyze the syntactic constructs of
Java code. An important discussion is to what extent our proposal could
be applied to other programming languages. To that aim, we analyze
the five steps of our method and how they depend on a particular
programming language.

We define a feature engineering system to transform tree structures
into n-dimensional datasets. Although it is a manual process, the fol-
lowing two procedures can be followed to apply our method to any
programming language:

F. Ortin et al.

1. Identification of the homogeneous syntactic constructs. The dif-
ferent groups of homogeneous syntactic constructs in a program-
ming language should be pinpointed. Examples of such con-
structs for most programming languages are programs, type def-
initions, module definitions and expressions—some pure func-
tional languages do not provide statements. A dataset should be
created for each homogeneous construct.

2. Feature definition. The features of each of the previous homo-
geneous constructs (dataset) should be defined (Table 1 and
Tables A.1 to A.6 show how we did it for Java). When there
are different types of AST nodes in a homogeneous construct
(e.g., different types of statements), a category feature should be
defined: it is a nominal feature whose values are the names of the
different AST nodes (e.g., IfStatement and WhileState-
ment). The parent’s and children’s categories (AST node names)
should also be included as features. Finally, we should add
one feature per each common element in the homogenous con-
struct. For example, the static and final binary features are
included in method (Table A.3) and field definitions (Table A.4).

Once the homogeneous datasets are generated, the remaining three
steps of our method are language agnostic:

3. The heterogeneous datasets are created by applying drill-down
operations to the homogeneous datasets (Section 3.1).

4. After creating the homogeneous and heterogeneous datasets, the
methodology in Section 4 describes how to use different machine
learning algorithms to mine the datasets.

5. The results produced by the algorithms of the previous step are
interpreted as described in Section 5.

The previous steps could be applied to any programming language.
Step 2 is the one that has stronger dependencies on the programming
language to be analyzed. However, it is a straightforward process if we
have access to the AST structures used to represent programs (e.g., the
Python’s ast module included in its standard library (Python, 2022)).

7. Conclusions

The syntactic tree-structured information of a programming lan-
guage can be analyzed with supervised and unsupervised machine
learning algorithms to infer valuable information about how program-
mers use that language. We define a feature engineering process to
translate ASTs into a collection of homogeneous and heterogeneous n-
dimensional datasets. Then, interpretable machine learning algorithms
are run to analyze the syntactic constructs.

By applying this method to the Java programming language, we
document the syntactic constructs mostly (and barely) used by pro-
grammers. We also rank the most important syntactic features used by
expert and novice programmers. Classification rules allow combining
distinct features of heterogeneous syntactic constructs to document
the intrinsic expertise of such constructs. We also visualize in two
dimensions the structure of 12 datasets with more than 17 million
instances and analyze different clusters of programs with similar syn-
tactic constructs. With such analyses, we realized that some groups of
constructs represent different kinds of applications and, occasionally,
an inherent level of complexity.

This article summarizes the information extracted with the selected
machine learning algorithms. All the results, source code and the
datasets created in our research work are freely available for download
at https://www.reflection.uniovi.es/bigcode/download/2022/java-pat
terns

15

Expert Systems With Applications 215 (2023) 119398
8. Future work

In this work, we analyze syntactic constructs of source code. How-
ever, programs also enclose semantic information commonly repre-
sented with graphs, such as control flow graphs and program, call
and class dependency graphs (Rodriguez-Prieto et al., 2020). We plan
to enrich our datasets with semantic information to be mined. The
classifiers could also be improved by adding semantic data. To do
that, we will extend our compiler plugin so that it creates semantic
representations. The feature engineering process should also be adapted
to deal with cycles in graphs.

Graph neural networks have been used in many scenarios where
models are trained with graph data (Wu, Cui, Pei, Zhao, & Song, 2022).
In fact, GNNs have already been used to create predictive models from
source code (Allamanis, 2022). However, such predictive models act
as black boxes to classify programs, being hard to interpret. In the
last few years, there have been many efforts to explain the prediction
mechanisms of these GNNs with tools such as GNNExplainer, XGNN
and PGExplainer (Li, Zhou, Verma, & Chen, 2022). An interesting
work would be to create GNN models with syntactic and semantic
information, and analyze those models with the existing explainability
tools. The results could be compared with the ones presented in this
paper.

This article proposes a collection of analyses for syntactic con-
structs and applies those analyses to the Java programming language.
Section 6 discusses how those analyzes could be applied to other
programming languages. In the future, we would like to conduct that
study with other languages of different paradigms, and compare them
with Java.

