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A B S T R A C T

Energy awareness is one of the most relevant research directions in scheduling problems. In this paper
we consider the minimization of both the makespan and the energy consumption in the classical job shop
scheduling problem. The energy model considered allows several possible states for the machines: off, stand-
by, idle, setup and processing. To solve this multi-objective problem we propose an NSGA-II based evolutionary
algorithm combined with local search and a heuristic procedure to improve the energy consumption of a
given schedule. We also propose an advanced constraint programming (CP) approach as well as a Mixed-
Integer Linear Programming (MILP) model, to the aim of comparing their performances against those obtained
with the NSGA-II. The experimental study is performed against a benchmark set that extends by 41 instances
of increasing size, the set tackled in the previous literature against the same problem. The experiments
demonstrate the superiority of the NSGA-II algorithm over all other methods, despite the utilization of CP
and MILP allows to draw interesting conclusions on the overall solution optimality, revealing that there is still
room for further optimization.
. Introduction

The main motivation for studying the job shop is that it is a model
lose to many real environments. However, its complexity is proven
o be NP-hard, and therefore all kinds of resolution methods were
roposed in the literature in the last decades, from exact methods
o metaheuristic algorithms. The classical job shop with makespan
inimization is the most studied variant, by far (see Adams et al.

1988), Beck et al. (2011) or Nowicki and Smutnicki (2005)). How-
ver, many different constraints and characteristics have been con-
idered to make the problem even more realistic, for example setup
imes, flexibility in the machine selection, minimum and maximum
ime lags between operations or uncertainty. In the last years, energy
onsiderations are becoming a very relevant research topic, both for
nvironmental and economical reasons.

In Gao et al. (2019), Li and Wang (2022) we can read a couple of
ecent reviews of papers related to energy-efficient scheduling. Usually,
hese are multiobjective problems, minimizing at the same time a per-
ormance related objective (for example the makespan) and an energy
elated objective. The most interesting approaches for solving multi-
bjective problems are those based on the Pareto set, as they provide
ore flexibility to the decision makers in the real environments.

Many different energy-aware scheduling problems are considered
n the literature, as for example single machine (Mouzon et al., 2007)
r flexible flow shop (Dai et al., 2013). There are also some papers
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E-mail addresses: mig@uniovi.es (M.A. González), riccardo.rasconi@istc.cnr.it (R. Rasconi), angelo.oddi@istc.cnr.it (A. Oddi).

tackling real-life problems, as for example (Faria et al., 2019), where
the authors minimize the energy consumption of a yeast production
factory using a genetic algorithm. In some simulations, they estimate a
2.29% reduction in electricity cost, which represents about 7500 euro
savings to the factory each year and a reduction of its environmental
impact.

The energy-efficient job shop is probably the most interesting; in
fact, according to Gao et al. (2019), 41% of the papers about green
scheduling solve some variant of the job shop. We can cite (Liu et al.,
2014), where a quite simplistic energy model is considered where the
resources can only be idle or processing. Their results are improved
in González et al. (2019) by using NSGA-II and MOEA/D multiob-
jective evolutionary metaheuristics hybridized with local search, and
also a constraint-programming method. This last work is an exten-
sion of a previous work (González et al., 2017). Another interesting
paper is (Jiang et al., 2018), where the authors consider a single-
objective minimization of the sum of the energy-consumption cost and
the completion-time cost. They consider varying speeds for processing
the operations; obviously faster processing implies more energy con-
sumed. In Escamilla and Salido (2018) the authors also consider three
different processing modes for the operations, although in this work the
main objective of their memetic algorithm is to obtain robust schedules,
capable of absorbing possible incidences. A job shop considering flex-
ibility and transportation times is tackled in Zhang et al. (2019) and
a NSGA-II based evolutionary metaheuristic is proposed to minimize
ttps://doi.org/10.1016/j.engappai.2022.105263
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both energy and makespan. In Zhang and Chiong (2016) the weighted
tardiness and energy consumption are both minimized, considering
an energy model in which the processing mode of operations can be
modified. In He et al. (2022) the authors study an energy-efficient job-
shop scheduling problem with sequence-dependent setup times where
machines have three different speeds for performing operations. They
aim to simultaneously minimize the makespan, total tardiness and total
energy consumption. A novel fitness evaluation mechanism based on
fuzzy relative entropy was developed to effectively evaluate and select
solutions. This mechanism is exploited within a general multiobjective
optimization framework that uses an adaptive local search strategy
and a hybrid genetic algorithm approach. Experiments show that their
proposal outperforms other multiobjective metaheuristics, as NSGA-II,
SPEA-II, NSGA-III, MOEA/D and MOPSO.

