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a b s t r a c t 

The reduction of GHG emissions to reverse the greenhouse effect is one of the main chal- 

lenges in this century. In this paper we pursue two objectives. First, we analyze the evolu- 

tion of GHG emissions in Spain in 2008–2018, at both the global and sectoral levels, with 

the variation in emissions decomposed into a set of determining factors. Second, we pro- 

pose several actions specifically oriented to more tightly controlling the level of emissions. 

Our results showed a remarkable reduction (18.44%) in GHG emissions, mainly due to the 

intensity effect, but also to the production-per-capita effect. We detected somewhat differ- 

ent patterns among the various sectors analyzed. While the intensity effect was the most 

influential one in the Agricultural, Transport, and Others sectors, the production-per-capita 

effect was predominant in the case of Industry. The carbonization effect was revealed as 

crucial in the Commerce sector. The above findings highlight the importance of the energy 

efficiency measures taken in recent years in the Spanish economy, also pointing to the need 

to deepen those strategies and to propose new measures that entail greater efficiency in 

emissions. Additional efforts in areas like innovation, R&D, diffusion of more eco-friendly 

technologies, and a greater use of greener energies all prove to be essential reduction actions 

to fight the greenhouse effect. 

© 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of 

Sciences. Published by Elsevier B.V. 

1. Introduction 

Greenhouse gases (GHGs) are emitted from both natural and 1 

human-related sources, and it is now well known that their 2 

accumulation in the atmosphere derives both from absorp- 3 

tion of infrared rays emitted by the Sun and from increases 4 

of the heat in the atmosphere, significantly contributing to 5 

global warming. That increase in the average temperature 6 
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of the planet is known to cause extreme weather phenom- 7 

ena with dramatic consequences, including acidification of 8 

the oceans, floods, increases in the sea levels, reduction in 9 

water resources, heat waves, wildfires, droughts, changes in 10 

ecosystems, extinction of animal species, famines, spread of 11 

diseases, poverty, and inequality. As pointed out by the IPCC 12 

(2014), the role of humans in the increase of emissions is 13 

indisputable. Although climate change has naturally occurred 14 

throughout history (with oscillations between glaciation and 15 

tropical periods), those shifts typically were slow, requiring 16 

long periods of time. Human action, especially after the 17 
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Industrial Revolution, seemingly altered that situation, with 18 