CRediT authorship contribution statement

Francisco Ortin: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Resources, Data curation, Writ-
ing - original draft, Writing — review & editing, Visualization, Supervi-
sion, Project administration, Funding acquisition. Guillermo Facundo:
Software, Investigation, Resources, Data curation, Writing — review &
editing,Visualization. Miguel Garcia: Software, Validation, Investiga-
tion, Resources, Data curation, Writing — review & editing, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Francisco Ortin reports financial support was provided by Spain
Ministry of Science and Innovation.

Data availability

All the results, source code and the datasets created in our research
work are freely available for download at https://www.reflection.unio
vi.es/bigcode/download/2022/java-patterns

Acknowledgments

This work has been partially funded by the Spanish Department of
Science, Innovation and Universities: project RTI2018-099235-B-100.
The authors have also received funds from the University of Oviedo,
Spain through its support to official research groups (GR-2011-0040).

Appendix. Structure of the homogeneous datasets

Table 1 defined the structure (features) of the expressions dataset.
In this appendix, we include the same information for statements
(Table A.1), types (Table A.2), method (Table A.3), field (Table A.4)
and type definitions (Table A.5), and programs (Table A.6).

https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns

F. Ortin et al.

Expert Systems With Applications 215 (2023) 119398

Table A.1 Table A.4
Features of the statements dataset. Features of the field definitions dataset.

Name Type Description Name Type Description

Category Nominal Syntactic category of the current node (e.g., If, Visibility Nominal Public, protected, package or private.
Return and Throw). Static, final, volatile Binary Whether the field defines the

1st, 2nd and Nominal Syntactic category of the corresponding child node. and transient corresponding modifier.

3rd child Number of annotations Integer The number annotations used in the

Parent node Nominal Syntactic category of the parent node. field.

Role Nominal Role played by the current node in the structure Naming convention Nominal The naming convention used for the
of its parent node. field identifier (Lower, Upper,

Height Integer Distance (number of edges) from the current node CamelLow, CamelUp or SnakeCase).
to the root node in the enclosing type (class, Initial value Nominal The expression used to initialize the
interface or enumeration). field (syntactic category of expression;

Depth Integer Maximum distance (number of edges) of the None = no-initialization).
longest path from the current node to a leaf node. Type Nominal The type of the field (e.g., Int, String

Expertise Nominal Beginner or Expert. and Reference).

Parent node Nominal Syntactic category of the parent node.
Expertise Nominal Beginner or Expert.
Table A.2
Features of the types dataset. Table A.5
Name Type Description Features of the type definitions dataset.
Category Nominal Syntactic category of the current node (e.g., Name Type Description
Int, String and Reference). Category Nominal Syntactic category of the current

Primitive Binary Whether the type is primitive (built-in). node (class, interface or

Parent node Nominal Syntactic category of the parent node. enumeration).

Role Nominal Role played by the current node in the Public Binary Whether the type is public.

structure of its parent node. Abstract, static, final and Binary Whether the type includes the

Height Integer Distance (number of edges) from the current strictfp corresponding modifier.

node to the root node in the enclosing type Has extends Binary Whether the type extends another
(class, interface or enumeration). type.

Number of Integer The number of type variables in the generic Number of annotations Integer The number annotations used in the

generics type (0 = non-generic). type definition.

Number of Integer The number of dimensions in an array type (0 Number of implements Integer The number interfaces directly

dimensions = non-array). implemented by the type.

Expertise Nominal Beginner or Expert. Number of generics Integer The number of type variables in the

generic type (0 = non-generic).
Number of methods, Integer The number methods, constructors,
constructors, fields, static fields, static blocks, and (static)
Table A.3 blocks, and (static) nested nested and inner classes defined in
Features of the method definitions dataset. and inner types the type.

Name Type Description Naming convention Nominal ~ The naming convention used in the

type identifier (Lower, Upper,

Visibility Nominal Public, protected, package or private. CamelLow, CamelUp, SnakeCase or

Abstract, static, final, strictfp, Binary Whether the method includes the Anonymous).

native and synchronized corresponding modifier. Inner class, nested class Binary Whether the type is an inner or

Default implementation Binary Whether the method in an interface nested class.

has a default implementation. Percentage of overloaded Real Percentage of overloaded method
Has override Binary Whether the method has an methods, static fields and [0-100] static fields and static methods
@Override annotation. static methods defined in the type.