In this paper we are particularly interested in job shop scenarios
in which the machines can be in several states. This multiple-state
energy model provides more possibilities and flexibility for some real
environments, but its resolution can also be more difficult than other
simpler models. The importance of such models for the realization of
realistic scenarios is proven by their recent utilization in the scheduling
literature. One recent example of such model is (Li and Lei, 2021) in
which the authors analyze a flexible job shop floor where the machines
exist in three modes: Processing mode, Stand-by mode and Setup mode,
and the machine consumptions while in Processing mode depend on
the speed selected for that particular job. In general, the importance of
‘‘energy-aware’’ (or green) scheduling problems is also underscored in
the very recent survey (Li and Wang, 2022), where the problems like
the one tackled in the present work belong to the important class of
green scheduling problems related to the minimization of the non-value
energy consumption. In fact, there are recent papers tackling real-world
problems, as in the work (Jiang et al., 2022) where a energy-efficient
flexible job shop is analyzed by using a case study for the aerospace
industry complex components in China. In particular, the most relevant
work for the present paper is (May et al., 2015), where it is proposed an
energy model where the machines can be in five states: Idle, Processing,
Setup, Off, or Stand-by and the machine speeds are fixed. The authors
solve the problem with a multiobjective genetic algorithm that mini-
mizes both the makespan and the energy consumption by building a
Pareto set of solutions. However, their proposal always schedules tasks
at the earliest possible time, and we will see in Section 2.2 that this
is not the best approach to tackle the problem. In Oddi et al. (2017)
their results are improved by a constraint-programming approach that
also uses a piecewise linear programming step to further improve the
energy consumption of the schedules. The authors generate the Pareto
set by applying the 𝜖-constraint method (Miettinen, 2012). Afterwards,
in Oddi et al. (2018) the same authors propose an upgrade to their
constraint-programming method that allows improvements in some of
the instances of the benchmark. The upgrade consists in adding an
additional set of energy aware constraints that allow to prune some of
the decisions on variables.

In this paper we further study the problem proposed in May et al.
(2015) and develop several solving methods for it, with the hopes of
improving the results reported in May et al. (2015), Oddi et al. (2017,
2018). In particular we propose the following methods:

– A hybrid evolutionary algorithm based on NSGA-II combined with
local search and a heuristic procedure for reducing the energy
consumption of a solution.

– A constraint programming (CP) approach, slightly modified with
respect to that proposed in Oddi et al. (2017, 2018).

– A novel Mixed-Integer Linear Programming (MILP) model.

It is expected that the hybrid evolutionary algorithm will perform
the best. In fact, in Gao et al. (2019) it is stated that 59% of the
papers about energy-aware scheduling problems are solved by means of
swarm and evolutionary algorithms, and among those, 52% are genetic
algorithms of different types (including NSGA-II). Therefore, it is a
2

widely used approach due to its effectiveness in tackling optimization
problems with vast search spaces.

The remaining of this paper is organized as follows: in Section 2 we
formally define the problem, whereas in Sections 3–5 we describe the
proposed solving methods, respectively the evolutionary algorithm, the
constraint programming approach and the mixed-integer programming
approach. Then, Section 6 reports the details of the experimental
study and the comparison with the state of the art. Finally, Sec-
tion 7 summarizes the conclusions and proposes some ideas for future
research.

2. Problem formulation

In the classical job shop scheduling problem we must schedule a set
of 𝑁 jobs 𝐽 = {𝐽1,… , 𝐽𝑁} in a set of 𝑀 resources, 𝑅 = {𝑅1,… , 𝑅𝑀}.
Each job 𝐽𝑖 is composed by 𝑛𝑖 operations (𝜃𝑖1, … , 𝜃𝑖𝑛𝑖 ) that must be
scheduled in that order. The set of all operations is denoted as 𝛺.
ach operation 𝜃𝑖𝑗 requires the uninterrupted and exclusive use of a
articular resource 𝑟𝑖𝑗 ∈ 𝑅 during all its processing time, denoted 𝑝𝑖𝑗 .
he goal is to establish the starting time 𝑠𝑖𝑗 of all operations such
hat all constraints are fulfilled, i.e. we want to determine a feasible
chedule.

