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Abstract

In this paper we analyze the dynamical behavior of a mosquito population with diapausing stages through 
a mathematical model derived from the classical McKendrick-von Forester equations. The absence of mono-
tonicity properties and the structure of the equations are noticeable features that hinder the use of commonly 
applied tools in the field. Our main contribution is to provide a novel methodology to derive criteria of global 
attractivity of a positive solution for periodic and discontinuous delay differential equations. From an ap-
plied perspective, we simulate the evolution of Aedes aegypti with diapausing stages. Moreover, we discuss 
the influence of the diapause parameters on the creation/suppression of population oscillations.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Gurney et al. [9] proposed the delay differential equation

x′(t) = px(t − τ)e−αx(t−τ) − μx(t) (1.1)

for studying the dynamical behavior of the Australian sheep blowfly Lucilia cuprina. From a 
biological perspective, x(t) denotes the density of mature individuals at time t (days), τ repre-
sents the required time from eggs to sexually mature adults, p is the maximum per capita daily 
egg production rate (corrected for egg to adult survival), 1

α
is the size at which the population 

reproduces at its maximum rate, and μ stands for the per capita daily adult death rate. Generally 
speaking, equation (1.1), or more generally, equation of the form
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x′(t) = px(t − τ)f (x(t − τ)) − μx(t) (1.2)

provides an adequate modeling framework for describing the usual unimodal relationship be-
tween future recruitment and current population [2,5,9]. In the ecological literature [3,4], it 
is broadly documented that the advent of harsh winters or dry seasons leads to a state of low 
metabolic activity, reduced morphogenesis or limited physical activity in many invertebrate or-
ganisms, e.g., ticks, silkworm, ladybirds and dragonflies. This phenomenon, known as diapause, 
does not fit well in (1.2). The main reason of this limitation is that equation (1.2) assumes implic-
itly that the growth and mortality rates do not change over time, an oversimplifying condition for 
populations experiencing strong variations during their life-cycle. In a recent paper [13], Lou et 
al. proposed a variant of (1.2) to incorporate diapause periods. A key ingredient of this model is 
that the annual growth period is divided into three intervals, namely, the normal growth period, 
the diapause period and the post diapause period. Using the classical McKendrick-von Forester 
equations and integrating along the characteristic lines, they arrived at a scalar delay differential 
equation with time periodic coefficients. However, despite its apparent simplicity, the mathemat-
ical analysis of the model is not an easy task. The absence of monotonicity properties and the 
structure of the equations hinder the use of commonly applied tools in the field [19,20]. More-
over, as stressed in Section 6, the model displays a broad spectrum of dynamical patterns beyond 
the simple attraction to a periodic solution.

The main aim of this paper is to derive criteria of global attractivity of a positive solution for 
mosquito population models with diapausing stages. In brief, the main three contributions of our 
results in comparison with [1,13] can be outlined as follows: 1.- Our results are not based on the 
theory of monotone flows and cover the classical unimodal birth rates. 2.- The persistence and 
global attractivity results are stated in terms of the relevant parameters of the model instead of 
the spectral radius of an abstract (and unknown) operator. 3.- The introduction of nonmonotone 
birth rates allows us to reproduce the common oscillations observed in many insect populations 
[2,5,9]. The method of proof consists of relating the dynamical behavior of the model with a 
suitable scalar discrete equation. We stress that the approach of this paper can be applied for 
studying the dynamics of other types of delay differential equations with seasonal succession 
[10,15,16].

The rest of the paper is organized in six sections. In Section 2 we describe the modeling 
framework derived in [13] for the reader’s convenience. It worth mentioning that our model 
is valid for studying the dynamical behavior of any structured population for which there is 
an additional mortality depending on the age group during an interval of the annual growth 
period. In Section 3, we deduce some permanence/persistence properties for the solutions of 
the model. In Section 4 we state the main theorems of this paper. In Section 5 we apply our 
results in particular situations. We stress that the modeling framework and results are sufficiently 
versatile and simple to match experimental observations. To illustrate this potential, we simulate 
the dynamical behavior of a population of Aedes aegypti with diapausing stages. Furthermore, 
we discuss the influence of the diapause parameters on the creation/suppression of oscillations.

Many results of this paper are based on the next variant of the classical fluctuation lemma (the 
proof is given in the Appendix).

Lemma 1.1 (A variant of the fluctuation lemma). Let h : [a, +∞) −→ R be a bounded and 
continuous function with

lim inf
x→+∞h(x) < lim suph(x).
x→+∞
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Then, there exist two sequences {tn} and {sn} tending to +∞ with the following properties:

(P1) limn→+∞ h(tn) = lim supx→+∞ h(x) and h(tn) is a local maximum for all n ∈N .
(P2) limn→+∞ h(sn) = lim infx→+∞ h(x) and h(sn) is a local minimum for all n ∈N .

2. Model formulation

The life cycle of the insect is divided into two groups: immature (I (t)) and mature (M(t)). 
The development duration from egg to adult is τ > 0. Within each group, all individuals have the 
same birth and death rates. If u(a, t) represents the population density at time t of age a, then 
the population sizes for immature and adult individuals are given by

I (t) =
τ∫

0

u(a, t) da and M(t) =
+∞∫
τ

u(a, t) da,

respectively. During a regular life cycle, we can use the classical McKendrick-von Forester equa-
tions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂a
(a, t) + ∂u

∂t
(a, t) = −μ(a)u(a, t),

u(0, t) = b(M(t)),

u(a,0) = u0(a),

(2.1)

to describe the dynamical behavior of I (t) and M(t). In (2.1), b(M(t)) is the birth rate function 
and depends on the adult population size; u0(a) stands for the initial age distribution. The death 
rates during the normal growth period are stage-dependent with μ(a) = μI for a ≤ τ and μ(a) =
μM for a ≥ τ .

Using (2.1), we deduce that

I ′(t) =
τ∫

0

∂

∂t
u(a, t) da =

τ∫
0

(
− ∂

∂a
u(a, t) − μIu(a, t)

)
da.

Thus,

I ′(t) = −u(τ,0) + u(0, t) − μI I (t) = −u(τ,0) + b(M(t)) − μI I (t).

Analogously, we can obtain that

M ′(t) = u(τ,0) − u(+∞, t) − μMM(t).

