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a b s t r a c t 

We investigate the stochastic response of a base stock inventory system where the order quantity is 

either upper- or lower-constrained. This system can represent many real-world settings: forbidden re- 

turns, minimum order quantities, and capacity constraints for example. We show that this problem can 

be translated into a stopping time problem where the distributions of orders and inventory can be repre- 

sented by a countably infinite mixture of truncated and convoluted demand distributions. This result can 

be extended to the cases of arbitrary lead time and auto-correlated demand. A state space algorithm is 

developed to approximate the first- and second-order moments of the order quantity and inventory level. 

Via a numerical analysis, we investigate the performance of the approximation, as well as the operational 

and economic impact of the order constraint. In particular, the constraint impacts order and inventory 

variances via different combinations of the mixture and truncation effects. We show how tuning the con- 

straint can improve the operational and financial performance of the inventory system by acting as a 

smoothing mechanism. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

We study the limiting, or asymptotic, distributions of order 

uantity and inventory level in a nonlinear inventory system, 

here the order quantity is limited by an upper- or lower- 

onstraint, but the demand is not constrained by this limit. In 

ther words, we explore the stochastic response of an inventory 

ystem where a (maximum or minimum) constant constraint on 

he order quantity is in the interior of the support of the demand 

uantity. This model has many real-world applications, which we 

ow elaborate to motivate this research. 

Forbidden returns (FR) . There are supply chain scenarios where 

he customer is allowed to return the products but the seller is 

ot allowed to do so. In this sense, the demand can be either posi-

ive or negative, where negative demand implies products returned 

rom customers exceed those demanded by them in a period, but 

rders to suppliers are constrained to nonnegative values. The ex- 

stence of negative demand has been reported in the literature. 
∗ Corresponding author. 

E-mail addresses: wangx46@cardiff.ac.uk (X. Wang), s.m.disney@exeter.ac.uk 

S.M. Disney), ponteborja@uniovi.es (B. Ponte) . 

p

a

Z

t

t

ttps://doi.org/10.1016/j.ejor.2022.04.020 

377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
or example, in the book publishing and electronic industries, un- 

anted items can be returned to the manufacturer. In general, the 

egative demand assumption holds if we accept the net flow of 

oods can be reversed temporarily. In the upstream, the inversion 

f the material flow is less common in business-to-business envi- 

onments. Typically, businesses are not allowed to return their sur- 

lus products to suppliers; this can be represented mathematically 

y a nonnegative assumption on the order quantity. This assump- 

ion is common in the classic inventory control literature; however, 

s highlighted by Chatfield & Pritchard (2013) , this assumption is 

are in the bullwhip effect and supply chain dynamics literature. 

Minimum order quantity (MOQ) . The lower limit of the order 

uantity may also be a positive number, representing a MOQ. The 

usiness can either order above (or at) the MOQ, or not order at 

ll. This case is frequently observed in the upstream supply chain. 

or example, minimum order quantities are commonly imposed 

y off-shore suppliers, due to low profit margins, high set-up and 

hipment costs, and batching requirements in the manufacturing 

rocess. In the online grocery industry, it is common practice to set 

n MOQ as a prerequisite to receive discounted, or free, shipping. 

hou, Zhao, & Katehakis (2007) give an interesting discussion on 

he role of minimum order quantities in supply chains. Moreover, 

he famous ( s, S) ordering policy, optimal in many cost scenarios 
under the CC BY-NC-ND license 
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 Scarf, 1960; Zheng, 1991 ), is an ordering rule such that if the in-

entory position is below a reorder point s , an order is placed to

ring the inventory position back to the order-up-to level S. The 

 s, S) policy can be seen as an MOQ constraint, where S − s is the

OQ, whereas the demand can be lower than S − s . 

Capacity constrained (CC) . In production systems, maximum 

roduction quantities are often set due to limited internal capac- 

ty; however, customer demand is free to go beyond the capacity 

imit. The maximum order quantity is also used by some material 

equirements planning (MRP) software to prevent the automatic 

eneration of unreasonably large orders. Besides, upper bound 

onstraints may also emerge from external sources. For example, 

endors may impose maximum order quantity constraints to 

ation customers when the capacity or raw material availability 

s limited to prevent some customers over ordering and other 

ustomers under-fulfilled. Also, maximum order quantities may 

e strategically imposed by single-source vendors that sell to 

ultiple buyers to avoid opportunistic behaviours such as the 

old-up problem ( Dahel, 2003 ). 

Fig. 1 shows a time series of real demand and its distribution. 

he product is from the consumer electronics industry, whose dis- 

ribution is approximately normal, with two negative demands in 

he three-year period. Fig. 1 also shows the time series and distri- 

ution plot of simulated orders generated by the three constrained 

rder policies that we study in this paper: FR, MOQ (with s = 50

nd S = 150 ), and CC (capacity constraint set to 300). Unit lead-

imes were assumed. In all these cases, when the desired order 

uantity exceeds the lower, or upper, limit allowed, the actual or- 

er quantity has to be switched either to this limit or another des- 

gnated value, greatly increasing the analytical complexity of the 

nventory model. Indeed, traditional analytical techniques for linear 

ime invariant (LTI) models can no longer be applied in these non- 

inear scenarios. This perspective explains why these complex non- 

inear behaviours are understudied in the literature despite their 

bvious practical relevance and acts as the major driver of this re- 

earch. 

In this paper, we make the following contributions: 

• We show the equivalence of three order-constrained inventory 

systems; the FR, MOQ, and CC systems can be represented in a 

general form for analysis. 
• We derive the limiting density functions of the order quantity 

and inventory level in the constrained inventory system, under 

transportation delay and demand autocorrelation. The deriva- 

tion is based on distribution truncation, convolution, and mix- 

ture; no assumptions regarding the demand distribution need 

to be made. 
• For Gaussian demand, we propose a state space algorithm to 

approximate the first- and second-order moments of order 

quantity and inventory level, based on the properties of trun- 

cated normal random variables. This algorithm can be used in 

scenarios with a transportation delay and demand correlation. 

We discuss the applicability, efficiency, and effectiveness of this 

algorithm. 
• We investigate how the order constraint influences the variance 

of the order quantity and the inventory level. We reveal how 

the order constraint creates a mixture effect and a truncation 

effect that affects the trade-off between the order and inven- 

tory variances. We also show how the constraint may reduce 

the sum of the order and inventory variances. 

The rest of this paper is organized as follows. In Section 2 , we

eview related literature. Section 3 gives the notation and the main 

esults characterizing the distributions of orders and inventory lev- 

ls in the order-constrained inventory model with unit delay and 

ndependently and identically distributed (i.i.d.) demand. Exten- 

ions to arbitrary transportation delay and correlated demand are 
544
ade in Section 4 . In Section 5 , we propose an approximation al- 

orithm for calculating the first- and second-order moments of the 

tochastic response generated by a Gaussian demand. Section 6 is 

evoted to operational aspects of our model, where a numerical 

nalysis examines the variance amplification and the service level 

erformance in this model. Finally, Section 7 concludes and high- 

ights avenues for future research. 

. Literature review 

This research contributes to the literature from three perspec- 

ives: (i) to the bullwhip effect research, which usually explores 

he inventory control problem through a linear quadratic Gaus- 

ian (LQG) model; (ii) to nonlinear supply chain dynamics research, 

hich includes constraints on system variables but mainly inves- 

igates deterministic demand series; and (iii) to the classical in- 

entory control literature, especially those on the ( s, S) policy and 

he capacitated system, which predominantly models demand as a 

onnegative, i.i.d. and integer time series. 

LQG models have been extensively applied in bullwhip research 

ecause of their analytical tractability. In the seminal work of Lee, 

admanabhan, & Whang (1997) , the bullwhip effect triggered by 

emand signal processing is simulated by a Gaussian input with 

rst-order autocorrelation. The probability of the demand and or- 

er quantity being negative is assumed negligible by setting the 

oefficient of variation of demand sufficiently small. In addition, 

o preserve linearity of the model, unmet demand is backlogged. 

hese assumptions were frequently adopted in later research on 

ullwhip effect and inventory amplification ( Chen & Lee, 2009; 

isney, Gaalman, Hedenstierna, & Hosoda, 2015 ). The connection 

etween the second-order moment and the cost incurred is estab- 

ished by the assumption that the inventory (order) cost function is 

onvex, under which the cost increases with the inventory (order) 

ariance. In the special case of normally distributed demand, piece- 

ise linear and convex cost function and optimal safety stock (pro- 

uction capacity), the cost is a multiple of the standard devia- 

ion of the inventory (orders) ( Boute, Disney, Gijsbrechts, & Van 

ieghem, 2021 ). 