Therefore, the constraints are:

– Precedence constraints, that represent the routing of the opera-
tions within each job: 𝑠𝜃𝑖𝑗 + 𝑝𝜃𝑖𝑗 ≤ 𝑠𝜃𝑖𝑗+1∀𝑖 ∈ 𝐽 , ∀𝑗 ∈ {1,… , 𝑛𝑖 −
1}

– Capacity constraints, that represent the fact that each machine
can only process one operation at a time: (𝑠𝜃𝑖𝑗 + 𝑝𝜃𝑖𝑗 ≤ 𝑠𝜃𝑘𝑙 ) ∨
(𝑠𝜃𝑘𝑙 + 𝑝𝜃𝑘𝑙 ≤ 𝑠𝜃𝑖𝑗 ) ∀𝑖, 𝑗, 𝑘, 𝑙 such that 𝑟𝑖𝑗 = 𝑟𝑘𝑙

In order to simplify notation, in the remaining of the paper we will
enote operations by a single letter instead of 𝜃𝑖𝑗 whenever possible.
lso, given a feasible schedule, 𝑃𝐽𝑣 and 𝑆𝐽𝑣 will respectively denote

he predecessor and successor of operation 𝑣 in its job sequence,
hereas 𝑃𝑀𝑣 and 𝑆𝑀𝑣 will respectively denote the predecessor and

uccessor of operation 𝑣 in its resource sequence. Additionally, the first
nd last operations on resource 𝑅𝑘 in the considered schedule will be
enoted 𝛼𝑘 and 𝜔𝑘, respectively.

As in many papers in the literature, we propose to find a schedule
hat minimizes two objective functions at the same time: the makespan
nd the energy consumption.

The makespan is the overall completion time and it is defined as
ax𝑢∈𝛺{𝑠𝑢 + 𝑝𝑢}. It is the most studied objective function in scheduling

iterature.
In order to define the energy consumption, we must first describe

he considered energy model, taken from May et al. (2015). Each
achine can be in five different states: Off, Stand-by, Idle, Setup or
rocessing. For simplicity, the Setup and Processing states are consid-
red together, which is a reasonable assumption often taken in the
iterature, and it is particularly suitable when setup times are not
equence-dependent.

When a resource 𝑅𝑘 is in Off state it consumes no energy, whereas
hen in Idle, Stand-by or Processing states its power consumption is,

espectively, 𝑃 𝑖𝑑𝑙𝑒
𝑘 , 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 and 𝑃 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑘 . Regarding the transitions,

or simplicity we assume that there are some transitions which consume
o time and no energy: from Idle to Stand-by, Off or Processing, and
lso from Processing to Idle. On the contrary, the transition from Off
o Idle requires a power consumption of 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝

𝑘 during 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘

ime units, and the transition from Stand-by to Idle requires the same
ower consumption 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝

𝑘 during 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 time units. Notice

hat 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 should be lower than 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓

𝑘 , as it is easier to
repare a resource for processing when in Stand-by state than when it
s Off.

The main motivation for assuming that some transitions require no
ime and no energy is simply to use exactly the same model as in May
t al. (2015). However, these assumptions do not limit the usefulness
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Fig. 1. State diagram of a machine; each transition is labeled with the energy consumed in it.
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of the model, as explained in the following: the transitions from Idle
to Off and from Idle to Stand-by can be simplified and assumed to be
zero because the time/energy required can be included in the opposite
transitions (i.e. from Off to Idle and from Stand-by to Idle), therefore
modifying the parameters 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓

𝑘 , 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 and 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝

𝑘 . As
or the transitions from Idle to Processing and vice versa, we can

obtain similar results by adding them to the processing time of the
corresponding operations. The described states of each machine and
the transitions between them are summarized in Fig. 1.

For the sake of simplicity, we also assume that machines do not have
any power consumption before the processing of their first operation
assigned and after the processing of their last operation assigned.