We assume that u(+∞, t) = 0 for all t . This is a realistic assumption because no individual can 
live forever. Next we determine the expression of u(τ, t) using the technique of the integration 
along the characteristic lines [19]. Denote by ζ s(t) = u(t − s, t) with t − s ≤ τ . Then, by (2.1),
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d

dt
ζ s(t) = −μI ζ

s(t).

Notice that ζ s(s) = u(0, s) = b(M(s)) and u(τ, t) = ζ t−τ (t). Thus, ζ t−τ (t) = b(M(t −τ))e−μI τ

because ζ t−τ (t) is the solution of the initial value problem

{
x′ = −μIx,

x(t − τ) = b(M(t − τ)),

evaluated at time t . With this expression we can describe the dynamical behavior of the popula-
tion through the model

{
I ′(t) = −b(M(t − τ))e−μI τ + b(M(t)) − μI I (t)

M ′(t) = b(M(t − τ))e−μI τ − μMM(t).
(2.2)

Once we know how to model the dynamical behavior of an insect population with a regular 
cycle, we introduce diapausing stages. We suppose that the annual growth period consists of 
three intervals, namely, the normal growth period, the diapause period and the post-diapause 
period with lengths T1, T2, T3, respectively. We normalize the annual growth period by 1. We 
assume that T3 = τ with τ the maturation threshold. If we fix T2 = τd , then T1 = 1 − τd − τ .

The dynamical behavior of a seasonal population can be described by the following system 
(I), consisting of (2.3), (2.4) and (2.5) below.

(A1) During the normal growth period, i.e., t ∈ [n, n + 1 − τ − τd ],
{

I ′(t) = −b(M(t − τ)) e−μI τ + b(M(t)) − μI I (t),

M ′(t) = b(M(t − τ)) e−μI τ − μMM(t),
(2.3)

(we are using directly system (2.2)).
(A2) During the diapause period, the development of mature and immature individuals stops 

and the individuals experience a mortality rate depending on the group, namely dI and dM . 
Thus, when n + 1 − τ − τd < t < n + 1 − τ ,

{
I ′(t) = −dI I (t),

M ′(t) = −dMM(t).
(2.4)

(A3) For the post-diapause period, i.e., when n +1 − τ ≤ t < n +1, the individuals have a matu-
ration time τ + τd . The novelty is that during the diapause period, the immature population 
was reduced by a mortality rate (dI ) according to (2.4). Repeating the analysis to derive 
model (2.2), we obtain that

{
I ′(t) = −u(τ + τd, t) + b(M(t)) − μI I (t),

M ′(t) = u(τ + τ , t) − μ M(t).
d M
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Informally speaking, the number of individuals of age τ + τd at time t is the number of 
individuals of age τ at time t − τd after a reduction due to the mortality during the diapause 
period, that is,

u(τ + τd, t) = u(τ, t − τd) e−dI τd = b(M(t − τ − τd)) e−μI τ−dI τd .

Thus, we arrive at the model

{
I ′(t) = −b(M(t − τ − τd)) e−μI τ−dI τd + b(M(t)) − μI I (t),

M ′(t) = b(M(t − τ − τd)) e−μI τ−dI τd − μMM(t).
(2.5)

3. Model analysis

3.1. The well-posedness

Since the equations for M(t) can be decoupled in (2.3), (2.4) and (2.5), the dynamical behavior 
of the model is determined by

M ′(t) =

⎧⎪⎨
⎪⎩

b(M(t − τ)) e−μI τ − μMM(t), if t ∈ [n,n + 1 − τ − τd ],
−dMM(t), if t ∈ (n + 1 − τ − τd, n + 1 − τ),

b(M(t − τ − τd)) e−μI τ−dI τd − μMM(t), if t ∈ [n + 1 − τ,n + 1),

(3.1)
with n ∈N ∪ {0}. We assume the following conditions:

(H1) The birth rate can be expressed as b(x) = xf (x) with f : [0, +∞) −→ (0, +∞) a strictly 
decreasing function of class C1. Moreover, b is a bounded function.

(H2) τ + τd < 1.

A solution of (3.1) is a continuous and piece-wise C1-function u : [−τ − τd, +∞) −→ [0, +∞)

that satisfies the equation in the intervals (n, n + 1 − τ − τd), (n + 1 − τ − τd, n + 1 − τ), 
(n + 1 − τ, n + 1) for all n = 0, 1, . . . and both one-sided derivatives exist at the break points. We 
will employ the notation u′(t+0 ) = limt→t+0

u′(t) and u′(t−0 ) = limt→t−0
u′(t). We observe that, 

for example, u′(n+) = b(u(n − τ))e−μI τ − μMu(n).
Let

C([−τ − τd,0], I ) = {φ : [−τ − τd,0] → I continuous}.
For any initial condition φ ∈ C([−τ − τd, 0], [0, +∞)), we can find a unique solution u(t, φ)

(defined for all t ≥ 0) so that u(t, φ) = φ(t) for all t ∈ [−τ − τd, 0] because the solutions of the 
equations

M ′(t) = b(M(t − τ)) e−μI τ − μMM(t),

M ′(t) = −dMM(t),

M ′(t) = b(M(t − τ − τ )) e−μI τ−dI τd − μ M(t)
d M
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are defined for all t ≥ 0. Furthermore, if we take an initial function in C([−τ − τd, 0], (0, +∞)), 
u(t, φ) > 0 for all t ≥ 0. This is a consequence of the variation of the constant formula because 
(3.1) can be written as

M(t) = e−μM(t−n)

⎛
⎝ t∫

n

b(M(s − τ)) e−μI τ eμM(s−n)ds + M(n)

⎞
⎠ ,

for t ∈ [n, n + 1 − τ − τd ];

M(t) = e−dM(t−(n+1−τ−τd ))M(n + 1 − τ − τd)

for t ∈ [n + 1 − τ − τd, n + 1 − τ ];

M(t) = e−μM(t−(n+1−τ))

×
⎛
⎝ t∫

n+1−τ

b(M(s−(τ + τd))) e−μI τ−dI τd eμM(s−(n+1−τ)) ds + M(n+1−τ)

⎞
⎠

for t ∈ [n + 1 − τ, n + 1]. We will refer to these last solutions as positive solutions.
First we give an useful result.

Lemma 3.1. Assume that (H1) and (H2) hold. If there exists a positive solution u(t) of (3.1) so 
that limt→+∞ u(t) = ξ with ξ ∈ [0, +∞), then ξ = 0.