On the other hand, it has long been known that real-life supply 

hains are constrained. For instance, in the Beer Game experiment, 

articipants are allowed to backlog unsatisfied demand to the next 

eriod, but excess inventory cannot be returned to their supplier 

 Sterman, 1989 ). This can be seen more clearly in their model of 

articipants’ behaviour; the order quantity is limited by a max { 0 , ·} 
onstraint, i.e., the order quantity is not allowed to be negative. 

here are various attempts to study the dynamic behaviour of such 

ystem using nonlinear dynamical systems theory ( Larsen, More- 

roft, & Thomsen, 1999; Laugesen & Mosekilde, 2006 ). The re- 

earch interest focuses on system stability; the primary finding is 

hat complex behaviour of the inventory system can be induced 

y nonlinear constraints and irrational decisions. The nonlinear ef- 

ects may even dominate the dynamics of the system, resulting 

n very complex behaviours, such as chaos and super-chaos (phe- 

omena where the system behaviour is sensitive to perturbation 

n the system state and parameter values, which is difficult or im- 

ossible to predict, Wang, Disney, & Wang, 2012 ). However, this re- 

earch stream often focuses on system stability and a determinis- 

ic demand signal (a step function is used in most cases). Attempts 

o extend the nonlinear inventory system model to stochastic de- 

and have been predominantly simulation based, e.g., Chatfield & 

ritchard (2013) for the lower constraint and Ponte, Wang, de la 

uente, & Disney (2017) for the upper constraint to the order quan- 

ity. More recently, Disney, Ponte, & Wang (2021) study the dy- 

amics of a lost-sales inventory system where the inventory level 

s nonnegative. They show that both order and inventory distribu- 
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Fig. 1. A real demand pattern and the simulated response of the base stock policy with three different order constraints (forbidden returns, minimum order quantity, and a 

capacity constraint). 
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ions can be derived from the censored demand distribution. We 

how this is not the case in an order-constrained system. 

Lastly, in the inventory theory literature, a lot of attention was 

iven to the inventory and the order distribution in either the ( s, S)

r the capacitated systems. Using renewal theory, Karlin (1958) has 

erived an expression for the inventory distribution (also see Scarf, 

963 ); for the same model Schultz (1983) provides the order dis- 

ribution and the order variance. Approximation algorithms for 

omputing the order and inventory variance under the ( s, S) pol- 

cy have been proposed by Schneider, Rinks, & Kelle (1995) and 

ater utilized by Kelle & Milne (1999) to study the bullwhip effect. 

ore recently, Noblesse, Boute, Lambrecht, & Houdt (2014) study 

he bullwhip effect in a continuous-review ( s, S) system with com- 

ound Poisson demand. They derive the distribution of orders as 

ell as the time between orders. 

Another, seemingly detached, research stream considers the 

apacitated inventory system, mostly focusing on the optimal 
545 
rdering policy when the order quantity is upper-constrained. 

edergruen & Zipkin (1986a,b) show that a base stock policy 

s optimal under the assumption of stationary demand. Tayur 

1993) notes the similarities between the capacitated inventory 

ystem and a D/G/1 queuing system, and used the analogy of 

n infinite-stage uncapacitated supply chain system to derive the 

tationary distribution of the inventory level. Using the shortfall 

oncept they show that the inventory distribution can be rep- 

esented by an infinite convolution between the demand distri- 

ution and the shortfall distribution. The stability of the capac- 

tated system is discussed in Glasserman & Tayur (1994) , where 

tationarity conditions are derived. Approximation methods of the 

ptimal base stock level are proposed in Glasserman & Tayur 

1995) and Glasserman (1997) . Kapu ́sci ́nski & Tayur (1998) ex- 

end Federgruen & Zipkin (1986a,b) ’s capacitated model to the case 

f cyclic demand, and Parker & Kapu ́sci ́nski (2004) extend the 

odel to a two-echelon system. Both studies found a (modified) 
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Table 1 

Commonly used notation. 

Sets 

A The set of admissible order quantities 

A 

′ The complement of A 

N The set of positive integers 

R The set of real numbers 

Variables (time-dependent random processes) 

ε Gaussian i.i.d. variable with zero mean and unit variance 

d Demand 

o Order quantity 

˜ o Desired order quantity 

i Net inventory level after fulfillment and consumption 

w Work-in-process; w t = 0 when L = 1 

IP Inventory position, IP t = i t + w t ; IP t = i t when L = 1 

τ Order cycle length 

Inventory system parameters 

αT Target service level 

L Transportation lead time 

S Order-up-to level 

Functions and distributions 

x A Truncation of x with A : x A = x if x ∈ A ; x A = 0 otherwise 

[ f (x )] A Truncation of f with A : [ f (x )] A = f (x ) if x ∈ A ; [ f (x )] A = 0 otherwise 

f (x ) ∗ g(x ) Convolution between f (x ) and g(x ) 

φ(x ) , �(x ) pdf and cdf of standard normal distribution 

E (x ) , μx The expectation vector of x ; dim E (x ) = dim x 

V (x ) , σ 2 
x The covariance matrix of x ; dim V (x ) = dim x × dim x 
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A  
ase stock policy to be optimal. Levi, Roundy, Shmoys, & Truong 

2008) develop an approximation algorithm for the optimal policy. 

avirneni, Kapu ́sci ́nski, & Tayur (1999) study the case of informa- 

ion sharing in a two-echelon capacitated supply chain and proved 

he optimality of the order-up-to policy under this scenario. 

In this work, unlike previous research, we do not focus on 

he optimal policy under the constraint, but on the stochastic re- 

ponse and variability of a constrained base stock inventory sys- 

em. From this perspective, this study complements the above re- 

earch in several ways. First, previous research did not reveal the 

onnection between the systems with different order constraints, 

hereas we show they are equivalent. This can also be seen from 

he similar structure of order and inventory distributions in these 

ystems. Second, previous research, based on renewal theory or 

he D/G/1 queuing analogy, requires that the random variables in 

emand are nonnegative. We relax this assumption by allowing 

egative demand using stopping time and mixture distributions. 

hird, most previous research assumes unit lead-time and i.i.d. de- 

and, whereas our approach allows us to incorporate arbitrary 

ead-times and auto-correlated demand in a straightforward man- 

er. Fourth, we propose a novel approximation to calculate the or- 

er and inventory variances which outperforms previous approxi- 

ation methods. 

. Distributions of order and inventory 

In this section, we present an analysis under the assumptions 

f unit transportation delay and temporally independent demand 

eries. These assumptions will be relaxed later in Sections 4.1 and 

.2 , respectively. We use the notation outlined in Table 1 through- 

ut this paper. Other notation will be introduced as needed. 

.1. The stopping time problem 

We first present a general form of our problem that can repre- 

ent a variety of inventory systems with order-constraints, includ- 

ng the FR, MOQ, and CC sytems. We then show this general form 

s actually a stopping time problem. We consider a periodic re- 

iew system, with t ∈ N . In this section we assume the demand is

n i.i.d. random process following a distribution whose probability 

ensity function (pdf) f (x ) is defined on the real line R . Here we
d 

546 
o not need to specify the type of distribution, but merely assume 

hat f d is integrable. The transportation delay of the inventory sys- 

em is one period; that is, the order placed at the end of period 

will be received and available to satisfy demand during period 

 + 1 . At the end of the period, after demand has been satisfied,

he observed inventory levels and open orders are subtracted from 

he order-up-to level S to determine the replenishment orders. A 

escription of the sequence of events for unit lead times is given 

n Fig. 2 . 

The inventory balance equation is 

 t = i t−1 + o t−1 − d t . (1) 

he variable i is the inventory level and o the order quantity. A 

ase stock policy is used to make replenishment decisions. That is, 

he desired order quantity is the difference between the order-up-to 

evel S and the inventory position IP t (when the lead-time is one 

eriod, IP t = i t ). Under FR, the actual order quantity equals desired 

rder quantity if it is positive, and zero otherwise: 

 t = 

{
S − i t if S − i t > 0 

0 otherwise . 

nder the MOQ policy, the actual order quantity equals the desired 

rder quantity if inventory i t is below the re-order point s , and 

ero otherwise: 

 t = 

{
S − i t if i t < s 
0 otherwise . 

n the CC setting, the actual production quantity equals the desired 

rder quantity if it is less than the production capacity C p , other- 

ise the actual production quantity equals C p : 

 t = 

{
S − i t if S − i t < C p 
C p otherwise . 

We will now show the above three systems can be represented 

y a single general form. Let the admissible region A be the half 

eal line divided by the real number C 1 , i.e., (−∞ , C 1 ) or (C 1 , + ∞ ) .

ote that C 1 / ∈ A . Also let C 2 be a real number not in A , C 2 ∈ A 

′ =
 \ A , A 

′ is the complement set of A with respect to R . Thus o ∈
 ∪ { C } , and it is possible that C = C . We can write the order-
2 1 2 
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Fig. 2. Sequence of events in the base stock replenishment policy with unit lead-time. 