As in this paper we are considering a job shop scheduling problem
with no flexibility in resource selection, we can remark that each
resource must always process the same set of operations, and so the
total energy consumption of each resource when in Processing state
must be the same in every feasible schedule. For this reason, in order
to minimize the energy consumption, following (May et al., 2015), we
must minimize the following measure, denoted WEC (Worthless Energy
Consumption):

𝑊𝐸𝐶 =
∑

𝑘=1,…,𝑀
[𝑃 𝑖𝑑𝑙𝑒

𝑘 𝑡𝑖𝑑𝑙𝑒𝑘 + 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 𝑡𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 ] +

∑

𝑘=1,…,𝑀
𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 (𝑛𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 +

𝑛𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘 )

(1)

where 𝑡𝑖𝑑𝑙𝑒𝑘 and 𝑡𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 are the total time spent by the resource 𝑅𝑘 in

Idle and Stand-by states, respectively, and 𝑛𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑘 and 𝑛𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓𝑘
are the number or transitions done by 𝑅𝑘 from Stand-by to Idle and
from Off to Idle, respectively.

Following (Baker, 1974), in any given schedule a regular perfor-
mance measure can be increased only by increasing at least one of the
completion times of an operation. To minimize a regular measure it
is sufficient to consider the so-called ‘‘left-shift schedules’’, in which,
given a partial ordering of the operations, each one starts at the earliest
possible time allowed by the previous operations in the partial ordering.
In this paper we want to minimize the makespan, which is a regular
measure, and the WEC, which is not regular. Notice that the WEC can
sometimes be decreased by increasing the completion time of some
operations, as we will see in Section 2.2.

2.1. Definition of multi-objective optimization problems

As pointed in He et al. (2019) or (Zhu et al., 2018), a multi-objective
optimization problem with 𝑞 objectives can be defined as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑞(𝐱)} subject to 𝐱 ∈ 𝑋, (2)

where 𝑓𝑖, 𝑖 = 1,… , 𝑞 (𝑞 ≥ 2), are the possibly conflicting objective
functions that must be minimized simultaneously, and 𝑋 is the set of
 o

3

Table 1
Data for the operations of the toy instance.

Job 1 Job 2 Job 3

𝜃11 𝜃12 𝜃13 𝜃21 𝜃22 𝜃23 𝜃31 𝜃32 𝜃33
Processing time 4 5 2 2 5 3 4 7 3
Required resource 𝑅1 𝑅2 𝑅3 𝑅1 𝑅3 𝑅2 𝑅2 𝑅1 𝑅3

all feasible solutions. In our particular work, 𝑞 = 2, as we consider two
objective functions.

Some papers tackle multiobjective problems in a simple way, by
means of a lexicographic approach or a weighted sum approach, but
the dominance-based methods are more complex and interesting. In
particular, when we have two objective functions 𝑓1 and 𝑓2 that we
want to minimize, a solution 𝑆 is Pareto dominated, or simply domi-
nated by a solution 𝑆′ (denoted 𝑆′ ≺ 𝑆), if and only if 𝑓1(𝑆′) ≤ 𝑓1(𝑆)
and 𝑓2(𝑆′) < 𝑓2(𝑆), or 𝑓1(𝑆′) < 𝑓1(𝑆) and 𝑓2(𝑆′) ≤ 𝑓2(𝑆), i.e. 𝑆′ is
better in at least one objective function and it is never worse in any
objective function.

It usually happens that a unique solution cannot be optimal with
respect to both objectives. In this work we are looking for the set of all
non-dominated solutions or Pareto optimal solutions. These solutions are
not dominated by any solution 𝑆′ ∈ 𝑋, and so the improvement of one
objective necessarily implies the worsening of the other objective. The
Pareto front 𝑃𝑆∗ is defined as the set of all objective function values
corresponding to the solutions in the Pareto optimal set.