Proof. Take u(t) a positive solution of (3.1) so that limt→+∞ u(t) = ξ . Assume, by contradic-
tion, that ξ > 0. Next we take two constants α, β with the following properties:

• 0 < α < 1 < β ,
• β e−dMτd < α.

Since limt→+∞ u(t) = ξ with ξ > 0, there is t∗ > 0 so that

u(t) ∈ (α ξ,β ξ)

for all t ≥ t∗. In particular, for n ∈ N with n + 1 − τ − τd > t∗, we have that αξ < u(n + 1 − τ)

and u(n + 1 − τ − τd) < βξ . On the other hand, using the second equation of (3.1),

u(n + 1 − τ) = u(n + 1 − τ − τd) e−dMτd < β ξ e−dMτd .

This is a contradiction with the choice of α and β . �
Next we demonstrate that the positive solutions of (3.1) are uniformly bounded.
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Proposition 3.1. Assume that (H1) and (H2) hold. Then, for any positive solution u(t) of (3.1),

lim sup
t→+∞

u(t) ≤ 	e−μI τ

μM

,

with 	 an upper bound of b(x).

Proof. Take u(t) a positive solution of (3.1). We observe that if

u(t0) >
	e−μI τ

μM

for some t0 ∈ (0, +∞), then u(t) is strictly decreasing in a neighborhood of t0. Indeed, from the 
first and third equation in (3.1), we have that

u′(t)
μM

≤ 	e−μI τ

μM

− u(t),

if t ∈ (n, n + 1 − τ − τd) and

u′(t)
μM

≤ 	e−μI τ e−dMτd

μM

− u(t) ≤ 	e−μI τ

μM

− u(t),

if t ∈ (n + 1 − τ, n + 1). Notice that in the intervals (n + 1 − τ − τd, n + 1 − τ), u(t) is always 
strictly decreasing by the expression of the second equation of (3.1). From these inequalities, the 
conclusion of the proposition is clear. �
3.2. Global extinction vs. permanence

A strength of the following results is that they are stated in terms of the biological parameters 
of the model instead of the spectral radius of an abstract operator. First, we provide a criterion 
for the global extinction of the population in model (3.1).

Proposition 3.2. Assume that (H1) and (H2) hold. If

e−μI τ f (0)

μM

< 1, (3.2)

0 is a global attractor, that is, limt→+∞ u(t) = 0 for any positive solution u(t) of (3.1).

Proof. First we observe that by (H1),

u′(t) ≤ u(t − τ)f (0) e−μI τ − μMu(t), (3.3)

if t ∈ (n, n + 1 − τ − τd) and

u′(t) ≤ u(t − τ − τd)f (0) e−μI τ − μMu(t), (3.4)
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if t ∈ (n + 1 − τ, n + 1). Notice that in the intervals (n + 1 − τ − τd, n + 1 − τ), u(t) is al-
ways strictly decreasing by the expression of the second equation of (3.1). Next we take a 
positive solution u(t) of (3.1). Assume, by contradiction, that u(t) � 0 as t → +∞. Then, 
lim supt→+∞ u(t) = ξ > 0, (recall that u(t) is bounded by Proposition 3.1). By Lemma 3.1, 
we can assume that u(t) � ξ as t → +∞, otherwise, we have already found a contradiction. 
Then, lim inft→+∞ u(t) < lim supt→+∞ u(t). Applying Lemma 1.1, we can take a sequence 
{tn} → +∞ with ξ = lim supt→+∞ u(t) = limn→+∞ u(tn), so that u(tn) is a local maximum 
for all n ∈ N . Then, u′(t−n ) ≥ 0 for all n ∈ N . Since u(t) is strictly decreasing in the intervals 
(m + 1 − τ − τd, m + 1 − τ) with m ∈N , we conclude that tn does not belong to these intervals. 
From inequalities (3.3) and (3.4), we deduce that

u(tn) ≤ f (0)e−μI τ

μM

u(sn) (3.5)

with sn ∈ {tn − τ − τd, tn − τ }. Since u(tn) is bounded, it is not restrictive to assume ρ =
limn→+∞ u(sn) ≤ lim supt→+∞ u(t) = limn→+∞ u(tn) = ξ . On the other hand, making n →
+∞ in (3.5) and using (3.2), we conclude that ξ < ρ, a contradiction. �

To guarantee that the positive solutions of (3.1) are bounded apart from zero, we impose two 
additional conditions:

(H3) f (0) e−μI τ−d∗τd

μM
> 1 with d∗ = max{dI , dM}.

(H4) edMτd < e−μM(1−τ−τd ) + (1 − e−μM(1−τ−τd )) f (0) e
−μI τ

μM
.

From a biological point of view, (H3) is a sufficient condition to guarantee the survival of the 
species for the normal-growth and post diapause periods in the absence of diapause. Condition
(H4) indicates when the decrease of the population for the diapause period does not prevent the 
survival during the other periods. Notice that condition (H4) holds when dM and τd are small 
because it involves a convex combination and f (0) e

−μI τ

μM
> 1 by (H3).

Next we give a preliminary result to prove that the positive solutions are bounded apart from 
zero.

Lemma 3.2. Assume that (H1), (H2), (H3) and (H4) hold. If u(t) is a positive solution of (3.1), 
then there does not exist a sequence {tn} ⊂ ⋃

m∈N∪{0}[m + 1 − τ − τd, m + 1 − τ ] tending to 
+∞ with the following properties:

(P1) u(tn) = min{u(t) : t ∈ [0, tn]}.
(P2) limn→+∞ u(tn) = 0.

Proof. Assume, by contradiction, that such a sequence {tn} exists. Since u(t) is strictly decreas-
ing in the intervals (m + 1 − τ − τd, m + 1 − τ) for all m ∈ N ∪{0}, it is not restrictive to assume 
that {tn} ⊂ {m + 1 − τ : m ∈ N}. On the other hand, we notice that

u′(t) ≥ −μ∗u(t) (3.6)

for all t ∈ [tn − 1, tn] except for the break points tn − τd and tn + τ − 1 with μ∗ = max{dM, μM}. 
Using that x(t) is continuous and (3.6), we obtain that
490



A. Ruiz-Herrera, P. Pérez and A.M. San Luis Journal of Differential Equations 337 (2022) 483–506
u(tn) ≥ e−μ∗s u(tn − s)

for all s ∈ [0, 1], or equivalently,

u(tn) eμ∗s ≥ u(tn − s)

for all s ∈ [0, 1]. Thus,

u(tn − s) ≤ u(tn) eμ∗ (3.7)

for all s ∈ [0, 1] and n ∈N . Now, by (H3) and (H4), we can pick δ > 0 so that

f (δ) e−μI τ−d∗τd

μM

> 1 (3.8)

and

edMτd < e−μM(1−τ−τd ) + f (δ)
e−μI τ (1 − e−μM(1−τ−τd ))

μM

. (3.9)

In addition, by (P2) and (3.7), we can take n0 > 0 large enough so that

u(tn0 − s) < δ for all s ∈ [0,1]. (3.10)

We divide the rest of the proof into three steps:

Step 1: We prove that u′((tn0 − τd)−) > 0.
We know by the second equation of (3.1) that

u(tn0) edMτd = u(tn0 − τd).

