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Abstract
We consider the model of a ball elastically bouncing on a racket moving in the vertical
direction according to a given periodic function f (t). The gravity force is acting on the
ball.We prove that if the function f (t) belongs to a class of trigonometric polynomials
of degree 2 then there exists a one dimensional continuum of initial conditions for
which the velocity of the ball tends to infinity. Our result improves a previous one by
Pustyl’nikov and gives a new upper bound to the applicability of KAM theory to this
model.

1 Introduction

The vertical dynamics of a free falling ball on a moving racket is considered. The
racket is supposed to move in the vertical direction according to a periodic function
f (t) and the ball is reflected according to the law of elastic bouncing when hitting the
racket. The only force acting on the ball is the gravity, with acceleration g. Moreover,
the mass of the racket is assumed to be large with respect to the mass of the ball so
that the impacts do not affect the motion of the racket.
This model has inspired many authors as it represents a simple mechanical model
exhibiting complex dynamics; see for example [5, 6, 10, 12–16] where results on
periodic or quasiperiodic motions are proved together with, in some case, topological
chaos. Moreover, for some f presenting some singularities it is possible to study
statistical and ergodic properties [2, 18].

In this paper we are concerned with the existence of unboundedmotions, supposing
f real analytic. We understand that a motion is unbounded if the velocity of the ball
tends to infinity.
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The first result in this direction is due to Pustyl’nikov assuming that 2 ḟ (t0) = g for
some t0. We remark that with the same proof, it is possible to weaken the condition to

max ḟ ≥ g

4
. (1)

On the other hand, an application of KAM theory implies that there exists ε > 0
(depending on g) such that if the norm of ḟ is smaller than ε then all motions are
bounded [17]. It is then natural to ask, in a broad sense, what is the optimal condition
on ḟ for which all motions are bounded. In this respect, condition (1) represents an
upper bound to the norm of ḟ .
The question is in its generality hard to solve. Actually, it has already attracted a lot
of attention for the case of the standard map [7, 8], being the problem still open.

The purpose of this paper is to improve the upper bound given by (1),more precisely,
we give an explicit example of a trigonometric polynomial p(t) with

max ṗ <
g

4
(2)

admitting unbounded bouncing motions.
We also stress that regularity plays a role, being KAM theory not applicable with

too low regularity [3, 4]. Hence our example gives a new upper bound in the analytic
class. On this line, we also cite the result in [11] where functions with arbitrary small
first derivative are constructed admitting unbounded bouncing motions. See also [9]
for a C1+α extension of this result. In any case, these functions are not C2 and it is
not clear if a smoothing procedure can be applied.

The idea behind Pustyl’nikov’s result is to construct a motion such that the time
difference between two consecutive bounces is a positive integer. Hence, since f
is one periodic, the velocity increases of a fixed quantity at every bounce. Moreover,
condition (1) is optimal to get suchmotions.Hence,wewill construct the trigonometric
polynomial p(t) such that in the corresponding bouncing motion the increase of the
velocity occurs every N bounces, for some N ≥ 2. This idea was already used in [11]
and we will show that it can be used to construct also real analytic examples.

Finally, we stress that the trigonometric polynomial p(t) admits a continuum of
unbounded orbits andmoreover belongs to a family of trigonometric polynomial ps(t),
parametrized by s in a real open interval I , with

max ṗs <
g

4
for all s ∈ I , (3)

each of them admitting a continuum of unbounded motions.
The existence of a continuum of unbounded motions was already presented in the

results of Pustyl’nikov. Here we extend his idea, which we recall here. The bouncing
motions correspond to (positive) orbits of a symplectic map of the cylinder Pf . The
map Pf shares some orbits with amap of the torus and the unbounded orbit constructed
by Pustyl’nikov can be seen as a fixed point of this latter map. A condition on f̈
guarantees that this fixed point is hyperbolic and the stable manifold exists. Coming
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back to the original map, the stable manifold is preserved and allows to construct the
desired continuum of initial conditions.We stress that the linearization of Pf along the
unbounded orbit is a non autonomous map, so that the just cited result of preservation
of the invariant manifold is delicate.

In our case, the unbounded orbit corresponds to a N -cycle of the approximating
map, and we will show that it is hyperbolic due to the properties of the family ps .
Hence we will find the continuum of unbounded orbits showing that we can adapt
Pustyl’nikov idea to the N -th iterate of the map Pp.

The paper is organized as follows. In Sect. 2 we state the problem, recall
Pustyl’nikov’s result and state our main result. In Sect. 3 we discuss the optimal-
ity of condition (1) and construct the family ps proving that the corresponding map
admits one unbounded orbit. Finally, in Sect. 4 we show how to extend the unbounded
orbit found in the previous Section to a continuum. In the same Section we also give
a detailed discussion of the result on the persistence of the stable manifold under non
autonomous perturbations.