Table 2 

Illustration of the order process in a forbidden returns system. 

t Demand Desired order quantity Actual order quantity Inventory level Number of periods from last admissible order 

1 6.11 6.11 6.11 3.89 1 

2 3.51 3.51 3.51 6.49 1 

3 −3 . 49 −3 . 49 0 13.49 1 

4 2.01 −1 . 48 0 11.48 2 

5 2.38 0.90 0.90 9.10 3 

6 −3 . 58 −3 . 58 0 13.58 1 

7 9.43 5.85 5.85 4.15 2 

8 −5 . 83 −5 . 83 0 15.83 1 

9 7.11 1.28 1.28 8.72 2 

10 3.53 3.53 3.53 6.47 1 
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onstrained system as 

 t = 

{
S − i t if S − i t ∈ A 

C 2 otherwise . 
(2) 

ntuitively, C 1 is the bound for the actual order quantity, and C 2 is 

he actual order quantity if the desired order quantity falls outside 

f this bound. 

• Under FR, A = (C 1 = 0 , + ∞ ) and C 2 = C 1 = 0 . That is, when the

desired order quantity is less than zero, the actual order quan- 

tity is zero. 
• With MOQ, A = (C 1 = S − s, + ∞ ) and C 2 = 0 ; when the desired

quantity is less than S − s , the actual order quantity is zero. 
• In the CC setting, A = (−∞ , C p ) and C 1 = C 2 = C p ; when the de-

sired production quantity is greater than the capacity C p , the 

actual production quantity is C p . 

The actual order quantity can either be free or constrained , cor- 

esponding to the two cases in (2) . An order is free when the actual

rder quantity equals the desired quantity, and it is constrained if 

he actual order quantity equals the fixed value C 2 . The level of 

he impact of the order constraint is determined by the probability 

hat demand falls in the admissible region, 
∫ 
A f d (x )d x . When this

ntegral equals one, the constraint is never binding and the order- 

onstrained system becomes identical to a linear system. We use 

he notation of the order constraint being loose or tight to indicate 

he value of this integral being high or low. 

Before the formal analysis, we give an intuitive example of 

he stopping time problem. Table 2 is adopted from a simulation 

utput in a forbidden returns system where μd = 5 , σd = 5 and 

 = 10 . It shows how the orders are generated from the demand.

he desired order quantity is always the sum of demand since the 

ast free order. However, the actual order quantity must be either 

n the admissible region or be equal to C 2 . Specifically, if the sum

f demand falls into the admissible region, then the order quan- 

ity is the sum of demand since the previous free order. Otherwise, 

he order quantity is C 2 . For instance, in period 4, even if d 4 > 0 ,

e still have o 4 = 0 because d 4 + d 3 < 0 ; in period 5, o 5 = 0 . 9 as

 3 + d 4 + d 5 = 0 . 9 , despite d 5 = 2 . 38 . 

We will now show the general form (2) can be translated into 

 stopping time problem. To see this we first define { ̂  d , ̂  o , ˆ A} as

 d, o, A} subtracted by C 2 , such that ˆ d = d − C 2 , ˆ o = o − C 2 , and 

ˆ A =
 − C = { x − C | x ∈ A} . 
2 2 

547 
emma 1. Let τ = min { k > 0 | ˆ o t−k ∈ 

ˆ A } , then 

ˆ 
 t = 

( 

τ−1 ∑ 

k =0 

ˆ d t−k 

) 

ˆ A 

. (3) 

roof. Note i t−τ + o t−τ = S and 

∑ τ−1 
k =1 

o t−k = (τ − 1) C 2 . Thus 

 t = i t−1 + o t−1 − d t From (1) 

= i t−τ + 

τ∑ 

k =1 

o t−τ −
τ−1 ∑ 

k =0 

d t−k Recursively expanding i t−1 

= S + (τ − 1) C 2 −
τ−1 ∑ 

k =0 

( ̂  d t−k + C 2 ) i t−τ + o t−τ = S, o t−k = C 2 for k < τ

= S −
τ−1 ∑ 

k =0 

ˆ d t−k − C 2 . Collecting together terms 

ubstituting the last expression into (2) yields (3) . �

To ensure the existence of τ , there needs to be at least one or- 

er that belongs to A in the order history. This can be guaranteed 

y assuming the recurrence of the random walk 
∑ 

t d t on A , given 

y the Chung–Fuchs theorem ( Sato, 1999 ). When C 2 � = 0 (for in-

tance, in the CC system), we only need to subtract C 2 from d, o

nd A to transform the problem into the form of (3) . Therefore, 

or notational convenience, we assume C 2 = 0 in the subsequent 

nalysis. That is, the constrained order equals zero. However, in 

he numerical examples, we will present the results from the CC 

ystem with C 2 � = 0 . 

Lemma 1 shows that τ is a stopping time, the time at which 

 τ−1 
k =1 

d t−k falls into A . We define τ as the degree of the order o t ,

ndicating the most recent admissible order quantity was made τ
eriods ago (the last column in Table 2 ). We also define o[ τ ] as

he order quantity with the degree τ . In the FR and MOQ set- 

ings, { τ | o[ τ ] ∈ A} can be intuitively understood as the length of

he ordering cycles, i.e., the number of periods between the current 

nd the previous positive order. Both τ and o[ τ ] are time depen- 

ent variables, but we suppress the subscript t to avoid notational 

lutter when no additional confusion is introduced, e.g. when dis- 

ussing a distribution function. For the subsequent analysis, it is 

onvenient to denote the desired order quantity as ˜ o t = S − i t = 

 τ−1 
k =0 

d t−k . Lemma 1 can then be reiterated as the order quantity 
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s the desired order quantity truncated by A , or o t = ( ̃  o t ) A . By defi-

ition, the free order quantity ˜ o t has the same degree as o t . 

.2. The distribution of order quantity 

We derive the distribution of the order quantity as fol- 

ows. For any o t [ τ ] , we have d t−τ+1 / ∈ A , d t−τ+1 + d t−τ+2 / ∈ A , . . . ,
 τ−1 
k =1 

d t−k / ∈ A . Thus, the distribution of the desired order quantity 

˜  [ τ ] can be derived by recursive convolution. The distribution of 

he actual order quantity o[ τ ] is then available through the recti- 

cation of ˜ o [ τ ] . Here we use rectification in a general sense; rec-

ification refers to a modification to a distribution function when 

ts inadmissible part is reset to zero, and the value of the recti- 

ed pdf at C 2 (assumed to be zero) is the integral of the orig-

nal pdf over the inadmissible region. That is, f (x ∈ A 

′ ) = 0 and

f (0) = 

∫ 
A ′ f (x )d x . In contrast, a truncated pdf disregards the nega-

ive part (see Table 1 for the formal definition of truncation). Since 

 t [ τ ] are i.i.d., f o[ τ ] become component distributions of a mixture, 

hich can be simply summed to yield f o . We begin by looking at

n individual f ˜ o [ τ ] . 

When τ = 1 , there was a free order one period ago; the desired

rder quantity in this period equals the demand observed, and the 

istribution of ˜ o [1] is the demand distribution: 

f ˜ o [1] (x ) = f d (x ) . (4) 

he distribution of ˜ o [2] can be derived as follows. ˜ o t [2] means 

hat its most recent free order was made 2 periods ago. There- 

ore d t−1 / ∈ A , and the distribution of ˜ o t [2] can be derived by the

ollowing convolution: 

f ˜ o [2] (x ) = f d (x ) ∗ [ f d (x )] A ′ = f d (x ) ∗ [ f ˜ o [1] (x )] A ′ , 

here [ f d (x )] A ′ and [ f ˜ o [1] (x )] A ′ are the demand and order distri-

utions truncated by A 

′ . The distribution of ˜ o [3] can be derived 

imilarly. Given d t−2 / ∈ A and d t−2 + d t−1 / ∈ A , we have 

f ˜ o [3] (x ) = f d (x ) ∗ [ f ˜ o [2] (x )] A ′ . 

Generally, the distribution of ˜ o [ τ ] ( τ > 1 ) can be derived by re-

ursive convolution as 

f ˜ o [ τ ] (x ) = f d (x ) ∗ [ f ˜ o [ τ−1] (x )] A ′ . (5) 

The distribution of o[ τ ] is then the truncation of the distribu- 

ion of ˜ o [ τ ] , f o[ τ ] (x ) = [ f ˜ o [ τ ] (x )] A . It is known that if the demand

ollows a normal distribution, then ˜ o [2] follows the skew-normal 

istribution ( Azzalini, 1985; Henze, 1986 ), but the type of distribu- 

ion for ˜ o [ τ ] is generally undefined when the demand distribution 

s unknown or when τ > 2 . 

