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Abstract: A new synthetic procedure for obtaining two previously reported donor-acceptor butadiene dyes,
namely 5-(3,3-bis(4-methoxyphenyl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
and 5-(3,3-bis(4-(dimethylamino)phenyl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-
dione, based on the InCl3-catalyzed coupling 1,3-diethyl-2-thiobarbituric acid with 1,1-bis(4-
methoxyphenyl)prop-2-yn-1-ol and 1,1-bis(4-(dimethylamino)phenyl)prop-2-yn-1-ol, respectively,
is presented. The reactions, which cleanly proceed in water under MW irradiation, involve the
initial generation of the corresponding enals by Meyer-Schuster rearrangement of the alkynols and
their subsequent Knoevenagel condensation with the 2-thiobarbituric acid derivative. By follow-
ing the same approach, the novel butadiene 5-(3,3-bi([1,1′-biphenyl]-4-yl)allylidene)-1,3-diethyl-2-
thioxodihydropyrimidine-4,6(1H,5H)-dione, which was characterized by 1H and 13C{1H} NMR, IR,
UV-Vis, elemental analysis and HRMS, was synthesized in 79% yield.

Keywords: push–pull molecules; butadienes; indium chloride; propargylic alcohols; Meyer–Schuster
rearrangement; Knoevenagel condensation; barbituric acid; microwave-assisted reactions

1. Introduction

Push–pull chromophores, in which electron donor and electron acceptor groups
are connected through a π-conjugated system (Figure 1), are the subject of considerable
research interest in material science due to their unique properties (color, electrochemical,
photochemical and solvatochromic behavior, nonlinear optical (NLO) properties, etc.) [1–5].
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(dimethylamino)phenyl)prop-2-yn-1-ol, respectively, is presented. The reactions, which cleanly 
proceed in water under MW irradiation, involve the initial generation of the corresponding enals 
by Meyer-Schuster rearrangement of the alkynols and their subsequent Knoevenagel condensation 
with the 2-thiobarbituric acid derivative. By following the same approach, the novel butadiene 5-
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A wide variety of donor and acceptor units, as well as π-conjugated spacers, have 
been combined during the last decades for the construction of push–pull molecules. In 
this context, the pseudoaromatic 2-thioxodihydropyrimidine-4,6(1H,5H)-dione ring of 
thiobarbituric acid and its N-alkylated derivatives has been extensively employed as an 
electron-withdrawing moiety in push–pull chromophores [6–9]. Representative examples 
are dyes 3a,b, recently described by Dumur and co-workers, featuring p-methoxyphenyl 
and p-dimethylaminophenyl donor groups connected to the barbituric acid skeleton 
through a 1,3-butadiene chain spacer (Scheme 1), which showed a marked solvatochromic 
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Figure 1. Simplified representation of a push–pull molecule.

A wide variety of donor and acceptor units, as well as π-conjugated spacers, have
been combined during the last decades for the construction of push–pull molecules. In this
context, the pseudoaromatic 2-thioxodihydropyrimidine-4,6(1H,5H)-dione ring of thiobar-
bituric acid and its N-alkylated derivatives has been extensively employed as an electron-
withdrawing moiety in push–pull chromophores [6–9]. Representative examples are dyes
3a,b, recently described by Dumur and co-workers, featuring p-methoxyphenyl and p-
dimethylaminophenyl donor groups connected to the barbituric acid skeleton through a
1,3-butadiene chain spacer (Scheme 1), which showed a marked solvatochromic behavior
in solution [10,11]. As shown in Scheme 1, compounds 3a,b were obtained by Knoeve-
nagel condensation of commercially available 1,3-diethyl-2-thiobarbituric acid 1 with the
corresponding α,β-unsaturated aldehyde 2a,b in refluxing ethanol under basic conditions.
For the preparation of enals 2a,b, Dumur and co-workers followed a classical synthetic
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route involving the initial olefination of the respective 4,4′-disubstituted benzophenone,
and subsequent Vilsmeier formylation of the resulting 1,1-diarylethylenes (see Scheme 1).
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Scheme 1. Synthesis of dyes 3a,b reported by Dumur and co-workers.

It is well known that α,β-unsaturated carbonyl compounds (both enals and enones) can
be accessed, in a straightforward and atom-economical manner, through the catalytic Meyer–
Schuster rearrangement of propargylic alcohols [12–14]. In this context, we developed some
years ago an efficient, general and environmentally benign protocol for the Meyer–Schuster
conversion of terminal propargylic alcohols into enals employing inexpensive InCl3 as
the catalyst, water as solvent, and microwaves (MW) irradiation as the heating source
(Scheme 2) [15].
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Scheme 2. MW-assisted InCl3-catalyzed Meyer–Schuster rearrangement of terminal propargylic
alcohols in water.