2.2. Solution example

The toy example presented in this section will help to better illus-
trate the described problem. Consider 3 jobs with 3 operations in each
job, and 3 resources. Table 1 illustrates the data of these operations:

Consider also the following values for all resources 𝑅𝑘 with 𝑘 ∈
{1, 2, 3}: 𝑃 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑘 = 10𝑘𝑊 , 𝑃 𝑖𝑑𝑙𝑒
𝑘 = 6𝑘𝑊 , 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 = 4𝑘𝑊 , 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 =

8𝑘𝑊 , 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘 = 3 and 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 = 1.
In Fig. 2 we show a feasible schedule for this toy instance, with

WEC of 40 (24 from 𝑅3 plus 16 from 𝑅2) and a makespan of 18.
etween each pair of consecutive operations in the same resource we
ave to decide if we leave the resource in Idle state, or if we switch it to
ither Off or Stand-by state. For example, in the 3 time units between
perations 𝜃31 and 𝜃23 we switch 𝑅2 to Stand-by state because in this
ay it adds 16 to the WEC, whereas switching it Off would add 24 and

f Idle would add 18. The same reasoning is used to decide to switch
3 to the Off state between operations 𝜃22 and 𝜃33. Notice that this

easible schedule is a ‘‘left-shift schedule’’, as no operation can start
arlier without modifying its partial ordering.

Delaying operations can sometimes lead to improved schedules, as
t can be seen in Fig. 3, in which we delay operation 𝜃31. Now, the best
ption between the end of operation 𝜃 and the beginning of operation
31
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Fig. 2. Feasible solution for the toy instance using a ‘‘left-shift schedule’’.

Fig. 3. Delaying one operation in order to improve the solution of Fig. 2.

𝜃23 is to leave resource 𝑅2 in Idle state. In this way the WEC is lowered
from 40 to 30, whereas the makespan is still 18.

Hence, the WEC is a non-regular performance measure. It is worth
o remark that the paper (May et al., 2015) only considers ‘‘left-shift
chedules’’, and so there is clearly a lot of room for improvement by
elaying operations. The papers (Oddi et al., 2017) and Oddi et al.
2018) are a first step in considering the non-regularity of the WEC
easure in this problem.

.3. The disjunctive graph model

In this section we will define a disjunctive graph model, which is the
ost common representation in scheduling problems. It will be used in

he neighborhood structure described in Section 3.5.1.
We follow a similar representation as other papers in the literature,

s for example (Van Laarhoven et al., 1992). A problem instance can be
epresented by a directed graph 𝐺 = (𝑉 ,𝐴∪𝐷). Each node of set 𝑉 is an
peration of the problem, except dummy nodes start and end which are
ictitious operations with processing time 0. The arcs of set 𝐴 are called
onjunctive arcs and represent precedence constraints, whereas arcs of
et 𝐷 are denoted disjunctive arcs and represent capacity constraints.
et 𝐴 contains some additional arcs from the fictitious operation 𝑠𝑡𝑎𝑟𝑡
o the first operation of each job, all of them weighted with value 0,
nd arcs from the last operation of each job to the fictitious operation
𝑛𝑑, all of them weighted with the processing time of the operation
t the source node, 𝑝𝑣. The remaining arcs (𝑣,𝑤) of 𝐴 and 𝐷 are also

weighted with the processing time of the operation at the source node,
𝑝𝑣. Set 𝐷 can be partitioned into subsets 𝐷𝑗 , with 𝑗 = 1,… ,𝑀 , where
𝐷𝑗 corresponds to resource 𝑅𝑗 and includes two directed arcs (𝑣,𝑤) and
𝑤, 𝑣) for each pair of operations 𝑣, 𝑤 such that 𝑟𝑣 = 𝑟𝑤 = 𝑅𝑗 .

A feasible schedule is represented by an acyclic subgraph 𝐺𝑆 of
, 𝐺𝑆 = (𝑉 ,𝐴 ∪ 𝐻) where 𝐻 = ∪𝑗=1…𝑀𝐻𝑗 , 𝐻𝑗 being a Hamiltonian

selection of 𝐷𝑗 , i.e. a minimal subset of arcs from 𝐷𝑗 that define a
processing order for all operations that require 𝑅𝑗 . Hence, finding a
solution can be reduced to discovering compatible orderings 𝐻𝑗 , or
partial schedules, that translate into a solution graph 𝐺𝑆 without cycles.