For the probability of actual order quantity, we need to derive 

he probability of each component. We denote the probability that 

 free order has degree τ as p τ where 

p τ = 

∫ 
R 

f o[ τ ] (x )d x = 

∫ 
A 

f ˜ o [ τ ] (x )d x. (6) 

ote, the integration of f ˜ o [ τ ] (x ) over R , although not truncated, is

ot unity. This is because [ f ˜ o [ τ−1] (x )] A ′ is not normalized. In this 

ense, [ f ˜ o [ τ ] (x )] A ′ is not a truncated distribution as conventionally 

efined, which requires F ˜ o [ τ ] (+ ∞ ) = 1 . In fact, the integration of

f ˜ o [ τ ] gives the probability that any order has a degree of τ , in other

ords, the time difference between two consecutive free orders is 

t least τ . This can be seen as the unconstrained counterpart of p τ ,

hus can be denoted ˜ p τ . Intuitively, 

˜ p τ = 

∫ 
R 

f ˜ o [ τ ] (x )d x = 

∫ 
R 

f d (x ) ∗ [ f ˜ o [ τ−1] (x )] A ′ d x 

= 

∫ 
R 

f d (x )d x 

∫ 
A ′ 

f ˜ o [ τ−1] (x )d x = 

∫ 
A ′ 

f ˜ o [ τ−1] (x )d x = 1 −
τ−1 ∑ 

k =1 

p k . 
548 
The last equality can be easily verified by induction. Note, 

rders with degree one do not have any preceding constrained 

rders; orders with degree two have one preceding constrained 

rder, and so on. Thus, the average time difference between two 

uccessive free orders is 
∑ 

k kp k . 

Since the average length of the zero order series is 
∑ 

k (k − 1) p k ,

nstantly we have: 

Pr { o = 0 } = 

∑ ∞ 

k =1 (k − 1) p k ∑ ∞ 

k =1 kp k 
, and 

r { o ∈ A} = 1 −
∑ ∞ 

k =1 (k − 1) p k ∑ ∞ 

k =1 kp k 
= 

1 ∑ ∞ 

k =1 kp k 
. 

e can then derive the expression for the distribution of orders: 

roposition 1. In the order-constrained system, the distribution of 

rder quantity is 

f o (x ) = 

δ(x ) 
∑ ∞ 

k =1 (k − 1) p k + 

∑ ∞ 

k =1 f o[ k ] (x ) ∑ ∞ 

k =1 kp k 
. (7) 

ere δ(x ) is the Dirac Delta function with δ(0) = 1 and δ(x ) = 0 for

 � = 0 . 

The distribution of order quantity is a mixture distribution 

ith a discrete o t = 0 part and a continuous o t ∈ A part. Schultz

1983) provides the order quantity distribution under an ( s , S) pol- 

cy and integer, nonnegative demand. Schultz’s density function 

as a similar structure to (7) , where 
∑ 

k (k − 1) p k is analogous 

o the renewal function representing the average number of pe- 

iods the accumulative demand is above s . The difference is that 

hen demand is allowed to be negative, the renewal model can 

o longer be applied. 

Fig. 3 shows the distribution of the order quantity in the three 

rder-constrained systems. In the FR system, A = (0 , + ∞ ) . In the

OQ system, A = (2 , + ∞ ) . In the CC system, A = (−∞ , 10) . The

rder distributions are also compared with the demand distribu- 

ion, which is assumed to be Gaussian, with μd = 5 and σd = 5 . In

he FR system, the mode of o t no longer equals μd . It is slightly

maller. This can be intuitively explained as follows. The mean of 

˜  [1] equals μd . For ˜ o [ τ ] where τ > 1 , as ˜ o t [ τ ] = 

∑ τ−1 
k =0 

d t−k and
 τ−1 
k =1 

d t−k < 0 , we have E ( ̃  o [ τ ]) < μd where E (·) is the expecta-

ion operator. This gives f o (x ) a negative skew. This effect is more 

rominent when the order constraint becomes tighter. In the CC 

ystem, the admissible region is symmetric to the admissible re- 

ion in the FR system about μd , therefore the order distribution 

nder CC is a horizontal reflection of the order distribution under 

R about μd . In the MOQ system, the inadmissible region A 

′ con- 

ains both negative and positive parts and it is generally indefinite 

hether E ( ̃  o [ τ ]) is monotone in τ or not. Although A is tighter in

he MOQ setting than in FR setting, the skewness does not change 

ignificantly. To illustrate the above analysis, Fig. 4 shows the first 

en component distributions, ˜ o [ τ � 10] , under the same settings as 

n Fig. 3 . Each point represents one component distribution, the 

orizontal and vertical axes show their respective mean and stan- 

ard deviation, and the size of the points are proportional to their 

robabilities. 

.3. The distribution of inventory 

With unit lead-time, the distribution of inventory is straight- 

orward to derive from the order distribution. From (1) , (2) , the 

nventory iteration can be written as 

 t = 

{
S − d t if o t−1 ∈ A 

i t−1 − d t otherwise . 
(8) 
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Fig. 3. Order distribution in order-constrained systems, d ∼ N(5 , 5) , S = 10 . (a) The FR system; (b) the MOQ system with s = 8 . (c) The CC system with C p = 10 . 

Fig. 4. Point process representation of the component distributions, d ∼ N(5 , 5) , S = 10 . (a) The FR system; (b) the MOQ system with s = 8 . (c) The CC system with C p = 10 . 

The size of the circle is proportional to the probability of the component distribution. The probabilities are given under the circles. 

Fig. 5. Distribution of the inventory levels in order-constrained systems, d ∼ N(5 , 5) , S = 10 . (a) The FR system; (b) the MOQ system with s = 8 . (c) The CC system with 

C p = 10 . 
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Table 3 

Characteristics of the inventory distribution in order-constrained systems. 

Gaussian FR MOQ CC 

Mean 5 5.63 5.48 4.37 

Standard deviation 5 5.31 5.33 5.31 

Mode 5 5.48 5.32 4.52 

Density at mode 0.080 0.077 0.077 0.077 

Skewness 0 0.15 0.15 −0 . 15 

Kurtosis 3 3.25 3.25 3.25 
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This can be formulated with the stopping time τ = min { k > 

 | o t−k ∈ A} as 

 t [ τ ] = S −
τ−1 ∑ 

k =0 

d t−k = S − ˜ o t [ τ ] . (9) 

Eq. (9) shows the inventory level in any given period equals S

inus the desired order quantity in that period. This can also be 

een in the numerical illustration in Table 2 . Further, Eq. (9) shows 

he distribution of inventory is also a mixture distribution. The 

ain difference is that the inventory level is not constrained. 

hat is, the component distributions are not truncated. Generally, 

f i [ τ ] (S − x ) = f ˜ o [ τ ] (x ) holds for all τ > 1 , that is, f i [ τ ] is f ˜ o [ τ ] re-

ected about S/ 2 . Therefore we have, 

roposition 2. In the forbidden returns system, the distribution of 

he inventory is 

f i (S − x ) = 

∑ 

k f ˜ o [ k ] (x ) ∑ 

k kp k 
, (10) 

here k = 1 , . . . , ∞ . 

Fig. 5 shows the inventory distributions in the same setting as 

n Fig. 3 . Here S − μd = 5 so the inventory distribution in the lin-

ar system is the same as the demand distribution. Since the in- 

entory distributions are continuous and smooth, their nature can 
549 
e illustrated more precisely with the descriptive statistics shown 

n Table 3 . We see the FR inventory distribution exhibits both a 

igher mean and mode and a wider spread (higher variance) than 

he equivalent linear inventory distribution; which causes the peak 

ensity to decrease. It is also positively skewed and leptokurtic 

the kurtosis larger than 3, meaning the distribution has fatter tails 

han the Gaussian). The CC inventory distribution is symmetrical to 

he FR inventory distribution. In the MOQ system, the monotonic- 

ty of E ( ̃  o [ τ ]) cannot be guaranteed and we cannot establish how 

he inventory distribution will change from the Gaussian. In this 

xample, the MOQ constraint has a milder impact on the mean 

nd mode of the inventory distribution compared with the FR con- 

traint. 
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. Extensions: Transportation lead time and correlated demand 

Having explored the base case for unit lead time and i.i.d. cus- 

omer demand in Section 3 , we now extend our analysis to exam- 

ne the cases of arbitrary lead-time and auto-correlated demand. 

.1. i.i.d. demand and a transportation delay 

Under the base stock policy, the transportation delay does not 

ffect the distribution of the order quantity when the demand is 

.i.d. In cases where the lead time is longer than one period, we 

nly need to replace the inventory level i t by the inventory posi- 

ion IP t in (1) and (2) , and the results in Section 3.2 hold as the

rder distribution does not change. However, the delay does affect 

he inventory distribution, as the inventory balance equation now 

ecomes 

 t = i t−1 + o t−L − d t . (11) 

As in Section 3.3 , now we need to express the inventory level as

he sum of past demand, from which we have the following result: 

emma 2. In the order-constrained system where L > 1 , i t = S −
 L + υ−2 
k =0 

d t−k , where the stopping time υ = min { k > 0 | o t−L −k +1 ∈
} . 
roof. Define as before τ = min { k > 0 | o t−k ∈ A} . From (11) , we

ave 

 t = IP t + w t = IP t−τ + 

τ∑ 

k =1 

o t−k −
τ−1 ∑ 

k =0 

d t−k −
L −1 ∑ 

k =1 

o t−k . (12) 

he derivation of the last step utilises the inventory position bal- 

nce equation, I P t = I P t−τ + 

∑ τ
k =1 o t−k −

∑ τ−1 
k =0 

d t−k , and that w t =
 L −1 
k =1 

o t−k . Since o t−τ ∈ A , we have IP t−τ + o t−τ = S. So (12) be-

omes 

 t = S −
L −1 ∑ 

k = τ
o t−k −

τ−1 ∑ 

k =0 

d t−k . 

gain, since o t−τ ∈ A , we have 
∑ L −1 

k = τ o t−k = 

∑ L + υ−2 
k = τ d t−k , where 

= min { k > 0 | o t−L −k +1 ∈ A} . The result then directly follows. �

Lemma 2 allows us to obtain the distribution of inventory when 

 lead time is present in a manner similar to the one introduced 

n Section 3 . In Lemma 2 , υ is defined as the degree of inventory.