Additionally, in line with the interest of our group in the design of push–pull molecules [16,17],
we demonstrated the utility of this MW-assisted InCl3-catalyzed reaction in the field with
the high-yield synthesis of the donor-acceptor butadienes 6a,b, structurally related to
3a,b, by coupling of the corresponding propargylic alcohols 4a,b with indan-1,3-dione
5 [18] As shown in Scheme 3, under the reaction conditions employed, the Meyer–Schuster
and Knoevenagel reactions run smoothly and successively in a one-pot manner. Taking
advance of this previous work, herein we would like to communicate that Dumur’s dyes
3a,b can also be generated by direct MW-assisted InCl3-catalyzed coupling 1,3-diethyl-
2-thiobarbituric acid 1 with alkynols 4a,b. In addition, the synthesis and spectroscopic
characterization of the novel butadiene 5-(3,3-bi([1,1’-biphenyl]-4-yl)allylidene)-1,3-diethyl-
2-thioxodihydropyrimidine-4,6(1H,5H)-dione 3c will be presented.
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Scheme 3. MW-assisted InCl3-catalyzed synthesis of the push–pull butadienes 6a,b.

2. Results and Discussion

As shown in Scheme 4, we found that by applying the same reaction conditions
previously employed in the preparation of the indan-1,3-dione-based dyes 6a,b, the push–
pull butadienes 3a,b can be accessed in 75 and 65% yield, respectively. A notable aspect
of this new synthetic route is the ease reaction work-up procedure to isolate the products
since, after the MW-irradiation period (20 min at 160 ◦C) and cooling of the mixture to
room temperature, both derivatives appear as precipitated solids. In this way, a simple
decantation and consecutive washing with water, methanol and diethyl ether delivered
3a,b in pure form. The recorded IR, NMR (1H and 13C{1H}) and HRMS spectra were in full
agreement with the characterization data reported by Dumur and co-workers (full details
are given in the Materials and Methods section and copies of the spectra included in the
Supplementary Materials) [10,11].
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Scheme 4. MW-assisted InCl3-catalyzed synthesis of butadienes 3a,b from 1,3-diethyl-2-thiobarbituric
acid 1 and propargylic alcohols 4a,b.

The synthetic utility of this MW-assisted InCl3-catalyzed process was further demon-
strated with the preparation of the novel butadiene 5-(3,3-bi([1,1’-biphenyl]-4-yl)allylidene)-
1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione 3c starting from stoichiometric
amounts of 1,3-diethyl-2-thiobarbituric acid 1 and 1,1-di([1,1’-biphenyl]-4-yl)prop-2-yn-1-ol
4c (Scheme 5). Compound 3c was isolated as a red solid in 79% yield and characterized by
1H and 13C{1H] NMR, IR, elemental analysis and HRMS, with all data being fully consistent
with the proposed formulation (full details are given in the Materials and Methods section
and copies of the spectra included in the Supplementary Materials). Thus, its IR spectrum
showed characteristic C=O vibrations appearing as a strong and broad absorption band
at 1667 cm−1. The generation of a butadiene >C=CH-CH=C< unit was clearly reflected
in the 1H NMR spectrum by the appearance of two doublet signals at 8.30 and 8.73 ppm
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(3JHH = 12.3 Hz), the spectrum also showing the typical signals for the two inequivalent
ethyl groups of the N-alkylated thiobarbituric acid skeleton, i.e., two quartets at δH 4.54 and
4.62 ppm and two triplets at δH 1.31 and 1.38 ppm for the CH2 and CH3 units, respectively
(3JHH = 6.9 Hz). The 13C{1H] NMR spectrum of 3c also showed the expected signals,
with the most quickly identifiable being that of the C=S unit, which appears as the most
deshielded one in the spectrum (δC 178.9 ppm).
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Finally, the optical properties of the novel butadiene 3c were briefly investigated by
means of UV-Vis spectroscopy in heptane and methyl sulfoxide (DMSO) solution (see
Table 1; copies of the spectra are included in the Supplementary Materials file). As expected,
the spectra displayed an intense absorption band in the visible region, hypsochromically
shifted when compared to that of compounds 3a,b due to the lower electron-donor capabil-
ity of the biphenyl units vs. the p-methoxyphenyl and p-dimethylaminophenyl ones. In
addition, similarly to the case of 3a,b, 3c also features a positive solvatochromic behavior,
its absorption maximum undergoing a red shift on going from the non-polar heptane
solvent to the highly polar DMSO one (∆λmax = 29 nm).