economic and demographic growth having a magnifying 19 

effect on global warming. 20 

Given the current situation, the study of the historic pat- 21 

terns and future perspectives of greenhouse gas emissions, 22 

as well as of the forces that motivate their variations, has 23 

become a topic of high relevance. The goal of this paper is 24 

twofold: to analyze the change in GHG emissions in Spain in 25 

the last decade, and to understand the driving forces under- 26 

lying their evolution. To do this, we decomposed the variation 27 

in GHG emissions into four determining factors: population, 28 

activity, intensity, and carbon intensity effects. We considered 29 

two levels of disaggregation (global and sectoral). The results 30 

of this analysis will be useful in designing actions and mea- 31 

sures specifically adapted to each sector, with a view to pursu- 32 

ing a reduction in emissions that helps fight global warming. 33 

We rely on the Index Decomposition Analysis (IDA). This 34 

is one of the most heavily employed index-based decomposi- 35 

tion techniques, with an impressive range of applications in 36 

the fields of energy and environmental analysis. IDA is a lead- 37 

ing choice because of its useful features, which include the 38 

advantage of not requiring large amounts of information. 39 

From a methodological standpoint, many authors have de- 40 

veloped a conceptual framework that has both enabled the 41 

theoretical formulation of Divisia-index-based methods and 42 

validated their practical application: Hulten, 1973; Boyd et al.; 43 

1987 ; Liu et al., 1992 ; Ang (1995 , 2005) ; Ang and Lee, 1994 ; Ang 44 

and Choi, 1997 ; Sun, 1998 ; Sun and Ang, 2000 ; Ang and Liu, 45 

2001 ; Albrecht et al., 2002 ; Fernández and Fernández, 2008 ; 46 

Fernández González et al., 2013 ; Choi and Oh, 2014 ; Fernández 47 

González, 2015 ; and Zhang and Wang, 2021 . 48 

In recent years, numerous authors have applied IDA to de- 49 

compose the variations of various energy aggregates in several 50 

countries. Instances include Wang et al., 2017 ; Chong et al., 51 

2019 , Wang et al., 2014 ; Chai et al., 2018 ; Moutinho et al., 2018 ; 52 

De Oliveira-De Jesús, 2019 ; Chontanawat et al., 2020 ; Chen and 53 

Lin 2020 ; Yang et al., 2020 ; Hasan and Chongbo 2020 ; Liu et al., 54 

2021 ; Li et al., 2019 ; and Tenaw 2021 ; Li et al., 2021 ; and Gao 55 

et al., 2019 . 56 

The objective of this work is to identify and analyze the 57 

driving forces underlying GHG emission changes. To accom- 58 

plish this goal, we shall rely on so-called Divisia IDA method- 59 

ology, which possesses a number of useful features to be de- 60 

tailed below. The paper is structured as follows. Section 2 61 

outlines the methodology—relying on the Logarithmic Mean 62 

Divisia Index (LMDI) decomposition method—which we em- 63 

ployed to analyze the evolution of GHG emissions in Spain 64 

during 2008–2018. Section 3 reports and analyzes our results, 65 

both globally and at a sectoral level. This analysis will make it 66 

possible to study the contribution of the various determining 67 

factors of the overall variation. Finally, Section 4 summarizes 68 

the main conclusions and provides some useful guidelines for 69 

environmental action policies. 70 

2. Methodology 

In order to decompose the change in GHG emissions into a 71 

set of predetermined factors, in this section we will carry out 72 

a revision and adaptation of the multiplicative LMDI method 73 

(first proposed by Ang and Choi (1997) ). The use of index- 74 

based methods comes with the advantage that (1) they do 75 

not require a large amount of information, unlike others like 76 

Structural Decomposition Analysis (SDA), (2) they offer results 77 

of great interest, and (3) they allow estimation of the effects 78 

that certain magnitudes (such as energy efficiency and decar- 79 

bonization) have on the changes in gas emissions. In addition, 80 

using Divisia specifically provides important advantages over 81 

other indices, including that they deliver an exact decomposi- 82 

tion and, under certain conditions of data homogeneity, they 83 

fulfill some useful properties like the circular test ( Sun and 84 

Ang, 2000 ). 85 

As for the determinant factors taken into account in the de- 86 

composition, the following driving forces will be considered: 87 

(a) Population effect , that is, the impact of population growth. 88 

(b) Activity effect , encompassing the impact of economic 89 

growth. Assuming a constant (average) coefficient between 90 

GDP and CO 2 emissions, this effect may be regarded as the 91 

theoretical CO 2 emissions coming from economic activi- 92 

ties ( Sun, 1998 ). 93 

(c) Intensity effect , that is, the impact on emissions of en- 94 

ergy requirements per unit of value added. It involves 95 

the energy consumption related to some variables like 96 

energy prices, energy conservation and energy-saving in- 97 

vestments, structure and efficiency of the energy systems, 98 

technological choices, and socioeconomic behavior. 99 

(d) Energy carbon intensity effect , which is defined as the impact 100 

on the mass of emitted gas from each unity of fuel con- 101 

sumed. It is also called carbonization effect. 102 

The factors included are the most relevant ones when de- 103 

composing changes in gas emissions because they encom- 104 

pass, respectively, the effects of changes in energy mix, energy 105 

efficiency, economic growth, and population. 106 

Within the general LMDI framework, two main approaches 107 

have been developed in the last two decades: the one proposed 108 

by Ang and Liu (2001) , named LMDI-I, and the one put forward 109 

by Sato (1976) and Vartia (1976) , named LMDI-II. In this paper 110 

we focused on the latter as it has the advantage of involving a 111 

geometric mean that ensures that the weights add up to one. 112 

Another issue is the type of decomposition to be carried 113 

out (multiplicative or additive). We preferred the multiplica- 114 

tive approach because the decomposition in this case has a 115 

ratio (index number) form that is readily interpretable. 116 

Finally, we implemented a so-called time-series (i.e., mul- 117 

tiperiod) decomposition instead of period-wise (single-period) 118 

decomposition, as the former allows the information from in- 119 

termediate periods to be exploited and the cumulative im- 120 

pacts from the first to the last period to be readily computed. 121 

In a generic setting with k economic sectors, following 122 

Fernández González et al. (2014) , the total GHG emissions ( C ) 123 

can be expressed as follows: 124 

C = 

k ∑ 

j=1 

C j = 

k ∑ 

j=1 

P 
(
G j E j C j 

)
/ 
(
P j G j E j 

)
= 

k ∑ 

j=1 

PY j I j F j (1) 

where C j denotes GHG emissions in sector j, G j represents pro- 125 

duction of sector j, P is population, E j denotes sectoral en- 126 

ergy consumption, Y j = G j /P j represents sectoral production 127 
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per inhabitant, I j = E j /G j is the energy intensity in sector j, and 128 