The makespan of the schedule is the cost of a critical path, defined as
a longest path from node start to node end. Nodes and arcs in a critical
path are termed critical. A critical path can be decomposed into a
sequence 𝑠𝑡𝑎𝑟𝑡, 𝐵1,… , 𝐵𝑟, 𝑒𝑛𝑑 where each 𝐵𝑘, 1 ≤ 𝑘 ≤ 𝑟 is called a critical
block, defined as a maximal subsequence of consecutive operations of
the critical path requiring the same resource.
4

Many solving methods of the job shop literature rely on the concepts
of critical path and critical block, including the local search neighbor-
hood proposed in Van Laarhoven et al. (1992), which we adopt and
is described in Section 3.5.1. We remark that this representation is
useful for neighborhood structures devoted to makespan minimization,
but it is not that relevant for WEC minimization, as this objective
function is not directly related to finding largest cost paths in a graph
representation.

Finally, we present an example in Fig. 4, where it is shown a
disjunctive graph that corresponds to the feasible schedule represented
in Fig. 2. Continuous arcs belong to set 𝐴 whereas dotted arcs belong
to set 𝐻 . The critical path is marked with bold arcs, and it has two
critical blocks: 𝐵1 = (𝜃21𝜃11𝜃32) and 𝐵2 = (𝜃33𝜃13).

3. Dominance-based multi-objective hybrid evolutionary
algorithm

In this section we describe a dominance-based hybrid metaheuristic,
adapting the successful ideas presented in González et al. (2017, 2019)
to the problem considered in this paper. The proposal combines a
genetic algorithm based on the NSGA-II framework (Deb et al., 2002)
with a multi-objective local search method. The main differences be-
tween our proposal and those previous works are those derived from
the modified energy model, which is now more complex, and so the
energy optimization heuristic (see Section 3.2) should be completely
redefined, and also the linear programming step used in those previous
papers is substituted by a more exhaustive version of the proposed
energy optimization heuristic. Additionally, in this paper we minimize
the makespan instead of the weighted tardiness, and so several com-
ponents, as for example the neighborhood structure used in the local
search (see Section 3.5.1) is different because the concepts of critical
path and critical block do change.

It is well-known that the minimization of non-regular objectives
in the JSP is more difficult than that of regular objectives. As an
example, in Brandimarte and Maiocco (1999) the authors propose the
decomposition of the overall problem in the sequencing and timing
subproblems. We are using a similar approach, and to solve the se-
quencing subproblem we represent solutions as permutations of jobs,
whereas to tackle the timing subproblem we introduce heuristic energy
optimization procedures.

3.1. Representation and evaluation of solutions

The most common representation for job shop scheduling problems
is permutations with repetitions (Bierwirth, 1995), in which a solution
is represented by a permutation of the set of operations, each denoted
by its job number. Hence, each job number must appear as many times
in the permutation as number of operations it has. For example, if we
consider a problem instance with three jobs and three operations in
each job, a chromosome (2 2 3 1 3 2 3 1 1) represents the operation
ordering (𝜃21𝜃22𝜃31𝜃11𝜃32𝜃23𝜃33𝜃12𝜃13).

To create a schedule from a chromosome, an insertion algorithm
is applied to it: we iterate the operations in the ordering given by
the chromosome, assigning each operation the earliest possible starting
time that fulfills all constraints with respect to all operations previously
scheduled. Notice that we are using an insertion heuristic, and so the
final ordering might be different than that of the chromosome (for
example if we are able to insert an operation in a big enough ‘‘gap’’ that
is located before an already scheduled operation. Hence, after building
the schedule, we reconstruct the chromosome in order to represent the
final ordering of the operations. As soon as the schedule is built, we
can compute its makespan and energy consumption.

It is worth to remark that any permutation containing as many
repetitions of a given number as number of operations of the corre-
sponding job, represents a linear ordering compatible with precedence
constraints, and so a feasible solution can always be built. As an
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Fig. 4. Disjunctive graph of the feasible solution represented in Fig. 2. Bold arcs show a critical path whose length, i.e. the makespan, is 18.
xample, the feasible schedule represented in Fig. 2 can be obtained
rom the chromosome (2 2 3 1 3 2 3 1 1). Notice that it can also be
btained from the chromosome (3 2 2 2 1 3 1 3 1) and many others, as
everal linear orderings are compatible with the represented solution.