2 Statement of the Problem andMain Result

We consider the vertical motions of a ball bouncing elastically on a vertically moving
racket. The only force acting on the ball is the gravity, with acceleration g > 0 and
we assume that the impacts do not affect the motion of the racket that is supposed to
move like a 1-periodic real analytic function f . In an inertial frame and choosing as
coordinates the time of impact t and the velocity v just after the impact we get that
the motion is described by the following map (see [13])

Pf :
{
t1 = t0 + 2

g v0 − 2
g f [t1, t0]

v1 = v0 + 2 ḟ (t1) − 2 f [t1, t0] (4)

where

f [t1, t0] = f (t1) − f (t0)

t1 − t0
.

This is also the formulation considered by Pustil’nikov in [14]. Another approach
based on differential equations was considered by Kunze and Ortega [6] and leads to
a map that is equivalent to (4). The map is implicit and turns out to be an embedding
for v > v̄ for some v̄ sufficiently large (see [13]). Moreover, by the periodicity of the
function f , the coordinate t can be seen as an angle. Hence the map Pf is defined on
the half cylinder T × (v̄,+∞), where T = R/Z.

A bouncing motion is a positive orbit of Pf i.e. a sequence (tn, vn)n≥0 such that
(tn, vn) = Pn

f (t0, v0) for every n ≥ 0.We are interested in the existence of unbounded
bouncing motions, where

Definition 1 A bouncing motion (tn, vn)n≥0 is said unbounded if

lim
n→+∞ vn = +∞.
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The first result on the existence of an unbounded bouncing motion is due to
Pustyl’nikov

Theorem 1 ([14]) Suppose that 2 ḟ (t∗0 ) = g. Then there exists a positive integer m
such that choosing v∗

0 = mg/2, the bouncing motion given by Pn
f (t

∗
0 , v∗

0) satisfies for
n ≥ 0,

t∗n+1 − t∗n = m + 2n, v∗
n+1 − v∗

n = g. (5)

If in addition f̈ (t∗0 ) > 0 or f̈ (t∗0 ) < −g then there exists a one-dimensional continuum
� ⊂ T × R of initial data containing (t∗0 , v∗

0) such that if (t, v) ∈ � then bouncing
motion given by Pn

f (t, v) is unbounded and

lim
n→+∞

vn

n
= g.

We remark that following Pustyl’nikov proof the condition on ḟ can be weakened to
4 ḟ (t∗0 ) = g being this condition optimal to get orbits with increasing velocity at every
bounce. We prove these facts in Proposition 1 and Remark 1.

The main result of this paper is to prove that there exists a continuum of unbounded
bouncing motions for a class of functions not satisfying the optimal condition of
Pustyl’nikov. More precisely we prove the following

Theorem 2 There exists a 1-periodic trigonometric polynomial p(t) of degree 2 such
that

max ṗ <
g

4

and the map Pp admits a one dimensional continuum of unbounded motions.

It will come from the proof that the expression of p(t) is explicit. Moreover, p(t)
belongs to a family of trigonometric polynomials with the same properties:

Corollary 1 There exist a real open interval I and a one parameter family ps(t), s ∈ I
of 1-periodic trigonometric polynomials of degree 2 such that

(i) p(t) = ps̄(t) for some s̄ ∈ I ,
(ii) max ṗs < g/4 for all s ∈ I ,
(iii) for every s ∈ I the corresponding maps Pps admit a one dimensional continuum

Ss such that each bouncing motion starting on Ss is unbounded.

3 Existence of one UnboundedMotion

In this section we are going to construct a motion of the racket in the form of a
trigonometric polynomial p(t) not satisfying condition (1), for which there exits an
unbounded bouncing motion.
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The main idea behind our result is the following. If (t∗n , v∗
n)n≥0 is a positive orbit

of Pf satisfying

f (t∗n ) = f (t∗0 ) for every n ≥ 0 (6)

then f [t∗n+1, t
∗
n ] = 0 for every n ≥ 0 and (t∗n , v∗

n)n≥0 becomes a positive orbit for the
generalized standard map

GS :
{
t1 = t0 + 2

g v0

v1 = v0 + 2 ḟ (t1)
(7)

Conversely, if (t∗n , v∗
n)n≥0 is a positive orbit of GS with vn > v̄ for every n and

satisfying condition (6) then it is also a positive orbit for Pf . The idea of Pustyl’nikov
was to construct a positive orbit (t∗n , v∗

n)n≥0 of GS such that for every n, t∗n+1 − t∗n ∈
N \ {0} and v∗

n+1 − v∗
n = g. In this way, he got an unbounded orbit if max ḟ ≥ g/2 as

stated in Theorem 1. With the same idea the result can be improved a little. Here we
report a complete proof.