F j = C j /E j represents the emission intensity (i.e., the mass of 129 

gas emitted per unity of energy consumed, both referred to 130 

sector as j ). 131 

Taking logarithmic derivatives with respect to time in 132 

Eq. (1) we have 133 

d ln C / dt = 

k ∑ 

j=1 

P 
(
Y j I j F j /C 

)
( d ln P / dt 

+ d ln Y j / dt + d ln I j / dt + d ln F j / dt 
)

(2) 

Integrating Eq. (2) 134 

ln ( C T / C 0 ) = 

k ∑ 

j=1 

∫ T 

0 
w j 

( t ) 

⎛ 

⎝ 

( d l n P ( t ) / dt ) + 

(
d l n Y j ( t ) / dt 

)
+ 

(
d l n I j ( t ) / dt 

)
+ 

+ 

(
d l n F j ( t ) / dt 

)
⎞ 

⎠ dt (3) 

where 135 

w j ( t ) = P ( t ) Y j ( t ) I j ( t ) E j ( t ) / C ( t ) 

= P ( t ) Y j ( t ) I j ( t ) F j ( t ) / 
k ∑ 

j=1 

P ( t ) Y j ( t ) I j ( t ) F j ( t ) (4) 

and applying the exponential function to Eq. (3) the following 136 

expression is readily obtained: 137 

C T / C 0 = exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w jr ( t ) 

(
d l n P j ( t ) / dt 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t ) 

(
d l n Y j ( t ) / dt 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t ) 

(
d l n I j ( t ) / dt 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t ) 

(
d l n F j ( t ) / dt 

)
dt 

⎞ 

⎠ (5) 

By employing a discrete approximation to Eq. (5) above, a 138 

standard formula for the logarithmic change is obtained as 139 

follows: 140 

C T / C 0 = exp 

( ∫ T 

0 
ln ( P T / P 0 ) dt 

) 

 

141 

142 

143 

144 

145 

146 

Ang (1995) ; Ang et al. (1998) and Sun (1998) , developed the 147 

methodology, proposing weighting functions that both adapt 148 

to changes in the magnitudes and lead to perfect decomposi- 149 

tions. Sun and Ang (2000) proved some interesting properties 150 

of exact decomposition methods. 151 

In the case of the exact decomposition method of Ang 152 

and Choi (1997) , the following expression is obtained for the 153 

weights: 154 

w j ( t 
∗ ) = L 

(
w j , 0 , w j,T 

)
/ 

k ∑ 

j=1 

L 
(
w j , 0 , w j,T 

)
(7) 

where w j , 0 = C j , 0 , w j,T = C j,T , and L (. ) is the weight function 155 

proposed by Sato (1976) . 156 

Thus, 157 

˜ w j ( t 
∗ ) = L 

(
C j , 0 , C j,T 

)
/ L ( C 0 , C T ) (8) 

By inserting Eq. (8) in Eq. (6) : 158 

C T 

C 0 
= exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
ln ( P T / P 0 ) dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
˜ w j ( t 

∗ ) ln 
(
Y j , T / Y j , 0 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
˜ w j ( t 

∗ ) ln 
(
I j , T / I j , 0 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
˜ w j ( t 

∗ ) ln 
(
F j , T / F j , 0 

)
dt 

⎞ 

⎠ (9) 

or equivalently 159 

R tot = R pop R ypc R int R eci (10) 

where R pop represents the population impact ( population effect ), 160 

R ypc collects the influence of economic growth per capita ( pro- 161 

duction per capita effect ), R int denotes the influence of energy 162 

intensity ( intensity effect ), and R eci represents the impact of en- 163 

ergy carbon intensity ( energy carbon intensity or carbonization ef- 164 

fect ). Their expressions are as follows: 165 

R pop = P T / P 0 (11) 

166 

 

167 

 

168 
exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t 

∗ ) ln 
(
Y j , T / Y j , 0 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t 