= 1 means that the most recent free order before period t − L is 

 t−L , i.e., o t−L ∈ A . The distribution of i [1] equals the distribution of

ead-time demand because all the demand that occurred from pe- 

iod t − L + 1 to period t contributes to i t irrespective of the value

f demand: 

f i [1] (S − x ) = f L d (x ) , (13) 

here f L 
d 
(x ) denotes the lead-time demand distribution; that is, 

f L 
d 
(x ) is f d (x ) convolved L times. The inventory level with the sec-

nd degree i [2] means that o t−L −1 ∈ A , o t−L = 0 , therefore d t−L / ∈ A .

he distribution of i [2] is thus the demand distribution truncated 

y A 

′ , [ f d (x )] A ′ , convolved with the lead-time demand distribution, 

f L 
d 
(x ) : 

f i [2] (S − x ) = f L d (x ) ∗ [ f d (x )] A ′ = f L d (x ) ∗ [ f ˜ o [1] (x )] A ′ . 

Observe, if i t is of degree τ > 1 , then we have i t = 

∑ L −1 
k =0 

d t−k +
˜  t−L . Also, o t−L is constrained and ˜ o t−L is of degree τ − 1 because 

he most recent free order before t − L was τ − 1 periods ago. The 

bove result can be generalized to 

f i [ τ ] (S − x ) = f L d (x ) ∗ [ f ˜ o [ τ−1] (x )] A ′ . (14)

p

550 
The overall inventory distribution is a mixture of the above 

omponent distributions which has the same form as (10) : 

f i (x ) = 

∑ 

k f i [ k ] (x ) ∑ 

k kp k 
. 

We can now provide a general representation for the order and 

nventory distributions under constrained order and arbitrary lead- 

ime. Let g 1 = f d be the distribution of demand and h 1 = f L 
d 

be the

istribution of lead-time demand. In the linear inventory system, 

hey give the order and inventory distribution respectively. In the 

rder-constrained system, for k = 2 , . . . , ∞ , construct the function 

eries by recursive convolution: 

 k = (g k −1 ) A ′ ∗ g 1 and h k = (g k −1 ) A ′ ∗ h 1 . 

hen 

f ˜ o (x ) = 

∑ ∞ 

k =1 g k (x ) ∑ ∞ 

k =1 kp k 
and f i (S − x ) = 

∑ ∞ 

k =1 h k (x ) ∑ ∞ 

k =1 kp k 
. 

.2. Correlated demand 

An important issue in inventory theory is the temporal auto- 

orrelation between consecutive demands. It is relatively easy to 

ncorporate demand autocorrelation into linear inventory systems, 

s it does not affect the linearity of the system. In our model, we 

chieve this by extending the previous analysis to the multivariate 

ase. Under the assumption that demand is ARMA( p, q ), it follows a

ultivariate distribution f d (x | M , 
) , where x is the demand vec-

or, M is the expectation and 
 is the autocovariance matrix of 

 . In fact, the i.i.d. demand case described in Section 3 is simply

 = μd 1 and 
 = σd I, where 1 is an all-one vector and I is the

dentity matrix, both with proper dimensions. 

In the case of correlated demand, M = μd 1 remains unchanged 

s the stationarity assumption is still in place. We only need 

o specify the covariance matrix 
. For an ARMA( p, q ) demand 

odel, the demand is generated by the following equations: 

 t = �y t−1 + �ε t , 

 t = Zy t + μd , (15) 

here 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

φ1 1 

φ2 

. . . 

. . . 1 

φr 

⎞ 

⎟ ⎟ ⎟ ⎠ 

s a square matrix representing the auto-regression, 

= 

(
1 θ1 . . . θr 

)T 

s the input matrix representing the moving average, Z is a row 

ector in the form of (1 0 . . . 0), and r = max (p, q ) . ε t is a scalar

.i.d. random variable ( Harvey, 1990 ). Under this model, the ele- 

ents of 
 are σ 2 
jk 

= E (d j d k ) − μ2 
d 

= Z E (y j y 
T 
k 
) Z T . In the case of

 � j, we can write y j as 

 j = �y j−1 + �ε j 

= �2 y j−2 + ��ε j−1 + �ε j 

= . . . 

= � j−k y k + 

j−k −1 ∑ 

l=1 

� j−k −l �ε k + l + �ε j . 

Therefore E (y j y 
T 
k 
) = � j−k 
yy , where 
yy is the covariance of y .

yy can be directly derived from � and � using the Kronecker 

roduct, see Wang & Disney (2017) . 
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In the case of j < k , write y k as 

 k = �k − j y j + 

k − j−1 ∑ 

l=1 

�k − j−l �ε j+ l + �ε k , 

rom which we have E (y j y 
T 
k 
) = 
yy (�

k − j ) T . So the elements of 


an be written as 

2 
jk = 

{
Z � j−k 
yy Z 

T if k � j 

Z 
yy (�k − j ) T Z T if k > j. 
(16) 

Next, we need to rewrite the component distributions in the 

ultivariate form. Define the following partitions: 

[ τ ] = 

{ 

x 

∣∣∣∣∣
k ∑ 

j=1 

x j ∈ A 

′ , 1 < k < τ − 1 

} 

⊂ R 

τ−1 , 

[ τ ] = 

{ 

x 

∣∣∣∣∣
k ∑ 

j=1 

x j ∈ A 

′ , 1 < k < τ − 1 

} 

⊂ R 

τ , 

nd 

[ τ ] = 

{ 

x 

∣∣∣∣∣
k ∑ 

j=1 

x j ∈ A 

′ , 1 < k < τ − 1 

} 

⊂ R 

L + τ−1 . 

e have 

f ˜ o [ τ ] (x ) = 

∫ 
O[ τ ] 

f d (x )d x , 

˜ p τ = 

∫ 
P[ τ ] 

f d (x )d x , 

nd 

f i [ τ ] (S − x ) = 

∫ 
I[ τ ] 

f d (x )d x , 

here x is the demand vector with dimensions of τ , τ and L + τ
espectively. The distribution of order quantity and inventory can 

hen be derived using the approached described in Sections 3 and 

ection 4.1 . 

In a linear OUT policy, the minimum mean square error (MMSE) 

orecast of the ARMA demand minimises the variance of inventory 

evel and the inventory cost. However, in the order constrained 

olicy, this result is yet to be established. Meanwhile, for general 

RMA demand, adopting MMSE forecasts causes the order-up-to 

evel S to be time-varying, complicating analysis (as it will create a 

ime-varying admissible region). We leave this for future research, 

nd proceed herein with a constant order-up-to level. 

. An approximation algorithm 

It can be seen that the computation of the order and inventory 

istribution and their moments is difficult due to the fact that it 

nvolves the calculation of a countably infinite number of compo- 

ent distributions and truncated distributions. Numerically, convo- 

ution of density functions requires discretization, the granularity 

f which greatly impacts the accuracy of the computation. In this 

ection, we introduce an approximation algorithm which allows us 

o compute the mean and variance of order quantity and inven- 

ory much faster than conducting numerical convolutions. This al- 

orithm works under the assumptions that the demand, and all 

omponent distributions are Gaussian. The reason for choosing this 

ssumption is that the variance of a truncated Gaussian distribu- 

ion can be written in closed form facilitating the recursive com- 

utation. However, it is important to note the component distri- 

utions are not Gaussian. Therefore, the accuracy of the algorithm 

epends on the divergence between the component distributions 

nd the Gaussian distribution. 
551 
This algorithm builds upon the results from Nurminen, Rui, 

rdeshiri, Bazanella, & Gustafsson (2016) , who derived the first- 

nd second-order moments of a multivariate normal distribution 

here the first variable is truncated. We first introduce several 

ariables that will be used in the algorithm. Let M and 
 be the 

ean vector and the co-variance matrix of the multivariate distri- 

ution. The subscript A denotes the truncation operation by A . Let 

 A be the mean truncation coefficient and s A the variance trunca- 

ion coefficient. They are calculated as 

 A = 

φ( z ) − φ( z ) 

�( z ) − �( z ) 
(17) 

nd 

 A = 1 + 

z φ( z ) − z φ( z ) 

�( z ) − �( z ) 
− (m A ) 

2 , (18) 

here z = ( inf A − μ1 ) /λ1 , 1 and z = ( sup A − μ1 ) /λ1 , 1 can be un- 

erstood as the standardized infimum and supremum of A . μ1 and 

1 , 1 are the elements of M and � at position 1 and (1,1) respec- 

ively. The lower triangular matrix � is the Cholesky decomposi- 

ion of 
 such that 
 = ��T . Therefore μ1 and λ1 , 1 are the mean 

nd standard deviation of the first element. 

emma 3. Suppose 
(
x 1 x 2 . . . x n 

)
is a random vector follow- 

ng a multivariate normal distribution with mean M and covariance 

, then 

 

(
(x 1 ) A x 2 . . . x n 

)
= �

(
m A 
0 

)
+ M , 

 

(
(x 1 ) A x 2 . . . x n 

)
= �

(
s A 0 

0 I 

)
�T . 