Proposition 1 Suppose that

max ḟ ≥ g/4. (8)

Then there exist t∗0 and a positive integer m such that the bouncing motion with initial
condition (t∗0 , v∗

0 = mg/2) satisfies for every n ≥ 0

t∗n+1 − t∗n = n + m, v∗
n+1 − v∗

n = g/2. (9)

Proof Byhypothesis, there exists a point t∗0 such that ḟ (t∗0 ) = g/4.Choose v∗
0 = mg/2

with an integer m such that v0 > v̄. For n ≥ 0, we consider (t∗n , v∗
n) = GSn(t∗0 , v∗

0)

and we prove by induction that it satisfies (9), so that (6) is satisfied and (t∗n , v∗
n) is

also an orbit of P with the desired properties. The case n = 0 is obvious. Moreover,
using the inductive hypothesis

t∗n+2 − t∗n+1 = 2

g
v∗
n+1 = 2

g
v∗
n + 1 = 2

g

(
v∗
0 + n

g

2

)
+ 1 = (n + 1) + m

and

v∗
n+2 − v∗

n+1 = 2 ḟ (t∗n+2) = 2 ḟ (t∗n+1 + (n + 1) + m) = 2 ḟ (t∗0 ) = g/2.

�	
Remark 1 Pustyl’nikov orbit is such that the velocity increases at every iterate of the
map and the bouncing time are equal modulo 1. We note that if max ḟ < g/4 then
this is not possible. Actually, suppose that v∗

n+1 − v∗
n > 0 and t∗n+1 − t∗n = σn ∈ N for
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every n ≥ 0. Then f [t∗n+1, t
∗
n ] = 0 and t∗n+1 − t∗n = 2

g v∗
n = σn with σn+1 > σn . This

implies that v∗
n = g

2σn and

g

2
(σn+1 − σn) = v∗

n+1 − v∗
n = 2 ḟ (t∗n+1) <

g

2

that is a contradiction.

In view of the previous Remark, we search for conditions to construct unbounded
motions such that the velocity increases every N iterates. This is achieved in [11] with
the following result.

Proposition 2 ([11]) Consider a function f ∈ C1(R/Z) and a sequence (t∗n )n∈N.
Suppose that there exist three positive integers N ,W , V such that

1. t∗N − t∗0 = W,
2. 4

g ḟ (t∗0 ) + (t∗N − t∗N−1) − (t∗1 − t∗0 ) = V ,
3. f (t∗0 ) = f (t∗1 ) = · · · = f (t∗N−1),
4. ḟ (t∗k ) = g

4 (t∗k+1 − 2t∗k + t∗k−1) for 1 ≤ k ≤ N − 1.

Then if we define v∗
n+1 = v∗

n + 2 ḟ (t∗n+1) and v∗
0 = g(t∗1−t∗0 )

2 we have that there
exists an orbit (t̄∗n , v̄∗

n)n∈N of Pf such that (t̄∗n , v̄∗
n) = (t∗n , v∗

n) for 0 ≤ n ≤ N and

t̄∗n+N = t̄∗n + σn, σn ∈ N

v̄∗
n+N = v̄∗

n + g

2
V .

Moreover, there exists T > 0 such that if t∗1 − t∗0 > T then v∗
n > v̄ for every n ≥ 0.

Remark 2 For N = 1 all the conditions are satisfied if

4

g
ḟ (t∗0 ) ∈ N \ {0}.

In this case we can select t∗1 such that t∗1 − t∗0 is a sufficiently large integer. Hence we
get the result in Proposition 1.

Next we show that Proposition 2 can be used to find a real analytic function p that does
not satisfy Pustyl’nikov condition (8) and admits unbounded orbits. More precisely:

Proposition 3 There exist a real open interval I and a one parameter family ps(t), s ∈
I of 1-periodic trigonometric polynomials of degree 2 such that

max ṗs <
g

4
∀s ∈ I

and the corresponding maps Pps admit an unbounded motion as in Proposition (2)
independent on s.
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Proof Consider a generic trigonometric polynomial of degree 2

p(t) = a1 sin(2π t) + b1 cos(2π t) + a2 sin(4π t) + b2 cos(4π t). (10)

We search for conditions on the real parameters a1, b1, a2, b2 such that, properties
1. 2. 3. 4. in Proposition 2 are satisfied for N = 2 and some t∗0 < t∗1 . These can be
rewritten as

1. t∗2 − t∗0 = W
2’. 2(t∗1 − t∗0 ) + 4

g ṗ(t
∗
1 ) = W ,

3. p(t∗0 ) = p(t∗1 ),
4’. 4

g ( ṗ(t∗0 ) + ṗ(t∗1 )) = V .

Actually, conditions 1. and 2’. imply condition 4., and using condition 4’. we get also
condition 2. Hence, let us search for conditions on a1, b1, a2, b2 in order to satisfy
properties 1. 2’. 3. 4’. Let us choose t∗0 = 0, t∗1 = 5/12+ k where k > T is a positive
integer and V = W − 2k = 1. With these values fix t∗2 to comply with condition 1.
Hence conditions 2’.,3.,4’. represent a linear system of 3 equations in the unknowns
a1, b1, a2, b2 with parametric solution

a1(s) = gs, b1(s) = g

(
(2 − √

3)s + 4
√
3 − 7

4π

)

a2(s) = g

(
5

96π
− s

2

)
, b2(s) = g

(√
3

2
s + 48 − 29

√
3

96π

)
.