Using the first equation of (3.1), we deduce that

u′((tn0 − τd)−) = u(tn0 − τd − τ)f (u(tn0 − τd − τ)) e−μI τ − μM u(tn0 − τd)

≥ u(tn0) f (δ) e−μI τ − μM edMτd u(tn0).

In this inequality, we have used that u(tn0 − τd − τ) ≥ u(tn0) by (P1), u(tn0 − τd − τ) ≤ δ by 
(3.10) and (H1). Finally, notice that, using (3.8),

u(tn0)
(
f (δ) e−μI τ − μM edMτd

)
> 0.

Step 2: We prove that u′(tn0 − τd − s) > 0 for all s ∈ (0, 1 − τd − τ).
Assume, by contradiction, that there is a first s∗ ∈ (0, 1 − τd − τ) so that u′(tn0 − τd − s∗) =

0. We stress that by the previous step, the definition of s∗ is meaningful. Recall that u′(t) is 
continuous in (tn0 − 1 + τ, tn0 − τd) and limt→(tn0 −τd )− u′(t) = u′((tn0 − τd)−). Therefore, u(t)

is strictly increasing in (tn − τd − s∗, tn − τd). This implies that
0 0
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u(tn0 − τd − s∗) ≤ u(tn0 − τd) = edMτd u(tn0). (3.11)

On the other hand, using the first equation of (3.1), (3.10) and (H1), we obtain that

μM u(tn0 − τd − s∗) = u(tn0 − τd − s∗ − τ)f (u(tn0 − τd − s∗ − τ)) e−μI τ

≥ u(tn0 − τd − s∗ − τ)f (δ) e−μI τ .
(3.12)

Notice that by (P1), we have that

u(tn0 − τd − s∗ − τ) ≥ u(tn0).

Using (3.11), (3.12) and this last inequality, we arrive at

edMτd μM u(tn0) ≥ u(tn0) f (δ) e−μI τ .

This is a contradiction with (3.8).

Step 3: Conclusion.
Using the previous step, u(t) is strictly increasing in the interval (tn0 − 1 + τ, tn0 − τd). Thus, 

u(tn0 − 1 + τ) ≤ u(tn0 − τd). Furthermore, for all t ∈ (tn0 − 1 + τ, tn0 − τd), we have that

u′(t) ≥ u(tn0) f (δ) e−μI τ − μM u(t).

From this expression we deduce that

u(tn0 − τd) ≥ u(tn0 − 1 + τ) e−μM(1−τ−τd ) + u(tn0)
f (δ) e−μI τ

μM

(
1 − e−μM(1−τ−τd )

)
.

Since u(tn0 − τd) = u(tn0)e
dMτd , we arrive at

u(tn0) edMτd ≥ u(tn0 − 1 + τ) e−μM(1−τ−τd ) + u(tn0)
f (δ) e−μI τ

μM

(
1 − e−μM(1−τ−τd )

)
. (3.13)

If edMτd ≤ f (δ) e−μI τ

μM

(
1 − e−μM(1−τ−τd )

)
, we have already found a contradiction in (3.13). If 

edMτd >
f (δ) e−μI τ

μM

(
1 − e−μM(1−τ−τd )

)
, then

u(tn0)

(
edMτd − f (δ)

e−μI τ

μM

(
1 − e−μM(1−τ−τd )

))
1

e−μM(1−τ−τd )
≥ u(tn0 − 1 + τ).

Using (P1), we have that u(tn0 − 1 + τ) ≥ u(tn0). Hence,

(
edMτd − f (δ)

e−μI τ

μM

(
1 − e−μM(1−τ−τd )

))
1

e−μM(1−τ−τd )
≥ 1.

This is a contradiction with (3.9). The proof is completed. �
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Theorem 3.1. Assume that (H1), (H2), (H3) and (H4). Then, given u(t) a positive solution of 
(3.1),

lim inf
t→+∞ u(t) > 0.

Proof. Assume, by contradiction, that lim inft→+∞ u(t) = 0. Then, we can take a sequence 
{tn} → +∞ with the following properties:

(P1) u(tn) = min{u(t) : t ∈ [0, tn]} for all n ∈N .
(P2) limn→+∞ u(tn) = 0.

The construction of this sequence is as follows. Define q = min{u(t) : t ∈ [−τ − τd, 0]}. Take 
tn = min{t ∈ [0, +∞) : u(t) = q

n
}.

Consider

F1 =
⋃

m∈N∪{0}
(m,m + 1 − τ − τd),

F2 =
⋃

m∈N∪{0}
[m + 1 − τ − τd,m + 1 − τ ],

F3 =
⋃

m∈N∪{0}
(m + 1 − τ,m + 1].

By Lemma 3.2, there is n0 ∈N so that tn /∈F2 for all n ≥ n0. Otherwise, we have already found 
the contradiction.

Next we distinguish between two cases:

Case 1: tn ∈F1 for some n ∈N .
Suppose that tn ∈ (m, m +1 −τ −τd) with m ∈ N . The function u(t) is of class C1 in (m, m +

1 −τ −τd). Notice that (P1) implies that u′(tn) ≤ 0. Using the first equation of (3.1), we conclude 
that

u(tn − τ)f (u(tn − τ)) e−μI τ − μM u(tn) ≤ 0

or equivalently,

u(tn − τ)f (u(tn − τ)) e−μI τ ≤ μM u(tn). (3.14)

By (P1), we know that u(tn − τ) ≥ u(tn) and so,

f (u(tn − τ)) e−μI τ

μM

≤ 1. (3.15)

The function

h(x) = f (x) e−μI τ
μM
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is strictly decreasing, h(0) > 1 and limx→+∞ h(x) = 0 (see (H1) and (H3)). Let ξ ∈ (0, +∞) be 
the constant satisfying h(ξ) = 1. Then, inequality (3.15) implies that u(tn − τ) ≥ ξ . Finally, as a 
direct consequence of (3.14), we arrive at

u(tn) ≥ min{x h(x) : x ∈ [ξ, ρ]} (3.16)

with ρ > 0 an upper bound of u(t), see Proposition 3.1.