The logic of this algorithm is to derive the conditional mean 

nd variance of the demand vector 
(
d t ∈ A d t+1 . . . d t+ n 

)
nd 

(
d t ∈ A 

′ d t+1 . . . d t+ n 
)

from the unconditional mean 

nd variance of 
(
d t d t+1 . . . d t+ n 

)
, using Lemma 3 . The con- 

itional mean and variance are then used to approximate the 

ean, variance, and probability of the component distributions 

˜  [ τ ] and i [ τ ] . To initialize the algorithm, we take an n + 1 di-

ensional demand vector 
(
d t d t+1 . . . d t+ n 

)
. Its mean M 

nd the variance 
 can be derived with the method specified 

n Section 4.2 . We denote them as M d and 
d for consistency. 

ince the covariance matrix of a general ARMA demand is not 

iagonal, the arbitrarily chosen n affects the accuracy and effi- 

iency of the approximation. We also need to introduce several bi- 

ary matrices for the calculation. Let u k = 

(
1 0 1 ×(n −k −1) 

)
, v k = 

1 1 ×(L +1) 0 1 ×(n −L −k −1) 

)
, Q 1 = 

(
0 (n −1) ×1 I 

)
, Q k> 1 = 

(
u T 

k 
I 
)
. 

In the first step, M 1 and 
1 give the mean and covariance of 

d t+1 . . . d t+ n 
)

conditional on d t ∈ A : 

 1 = Q 1 

[
�d 

(
(m d ) A 

0 

)
+ M d 

]
, (19) 

1 = Q 1 �d 

(
(s d ) A 0 

0 I 

)
�T 

d Q 

T 
1 . (20) 

 1 is an (n − 1) × n matrix composed of an all-zero first column 

nd an identity matrix. It reduces the dimension of the vector (or 

he matrix) by one by deleting the first element (or the first row 

nd column). Since ˜ o t [1] = d t | d t−1 ∈ A , the mean of ˜ o [1] is given

y the first element of M 1 , and its variance is given by the first

iagonal element of 
1 : 

1 = E ( ̃  o [1]) = u 1 M 1 , 

2 
1 = V ( ̃  o [1]) = u 1 
1 u 

T 
1 . 



X. Wang, S.M. Disney and B. Ponte European Journal of Operational Research 304 (2023) 543–557 

T  

(

t

μ  

d  

d

a

o

d

M




T

o

a

w  

t

μ

σ

W

s

r

M




E(
d  

o  

o

μ

σ

e

t

t

c

t

o  

l

E

V

l

E

V

T  

t  

t  

t

m

w

�

p

t

d

i

E

V

x  

F

i

C

s

c

c

f

n

6

p

i

a

c

l

m

a

t

t

a

C

s

F

f

s

c

t

t

t

t

fl

s

m

m

t

σ

S

p

p

he first element of u j is one and zero otherwise. It takes the first

diagonal) element of the respective mean vector (covariance ma- 

rix). Note, under autocorrelated demand, we don’t have E ( ̃  o [1]) = 

d and V ( ̃  o [1]) = σ 2 
d 

anymore as o t+1 [1] = d t+1 is conditional on

 t ∈ A . This can also be seen in (19) and (20) as � is no longer

iagonal. 

In the next step, M 1 and 
1 are used to update (m 1 ) A ′ , (s 1 ) A ′ 
nd �2 . We can then derive the conditional mean and variance 

f the vector 
(
d t+1 + d t+2 . . . d t+ n 

)
conditional on d t ∈ A and 

 t+1 ∈ A 

′ : 

 2 = Q 2 

[
�1 

(
(m 1 ) A ′ 

0 

)
+ M 1 

]
, (21) 

2 = Q 2 �1 

(
(s 1 ) A ′ 0 

0 I 

)
�T 

1 Q 

T 
2 . (22) 

he matrix Q 2 is (n − 2) × (n − 1) which reduces the dimensions 

f M 1 and 
1 by one by adding up the first two elements of M 1 

nd the first two rows and columns of 
1 . Since ˜ o t [2] = d t−1 + d t 
here d t−1 ∈ A 

′ and d t−2 ∈ A , the first element of M 2 and 
2 are

he mean and variance of ˜ o [2] : 

2 = E ( ̃  o [2]) = u 2 M 2 , 

2 
2 = V ( ̃  o [2]) = u 2 
2 u 

T 
2 . 

e assume here that ˜ o [2] is normally distributed, but it is in fact 

kew-normal. Hence μ2 and σ 2 
2 are only approximations to the 

eal mean and variance of ˜ o 2 . 

Generally, the iteration at step k is performed as follows: 

 k = Q k 

[
�k −1 

(
(m k −1 ) A ′ 

0 

)
+ M k −1 

]
, (23) 

k = Q k �k −1 

(
(s k −1 ) A ′ 0 

0 I 

)
�T 

k −1 Q 

T 
k . (24) 

qs. (23) and (24) approximate the mean and covariance of ∑ k 
j=1 d t+ j d t+ k +1 . . . d t+ n 

)
conditional on d t ∈ A , d t+1 ∈ A 

′ , 
 t+1 + d t+2 ∈ A 

′ up until 
∑ k −1 

j=1 d t+ j ∈ A 

′ . The mean and variance of

˜  [ k ] is approximated by the first element of M k and the first diag-

nal element of 
k respectively: 

k = E ( ̃  o [ k ]) = u k M k , 

2 
k = V ( ̃  o [ k ]) = u k 
k u 

T 
k . 

The above procedure is easy to understand, recalling that 

ach untruncated component distribution is derived by convolving 

he demand distribution and the previous component distribution 

runcated by A 

′ . μk and σk will be used to calculate the truncation 

oefficients (m k ) A and (s k ) A for the next iteration. 

The distribution of actual order quantity with degree k is the 

runcation of the k th untruncated component distribution by A , 

 t [ k ] = ( ̃  o [ k ]) A . Its mean and variance can be approximated as fol-

ows: 

 (o[ k ]) = u k 

[
�k 

(
(m k ) A 

0 

)
+ M k 

]
, 

 (o[ k ]) = u k �k 

(
(s k ) A 0 

0 I 

)
�T 

k u 

T 
k . 

The inventory level with degree k > 1 equals the order-up-to 

evel S minus the lead-time demand, 

 (S − i [ k ]) = v M , 
k k 

552 
 (i [ k ]) = v k 
k v T k . 

he vector v k is used to sum up the first (L + 1) elements of M k (or

he first (L + 1) × (L + 1) sub-matrices of 
k ) to account for lead-

ime demand. When k = 1 , the mean and variance of i [1] equals

he mean (reflected at S/ 2 ) and variance of lead-time demand. 

Lastly, the probability of components with degree k is approxi- 

ated by 

p k = [ �( z k ) − �( z k ) ] 

k −1 ∏ 

j=1 

[
1 − �( z j ) + �( z j ) 

]
. 

here z k = ( inf A − μk ) /σk and z k = ( sup A − μk ) /σk . We use 

( z k ) − �( z k ) to approximate the probability that ˜ o k ∈ A . The 

robability of constrained orders o t = 0 can then be calculated via 

he equations given in Section 3.2 . The mean and variance of or- 

ers are thus available via those of a mixture distribution, follow- 

ng Wald’s equation and the Blackwell–Girshick equation: 

 (x ) = E (E (x [ k ])) , 

 (x ) = E (V (x [ k ])) + V (E (x [ k ])) , 

 ∈ { o, i } . The constant order quantities should also be included.

ig. 6 shows the iterative relationship between variables involved 

n this algorithm. We name this algorithm Truncated Gaussian 

onvolution ( TGC ), as it assumes that all components are Gaus- 

ian and is based on truncated Gaussian convolution. The only time 

onsuming operation involved in this algorithm is the Cholsky de- 

omposition, with a complexity of O(n 3 ) . We will evaluate the ef- 

ectiveness and the efficiency of the TGC together with the eco- 

omic analysis in Section 6 . 