Number of parameters Integer The number of parameters in that Default package Binary Whether the type is defined in the

method. default package.

Number of generics Integer The number of type variables in the Expertise Nominal Beginner or Expert.

generic method (0 = non-generic).
Number of throws Integer The number of exceptions declared
in the throws clause (0 = no-throws). Table A.6
Number of annotations Integer The number of annotations used in Features of the programs dataset.
the method. —
Number of statements Integer The number of statements in the Name Type Description
method body. Percentage of classes, Real Percentage of classes, interfaces and

Number of local variables Integer The number of local variables interfaces and enums [0-100] enumerations defined in the program.

defined in the method body. Code in default packages Binary Whether the project has types

Naming convention Nominal The naming convention used for the defined in the default package.

method identifier (Lower, Upper, Code in packages Binary Whether the project has types
CamelLow, CamelUp or SnakeCase). defined in packages.

Constructor Binary Whether the method in a constructor. Number of types in packages Integer The number of types defined in

Return type Nominal The type returned by the method packages.

(e.g., Int, String and Reference). Number of types default Integer The number of types defined in the

Number of inner classes Integer The number of inner classes defined package default package.

in the method body. Expertise Nominal Beginner or Expert.
Number of overloaded Integer The number of overloaded method
methods implementations for the given

method name.

Type of the 1st, 2nd and 3rd Nominal Syntactic category of the References

parameter corresponding types.

Expertise Nominal Beginner or Expert.

Abdi, H., & Williams, L. J. (2010). Tukey’s honestly significant difference (HSD) test.
In Encyclopedia of research design (pp. 1-5). SAGE.

Aggarwal, K., Salameh, M., & Hindle, A. (2015). Using machine translation for converting
python 2 to python 3 code: Technical Report PeerJ PrePrints.

16

http://refhub.elsevier.com/S0957-4174(22)02416-2/sb1
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb1
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb1
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb2
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb2
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb2

F. Ortin et al.

Allamanis, M. (2022). Graph neural networks in program analysis. In Graph neural
networks: foundations, frontiers, and applications (pp. 483-497). Springer.

Allamanis, M., Barr, E. T., Ducousso, S., & Gao, Z. (2020). Typilus: Neural type hints.
In Proceedings of the 41st ACM SIGPLAN conference on programming language design
and implementation (pp. 91-105).

Allamanis, M., & Sutton, C. (2014). Mining idioms from source code. In FSE 2014,
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering (pp. 472-483). New York, NY, USA: Association for Computing
Machinery.

Andrew, W. A., & Jens, P. (2002). Modern compiler implementation in Java. Cambridge
University Press, ISBN 0-521-58388-8.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering
points to identify the clustering structure. ACM Sigmod Record, 28(2), 49-60.
Arakelyan, S., Hakhverdyan, A., Allamanis, M., Hauser, C., Garcia, L., & Ren, X. (2022).

NS3: Neuro-symbolic semantic code search. arXiv preprint 2205.10674.

Barone, A. V. M., & Sennrich, R. (2017). A parallel corpus of Python functions and
documentation strings for automated code documentation and code generation.
arXiv preprint 1707.02275.

Baxter, 1., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone detection
using abstract syntax trees. In Proceedings of the international conference on software
maintenance (pp. 368-377). Washington DC: IEEE Computer Society.

Bhatia, S., & Singh, R. (2016). Automated correction for syntax errors in programming
assignments using recurrent neural networks. arXiv preprint 1603.06129.

Bhoopchand, A., Rocktéschel, T., Barr, E., & Riedel, S. (2016). Learning Python code
suggestion with a sparse pointer network. arXiv preprint 1611.08307.

Bloch, J. (2008). Effective Java: A programming language guide (2nd Revised edition
(REV)). Addison-Wesley Longman, Amsterdam.

Bock, H.-H. (2007). Clustering methods: a history of k-means algorithms. In Selected
contributions in data analysis and classification (pp. 161-172). Springer.

Breiman, L. (1984). Classification and regression trees. Routledge.

Cabrera, A. F. (1994). Logistic regression analysis in higher education: An applied
perspective. In Higher education: handbook of theory and research. Vol. 10 (pp.
225-256).

Choudhury, R. R., Yin, H., & Fox, A. (2016). Scale-driven automatic hint generation for
coding style. In Proceedings of the 13th international conference on intelligent tutoring
systems (pp. 122-132). Berlin, Heidelberg: Springer-Verlag.

Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis, & S. Russell (Eds.),
Machine learning proceedings 1995 (pp. 115-123). San Francisco (CA): Morgan
Kaufmann.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the
second international conference on knowledge discovery and data mining. Vol. 96 (34),
(pp. 226-231).

Filirnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In Machine
learning proceedings 1994 (pp. 70-77). Elsevier.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design patterns: elements
of reusable object-oriented software (1st ed.). Addison-Wesley Professional.

GitHub (2022a). Copilot, your Al pair programmer. https://github.com/features/
copilot.

GitHub (2022b). One million repositories. https://github.blog/2010-07-25-one-million-
repositories.

GitHub (2022c). Where the world builds software. https://github.com/about.

Iyer, V., & Zilles, C. (2021). Pattern census: A characterization of pattern usage in
early programming courses. In Proceedings of the 52nd ACM technical symposium
on computer science education (pp. 45-51). New York, NY, USA: Association for
Computing Machinery.

Jolliffe, 1. T., & Cadima, J. (2016). Principal component analysis: a review and
recent developments. Philosophical Transactions of the Royal Society of London A
(Mathematical and Physical Sciences), 374.

Kaur, G. (2014). Association rule mining: A survey. International Journal of Computer
Science and Information Technologies, 5(2), 2320-2324.

Lee, D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization.
Advances in Neural Information Processing Systems, 13, 1-7.

Li, Y., Zhou, J., Verma, S., & Chen, F. (2022). A survey of explainable graph neural
networks: Taxonomy and evaluation metrics. arXiv preprint 2207.12599.

17

Expert Systems With Applications 215 (2023) 119398

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE
international conference on data mining (pp. 413-422). IEEE.

Losada, A., Facundo, G., Garcia, M., & Ortin, F. (2022). Mining common syntactic
patterns used by Java programmers. IEEE Latin America Transactions, 20(5),
753-762.

Moscovitz, I. (2022). IREP and RIPPERk Wittgenstein rule induction algorithms. https:
//pypi.org/project/wittgenstein.

Oracle (2022a). Java naming conventions. https://www.oracle.com/java/technologies/
javase/codeconventions-namingconventions.html.

Oracle (2022b). JDK documentation - Java platform, standard edition tools reference.
https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627.

Ortin, F., Escalada, J., & Rodriguez-Prieto, O. (2016). Big code: New opportunities for
improving software construction. Journal of Software, 11(11), 1083-1088.

Ortin, F., Facundo, G., & Garcia, M. (2022). Analyzing syntactic constructs of Java pro-
grams with machine learning (support material website). https://www.reflection.
uniovi.es/bigcode/download/2022/java-patterns.

Ortin, F., Rodriguez-Prieto, O., Pascual, N., & Garcia, M. (2020). Heterogeneous tree
structure classification to label Java programmers according to their expertise level.
Future Generation Computer Systems, 105, 380-394.

Peng, C.-Y. J,, Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression
analysis and reporting. The Journal of Educational Research, 96(1), 3-14.

Pradel, M., & Sen, K. (2018). Deepbugs: A learning approach to name-based bug
detection. Proceedings of the ACM on Programming Languages, 2(O0OPSLA), 1-25.

Python (2022). ast — abstract syntax trees. https://docs.python.org/3/library/ast.html.

Qiu, D., Li, B., Barr, E. T., & Su, Z. (2017). Understanding the syntactic rule usage in
Java. Journal of Systems and Software, 123, 160-172.

Rodriguez-Prieto, O., Mycroft, A., & Ortin, F. (2020). An efficient and scalable platform
for Java source code analysis using overlaid graph representations. IEEE Access, 8,
72239-72260.

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011). Finding a “kneedle” in
a haystack: Detecting knee points in system behavior. In 2011 31st International
conference on distributed computing systems workshops (pp. 166-171). IEEE.

Scholkopf, B., Smola, A. J., & Miiller, K. (1997). Kernel principal component analysis.
In W. Gerstner, A. Germond, M. Hasler, & J. Nicoud (Eds.), Lecture notes in computer
science: vol. 1327, Artificial neural networks - ICANN ’97, 7th international conference,
Lausanne, Switzerland, October 8-10, 1997, Proceedings (pp. 583-588). Springer.

SciKit-Learn (2022a). Class and function reference of scikit-learn. https://scikit-learn.
org/stable/modules/classes.html.