(11)

Substituting these values in (10) we get a one parameter family ps(t) with s ∈ R

satisfying 1., 2’., 3., 4’ for every s with the same values of t∗0 , t∗1 . Hence, for every
s = 0 we can apply Proposition 2 to Pps and find the same unbounded motion.

Finally, to estimate the maximum of ṗs , using a sin x + b cos x ≤ √
a2 + b2, we

have that for every s,

max ṗs ≤ 2π
√
a1(s)2 + b1(s)2 + 4π

√
a2(s)2 + b2(s)2 =: g p̄(s). (12)

Now a direct computation shows that p̄(0.006) < 1/4 so that by continuity there
exists a real open interval I � 0.006 such that for every s ∈ I , max ṗs < g/4. Finally,
we can also restrict I in such a way that 0 /∈ I . In this way a1 = 0 and ps(t) has
minimal period 1 for every s ∈ I . �	
Remark 3 It is possible to have a numerical approximation of the optimal value for
max ṗs , coming from formula (12). Actually the minimum of p̄(s) can be approxi-
mated by

s̄ = 0.009569094523943, p̄(s̄) = 0.211931840664873.

Note that Proposition 3 gives a proof of Theorem 2 and Corollary 1, items (i),(ii),
concerning the existence of just one unbounded motion. The proof of the existence of
a continuum of unbounded motions is the purpose of the next section.
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4 Existence of a Continuum of UnboundedMotions

By nowwe have an unboundedmotion. In this Section we prove that it can be extended
to a continuum of unbounded motions. A key role is played by a theorem on non
autonomous perturbations of hyperbolic maps.

4.1 Non Autonomous Perturbations of Hyperbolic Maps

In this subsection we are going to discuss and prove the following result, a discrete
version of a classical theorem of differential equations (see [1, Theorem 4.1 pp 330]).

Theorem 3 Consider the difference equation

xn+1 = Axn + Rn(xn)

where A is an m × m matrix such that k eigenvalues have modulus less than 1 and
the remaining m − k have modulus greater than 1. Let U be an open neighbourhood
of the origin and suppose that Rn : U ⊂ R

m → R
m is continuous for every n and

Rn(0) = 0. Moreover suppose that for every ε > 0 there exist δ > 0 and M > 0 such
that for every n > M and u, v ∈ Bδ

|Rn(u) − Rn(v)| ≤ ε|u − v|

withBδ representing the ball centered in 0with radius δ. Then there exists n0 such that
for every n ≥ n0 there exists a k-dimensional topological manifold S = Sn passing
through zero such that if xn0 ∈ Sn0 then xn ∈ Sn for every n ≥ n0 and xn → 0 as
n > n0 tends to +∞.

The rest of the subsection is dedicated to the proof of this result. Let us start with
some preliminaries. There exists a real nonsingular matrix P such that

PAP−1 = B =
(
B1 0
0 B2

)

and B1 is a k × k matrix with all eigenvalues with modulus less than one and B2 is a
(m − k) × (m − k) matrix with all eigenvalues with modulus greater than one. By the
change of variables y = Px our system becomes equivalent to

yn+1 = Byn + gn(yn) (13)

with gn(yn) = PRn(P−1yn). Moreover, g(0) = 0 and given any ε > 0, there exist
Mε and δε such that

|gn(u) − gn(v)| ≤ ε|u − v| (14)
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for n > Mε and u, v ∈ Bδε . Now define

U1 =
(
B1 0
0 0

)

and

U2 =
(
0 0
0 B2

)
.

Note that Un = (U1 + U2)
n is the matrix solution of the linear system yn+1 = Byn .

Moreover, there exist K > 0, α1 < 1 and α2 < 1 such that

|Un
1 | ≤ Kαn

1 , (15)

|U−n
2 | ≤ Kαn

2 (16)

where | · | is the associated matrix norm. With this notation, Eq. (13) can be rewritten
in an integral form

Lemma 1 Suppose that for a ∈ R
m and n0 > 0 there exists a sequence {θn(a)}n≥n0

such that

θn(a) = Un−n0
1 a +

n−1∑
s=n0

Un−s−1
1 gs(θs(a)) −

∞∑
s=n

Un−s−1
2 gs(θs(a)) (17)

for every n > n0 where the last sum is convergent. Then this sequence satisfies the
difference Eq. (13).

Proof Equation (13) can be written as yn+1 = (U1 +U2)yn + gn(yn). Then,

θn+1(a) = Un−n0+1
1 a +

n∑
s=n0

Un−s
1 gs(θs(a)) −

∞∑
s=n+1

Un−s
2 gs(θs(a))

= U1

(
Un−n0
1 a +

n∑
s=n0

Un−s−1
1 gs(θs(a))

)
−U2

∞∑
s=n+1

Un−s−1
2 gs(θs(a))

= U1

(
Un−n0
1 a +

n−1∑
s=n0

Un−s−1
1 gs(θs(a))

)
−U2

∞∑
s=n

Un−s−1
2 gs(θs(a))

+U1U
−1
1 gn(θn(a)) +U2U

−1
2 gn(θn(a))

= (U1 +U2)θn(a) + gn(θn(a))

where in the last equality we have used the fact that U1 only acts on the first k rows
and U2 only on the last m − k and their images are subspaces dependent only on the
first k and m − k coordinates respectively. �	
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The following lemma is crucial

Lemma 2 There exist n0 > 0, δ > 0 and a sequence {θn(a)}n≥n0 satisfying the fol-
lowing properties

1. the function a �→ θn(a) is continuous for n ≥ n0 and |a| < δ,
2. θn(a) → 0 as n → ∞ uniformly for |a| < δ,
3. {θn(a)}n≥n0 satisfies (17).