Table 1. λmax values of butadienes 3a–c in heptane and dimethyl sulfoxide solution.

Compound λmax in Heptane λmax in DMSO ∆λmax

3a * 456 nm 478 nm 22 nm

3b ** 549 nm 609 nm 60 nm

3c *** 419 nm 448 nm 29 nm

* Data from reference [10]. ** Data from reference [11]. *** Spectra recorded using 6 × 10−5 M solutions.

3. Materials and Methods

Indium(III) chloride and 1,3-diethyl-2-thiobarbituric acid 1 were obtained from Merck
KGaA (Darmstadt, Germany) and used as received. The propargylic alcohols 4a,b [19]
and 4c [20] were synthesized following the methods reported in the literature. Organic
solvents were dried by standard methods and distilled under argon before use [21]. NMR
spectra were recorded on a Bruker DPX-300 (Billerica, MA, USA) spectrometer. The residual
signal of the deuterated solvent (CDCl3) was employed as reference for the chemical shifts.
The PerkinElmer 1720-XFT and Lambda 25 spectrometers (Waltham, MA, USA) were
used for IR and UV-Vis measurements, respectively. HRMS data were provided by the
General Services of the University of Oviedo employing a QTOF Bruker Impact II mass
spectrometer. Elemental analyses were provided by the Analytical Service of the Instituto
de Investigaciones Químicas (IIQ-CSIC) of Seville using a LECO TruSpec CHN analyzer
(St. Joseph, MI, USA).
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3.1. General Procedure for the Preparation of Butadienes 3a–c

A pressure-resistant septum-sealed glass vial was charged with 1,3-diethyl-2-
thiobarbituric acid (1; 0.101 g, 0.5 mmol), the corresponding propargylic alcohol (4a–c;
0.5 mmol), InCl3 (0.001 g, 0.005 mmol), a magnetic stirrer bar and water (0.5 mL). The
vial was then placed inside the cavity of a CEM Discover© S-Class microwave synthesizer
(Matthews, NC, USA) and power was held at 300 W until the desired temperature was
reached (160 ◦C). Microwave power was automatically regulated for the remainder of the
experiment to maintain the temperature (monitored by a built-in infrared sensor). The
internal pressure during the reaction ranged between 10 and 70 psi. After 20 min of irradia-
tion, the vial was cooled to room temperature, the reaction mixture transferred to a flask,
and the solid precipitate washed with water (1 × 5 mL), methanol (1 × 5 mL) and diethyl
ether (1 × 5 mL). Characterization data for the resulting compounds 3a–c are as follows.

3.2. 5-(3,3-Bis(4-methoxyphenyl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-
dione (3a)

Red solid. Yield: 0.168 g (75%). 1H NMR (300 MHz, CDCl3): δ = 8.52 (d, 1H,
JHH = 12.7 Hz), 8.20 (d, 1H, JHH = 12.7 Hz), 7.47 (d, 2H, JHH = 8.9 Hz), 7.23 (d, 2H,
JHH = 8.7 Hz), 7.02 (d, 2H, JHH = 8.7 Hz), 6.92 (d, 2H, JHH = 8.9 Hz), 4.58 (q, 2H, JHH = 7.0 Hz),
4.52 (q, 2H, JHH = 7.0 Hz), 3.91 (s, 3H), 3.88 (s, 3H), 1.35 (t, 3H, JHH = 7.0 Hz), 1.29 (t, 3H,
JHH = 7.0 Hz) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 179.0, 166.6, 162.4, 161.5, 161.1,
160.1, 157.1, 133.5, 133.2, 132.1, 130.1, 122.9, 114.1, 113.9, 113.6, 55.5, 55.4, 43.6, 43.1, 12.5,
12.4 ppm. IR (KBr): ν = 2969 (w), 2930 (w), 2837 (w), 1683 (m), 1660 (s), 1604 (s), 1533 (s),
1451 (w), 1423 (m), 1382 (s), 1335 (s), 1281 (s), 1256 (s), 1236 (s), 1212 (s), 1172 (s), 1139 (m),
1107 (s), 1078 (m), 1025 (m), 887 (m), 832 (m), 785 (m), 661 (w), 554 (w), 491 (w) cm−1.
HRMS (ESI): m/z 451.168272 [M + H+] (calcd. for C25H27O4N2S: 451.168605).