Case 2: tn ∈F3 for some n ∈N .
Suppose that tn ∈ (m + 1 − τ, m + 1]. The function u(t) is of class C1 in (m + 1 − τ, m + 1)

and the left-side derivative exists at m + 1. Thus, by (P1),

u′(tn) ≤ 0 if tn ∈ (m + 1 − τ,m + 1)

and

u′(t−n ) ≤ 0 if tn = m + 1.

In both cases, using the third equation of (3.1), we obtain that

u(tn − τ − τd)f (u(tn − τ − τd)) e−μI τ−dI τd ≤ μMu(tn). (3.17)

By (P1), we know that u(tn − τ − τd) ≥ u(tn). Thus,

f (u(tn − τ − τd)) e−μI τ−dI τd

μM

≤ 1. (3.18)

As above, the function

h̃(x) = f (x) e−μI τ−dI τd

μM

is strictly decreasing, h̃(0) > 1 and limx→+∞ h̃(x) = 0 (see (H1) and (H3)). Let ξ̃ ∈ (0, +∞) be 
the constant with h̃(ξ̃ ) = 1. Then, inequality (3.18) implies that x(tn − τ − τd) ≥ ξ̃ . Finally, by 
(3.17), we deduce that

u(tn) ≥ min{x h̃(x) : x ∈ [ξ̃ , ρ]} (3.19)

with ρ > 0 an upper bound of u(t), see Proposition 3.1.
To conclude the proof, we realize that by (3.16) and (3.19), u(tn) cannot converge to 0. This 

is a contradiction with (P2). �
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4. Global attractivity in model (3.1)

4.1. Some useful results on discrete dynamics

The main result of this paper is based on the global attraction of a scalar discrete equation of 
the form

xn+1 = ϕ(xn), (4.1)

with ϕ : [0, +∞) −→ [0, +∞) a function of class C1 satisfying that ϕ((0, +∞)) ⊂ (0, +∞). 
Next we recall two basic results on discrete dynamics:

Proposition 4.1 (Lemma 2.5 in [6]). Assume that x̄ ∈ (0, +∞) with ϕ(x̄) = x̄ is globally attract-
ing for equation (4.1) in (0, +∞), that is, for all x0 ∈ (0, +∞),

lim
n→+∞ϕn(x0) = x̄

with ϕn = ϕ ◦ 
n· · · ◦ ϕ. Then, there is no interval [L, S] ⊂ (0, +∞) with L < S so that [L, S] ⊂

ϕ([L, S]).

Proposition 4.2. Assume that ϕ is a decreasing or unimodal function of class C3 with negative 
Schwarzian derivative, that is,

(Sϕ)(x) = ϕ′′′(x)

ϕ′(x)
− 3

2

(
ϕ′′(x)

ϕ′(x)

)2

< 0 for all x > 0,

provided ϕ′(x) �= 0. If (4.1) has a unique positive equilibrium x̄ > 0 and |ϕ′(x̄)| < 1, then x̄ is 
globally attracting for equation (4.1) in (0, +∞).

The previous result is Corollary 2.10 in [6] for unimodal functions. For decreasing maps, we 
can deduce the result by a simple adaptation of the arguments in [18]. It is worth mentioning that 
ϕ(x) = x eρ(1−x) with ρ > 0 and ϕ(x) = 1+ργ

1+(ρx)γ
x with ρ > 0 and γ > 1 are unimodal functions 

with negative Schwarzian derivative.

4.2. Main results

Fix u∗(t) a positive solution of (3.1). We employ the change of variable

y(t) = u(t)

u∗(t)
,

with u(t) a positive solution of (3.1). After simple computations, we obtain:

• if t ∈ [n, n + 1 − τ − τd ], then

y′(t) = u∗(t − τ) e−μI τ (
y(t − τ)f (u∗(t − τ)y(t − τ)) − y(t) f (u∗(t − τ))

)
, (4.2)
u∗(t)
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• if t ∈ (n + 1 − τ − τd, n + 1 − τ), then

y′(t) = 0, (4.3)

• and if t ∈ [n + 1 − τ, n + 1), then

y′(t) = u∗(t−τ−τd)e−μI τ−dI τd

u∗(t)

×
(
y(t − τ − τd)f (u∗(t − τ − τd)y(t − τ − τd)) − y(t)f (u∗(t − τ − τd))

)
.

(4.4)

Since f is strictly decreasing, it is clear that y = 1 is the unique positive constant solution of the 
equation made of (4.2)-(4.3)-(4.4). Next we define the map

H : (0,+∞)2 −→ (0,+∞)

H(t, x) = f (t x)

f (t)
.

We will work with the following conditions:

(H5) ∂H
∂t

(t, x) ≥ 0 for all t > 0 and x ∈ (0, 1).

(H6) ∂H
∂t

(t, x) ≤ 0 for all t > 0 and x ∈ (1, +∞).

Although these conditions seem strong, most growth rates in mathematical biology satisfy (H5)
and (H6). For example, for f (x) = αe−x with α > 0, the birth rate associated with the classical 
Nicholson’s blowfly equation, we have that H(t, x) = et(1−x). Analogously, for f (x) = θ

1+xγ

with θ > 0 and γ ≥ 1, the birth rate associated with the Mackey-Glass model, H(t, x) = 1+tγ

1+(tx)γ
. 

In both case, (H5) and (H6) clearly hold.
Now we are ready to prove that main result of this paper:

Theorem 4.1. Assume that (H1)-(H6) hold. Take a positive constant θmax so that

lim sup
t→+∞

u(t) ≤ θmax

for any u(t) positive solution of (3.1). If 1 is globally attracting in (0, +∞) for the difference 
equation

xn+1 = xn G(xn) (4.5)

with G(x) = H(θmax, x), then, for any pair of positive solutions u∗(t), u(t) of (3.1),

lim
(
u(t) − u∗(t)

) = 0.

t→+∞
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Proof. Fix u(t) and u∗(t) two positive solutions of (3.1). Then, by Theorem 3.1 and Proposi-
tion 3.1, u(t) and u∗(t) are bounded and there is ω > 0 so that

ω ≤ u(t), u∗(t) for all t ∈ [−τ − τd,+∞).