We postpone the proof to the end of the subsection and we show howwe can conclude.
First note the from (17) the lastm−k components of a do not enter in the solution θn(a)

so that we can set them at 0. Consider now, for |a| sufficiently small the continuous
function

θn0(a) =
(
Ik 0
0 0

)
a −

∞∑
s=n0

Un0−s−1
2 gs(θs(a)),

where Ik represents the identity matrix of order k. Notice that, by the definition of the
matrix U2, the first k components of θn0(a) are

(θn0(a)) j = a j , j = 1, . . . , k

and the remaining m − k are,

(θn0(a)) j = (φn0(a)) j , j = k + 1, . . . ,m.

where φn0(a) = −∑∞
s=n0 U

n0−s−1
2 gs(θs(a)) is continuous in a. Then we can see

θn0(a) in the form

θn0(a) = (a1, . . . , ak, (φn0(a1, . . . , ak))k+1, . . . , (φn0(a1, . . . , ak))m)

where φn0(a1, . . . , ak) = −∑∞
s=n0 U

n0−s−1
2 gs(θs(a1, . . . , ak, 0, . . . , 0)) is continu-

ous in a1, . . . , ak . Hence Sn0 := graph φn0 represents a k dimensional manifold in
R
m . Analogously, for n > n0 we consider for |a| small the continuous function

θn(a) = Un−n0
1 a +

n−1∑
s=n0

Un−s−1
1 gs(θs(a)) −

∞∑
s=n

Un−s−1
2 gs(θs(a))

and note that the components of θn(a) are

(θn(a)) j =
{

(ϕn(a)) j , j = 1, . . . , k
(φn(a)) j , j = k + 1, . . . ,m.

where ϕn(a) = Un−n0
1 a + ∑n−1

s=n0 U
n−s−1
1 gs(θs(a)) and φn(a) = −∑∞

s=n U
n−s−1
2

gs(θs(a)) are continuous in a. Then, as before, we only consider the first k compo-
nents of a and define the k dimensional manifold Sn parametrically using the first k
components of ϕn(a1, . . . , ak) and the last m − k components of φn(a1, . . . , ak).
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Suppose now that there exists an orbit of (13) such that yn0 ∈ Sn0 . Then there exists
a such that

yn0 = θn0(a) = a −
∞∑

s=n0

Un0−s−1
2 gs(θs(a))

and θn(a) satisfies (17) for n ≥ n0. By the uniqueness of the solutions of (13–14) and
Lemma 1, yn = θn(a) for n ≥ n0. Moreover, by the definition of Sn we have that
yn ∈ Sn for every n ≥ n0 and, by Lemma 2, yn → 0 as n → ∞. Coming back to the
x variables we have the thesis.

To conclude the proof we give the

Proof of Lemma 2 With reference to constants introduced in (14,15,16), letmax{α1, α2}
< α < 1 and choose ε such that εK

(
1

1−α1
+ α2

1−α2

)
< 1

2 . Let n0 > Mε and a ∈ R
m

such that 2K |a| < δε .
For each l ≥ 0 consider the sequence {θ(l)

n (a)}n≥n0 defined by induction on l by

⎧⎪⎪⎨
⎪⎪⎩

θ(0)
n (a) = 0 ∀n ≥ n0

θ(l+1)
n (a) = Un−n0

1 a +
n−1∑
s=n0

Un−s−1
1 gs(θ

(l)
s (a)) −

∞∑
s=n

Un−s−1
2 gs(θ

(l)
s (a))

(18)

Let us prove by induction on l that this sequence is well-defined and for n ≥ n0

|θ(l+1)
n (a) − θ(l)

n (a)| ≤ K |a|αn−n0

2l
and

|θ(l)
n (a)| < δε

(19)