∗ ) ln 
(
I j , T / I j , 0 

)
dt 

⎞ 

⎠ 

exp 

⎛ 

⎝ 

k ∑ 

j=1 

∫ T 

0 
w j ( t 

∗ ) ln 
(
F j , T / F j , 0 

)
dt 

⎞ 

⎠ (6)
where w j (t ∗) is the weight function given by Eq. (4) , evalu- 
ated at point t ∗ ∈ [ 0 , T ] . Since that point is unknown, sev- 
eral weight functions may be considered, each leading to a dif- 
ferent decomposition method. Early proposals were based on 

Laspeyres ( Park 1992 ) and Marshall–Edgeworth indices ( Boyd 

et al. 1987 ; Ang and Lee 1994 ). Subsequently, Liu et al. (1992) ; 

 

C
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R ypc = exp 

⎛ 

⎝ 

k ∑ 

j=1 

(
L 
(
C j , 0 , C j,T 

)
/ L ( C 0 , C T ) 

)
ln 

(
Y j , T / Y j , 0 

)⎞ 

⎠ (12)

R int = exp 

⎛ 

⎝ 

k ∑ 

j=1 

(
L 
(
C j , 0 , C j,T 

)
/ L ( C 0 , C T ) 

)
ln 

(
I j , T / I j , 0 

)⎞ 

⎠ (13)

R eci = exp 

⎛ 

⎝ 

k ∑ 

j=1 

(
L 
(
C j , 0 , C j,T 

)
/ L ( C 0 , C T ) 

)
ln 

(
F j , T / F r , 0 

)⎞ 

⎠ (14)
Finally, the multiplicative time-series decompositions for 169 

the cumulative effects have the following expressions: 170 

 t ot 0 ,T = R t ot 0 , 1 R t ot 1 , 2 ....R t ot T−1 ,T (15) 
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Table 1 – Estimated effects with respect to the previous 
year (2008–2018). 

Years R tot R pop R ypc R int R eci R rsd 

2008 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2009 0.9034 1.0125 0.8768 0.9896 1.0282 1.0000 
2010 0.9610 1.0053 0.9969 0.9896 0.9690 1.0000 
2011 0.9976 1.0039 0.9913 0.9434 1.0625 1.0000 
2012 0.9800 1.0032 0.9568 1.0144 1.0065 1.0000 
2013 0.9266 0.9981 0.9868 1.0026 0.9382 1.0000 
2014 1.0096 0.9954 1.0138 0.9753 1.0257 1.0000 
2015 1.0357 0.9987 1.0353 0.9277 1.0798 1.0000 
2016 0.9691 0.9998 1.0072 1.0054 0.9572 1.0000 
2017 1.0407 1.0019 1.0604 0.9627 1.0176 1.0000 
2018 0.9835 1.0028 1.0467 0.9545 0.9815 1.0000 

where Rrsd denotes the residual effect. Since the LMDI method pro- 
vides exhaustive decompositions, Rrsd = 1 automatically holds true 
in the multiplicative case. 

 pop0 ,T = R pop0 , 1 R pop1 , 2 ....R popT−1 ,T (16) 

 ypc 0 ,T = R ypc 0 , 1 R ypc 1 , 2 ....R ypcT−1 ,T (17) 

 int 0 ,T = R int 0 , 1 R int 1 , 2 ....R int T−1 ,T (18) 

 eci 0 ,T = R eci 0 , 1 R eci 1 , 2 ....R eciT−1 ,T (19) 

. Decomposition of the change in Spanish 

HG emissions 

n this section, we present a multiplicative LMDI-II decom- 
osition of the change in Spanish GHG emissions, with the 
ollowing driving factors: population effect, production per 
apita effect, intensity effect, and energy carbon intensity ef- 
ect (carbonization effect). The decomposition is implemented 

t two levels (global and sectoral). The study period, namely 
008–2018, encompasses both a period of worldwide financial 
nd economic crisis and its subsequent recovery. We obtained 

ime series data on population (in millions), GHG emissions by 
ector (in thousands of tons), and gross domestic product by 
ector (in millions of euros), respectively, from the Population 

nd Housing Census, Air Emissions accounts, Annual Spanish 

conomic Accounts, and Energy Consumption Survey, all of 
hem elaborated by the Spanish Statistical Office (INE, 2021a ,
021b , 2021c) . We obtained time series data on energy con- 
umption by sector (in ktoe) from the Ministry for Ecologi- 
al Transition and Demographic Challenge of Spain (MITECO,
021) . We considered the following sectors: agriculture (in- 
luding agriculture, forestry, and fishing), industry (includ- 
ng construction), transport, commerce, and others (which in- 
ludes public administration and other services). 