Assume, by contradiction, that 
(
u(t) − u∗(t)

)
� 0 as t → +∞. Since

u∗(t) (y(t) − 1) = (
u(t) − u∗(t)

)
with

y(t) = u(t)

u∗(t)
,

we conclude that y(t) − 1 � 0 as t → +∞. We know that y(t) satisfies the equation made of 
(4.2)-(4.3)-(4.4). Using that y = 1 is the unique positive constant solution of this equation, we 
deduce that

lim inf
t→+∞ y(t) < lim sup

t→+∞
y(t).

Then, by Lemma 1.1, there are two sequences {tn} and {sn} tending to +∞ with the following 
properties:

(R1) limn→+∞ y(tn) = lim supt→+∞ y(t) and y(tn) is a local maximum for all n ∈N .
(R2) limn→+∞ y(sn) = lim inft→+∞ y(t) and y(sn) is a local minimum for all n ∈N .

Set L = lim inft→+∞ y(t) and S = lim supt→+∞ y(t). Notice that L > 0. Since y(t) is constant 
in the intervals of the form (m + 1 − τ − τd, m + 1 − τ) with m ∈N ∪ {0}, it is not restrictive to 
assume that tn > 1 and

tn ∈ A∪Ab ∪Ae ∪B ∪Bb

with

A = ∪m∈N(m,m+1 − τ − τd), Ab = {m : m ∈N}, Ae = {m+1 − τ − τd : m ∈ N},
B = ∪m∈N(m + 1 − τ,m + 1), Bb = {m + 1 − τ : m ∈N}.

Our first aim is to find a constant S̃ ∈ [L, S] from the sequence {tn} given in (R1) so that

S ≤ S̃ G(S̃). (4.6)

We distinguish among five cases:

Case 1: There is a subsequence {tσ (n)} ⊂ A.
The function y(t) is of class C1 in A. Using that y(tσ (n)) is a local maximum, we have that 

y′(tσ (n)) = 0. Now, by the expression of (4.2), we deduce that
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y(tσ (n) − τ)f (u∗(tσ (n) − τ)y(tσ (n) − τ)) − y(tσ (n)) f (u∗(tσ (n) − τ)) = 0. (4.7)

The sequences {y(tσ (n) − τ)} and {u∗(tσ (n) − τ)} are bounded. Hence, it is not restrictive (after 
passing to subsequences if necessary) to suppose that y(tσ (n) − τ) → S̃ with S̃ ∈ [L, S] and 
u∗(tσ (n) − τ) → κ1 with 0 < κ1 ≤ θmax. Making n → +∞ in (4.7), we conclude that

S̃ f (κ1S̃) = Sf (κ1). (4.8)

Using that S̃ ≤ S, we obtain that

f (κ1 S̃) ≥ f (κ1).

Thus, S̃ ≤ 1 because f is strictly decreasing. Finally, we re-write (4.8) as

S̃ H(κ1, S̃) = S.

Using that S̃ ≤ 1 together with (H5), H(κ1, S̃) ≤ H(θmax, S̃) = G(S̃). Therefore, we arrive at

S̃ G(S̃) ≥ S.

Case 2: There is a subsequence {tσ (n)} ⊂ Ab .
In this case, y′(t−σ(n)) ≥ 0 for all n ∈N . Using the expression of (4.4), we deduce that

y(tσ (n) − τ − τd)f (u∗(tσ (n) − τ − τd)y(tσ (n) − τ − τd)) − y(tσ (n)) f (u∗(tσ (n) − τ − τd)) ≥ 0.

Arguing as in the previous case, we conclude that there is S̃ ∈ [L, S] so that

S̃ G(S̃) ≥ S.

Case 3: There is a subsequence {tσ (n)} ⊂ Ae.
In this case, we have that y′(t−σ(n)) ≥ 0 for all n ∈ N . Repeating the same argument as in Case 

2, we find a constant S̃ ∈ [L, S] so that

S̃ G(S̃) ≥ S.

The unique difference is that we employ equation (4.2) instead of equation (4.4).

Case 4: There is a subsequence {tσ (n)} ⊂ B.
This case is analogous to Case 1 considering equation (4.4) instead of equation (4.2).

Case 5: There is a sequence {tσ (n)} ⊂ Bb.
The function y(t) is constant in the interval (m + 1 − τ − τd, m + 1 − τ). Thus, y(tσ (n)) =

y(tσ (n) − τd). Since y(tσ (n)) is a local maximum we have that y′((tσ (n) − τd)−) ≥ 0. Now we 
repeat the same argument as Case 2 with the sequence {tσ (n) − τd}.

We can reason analogously with the sequence {sn} to obtain a constant L̃ ∈ [L, S] so that

L ≥ L̃G(L̃). (4.9)
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Finally, we observe that by (4.6) and (4.9), [L, S] ⊂ ϕ([L, S]) with ϕ(x) = x G(x). This is a 
contradiction because we know in advance that such an interval cannot exist by Lemma 4.1. �
Remark 4.1. As stressed in the next section, the condition that 1 is globally attracting for equa-
tion (4.5) is easy to verify in most applications. In fact, by the results of Section 4.1, we have this 
condition when |ϕ′(1)| < 1 with ϕ(x) = xG(x).

5. Examples

In this subsection we apply Theorem 4.1 to model (3.1) for the classical birth rates b(x) =
rxe−x and b(x) = rx

1+x2 with r > 1 in both cases. As we will see, the conditions are easily 
checked for these choices of the birth rates.

5.1. Example 1: exponential birth rate

Consider

u′(t) =

⎧⎪⎨
⎪⎩

ru(t − τ)e−u(t−τ)e−μI τ − μMu(t), if t ∈ [n,n + 1 − τ − τd ],
−dMu(t), if t ∈ (n+1−τ−τd, n+1−τ),

ru(t − τ − τd)e−u(t−τ−τd )e−μI τ−dI τd − μMu(t), if t ∈ [n + 1 − τ,n + 1),

(5.1)
where r > 0 and the rest of the parameters involved in (5.1) are strictly positive. Let us re-write 
the conditions of Theorem 4.1 for this model.