The step l = 0 comes readily from estimate (15) and the choice of α. Notice that
the hypothesis |θ(l)

n (a)| < δε allows to say that |θ(l+1)
n (a)| is well defined because the

last sum is dominated by a convergent geometric series. Moreover, by the inductive
hypothesis we have that for h = 0, . . . , l,

|θ(h+1)
n (a)| ≤ |θ(h+1)

n (a) − θ(h)
n (a)| + |θ(h)

n (a) − θ(h−1)
n (a)| + · · · + |θ(0)

n (a)|

≤
h∑

i=0

K |a|αn−n0

2i
≤ K |a|

+∞∑
i=0

1

2i
= 2K |a| < δε

(20)

remembering the choice of a. So also |θ(l+2)
n | is well defined and we have

|θ(l+2)
n (a) − θ(l+1)

n (a)| ≤
n−1∑
s=n0

Kαn−s−1
1 |gs(θ(l+1)

s (a)) − gs(θ
(l)
s (a))|

+
∞∑
s=n

Kαs−n+1
2 |gs(θ(l+1)

s (a)) − gs(θ
(l)
s (a))|.
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So, by (20) we can use (14) and the inductive hypothesis to get

|θ(l+2)
n (a) − θ(l+1)

n (a)| ≤ K |a|αn−n0

2l
εK

(
α
n−n0
1 − 1

α1 − 1
+ α2

1 − α2

)

≤ K |a|αn−n0

2l
εK

(
1

1 − α1
+ α2

1 − α2

)

that allows us to conclude remembering the choice of ε.
Let us now define �

(l)
n (a) = |θ(l+1)

n (a)− θ
(l)
n (a)| and note that by (19) and the choice

of |a| we have �
(l)
n (a) < δε

αn−n0

2l+1 . Hence the series
∑∞

l=0 �
(l)
n (a) is uniformly and

absolutely convergent being dominated by the series
∑∞

l=0 δε2−(l+1). Consequently,
the partial sum

�−1∑
l=0

(θ(l+1)
n (a) − θ(l)

n (a)) = θ(�)
n (a)

tends uniformly to a limit |θn(a)| and, by the Weierstrass Test the function a �→ θn(a)

is continuous for n ≥ n0 and |a| < δε

2K . Moreover,

|θn(a)| = |θn(a) − θ(0)
n (a)| ≤

∞∑
l=0

�(l)
n (a) < δεα

n−n0
∞∑
l=0

1

2l+1 ≤ δεα
n−n0 . (21)

Now we want to pass to the limit in (18). Notice that in order to pass the limit into
the last sum we have to use the dominated convergent theorem noticing that for every
s ≥ n

Un−s−1
2 gs(θ

(l)
s (a)) → Un−s−1

2 gs(θs(a)) uniformly

and

|Un−s−1
2 gs(θ

(l)
s (a))| ≤ Cαn .

So we are lead to the equation

θn(a) = U1(n − n0)a +
n−1∑
s=n0

U1(n − s − 1)gs(θs(a)) −
∞∑
s=n

U2(n − s − 1)gs(θs(a))

that is (17). Finally, by (21) the just defined sequence {θn(a)}n≥n0 tends to 0 uniformly
as n → ∞. �	
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4.2 Application to the Bouncing Ball Problem

Consider the map Pf (tn, vn) defined by

⎧⎨
⎩

tn+1 = tn + 2

g
vn − 2

g
f [tn+1, tn]

vn+1 = vn + 2 ḟ (tn+1) − 2 f [tn+1, tn]
(22)

and suppose that there exists an unbounded positive orbit (t∗n , v∗
n)n≥0 such that for

some positive integers N , V and for every n ≥ 0,

t∗n+N − t∗n ∈ N \ {0}, v∗
n+N − v∗

n = g

2
V , f [t∗n+1, t

∗
n ] = 0. (23)

Note that this is guaranteed if the function f belongs to the family ps defined in
Proposition 3. Let us consider the change of variables

{
τn = tn − t∗n
νn = vn − v∗

n

Then we have the following expansion of the associated map Pf (τn, νn).

Proposition 4 The map Pf (τn, νn) can be written, denoting xn = (τn, νn) as

xn+1 = An+1xn + �n(xn)

where

An =
(

1 2
g

2 f̈ (t∗n ) 1 + 4
g f̈ (t∗n )

)

and �n satisfies �n(0) = 0 and for every ε > 0 there exist δ > 0 and M > 0 such
that for every n > M and u, v ∈ Bδ

|�n(u) − �n(v)| ≤ ε|u − v|

with Bδ representing the ball centered in 0 with radius δ.

In order to prove Proposition 4 let us prove the following technical lemma

Lemma 3 The equation

t1 = t + 2

g
v − 2

g
f [t, t1]
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has a unique solution t1 = T (t, v) ≥ t + 1 for large v. Moreover T is differentiable
on {(t, v) : v > v̄} and

T = t + 2

g
v + O

(
1

v

)

∂T

∂t
= 1 + O

(
1

v

)
,

∂T

∂v
= 2

g
+ O

(
1

v

)

as v → +∞.

Proof The first part has been proved in [10, Lemma 1], so let us prove the validity of
the asymptotic expansions. Let � = �(t, v) = T − t so that, from the definition of
T , we have

� = 2

g
v − 2

g

f (T ) − f (t)

�

that is equivalent to the quadratic equation

�2 − 2

g
�v + 2

g
( f (T ) − f (t)) = 0

with roots

�± = 1

g
v ±

√
1

g2
v2 − 2

g
( f (T ) − f (t)).