.1. Results and discussion 

able 1 shows the estimated effects of the decomposition of 
he change in emissions in Spain (2008–2018) with respect to 
he previous year. 
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Table 2 – Estimated effects with respect to base year 2008. 

Years C tot C pop C ypc C int C eci C rsd 

2008 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2009 0.9034 1.0125 0.8768 0.9896 1.0282 1.0000 
2010 0.8682 1.0179 0.8741 0.9793 0.9964 1.0000 
2011 0.8661 1.0219 0.8665 0.9239 1.0587 1.0000 
2012 0.8488 1.0252 0.8291 0.9372 1.0655 1.0000 
2013 0.7864 1.0232 0.8182 0.9397 0.9997 1.0000 
2014 0.7940 1.0185 0.8295 0.9165 1.0254 1.0000 
2015 0.8223 1.0171 0.8588 0.8502 1.1072 1.0000 
2016 0.7969 1.0169 0.8650 0.8548 1.0598 1.0000 
2017 0.8293 1.0188 0.9172 0.8229 1.0785 1.0000 
2018 0.8156 1.0217 0.9601 0.7855 1.0586 1.0000 

where C rsd denotes the cumulative residual effect. 

Due to the great variability of the results, the need for 
omogenization, and ease of interpretation, Table 2 below 

resents the cumulative results, with year 2008 employed as 
he common base. 

GHG emissions in Spain showed a strong decrease from 

008 to 2018, with an 18.44% overall drop. Nevertheless, that 
rend did not continually decrease throughout the period, and 

 slight rise was observed in the last part of it. The results of
he decomposition ( Table 2 ) reveal two fundamental points: 

a) There was an opposite evolution of the intensity and 

carbonization factors. The higher the energy efficiency 
(defined as energy consumption per unit of output), the 
greater the carbonization effect (i.e., higher emissions per 
unit of energy consumed). Seemingly, energy efficiency 
measures such as increases in the use of less-energy- 
intensive technologies and a growing production and con- 
sumption of less-energy-intensive goods did not trans- 
late into a reduction in GHG emissions. Therefore, it could 

be interesting to formulate complementary measures to 
enhance further reductions in GHG emissions. Certainly,
these would include research and promotion of greener 
energies; development of technologies for the capture and 

storage of CO2, methane and other gases; recovery and re- 
cycling of gases; and stronger actions oriented towards a 
more circular economy. 

b) The per capita production effect had a strong influence,
which, excepting the last year, displayed the same pattern 

as the total effect. The variations in per capita produc- 
tion significantly marked the evolution of GHG emissions 
throughout the study period, which clearly reinforces the 
conclusions obtained by Fernández González et al. (2014) ,
showing the importance of implementing alternative mea- 
sures that simultaneously favor economic growth and a 
healthier atmosphere. 

Likewise, when analyzing Fig. 1 below two distinct phases 
ay be observed: first, a period of acute economic crisis and 

ts inertia (2008–2013), and second, a phase of gradual recovery 
2014–2018). 

In the first phase (2008–2013), a period of severe economic 
ecession, GHG emissions experienced a sharp drop by 21.36%.
he per capita production effect was the most influential fac- 
resno and Manuel Landajo, Tracking the change in Spanish 

l: A global and sectoral approach, Journal of Environmental 
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tion effect, contributed to this decrease. The most relevant 312 
Fig. 1 – Total cumulative effects from 2008 to 2018. 

tor, significantly contributing to the fall in emissions (19.18%).
As expected, lower production led to a reduction in GHG emis-
sions into the atmosphere. In that period, the intensity ef-
fect was significantly negative, contributing to the GHG emis-
sions reduction by 6.03%. In other words, certain energy ef-
ficiency actions contributed (albeit only slightly) to reducing
emissions. This may be a consequence of both the inertia of
the previous period and the inevitable lag between the time
R&D investments were made and results obtained. When an
economic crisis comes, economic agents try to reduce costs to
survive, and this adjustment process can also lead to forced
energy savings. 