(B1) τ + τd < 1.
(B2) re−μI τ−d∗τd

μM
> 1 with d∗ = max{dI , dM}.

(B3) edMτd < e−μM(1−τ−τd ) + r e−μI τ

μM
(1 − e−μM(1−τ−τd )).

Since

H(t, x) = et(1−x),

it is clear that this map satisfies (H5) and (H6). In order to apply Theorem 4.1, we need that 1 is 
globally attracting in (0, +∞) for the difference equation

xn+1 = xn G(xn), (5.2)

with G(x) = eθmax(1−x) and θmax an uniform bound of the positive solutions of (3.1). By Propo-
sition 3.1, this bound can be taken as

θmax = r e−μI τ−1

μM

.

We notice that ϕ(x) = x G(x) is an unimodal function with negative Schwarzian derivative. By 
Proposition 4.2, we can guarantee that 1 is globally attracting in (0, +∞) if |ϕ′(1)| < 1. This last 
condition is satisfied when θmax < 2. Collecting the above information, we deduce the following 
result:
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Theorem 5.1. Assume (B1), (B2) and (B3). If

r e−μI τ−1

μM

< 2, (5.3)

then, for any pair of positive solutions u1(t) and u2(t) of (5.1),

lim
t→+∞

(
u1(t) − u2(t)

) = 0.

As mentioned above, condition (5.3) implies the global attractivity required in Theorem 4.1, 
a critical condition for the validity of the theorem. Notice that for τd = 0, that is, in the absence 
of diapause periods, we recover the classical Nicholson’s blowfly equation

u′(t) = ru(t − τ)e−u(t−τ)e−μI τ − μMu(t). (5.4)

It is well known that for large values of r , (5.4) exhibits a broad range of dynamical patterns be-
yond the simple behavior predicted by Theorem 5.1. On the other hand, 0 < τ < 1 and re

−μI τ

μM
> 1

imply (B1)-(B3) provided τd = 0. We observe that re
−μI τ

μM
> 1 is the optimal condition that guar-

antees that the origin is unstable for equation (5.4).

5.2. Bifurcation vs. diapause

In this paper we illustrate how Proposition 3.2 and Theorem 3.1 provide bifurcation insights 
in model (5.1). Arguing as in [13], we can deduce the following result when (5.1) additionally 
satisfies that 2τ + τd < 1. Notice that in a neighborhood of the origin, equation (5.1) satisfies the 
monotonicity assumptions required in [13].

Theorem 5.2. The following statements hold for system (5.1):

(i) If R ≤ 1, then the origin is globally asymptotically stable for the positive solutions.
(ii) If R > 1, then lim inft→+∞ u(t) > 0 for any positive solution.

In the previous result, R denotes the spectral radius of P(1) where P(t) is the solution map 
of the linear system

u′(t) =

⎧⎪⎨
⎪⎩

ru(t − τ)e−μI τ − μMu(t), if t ∈ [n,n + 1 − τ − τd ],
−dMu(t), if t ∈ (n+1−τ−τd, n+1−τ),

ru(t − τ − τd)e−μI τ−dI τd − μMu(t), if t ∈ [n + 1 − τ,n + 1),

(5.5)

for n = 1, 2, . . . Theorem 5.2 establishes the transcritical bifurcation of the origin in terms of 
the spectral radius of the operator P(1). This operator is hard to handle but Proposition 3.2 and 
Theorem 3.1 are able to simplify the task.
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Fig. 1. Bifurcation diagrams in model (5.1). Fixed parameters dI = 1, μI = 1, μM = 1. We compute a solution 
of (5.1) with a random initial condition during 200 years. Then, we plot max{x(180), x(181), . . . , x(200)} and 
min{x(180), x(181), . . . , x(200)}. (Left) We consider r as a bifurcation parameter. Fixed parameter τ = 0.3. (Right) 
We consider τ as a bifurcation parameter. Fixed parameter r = e6. Green (τd = dM = 0) (Model (5.4)), Blue (τd =
dM = 0.05), Orange (τd = dM = 0.1), Magenta (τd = dM = 0.15), Black (τd = dM = 0.2), Red (τd = dM = 0.25). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Corollary 5.1. Assume that (H1) and (H2) hold. If

re−μI τ

μM

< 1, (5.6)

then R ≤ 1.

Corollary 5.2. If (B2) and (B3) hold, then R > 1.

To understand in depth these corollaries, it is convenient to compare models (5.4) and (5.1). 
Since r e−μI τ

μM
= 1 is the threshold condition of the transcritical bifurcation in (5.4), Corollary 5.1

implies that the introduction of diapause promotes the extinction of the population. Translating 
this claim in a bifurcation scenario, the threshold in which the transcritical bifurcation takes place 
is greater in (5.1) than in (5.4). In Fig. 1 Left, we illustrate this fact when we move r and the 
rest of parameters remain fixed. On the other hand, it is well-known that model (5.4) exhibits a 
Hopf bifurcation when we move τ , (see Theorem 2.3 in [21]). In contrast with the transcritical 
bifurcation of the origin, the introduction of diapause can promote this Hopf bifurcation, (see 
Fig. 1 Right).

5.3. Example 2: rational birth rate

Arguing in a similar manner as above with the model

u′(t) =

⎧⎪⎪⎨
⎪⎪⎩

r u(t−τ)

1+u(t−τ)2 e−μI τ − μMu(t), if t ∈ [n,n + 1 − τ − τd ],
−dMu(t), if t ∈ (n + 1 − τ − τd, n + 1 − τ),

r u(t−τ−τd )

1+u(t−τ−τd )2 e−μI τ−dI τd − μMu(t), if t ∈ [n + 1 − τ,n + 1),

(5.7)

we have the next result:
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Theorem 5.3. Assume the following conditions:

(B1) τ + τd < 1.
(B2) re−μI τ−d∗τd

μM
> 1 with d∗ = max{dI , dM}.

(B3) edMτd < eμM(1−τ−τd ) + r e−μI τ

μM
(1 − e−μM(1−τ−τd )).

Then, for any pair of positive solutions u1(t) and u2(t) of (5.7)

lim
t→+∞

(
u1(t) − u2(t)

) = 0.

Proof. Notice that G(x) = 1+θ2
max

1+(θmaxx)2 and by Proposition 3.1, we can take

θmax = r e−μI τ

2μM

.