. Numerical analysis and economic implications 

The purpose of the numerical analysis is to demonstrate the 

erformance of the TGC algorithm and to reveal the economic 

mpact of the order constraint. For the former, we test the TGC 

lgorithm in terms of approximation accuracy, computational effi- 

iency, and robustness under other demand distributions. For the 

atter, we conduct a simulation-based analysis via three perfor- 

ance measures prominent in inventory control: the order vari- 

nce amplification phenomenon, a.k.a. the bullwhip effect, the 

rade-off between the order-up-to level and service level, and the 

rade-off between order and inventory variance amplification. The 

nalysis encompasses scenarios of order constraints (FR, MOQ, and 

C), auto-correlated demand and arbitrary lead-time. Prior to pre- 

enting the analysis, we reemphasize the equivalence between the 

R and CC systems under symmetric demand distributions. There- 

ore, adjusting the mean demand in the FR system will have the 

ame effect as adjusting the capacity in the CC system. 

We compare TGC with the computing methods of: numerical 

onvolution, simulation, and two intuitive approximations, namely, 

he truncated demand ( TD ) to approximate order distribution (as 

he order distribution is the same as the demand distribution in 

he linear system), and lead-time demand ( LTD ) to approximate 

he inventory distribution (as the inventory distribution is a re- 

ected and translated lead-time demand distribution in the linear 

ystem). Schneider et al. (1995) proposed the following approxi- 

ation for the order variance in the ( s, S) system based on the 

ean and variance of demand (we label it as SRK after the au- 

hors’ names) 

2 
o ≈ σ 2 

d + 

2 μ2 
d 
(S − s ) 2 

μ2 
d 

+ 2 μd (S − s ) + σ 2 
d 

. 

ee also Kelle & Milne (1999) for an application of the SRK ap- 

roximation in a supply chain context. We include the SRK ap- 

roximations in the bullwhip analysis as well. This approximation 
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Fig. 6. The iterative relationship of variables in the TGC algorithm. 

Fig. 7. The order variance with varying mean demand, demand correlation and order constraint. 
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s intended for the MOQ system only, while the FR system can be 

erived from the MOQ system by letting s = S. Therefore in the FR

ystem, SRK approximates the order variance as the demand vari- 

nce. 

.1. Bullwhip analysis 

The bullwhip ratio is a good indicator of the impact of the 

rder-constraint, defined as the ratio between order variance and 

emand variance. In the linear base-stock policy under i.i.d. de- 

and with MMSE forecasts, o t = d t , the order variance equals the 

emand variance and the bullwhip ratio is one ( Disney, Maltz, 

ang, & Warburton, 2016 ). However, the bullwhip ratio in this 

onlinear environment is no longer constant. Fig. 7 shows the evo- 

ution of this metric when the mean demand changes from 0 to 

 under auto-correlated demand and the FR and MOQ order con- 

traints respectively. The auto-correlation model is chosen to be 

he first order auto-regressive, AR(1), demand process where �
553
nd � in (15) are both scalars such that � = φ and � = 1 . The de-

and process can be written as y t = φy t−1 + ε t and d t = y t + μd .

e illustrate scenarios of φ = −0 . 5 (negative correlation); φ = 0 

no correlation) and φ = 0 . 5 (positive correlation). We also ad- 

ust the value of σ 2 
ε in three scenarios to make the demand vari- 

nce constant at σ 2 
d 

= σ 2 
ε / (1 − φ2 ) = 1 . In the MOQ system, we

se s = 0 and S = 1 . 

First, in a nonlinear system with constrained orders, the mean 

emand (or more generally, the tightness of the constraint) has a 

ignificant impact on the order variance. This clearly contrasts with 

ur knowledge in the linear system, where the mean demand does 

ot affect the order variance. We see the real order variance in the 

R system is increasing concave in the mean demand, and asymp- 

otes to the demand variance when μd is sufficiently large. Simi- 

arly, the order variance is increasing concave in the capacity under 

he CC system. In the MOQ system, the order variance will first in- 

rease, and then decrease, in μd . This is because of the distance 

etween the discrete and the continuous components (at C = 0 
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Fig. 8. The order variance in an ( s, S) system with Gamma demand. 
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nd A respectively) in the order distribution, such that a reduction 

n the probability of the discrete component does not always lead 

o an increase in order variance. 

Second, we observe that TGC is a better approximation than 

D . The advantages are two fold. From an accuracy perspective, 

ven for i.i.d. demand, TGC is more accurate than TD when the 

ean demand is low. This is because TD does not account for the 

omponent mixture in the order distribution. Furthermore, as TD 

oes not contain any information about the demand correlation, it 

annot reflect the demand correlation properly. As shown in Fig. 7 , 

n scenarios where the demand variance is equal but correlation is 

ifferent, TD always gives the same approximation. However, the 

GC approximation can account for the demand correlation. When 

ompared with SRK in the MOQ system, we see that TGC signifi- 

antly outperforms SRK at approximating the real order variance, 

nd SRK does not take into account the demand auto-correlation. 

e need to note that SRK performs better when the MOQ be- 

omes larger. This is because a key step in the derivation of the 

RK approximation requires large MOQ values (see Appendix 1 of 

chneider et al., 1995 ). On the other hand, the proposed TGC ap- 

roximation performs less satisfactorily under large MOQ values as 

he component distributions deviate from Gaussian significantly. 

The robustness of TGC is examined with Gamma demand 

n Fig. 8 . The Gamma (α, β) distribution is given by f d (x ) =
−αx α−1 e −x/β/ �(α) where α is the shape parameter, β is the scale 

arameter and �(·) is the Gamma function. This gives μd = αβ
nd σ 2 

d 
= αβ2 . We vary α between 2 and 12 with β = 2 . As the

upport of the Gamma distribution is nonnegative, the FR con- 

traint does not affect the order distribution. Therefore we use an 

OQ system with s = 0 and S = 1 . The result shows that TGC ap-

roximates the order variance better than TD and SRK when α is 

mall, in terms of the distance from the real values. When α be- 

omes large, the Gamma distribution becomes more like a Gaus- 

ian distribution (see the subplots in Fig. 8 ), and the accuracy of 

GC improves. Meanwhile, TD converges faster than TGC in this 

xample. This is because μd increases with α, and the order con- 

traint (in this case o t > 1 ) gradually becomes loose. SRK per- 

orms similar to TD but shows an increasing divergence when α
ncreases. 

The efficiency of TGC compared with the numerical convolu- 

ion method and Monte-Carlo simulation is shown in Table 4 . The 

ask is to calculate the order variance in the FR system when de- 
v

554 
and is i.i.d. with μd = 1 . 5 and σd = 1 . We do not vary the pa-

ameters as they do not affect the computation time. The platform 

s a personal computer with INTEL® i7-8650 CPU at 1.9 GHz and 

6 GB RAM. For the benchmark variance value, we use numerical 

onvolution as the real value requires infinite convolutions which 

s practically impossible. To reduce the discretization error, a fine 

rid ( 10 5 ) is used to discretize the density functions. The num- 

er of iteration (30) is chosen such that the absolute change in 

he converging value is less than the maximum rounding error un- 

er double precision ( 2 −52 ≈ 2 . 22 × 10 −16 ). Next, the approxima- 

ion of TGC is given with an discrepancy of 10 −3 from the benck- 

ark value. For the methods where iteration is needed (simula- 

ion and numerical convolution), we show the computation time 

eeded in order to achieve the same level of accuracy. The re- 

ults by TD and SRK are also included. It is quite obvious that 

GC possesses great superiority in terms of computational effi- 

iency with the same level of accuracy between numerical convo- 

ution and simulation methods. On the other hand, TD and SRK 

re quick since no iteration is involved, but their approximations 

ave large deviations from the benchmark. Finally, it is important 

o note the reliability of TGC decreases as the constraint becomes 

ighter, since the inadmissible part of the demand distribution is 

ot negligible, and the component distributions cannot be safely 

pproximated by Gaussian distributions. 

.2. Order-up-to level and service level 

The achieved service level is another important performance 

easure of the inventory system, which can be adjusted by alter- 

ng the safety stock and the order-up-to level. Since the order-up- 

o level horizontally shifts the inventory distribution and does not 

hange its shape, it should be set such that the achieved service 

evel (the probability that the inventory level is positive) equals 

he target service level. If the achieved service level does not equal 

he target, then the business will either be over- or under-stocked 

nd the inventory cost will not be minimized. In this sense, the 

istance between achieved and target service level can be used to 

easure inventory control performance. Since the exact inventory 

istribution is asymptotically available, we can always achieve the 

arget service level, at least numerically. In this section, we are in- 

erested in the service level performance using only the inventory 

ariance estimate. 
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Table 4 

Computational efficiency of the numerical methods. 

Benchmark ∗ TGC † Simulation ‡ Convolution § TD SRK 

Order Variance, σ 2 0.8959 0.8969 (0.8950, 0.8968) 0.8950 0.8884 1.0000 

Time (seconds) 43.66 0.17 5.78 5.52 0.01 0.003 

∗
10 5 data points are used to discretize the pdfs up until o[30] . 