.2. Energy optimization heuristic

As we have already pointed out, the WEC objective function is non-
egular, and therefore scheduling each operation as soon as possible is
robably not the best option, as illustrated in Section 2.2.

In order to improve the schedules created by the insertion strategy
escribed in Section 3.1 we propose a novel energy optimization heuris-
ic. It is applied to the solution returned by the insertion strategy and it
ries to improve the WEC of the schedule without modifying the linear
rdering of the operations and also without increasing the makespan.
n this way, the ordering of the chromosome tackles the sequencing
ubproblem while this energy optimization heuristic solves the timing
ubproblem. Algorithm 1 details the procedure with its two main steps.

The first step is based on the energy post-optimization procedure
riginally proposed in González et al. (2017), and it tries to delay as
uch as possible all operations of the schedule, with the exception of

he last operation processed in each resource, which must remain in
ts same starting time. When delaying operations we always maintain
heir relative ordering in each resource and we of course take into
ccount precedence constraints between operations of the same job,
n order to obtain a resulting feasible schedule. Also notice that the
akespan cannot be increased, as we are never delaying the last

peration processed in each resource.
This step can improve the WEC, as processing several consecutive

perations in a resource with no idle time between them consumes
ess energy than if those operations were separated by some time. The
chedule resulting of delaying operations as described usually results in
ore ‘‘grouping’’ of operations, thus reducing the WEC. However, the

esulting schedule can usually still be improved by applying another
tep.

The second step of the heuristic iterates all operations of the chro-
osome, and for each one it sets its best possible starting time such

s the WEC is minimized, considering only its current space (i.e. we
annot move any other operation and we cannot modify the operation
rdering). Fig. 5 shows an example where we have to choose the best
tarting time for operation 𝑖 from the range [73,82]. This can be easily
alculated, as we only have to find the starting time that minimizes
1 + 𝐸2 where 𝐸1 is the WEC consumed between operations 𝑃𝑀𝑖 and
and 𝐸2 is the WEC consumed between operations 𝑖 and 𝑆𝑀𝑖.

However, doing a single iteration of all operations of the chromo-
ome might not be enough and further improvements in WEC can be
btained using a recursive approach. This recursive approach, when it
ctually moves an operation 𝑎 of the schedule, instead of continuing
terating the next position of the chromosome, it goes back to the
arliest position in the chromosome between the job predecessor of
and the resource predecessor of 𝑎. In this way we can tackle the

ases where moving an operation might make desirable moving an
5

Algorithm 1: The energy optimization heuristic
input : A problem instance 𝐼 and a feasible schedule 𝑆 (i.e., an

ordering 𝑂 and a set of starting times 𝑠)
output: A new set of starting times 𝑠′ for the ordering 𝑂
begin

//First step: delaying operations
𝑘 ← |𝛺|;
while 𝑘 ≥ 1 do

𝑎 ← 𝑂[𝑘];
if 𝑎 is the last operation processed in a machine then

𝑠′𝑎 ← 𝑠𝑎;
else

if 𝑎 is the last operation of its job then 𝑠′𝑎 ← 𝑠′𝑆𝑀𝑎
− 𝑝𝑎;

else 𝑠′𝑎 ← min{𝑠′𝑆𝐽𝑎 , 𝑠
′
𝑆𝑀𝑎

} − 𝑝𝑎;
end
𝑘 ← 𝑘 − 1;

end
//Second step: moving operations inside its space
𝑘 ← 1;
while 𝑘 ≤ |𝛺| do

𝑎 ← 𝑂[𝑘];
//Calculate the earliest starting time for operation 𝑎
𝑠𝑚𝑖𝑛𝑎 ← 0;
if exists 𝑃𝐽𝑎 then 𝑠𝑚𝑖𝑛𝑎 ← 𝑠′𝑃𝐽𝑎 + 𝑝𝑃𝐽𝑎 ;
if exists 𝑃𝑀𝑎 then 𝑠𝑚𝑖𝑛𝑎 ← max{𝑠𝑚𝑖𝑛𝑎 , 𝑠′𝑃𝑀𝑎

+ 𝑝𝑃𝑀𝑎
};