We observe that ϕ(x) = x G(x) is an unimodal function with negative Schrwatzian derivative. 
Moreover, |ϕ′(1)| < 1 is always satisfied.

6. Oscillations in mosquito populations with diapause

In this section we provide some biological patterns expected for populations with diapause. 
To this task, we carry out several numerical simulations with (3.1) using the classical Nicholson’s 
blowfly birth rate [2,5,9]. Now, we consider the annual growth period as 365 days. Regarding the 
biological parameters, the diapause period comes from the winter season, typically three months. 
The values of the mortality rates related to the diapause are expressed in terms of the proportion 
of individuals surviving. For the rest of parameters, we use the estimates given in [5] for the 
Aedes aegypti. This species is the primary vector of yellow fever, a disease that is predominant in 
tropical South America and Africa, and sometimes appears in temperate regions during summer 
months. Aedes aegypti normally experiences a diapause during the harsh winters. Specifically, 
the immature individuals survive and the adults essentially become extinct during the diapause. 
In the language of model (3.1), this is translated via PI  PM , see Table 1. Fig. 2 indicates that 
the data collected in Table 1 typically produces a periodic pattern in which there is a pronounced 
decline of the adult population during the diapause. We stress the oscillatory behavior of these 
solutions during the normal growth period. Notice that the solutions of (3.1) when the growth 
rate is increasing normally tend to a periodic pattern with three monotone intervals during the 
year, see Fig. 4 in [13].

In nature, there are mainly two types of diapause, namely, adult diapause and immature dia-
pause. In the first (resp. second) type, the adult (resp. immature) individuals can survive whereas 
the immature (resp. adult) individuals become extinct. Following this classification, Aedes ae-
gypti is a species with immature diapause. The home mosquito Culex pipiens is an example of 
species with mature diapause, see [13]. In Fig. 3, we analyze the influence of the type of diapause 
on the creation/suppression of oscillations. In other words, the stabilizing role of the parameters 
PI and PM . The key conclusion is that an increment of PI or PM can buffer or magnify the 
dynamical behavior. Apart from Hopf bifurcations, we have found bubbles ((a)) and the usual 
periodic-doubling route to chaos ((b), (c), (d)). We remark that these phenomena are rather fre-
quent in population dynamics, epidemiology or physiology, see [8].
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Table 1
Model parameters. We employ b(x) = rxe−αx with r > 0 in 
(3.1). The values are taken from [13] and [5]. Let PM , PI ∈
[0, 1] be the proportion of mature and immature individuals 
that survive during the diapause period. Then, dM = − lnPM

τd

and PI = e−dI τd .

Symbol Value Units

t days

M(t) individuals

α (5.128 · 10−4,1.031 · 10−3) individuals−1

μM 0.12 days−1

A = re−μI τ (0.367,1.31) days−1

τ (12,30) days

τd (60,240) days

Fig. 2. Simulated mosquito population abundance for Aedes aegypti through model (3.1) using the parameters in Table 1
(τ = 12, τd = 90, α = 0.001, μM = 0.12, A = 1, PI = 0.2, PM = 10−5). The positive solutions tend to a periodic 
pattern with an oscillatory behavior during the regular growth period and monotone behaviors in the rest of the annual 
growth period.

7. Discussion

Seasonal fluctuations of environmental conditions are of critical importance for the growth 
and survival of species, especially when there are strong variations during the year. In this paper 
we have analyzed the dynamical behavior of a general class of non-autonomous single population 
models. Generally speaking, we have studied a scalar equation where we employ a nonlinearity 
of Nicholson’s type in good seasons and a linear equation with negative constants in bad seasons. 
Mathematically, the model is discontinuous and periodic in time, but the associated solutions are 
continuous. Our main goal was to derive a criterion of global attractivity of a positive solution 
for this class of models. The method of proof can be viewed as the extension for nonautonomous 
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Fig. 3. Bifurcation diagrams of (3.1) with PI ((a) and (b)) and PM ((c) and (d)) as bifurcation parameters. Fixed parame-
ters: τ = 12, τd = 90, α = 0.001, μM = 0.12. We compute a solution of (3.1) with a random initial condition during 200 
years. Then, we plot it at the end of the year during the last 20 years. (a) An annual periodic solution loses its stability 
through a periodic doubling bifurcation and the annual periodic solution regains its stability for large values of PI . (b), 
(c) and (d) There is the usual periodic-doubling route to chaos. We stress that in (a) and (c) (resp. (b) and (d)) increasing 
(resp. decreasing) the survival during the diapause stabilize (resp. destabilize) the dynamical behavior of the model.

and discontinuous equations of the folkloric connection between scalar delay differential equa-
tions and discrete equations developed by Mallet-Paret and Nussbaum in [14] and Ivanov and 
Sharkovskii in [11], (see also [12,17,7,8]). As Lemma 3.2 and Theorem 3.1 shown, the discon-
tinuous reduction during the diapause period considerably obstructs the mathematical analysis.

Based on the theory of monotone systems [19,20], Lou et al. in [13] have described the dy-
namical behavior of (3.1) when the birth rate is monotone. Specifically, they proved that the 
global attractivity of a periodic solution is determined by the spectral radius of the linearized 
equation at 0. In comparison with [13], Theorem 4.1 drops the condition of monotone birth rate 
function. The main conclusion of this framework is that time delays are critical on the dynamical 
behavior of the model.

The use of nonmonotone birth rates in mosquito population models with diapause leads to 
the presence of population oscillations. This fact opens the door for the analysis of the influence 
of the diapause parameters on the creation/suppression of oscillations. However, the bifurcation 
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diagrams discussed in Section 5 indicate that none biological parameter associated with the dia-
pause plays a stabilizing or destabilizing role.
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Appendix A

Proof of Lemma 1.1. Take a constant c and a sequence {t̃n} tending to +∞ with

• lim infx→+∞ h(x) < c < lim supx→+∞ h(x),
• limn→+∞ h(t̃n) = lim supx→+∞ h(x) with h(t̃n) > c for all n ∈N .

Since lim infx→+∞ h(x) < c, it is not restrictive (after passing to subsequences if necessary) to 
suppose the existence of two sequences {an} and {bn} tending to +∞ so that

• an < t̃n < bn for all n ∈N ,
• h(an) = h(bn) = c for all n ∈N .

Finally, we choose {tn} as

h(tn) = max{h(x) : x ∈ [an, bn]}.
The proof for the existence of {sn} is analogous and we omit the details. �
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