† 

n = 100 . 
‡ 

95% confidence interval of 6400 samples over 1000 periods. 
§

10 5 data points are used to discretize the pdfs up until o[5] . 

Table 5 

Actual service level when safety stock is calculated by LTD and TGC . (Note: Bold font indicates cases where the TGC approximation does not perform worse than the LTD 

approximation). 

μd = 1 μd = 2 

φ = −0 . 5 φ = 0 φ = 0 . 5 φ = −0 . 5 φ = 0 φ = 0 . 5 

LTD L = 1 0.900 0.898 0.895 0.894 0.865 0.820 

L = 5 0.900 0.899 0.898 0.891 0.887 0.873 

L = 10 0.900 0.900 0.900 0.892 0.892 0.884 

TGC L = 1 0.901 0.898 0.905 0.891 0.879 0.895 

L = 5 0.900 0.899 0.901 0.891 0.890 0.889 

L = 10 0.900 0.900 0.901 0.893 0.892 0.892 

Fig. 9. Sum of order and inventory variance with varying mean demand, demand correlation, and order constraint. 
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Table 5 examines the performance of TGC in terms of service 

evel in a capacitated system. The same three auto-correlated 

emand scenarios as in Section 6.1 are considered. The capacity 

 p = 3 , the lead-time values are L = { 1 , 5 , 10 } , and the mean

emand μd = { 1 , 2 } . The order-up-to level is determined in the

ollowing way: S = Lμd + z(αT ) σi , where first term is the mean 

f lead-time-demand, z(αT ) is the αT -quantile of the standard 

aussian distribution. The second term z(αT ) σi is the safety stock. 

nder TGC , σi is derived by taking into account the truncations 

nd mixtures. As a comparison, under the LTD approximation, 

he mean and variance of inventory are simply taken as those 

f the lead-time demand in the linear unconstrained case (the 

emand auto-correlation is still considered). A target service level 

f αT = 90% is assumed. The achieved service level is derived via 

imulation in the CC system. 
555
By varying the lead-time and the demand autocorrelation, we 

ee both approximations produce less satisfactory results when the 

onstraint becomes tighter (that is, when μd becomes greater). 

his is true for both the LTD and the TGC approximations. There is 

 positive relationship between μd and the achieved service level; 

hat is, given a capacity constraint, the achieved service level de- 

reases as μd increases. This contrasts with a linear unconstrained 

nventory system model, in which the actual service level is af- 

ected by the order-up-to level but not the mean demand. The rea- 

on is the inventory distribution becomes more negatively skewed 

s μd becomes greater, leading to a thicker negative tail and lower 

chieved service level. The discrepancy between the target and the 

chieved service level also decreases in lead-time and decreases in 

emand correlation. A possible explanation is that long lead-time 

nd negative correlation both lead to more “normal” component 
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istributions, due to the central limit theorem and the risk pooling 

ffect. We also observe TGC generally outperforms the LTD ap- 

roximation in terms of reaching the target service level; the ben- 

fit could be as high as 7.5% (when μd = 2 , φ = 0 . 5 and L = 1 ).

his indicates significant cost savings can be gained with a more 

ccurate inventory distribution estimate in the order-constrained 

ystem. 

.3. Sum of order and inventory variances 

It is known that the standard deviation of inventory has a 

trong impact on inventory-related costs. Under certain assump- 

ions (such as piece-wise linear and convex costs and Gaussian in- 

entory distribution), this relationship is even linear. Hence, the 

tudy of inventory variance provides insight for inventory cost 

anagement. Similarly, the standard deviation of the replenish- 

ent orders (or production targets in manufacturing settings) di- 

ectly creates capacity costs and also contributes to the inven- 

ory cost in upstream suppliers. The relative magnitudes of the 

rder and inventory standard deviations alter the economic con- 

equences ( Boute et al., 2021 ). However, in order to preserve the 

nalytical simplicity of quadratic problems, here we consider the 

imple sum of the variances. 

Ponte et al. (2017) has observed that a capacity constraint on 

he order quantity has a smoothing effect on orders, reducing the 

rder variance while increasing inventory variance. We can now 

xplain this observation. When there is a constant constraint on 

he order quantity, there are two effects taking place. The first one 

s the mixture effect , where the order distribution becomes mixed, 

ith component distributions that have different means. This in- 

reases the order variance. There is also the truncation effect , where 

ll component distributions are truncated by the constraint, which 

ends to decrease the order variance. For the order quantity, the 

runcation effect is dominant, and the order variance decreases 

s the order constraint becomes tighter. However, the component 

istributions of inventory are not truncated as there is no con- 

traint on the inventory level. This means the inventory variance 

ncreases with a tighter constraint (although not monotonically) 

s only the mixture effect is present. We also observe that as the 

onstraint tightens, the order variance reduces slower than the in- 

entory variance increases. However, the inventory variance grows 

ignificantly when the constraint becomes very tight. We can take 

dvantage of this phenomenon and reduce order variance by ad- 

usting the constraint, while keeping the inventory variance to an 

cceptable level, to balance the trade-off between inventory and 

rder costs. 

Fig. 9 shows the order variance, the inventory variance, and 

heir sum. The mean demand, demand correlation and order con- 

traints are the same as in Fig. 7 . We let the lead-time L = 1 so

hat the order and inventory variances are comparable. The im- 

ediate observation is that for the FR system, when the demand 

s independent or negatively correlated, decreasing μd leads to a 

eduction in the variance of the sum, due to the reasons elabo- 

ated above. Moreover, by decreasing μd , a larger benefit can be 

chieved in the negative correlation case. As the auto-regression 

oefficient increases, the benefit of reducing μd becomes insignif- 

cant. The same effect can be observed in the CC system when 

he capacity is tuned. However, when C 1 � = C 2 as in the MOQ sys-

em, the order variance does not increase with the mean demand, 

ut increases then decreases. Consequently, the sum of variances 

ay not have a global minimum, but instead possess multiple lo- 

al maximums and minimums, as in the negative correlation and 

o correlation cases. 

We can easily infer what would happen when the objective is 

 weighted sum of order and inventory variances (that is, γ σ 2 
o + 
556
1 − γ ) σ 2 
i 

where 0 � γ � 1 ). The weight γ does not change the 

ightness of the order constraint, therefore it does not affect the 

ccuracy of the TGC algorithm. However, since the order variance 

ecreases, and the inventory variance increases when the con- 

traint tightens, the weight does affect how much the weighted 

um can be reduced by the constraint. For instance, by increasing 

he weight for the order variance, there would be a greater reduc- 

ion in the weighted sum of variances. 

. Conclusions 

We have investigated the order and inventory distributions in 

 periodic review, continuous state, nonlinear inventory system, 

here the order quantity is (either upper- or lower-) constrained 

y a constant. This model is shown to have a wide application 

n practice, covering cases of forbidden returns, minimum order 

uantity, and production capacity. Our analytical framework is 

ompatible with long transportation delays and demand autocor- 

elation. 

Both the order and inventory distributions are a mixture of dis- 

ributions, where the components can be derived by iterative con- 

olutions of full and truncated distributions. For the Gaussian de- 

and, we have proposed an algorithm that is able to approximate 

he density function and the moments, taking advantage of the an- 

lytical tractability of the truncated Gaussian distribution. The per- 

ormance of the algorithm decreases with the tightness of the con- 

traint, but it generally provides more accurate estimates than the 

ntuitive approximations and is more efficient than numerical con- 

olution. When applying this algorithm to set the safety stock, the 

ccuracy leads to improved service level. 

We have revealed the order constraint has a smoothing effect 

n orders but a variance amplifying effect on inventory. This is 

ue to both distribution truncation and mixture effects. Combined, 

he order constraint is able to reduce the sum of order and in- 

entory variance. This finding exposes a mechanism by which the 

rder-inventory trade-off can be influenced by the order constraint. 

trategically constraining orders has the potential to significantly 

nhance the dynamic behaviour of production and distribution sys- 

ems. 

Managerially, our analysis provides additional insights for man- 

gers to understand the effect of the order constraint on the fluctu- 

tions of order quantity and inventory level. The approximation al- 

orithm allows for accurate and efficient estimations of the magni- 

ude of this effect. Moreover, it enlarges the toolbox for controlling 

he trade-off between order and inventory variances. We can now 

hoose to influence the mean demand, introduce a minimum order 

uantity, or adjust the capacity. Such measures may be easier to 

mplement than the proportional control method ( Disney & Towill, 

003 ) usually advocated to control the bullwhip effect, as the core 

lgorithm does not need to be changed. The ordering decision can 

e made by simply comparing the originally recommended quan- 

ity and the constraint value. In future research, it would be in- 

eresting to use our modelling approach to extract demand infor- 

ation from observed constrained order information. Furthermore, 

he effect of demand auto-correlation and lead-time on the inven- 

ory level performance in the order-constrained systems is worth 

urther exploration, especially when the order-up-to level is dy- 

amic over time due to the demand forecast. 
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