Then �+ → +∞ and �− → 0 as v → +∞. Since we know that � ≥ 1, then it
must coincide with the positive branch for large v. So

� = 1

g
v +

√
1

g2
v2 − 2

g
( f (T ) − f (t)) = 2

g
v + O

(
1

v

)

that is the expansion for T .
We can obtain the expansions for the partial derivatives differentiating the formula

T = t + 2

g
v − 2

g

f (T ) − f (t)

T − t

and remembering the previous expansion of T . �	
Now we are ready for the

Proof of Proposition 4 Using the variables (τn, νn) the map Pf (τn, νn) takes the from

{
τn+1 = τn + 2

g νn − 2
gλn(τn, νn)

νn+1 = νn + 2φn(τn, νn) − 2 ḟ (t∗n+1) − 2λn(τn, νn)
(24)
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where, recalling that f [t∗n+1, t
∗
n ] = 0,

λn(τ, ν) = f [T (τ + t∗n , ν + v∗
n), τ + t∗n ]

and

φn(τ, ν) = ḟ (T (τ + t∗n , ν + v∗
n)).

Rewriting (24) as a perturbation of the linear map induced by the matrix An , we
get

{
τn+1 = τn + 2

g νn − 2
gλn(τn, νn)

νn+1 = νn + 2 f̈ (t∗n+1)
(
τn + 2

g νn

)
+ 2rn(τn, νn) − 2λn(τn, νn)

where

rn(τ, ν) = φn(τ, ν) − ḟ (t∗n+1) − f̈ (t∗n+1)

(
τ + 2

g
ν

)
.

By the regularity of f , the functions λn and rn are well defined and C1 in a com-
mon neighbourhood U of the origin. Moreover, as T (t∗n , v∗

n) = t∗n+1, we have that
λn(0, 0) = rn(0, 0) = 0. From the asymptotic estimates of Lemma 3 we deduce that

T (τ + t∗n , ν + v∗
n) − t∗n+1 − τ − 2

g
ν = O

(
1

v∗
n

)
as n → +∞ (25)

uniformly in U . As a consequence, remembering that t∗n+1 − t∗n = 2
g v∗

n → ∞ as
n → ∞, we have

T (τ + t∗n , ν + v∗
n) − t∗n → +∞ as n → +∞

uniformly in U . From this it is easy to verify that

||∇λn||L∞(U) → 0 as n → +∞.

Now a simple application of the mean value theorem gives, for every ε, the existence
of M > 0 such that

|λn(x) − λn(y)| < ε|x − y| (26)
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for every x, y ∈ U and n > M . To estimate ∇rn we have to proceed with more care.
We will consider ∂rn

∂τ
, being the other case similar. We have

∂rn
∂τ

= f̈ (T (τ + t∗n , ν + v∗
n))

∂T

∂τ
(τ + t∗n , ν + v∗

n) − f̈ (t∗n+1)

= f̈ (T (τ + t∗n , ν + v∗
n) − f̈ (t∗n+1) + O

(
1

v∗
n

)
as n → +∞

where we have used the estimate of Lemma 3. Now, the mean value theorem implies
that

| f̈ (T (τ + t∗n , ν + v∗
n) − f̈ (t∗n+1)| ≤ || ...f ||∞|T − t∗n+1|

= || ...f ||∞
∣∣∣∣τ + 2

g
ν

∣∣∣∣ + O

(
1

v∗
n

)

where we have used (25). A similar estimate holds for ∂rn
∂ν

, so, for every ε we can
eventually restrict the neighbourhood U such that

||∇rn||L∞(U) < ε as n → +∞.

As before, using the mean value theorem we can find for every ε, the existence of
M > 0 such that

|rn(x) − rn(y)| < ε|x − y|

for every x, y ∈ U and n > M . This last estimate, together with (26), allows to
conclude letting xn = (τn, νn) and �n(xn) = (− 2

gλn(xn), 2rn(xn) − 2λn(xn)). �	
Note that we cannot apply Theorem 3 to the map Pf (τn, νn) since the matrix An

coming fromProposition 4 is not constant. However, remembering the properties of the
unbounded orbit (t∗n , v∗

n) we can consider the N -th iterate PN
f (τ, ν). More precisely,

Proposition 5 The map PN
f (τ0, ν0) can be written, denoting ym = (τmN , νmN ) as

ym+1 = Aym + Rm(ym)

where

A = A0AN−1 . . . A1

is independent on m and Rm satisfies Rm(0) = 0 and for every ε > 0 there exist δ > 0
and M > 0 such that for every n > M and u, v ∈ Bδ

|Rm(u) − Rm(v)| ≤ ε|u − v|

with Bδ representing the ball centered in 0 with radius δ.
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Proof From a direct computation from Proposition 4

ym+1 = PN
f (xmN ) = A(m+1)N AmN+N−1 · · · AmN+1xmN + Rm(xmN )

= A(m+1)N AmN+N−1 · · · AmN+1ym + Rm(ym)

where the remaining Rm is a finite composition of the components of �i and and Ai ,
i = mN , . . . , (m+1)N and the required estimate on Rm follows from the correspond-
ing estimate on �i and the fact that all the entries of the matrices Ai are bounded.
Finally, since t∗n+N − t∗n ∈ N for every n ≥ 0 and f is one periodic, f̈ (t∗n ) = f̈ (t∗n+N )

so that An = An+N for every n ≥ 0. This implies that for every m ≥ 0 the matrix

A(m+1)N AmN+N−1 · · · AmN+1 = A0AN−1 · · · A1 := A

is independent on m. �	
We are ready to apply Theorem 3 to the map PN

f .