In the second phase (a period in which there was some eco-
nomic recovery), GHG emissions slightly increased (by 3.71%
in 2013). The per capita production effect and, to some ex-
tent, the carbonization effect pushed the level of emissions
upward. In contrast, the intensity effect turned out to be neg-
ative, contributing to a reduction in pollutant gas emissions. It
was precisely in this phase that the intensity effect acquired
vital importance as a determining factor in controlling emis-
sions. The previous stage allowed the most efficient economic
agents to survive, and the economic growth in the current
phase favored investments both in new and more efficient
technologies and in the search for greener energies. 

In 2018, both the carbonization and intensity effects moved
in the same direction (reducing GHG emissions) and were suf-
ficiently important to counteract the production per capita
and population effects. This means that all the efforts made to
increase energy efficiency, as well as the investments in CO 2

capture systems and in promotion of green energies jointly
managed to keep at bay the effect caused by the economic re-
covery. Further study would be needed to know whether this
tendency will finally consolidate itself and Spain is able to
strongly grow while reducing its GHG emissions. 

Previous studies, applying different methodologies to
closely related aggregates, have reached results similar to
those displayed in this paper. More specifically, González-
Sánchez and Martín-Ortega (2021), based on multiple linear
regression models, concluded that both GDP and the energy
intensity effect have been the main driving forces in GHG
emission reductions in Spain. Serrano-Puente (2021) , relying
on an Input-Output LMDI method, found technical energy effi-
Please cite this article as: Paula Fernández González, María José P
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Fig. 2 – Cumulative effects in Agriculture from 2008 to 2018.

Fig. 3 – Cumulative effects in Industry from 2008 to 2018. 

ciency to be a leading contributor to GHG emissions reduction,
whereas Román-Collado and Colinet (2018) , employing a sim-
ilar (Input-Output LMDI) methodology, detected the intensity
effect as the most important driving force in reducing energy
consumption and therefore GHG emissions. 

When analyzing the results by economic sector (see Figs.
2 –5 below), we observed that the intensity effect has been the
protagonist in almost all areas, with the exceptions of the in-
dustrial sector (where the per capita income effect played the
leading role) and the commercial sector (mainly influenced by
the carbonization effect). 

In the case of the agricultural sector ( Fig. 2 ), during the pe-
riod analyzed there was a slight, gradual increase in emis-
sions, mainly due to the carbonization effect and (to a lesser
extent) to the per capita production effect. The population ef-
fect was slightly positive but had no great influence on the
result. Only the intensity effect was negative, also being the
only one that partially offset the increase in emissions. In the
agricultural sector, the use of more efficient technologies was
fundamental, but insufficient to reduce GHG emissions. This
clearly suggests that the use of greener energies and gas cap-
ture systems may be indispensable in the future. Another rel-
evant issue is the promotion of a change in consumer prefer-
ences toward greener products, with a reduction in the con-
sumption of emission-intensive agricultural products such as
meat. 

Regarding the industrial sector ( Fig. 3 ), there was a sharp
(29.74%) decrease (with slight rebounds) in GHG emissions
throughout the study period. All effects, except the popula-
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Fig. 4 – Cumulative effects in Transport from 2008 to 2018. 
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ector, all led to a significant decrease in GHG emissions. Only 
n the last years of the study period, because of the economic 
ecovery, did this effect lose some importance as a driver of 
missions reduction. 

Another effect that had a negative (albeit small) impact 
as the carbonization effect. Its pattern of behavior was sim- 

lar to that of the total effect. The use of greener energies and 

he shift toward the production of fewer emission-intensive 
oods also contributed to the reduction of gas emissions. How- 
ver, this effect experienced ups and downs (with no clear 
rend) throughout the study period. 

Finally, the intensity effect (to some extent) was also nega- 
ive overall, although there were some periods (namely those 
ith stronger economic impact of the economic shock) in 

hich this effect contributed to increased emissions. As com- 
ented above, in a crisis, industrial companies need a period 

f adaptation to the new situation. At first, they increase emis- 
ions because they are possibly trying to reduce costs, whereas 
n a latter period they invest in technology to improve their 
roductivity and efficiency, and thus they are able to compete 

n the market. 
As for the Transport sector ( Fig. 4 ), there has also been a

eduction of 1.49% in emissions, favored by the intensity ef- 
ect and, to a lesser extent, by the carbonization effect. The 
er capita production effect, whose behavior pattern was sim- 

lar to that of the total effect, also contributed to that reduc- 
ion until 2013, but after that date it boosted the increase in 

missions, and its overall effect at the end of the study pe- 
iod was positive. This partly offset the influence of the inten- 
ity and carbonization effects, although the overall figure was 
till negative. That is, this sector has seen a reduction in its 
HG emissions. The increasing use of electric and hybrid ve- 
icles (replacing combustion vehicles), more efficient engines 

resulting from technological innovation), improved commu- 
ication networks, the promotion of public transport, and the 
se of nonmotorized vehicles such as bicycles and scooters 
ave all contributed to the reduction in emissions. 