3.3. 5-(3,3-Bis(4-(dimethylamino)phenyl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-4,6
(1H,5H)-dione (3b)

Purple solid. Yield: 0.154 g (65%). 1H NMR (300 MHz, CDCl3): δ = 8.48 (d, 1H,
JHH = 13.2 Hz), 8.23 (d, 1H, JHH = 13.2 Hz), 7.50 (d, 2H, JHH = 9.0 Hz), 7.25 (d, 2H,
JHH = 9.0 Hz), 6.76 (d, 2H, JHH = 9.0 Hz), 6.67 (d, 2H, JHH = 9.0 Hz), 4.62 (q, 2H, JHH = 6.9 Hz),
4.53 (q, 2H, JHH = 6.9 Hz), 3.10 (s, 6H), 3.09 (s, 6H), 1.36 (t, 3H, JHH = 6.9 Hz), 1.30 (t, 3H,
JHH = 6.9 Hz) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 178.8, 171.0, 161.8, 160.6, 158.1,
152.9, 152.4, 134.3, 133.5, 128.4, 125.7, 120.9, 111.4, 111.3, 109.4, 43.4, 42.9, 40.1, 12.6, 12.5 ppm.
IR (KBr): ν = 2976 (w), 2927 (w), 1651 (s), 1592 (s), 1508 (s), 1433 (m), 1361 (s), 1283 (s),
1263 (m), 1239 (s), 1189 (s), 1142 (m), 1105 (s), 992 (w), 947 (m), 898 (m), 858 (w), 819 (m),
782 (m), 750 (w), 731 (w), 550 (w), 488 (w), 478 (w), 411 (w) cm−1. HRMS (ESI): m/z
477.231418 [M + H+] (calcd. for C27H33N4O2S: 477.231874).

3.4. 5-(3,3-Di([1,1’-biphenyl]-4-yl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-
dione (3c)

Red solid. Yield: 0.214 g (79%). 1H NMR (300 MHz, CDCl3): δ = 8.73 (d, 1H,
JHH = 12.3 Hz), 8.30 (d, 1H, JHH = 12.3 Hz), 7.78–7.40 (m, 18H), 4.62 (q, 2H, JHH = 6.9 Hz),
4.54 (q, 2H, JHH = 6.9 Hz), 1.38 (t, 3H, JHH = 6.9 Hz), 1.31 (t, 3H, JHH = 6.9 Hz) ppm. 13C{1H}
NMR (75 MHz, CDCl3): δ = 178.9, 165.0, 160.8, 160.0, 156.0, 143.8, 140.0, 139.5, 136.4, 131.9,
130.5, 129.0, 128.9, 128.1, 127.9, 127.3, 127.2, 127.1, 124.6, 115.3, 43.8, 43.3, 12.5, 12.4 ppm.
IR (KBr): ν = 3027 (w), 2972 (w), 2930 (w), 1697 (w), 1692 (m), 1667 (s), 1598 (m), 1548 (s),
1485 (m), 1434 (m), 1386 (s), 1337 (s), 1282 (s), 1236 (m), 1212 (s), 1107 (s), 1095 (s), 1004 (m),
969 (w), 887 (w), 848 (m), 787 (w), 765 (w), 733 (w), 693 (m), 493 (w) cm−1. Elemental
analysis calcd. (%) for C35H30N2O2S: C 77.46, H 5.57, N 5.16; found: C 77.29, H 5.59, N 5.25.
HRMS (ESI): m/z 543.210255 [M + H+] (calcd. for C35H31N2O2S: 543.210076).

4. Conclusions

Based on the ability of InCl3 to promote the tandem Meyer–Schuster/Knoevenagel
condensation of terminal propargylic alcohols with 1,3-dicarbonyl compounds in water under
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MW irradiation [18], a new synthesis of the previously reported butadiene dyes 3a,b has been
developed. In addition, applaying the same MW-assisted InCl3-catalyzed protocol, the related
butadiene 5-(3,3-bi([1,1’-biphenyl]-4-yl)allylidene)-1,3-diethyl-2-thioxodihydropyrimidine-
4,6(1H,5H)-dione 3c could also be synthesized for the first time, and fully characterized,
starting from 1,3-diethyl-2-thiobarbituric acid and 1,1-di([1,1’-biphenyl]-4-yl)prop-2-yn-1-ol.

Supplementary Materials: The following supporting information can be downloaded online, Figures
S1–S5: 1H, 13C{1H}, DEPT-1,3,5, IR and HRMS spectra obtained for compound 3a; Figures S6–S10:
1H, 13C{1H}, DEPT-1,3,5, IR and HRMS spectra obtained for compound 3b; Figures S11–S15: 1H,
13C{1H}, DEPT-1,3,5, IR and HRMS spectra obtained for compound 3c; Figures S16 and S17: UV-Vis
spectrum of compound 3c recorded in heptane and DMSO solution.
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