Proposition 6 Suppose that

|Tr(AN−1 . . . A1A0)| > 2.

with An defined in Proposition 4. Then there exists a one dimensional continuum
S̃ � (t∗0 , v∗

0) of initial data leading to unbounded solutions of the map Pf .

Proof With reference to Proposition 5, we have that det A = 1 and

|Tr(A)| = |Tr(A0AN−1 . . . A1)| = |Tr(AN−1 . . . A1A0)| > 2

using the fact that the trace of a product of matrices is invariant under cyclic permu-
tations. Since A is a 2 × 2 matrix, it is hyperbolic and the eigenvalues λ1, λ2 satisfy
0 < |λ2| < 1 < |λ2|. Hence we can apply Theorem 3 to the map PN (τ0, ν0) and
find for every m ≥ m0 large enough a one dimensional continuum Sm such that if
(τm0N , νm0N ) ∈ Sm0 then (τmN , νmN ) ∈ Sm and (τmN , νmN ) → (0, 0) as m > m0
tends to +∞.

Coming back to the variables (t, v) we have that for every m ≥ m0 there exists a
continuum S̃m such that if (tm0N , vm0N ) ∈ S̃m0 then (tmN , vmN ) ∈ S̃m and

tmN − t∗mN → 0, vmN − v∗
mN → 0 as m → ∞.

In order to construct the continuum S̃ of initial conditions, we note that for every n > 0,
P−n
f (tn, vn) is well defined in a sufficiently small neighbourhood of the unbounded

orbit (t∗n , v∗
n) and the corresponding v-component is larger that v̄.

Therefore, if (t0, v0) ∈ (PN
f )−m0(S̃m0) := S̃ then we get the thesis remembering

the properties of (t∗n , v∗
n) in (23). �	

We finally show that this applies to the bouncing motions corresponding to the family
ps defined in Proposition 3, concluding the proof of Theorem 2 and Corollary 1.



112 Page 18 of 19 S. Marò

Proposition 7 Consider the family of functions ps(t), s ∈ I defined in Proposition 3.
Then there exists a real open interval Ĩ ⊂ I such that for every s ∈ Ĩ there exists a one
dimensional continuum S̃s such that the orbits of Pps starting in S̃s are unbounded.
Moreover the continua S̃s intersect in the unbounded orbit found in Proposition 3.

Proof By Proposition 3 there exists an unbounded orbit, independent on s satisfying
(23) for N = 2 with t∗0 = 0 and t∗1 = 5/12 + k. Hence, we only need to check that
for every s ∈ I

Ts = |Tr(A1A0)| =
∣∣∣∣∣Tr

(
1 2

g

2 p̈s(t∗1 ) 1 + 4
g p̈s(t

∗
1 )

)(
1 2

g

2 p̈s(t∗0 ) 1 + 4
g p̈s(t

∗
0 )

)∣∣∣∣∣
=

∣∣∣∣2 + 8

g

(
p̈s(t

∗
0 ) + p̈s(t

∗
1 ) + 2

g
p̈s(t

∗
0 ) p̈s(t

∗
1 )

)∣∣∣∣ > 2

We recall that from the proof of Proposition 3, the family ps(t) has the form, for s ∈ I

ps(t) = a1(s) sin(2π t) + b1(s) cos(2π t) + a2(s) sin(4π t) + b2(s) cos(4π t),

where the coefficients are defined in (11) and 0.006 ∈ I . Moreover, p̈s(t) = g p̃s(t)
with p̃s(t) independent on g. Hence,

Ts = ∣∣2 + 8
(
p̃s(t

∗
0 ) + p̃s(t

∗
1 ) + 2 p̃s(t

∗
0 ) p̃s(t

∗
1 )

)∣∣
and from a direct computation we get that

p̃0.006(t
∗
0 ) > 0, p̃0.006(t

∗
1 ) > 0.

Finally, by continuity we can find a new interval Ĩ ⊂ I such that for every s ∈ Ĩ

p̃s(t
∗
0 ) > 0, p̃s(t

∗
1 ) > 0.

Hence Ts > 2 for s ∈ Ĩ and we can conclude applying Proposition 6. �	

Remark 4 With reference to Remark 3, it follows that Ts > 2 also for the optimal
numerical value

s̄ = 0.009569094523943.

In this case,

p̃s̄(t
∗
0 ) + p̃s̄(t

∗
1 ) + 2 p̃s̄(t

∗
0 ) p̃s̄(t

∗
1 ) = 1.186500669840734 > 0.
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