Regarding the commercial sector ( Fig. 5 ), there was only a 
.84% reduction in emissions. While that reduction is certainly 
ild, it is interesting to analyze it to better understand the 

erformance of that sector. In this case, emission reductions 
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Fig. 6 – Cumulative effects in Others from 2008 to 2018. 

ame exclusively from the carbonization effect. The intensity 
ffect was positive during almost the entire period, and the per 
apita production effect—although negative (because of the 
ecession) in the first years studied—was also positive overall.
owever, these two effects were unable to offset the reduction 

n emissions driven by the carbonization effect. Issues like the 
reener attitudes of consumers and producers and the use of 
rading platforms and recycled products, among others, were 
ufficient merely to avoid increases in emissions. However, it 
emains a concern that the intensity effect was positive, so 
urther innovation and promotion of more efficient technolo- 
ies could be of great interest. 

Regarding the last of the sectors considered ( Fig. 6 ), we ob-
erved a 1.57% reduction in emissions, driven exclusively by 
he intensity effect. The other effects, especially the per capita 
roduction effect, were positive but insufficient to offset the 

nfluence of the intensity effect. In this case, the development 
f new technologies and, above all, access to and dissemina- 
ion of administrative information by telematic means could 

e key points in reducing GHG emissions into the atmosphere.
Finally, it should be noted that the various sectors have un- 

qual weights in terms of their importance as GHG emitters 
nd, therefore, the consequences of their functioning have dif- 
erent grades of relevance in reducing GHG emissions. Specif- 
cally, Fig. 7 shows their respective levels of involvement and 

heir evolution. 
During the period analyzed, Industry was the most rele- 

ant sector, followed by Others and Agriculture, while Com- 
erce was the least influential one. When considering two dif- 
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 the global count of GHG emissions in Spain (2008-2018). 
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Fig. 7 – Evolution of sector weights as contributors to

ferent phases (namely 2008–2013 and 2014–2018), in the first
period (the economic crisis phase), Agriculture gained impor-
tance against Transport, while in the second period (the eco-
nomic recovery phase), the Others sector grew as compared
to Industry. In any event, the latter was the most relevant sec-
tor throughout the whole period, and therefore it was (and re-
mains) crucial in reducing emissions. 

4. Discussion and conclusions 

The greenhouse effect and the need to control the level of
GHG emissions into the atmosphere is a serious concern for
both national and international organizations. In this paper
we studied the evolution of GHG emissions in Spain in 2008–
2018, proposing environmental actions that contribute to re-
duce the level of emissions. 

For this purpose, we outlined a methodology, based on log-
arithmic weighted average index numbers, that accurately de-
composed the changes experienced by the aggregate into a set
of predetermined factors. These factors are population effect,
per capita production effect, intensity effect, and carboniza-
tion effect. 

The result showed a significant (18.44%) reduction in over-
all GHG emissions to the atmosphere. There were ups and
downs during the period, but the total effect was clearly neg-
ative. While the per capita production effect was not the most
important factor when the complete period is considered, it
was clearly one of the main determinants, particularly in the
first part of the period, and its behavior pattern was similar to
that of the total effect. In times of economic crisis, downward
production adjustments naturally contribute to reducing the
level of emissions, while the production increases contribute
to make them rise when the recovery arrives. 

Another vitally important effect (the most relevant when
considering the whole period) was the intensity effect, which
was particularly negative in the first years of the severe eco-
Please cite this article as: Paula Fernández González, María José P
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ally leading to a GHG emissions reduction. 
The carbonization effect was positive during most of the

study period, thus contributing to an increase in GHG emis-
sions by 5.86%. Moreover, its evolution was opposite to that of
the intensity effect most of the time. The growing use of green
energies, gas capture, and storage systems, and the promotion
of a more circular economy certainly remain pending tasks for
the country. 