SciKit-Learn (2022b). DBSCAN - density-based spatial clustering of applica-
tions with noise. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
DBSCAN.html#sklearn.cluster. DBSCAN.

SciKit-Learn = (2022c). Decistion tree classifier. https://scikit-learn.org/stable/
modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.
DecisionTreeClassifier.

SciKit-Learn ~ (2022d). Isolation forest algorithm. https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=
isolationforest#sklearn.ensemble.IsolationForest.

SciKit-Learn (2022e). K-Means clustering. https://scikit-learn.org/stable/modules/
generated/sklearn.cluster. KMeans.html#sklearn.cluster.KMeans.

SciKit-Learn (2022f). Logistic regression classifier. https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.LogisticRegression.html.

SciKit-Learn (2022g). OPTICS - ordering points to identify the clustering structure.
https://scikit-learn.org/stable/modules/generated/sklearn.cluster. OPTICS.html#
sklearn.cluster.OPTICS.

van der Maaten, L., & Hinton, G. E. (2008). Visualizing high-dimensional data using
t-SNE. Journal of Machine Learning Research, 9, 2579-2605.

Wu, L., Cui, P., Pei, J., Zhao, L., & Song, L. (2022). Graph neural networks. In Graph
neural networks: foundations, frontiers, and applications (pp. 27-37). Springer.

Yin, H., Moghadam, J., & Fox, A. (2015). Clustering student programming assignments
to multiply instructor leverage. In Proceedings of the second (2015) ACM conference
on learning @ scale (pp. 367-372).

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 67(2),
301-320.

http://refhub.elsevier.com/S0957-4174(22)02416-2/sb3
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb3
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb3
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb4
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb4
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb4
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb4
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb4
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb5
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb6
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb6
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb6
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb7
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb7
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb7
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb8
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb8
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb8
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb9
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb9
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb9
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb9
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb9
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb10
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb10
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb10
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb10
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb10
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb11
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb11
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb11
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb12
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb12
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb12
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb13
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb13
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb13
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb14
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb14
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb14
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb15
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb16
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb16
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb16
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb16
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb16
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb17
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb17
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb17
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb17
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb17
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb18
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb18
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb18
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb18
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb18
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb19
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb20
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb20
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb20
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb21
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb21
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb21
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://github.blog/2010-07-25-one-million-repositories
https://github.blog/2010-07-25-one-million-repositories
https://github.blog/2010-07-25-one-million-repositories
https://github.com/about
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb25
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb26
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb26
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb26
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb26
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb26
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb27
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb27
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb27
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb28
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb28
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb28
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb29
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb29
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb29
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb30
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb30
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb30
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb31
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb31
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb31
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb31
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb31
https://pypi.org/project/wittgenstein
https://pypi.org/project/wittgenstein
https://pypi.org/project/wittgenstein
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://docs.oracle.com/javase/9/tools/javac.htm#JSWOR627
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb35
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb35
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb35
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
https://www.reflection.uniovi.es/bigcode/download/2022/java-patterns
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb37
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb37
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb37
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb37
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb37
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb38
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb38
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb38
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb39
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb39
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb39
https://docs.python.org/3/library/ast.html
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb41
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb41
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb41
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb42
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb42
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb42
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb42
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb42
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb43
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb43
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb43
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb43
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb43
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb44
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=isolationforest#sklearn.ensemble.IsolationForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=isolationforest#sklearn.ensemble.IsolationForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=isolationforest#sklearn.ensemble.IsolationForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=isolationforest#sklearn.ensemble.IsolationForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html?highlight=isolationforest#sklearn.ensemble.IsolationForest
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb52
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb52
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb52
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb53
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb53
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb53
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb54
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb54
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb54
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb54
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb54
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb55
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb55
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb55
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb55
http://refhub.elsevier.com/S0957-4174(22)02416-2/sb55

	Analyzing syntactic constructs of Java programs with machine learning
	Introduction
	Related work
	Architecture
	Homogeneous and heterogeneous datasets

	Methodology
	Datasets
	Anomaly detection
	Most frequent syntactic constructs
	Data visualization
	Logistic regression
	Classification rules
	Clustering
	Experimental environment

	Results and discussions
	Anomaly detection
	Most frequent syntactic constructs
	Data visualization
	Logistic regression
	Classification rules
	Clustering

	Discussion
	Conclusions
	Future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Structure of the homogeneous datasets
	References