The population effect drove emissions slightly upward
throughout the entire study period, especially in recent years.
In the early period, because of the economic crisis, and al-
though with a certain delay, the lower number of births and
a lower migratory pressure reduced the Spanish population
and lessened the positive influence of this effect on the level
of emissions. 

Our analysis of the evolution of GHG emissions by sector of
activity revealed that the intensity effect was noticeable, espe-
cially in the last years of the study (which coincided with an
economic recovery), in the Agriculture, Transport, and Other
Services sectors, contributing to reduce GHG emissions by a
range between 2% and 6% depending on the sector. The in-
tensity effect was almost neutral in Commerce. In that sec-
tor, there seems to have been a lack of sufficient measures
to promote innovation, research and development of more ef-
ficient technologies, the dissemination of more environmen-
tally friendly management models, and changes in consumer
preferences toward green products. 

The carbonization effect was negative in most of the sec-
tors analyzed, particularly in Industry. In some others, like
Agriculture and Other Services, it was a burden for the reduc-
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tion of GHG emissions, so some sectors might benefit from 457 

a more intense promotion of green energies, a greater use of 458 

gases and waste, and, in general, a more circular economy. 459 

The per capita production effect was strongly negative in 460 

Industry and slightly positive in all the other economic sec- 461 

tors. The crisis particularly hit the industrial sector, reducing 462 

its production and therefore its GHG emissions. However, it is 463 

also evident that, to achieve a negative per capita effect with- 464 

out weakening economic growth, a change in the attitudes of 465 

consumers toward more eco-friendly products and a shift of 466 

producers to lower emitting sectors will be needed. In this re- 467 

gard, advertising and promotion of green attitudes, a change 468 

in the education of the population (both being matters that 469 

would fall mainly in the sphere of the government), and the 470 

promotion of less-polluting sectors could greatly help reduce 471 
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to low carbon footprint goods and services), (g) promotion of 515 

green attitudes (recycle and re-use), and (h) encouragement of 516 

investment in and diffusion of more efficient and less pollut- 517 

ing technologies. 518 

In short, innovation, R&D, and transmission of more eco- 519 

friendly technologies—together with promotion and use of 520 

green energies, a more circular economy, and consumer green 521 

attitudes—have all revealed themselves as the best strategies 522 

to reduce GHG emissions, and therefore to combat climate 523 

change. ( Eqn 7 , 9-19 ). Q2 
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missions. 
The above breakdown of the variations in GHG emissions 

o the atmosphere by the Spanish economy highlights the im- 
ortance of implementing decarbonization measures, but it 
lso shows the need to deepen and take additional energy ef- 
ciency measures oriented to promoting further reductions in 

he level of emissions. Among others, these would include the 
ollowing. 

i) In the case of the agriculture sector: methane gas cap- 
ture, heat and power generation from manure and agricul- 
tural waste, reduction in fertilizer inputs, and promotion 

of more energy-efficient technologies. 
ii) In the commerce and industrial sectors: energy audits and 

energy management teams to develop, implement, and 

evaluate a strategic energy saving plan; the use of LED and 

solar lighting; optimizing air compressors, development 
and use of more energy-efficient technologies; carbon cap- 
ture and storage; and industrial waste heat recovery. 

ii) In the construction, public buildings, and household sec- 
tors: increasing material efficiency; using low pollutant 
machinery, suitable insulation, and ventilation systems; 
using green energies (microgrids), smart buildings, and 

renovation of appliances; and electrification of heating sys- 
tems. 

v) In the case of the transport sector: change from fossil- 
fuel motors to hybrid or electric vehicles, reduction of the 
transport demand by promoting nonmotorized vehicles 
like bikes and public transport, promotion of vehicle shar- 
ing, use of less-polluting engines, switch in preferences 
from air transport to high-speed trains, and even the use 
of greener energies. 

Starting with the need of a clear and transparent regulation 

or favoring fair competition and avoiding market failures,
ome useful political measures that may be implemented 

ould include: (a) the establishment of financial incentives 
o invest and encourage the use of more efficient technolo- 
ies, (b) the use of hydrogen made with zero-carbon electric- 
ty, (c) the use and advertising of “information labeling,” (d) the 
etting down of rigorous certification systems for both appli- 
nces and buildings (Leadership in Energy and Environmen- 
al Design), (e) incorporation of new performance standards 
on buildings, equipment, and transportation), (f) inducement 
f changes in consumer preferences (e.g., by shifting demand 
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