//Calculate the latest starting time for operation 𝑎
𝑠𝑚𝑎𝑥𝑎 ← makespan of the schedule 𝑆 −𝑝𝑎;
if exists 𝑆𝐽𝑎 then 𝑠𝑚𝑎𝑥𝑎 ← 𝑠′𝑆𝐽𝑎 − 𝑝𝑎;
if exists 𝑆𝑀𝑎 then 𝑠𝑚𝑎𝑥𝑎 ← min{𝑠𝑚𝑎𝑥𝑎 , 𝑠′𝑆𝑀𝑎

− 𝑝𝑎};
//Select the best starting time for 𝑎 that minimizes the
energy

𝑠𝑜𝑝𝑡𝑎 ← the time ∈ [𝑠𝑚𝑖𝑛𝑎 , 𝑠𝑚𝑎𝑥𝑎 ] such that the WEC is
minimized. In case of tie select the earliest possible
starting time between those tied;

//Determine the next operation to study
if 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 ∧ 𝑠𝑜𝑝𝑡𝑎 ≠ 𝑠′𝑎 then

𝑘 ← max{position of 𝑃𝐽𝑎 in ordering 𝑂, position of
𝑃𝑀𝑎 in ordering 𝑂};

else
𝑘 ← 𝑘 + 1;

end
𝑠′𝑎 ← 𝑠𝑜𝑝𝑡𝑎 ;

end
end

earlier operation. Evidently, this results in a procedure of much higher
complexity. We apply it by setting the parameter 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 to true in
Algorithm 1.
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Fig. 5. Second step of the energy optimization heuristic: moving an operation 𝑖 to the
ptimal position in its space such that WEC is minimized.

We propose to embed the described algorithm in the solution evalu-
tion method and we apply it just after the insertion strategy described
n Section 3.1, in order to try to improve the WEC of the resulting
chedule. Therefore, this energy optimization heuristic is applied when
valuating every chromosome generated by the genetic algorithm and
very neighbor considered in the local search described in Section 3.5.

Our approach is to always use the standard procedure for the
econd step (i.e. 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒), and use the recursive procedure
i.e. 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒) only to evaluate the final population of the last
eneration of the genetic algorithm. In this way, we can further im-
rove the WEC of the final solutions, but we can maintain a reasonable
omputational burden. Notice that applying the recursive version all
he time would require too much computational time.

Fig. 6 shows an example of the application of the heuristic in
he well-known FT06 instance, with 6 jobs having 6 operations each,
nd 6 resources. The energy consumptions and ramp-up times are
hose described in Section 6.1. In these figures, each job is colored
ith different colors, in order to better distinguish the precedence

onstraints.
We consider the permutation (1 1 5 4 4 4 6 2 1 2 3 6 6 4 6 5 2 4 3

2 6 3 1 6 5 2 2 3 4 3 3 1 1 5 5). Fig. 6(a) shows the initial schedule
fter the application of the insertion heuristic, with a WEC of 420.
otice that all operations are scheduled as soon as possible. Then, after

he first step of the heuristic the resulting schedule is that depicted in
ig. 6(b) with a WEC of 336, where we see that operations are delayed
s much as possible, with the exception of the last operation executed
n each resource. The schedule after the application of one iteration of
he second step is shown in Fig. 6(c) with a WEC of 268. We notice
hat some operations were scheduled earlier in order to improve the
nergy consumption. Finally, if we applied the second step in recursive
ode, the WEC can be even further improved to 240, as we can see

n Fig. 6(d). We can notice that the recursive mode, in this case, only
odifies one operation with respect to the standard mode of the second

tep, however we have experimentally seen that in larger instances it
sually performs more moves.

.3. Genetic operators

The first step of the genetic algorithm is the creation and evaluation
f the initial population formed by 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 random solutions. Then, in

each generation, a set of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 offspring solutions is built by applying
election, crossover and mutation operators to the current population.
he selection phase chooses which chromosomes will be parents in
rder to generate new offspring solutions. We adopt a tournament
trategy in which, to select each parent, we choose 𝑡𝑆𝑖𝑧𝑒 chromosomes
t random from the population and select the ‘‘best’’ of them, according
o the criteria based on non-domination level and crowding distance
escribed in Section 3.4. The parameter 𝑡𝑆𝑖𝑧𝑒 must be carefully set,
s a low value may produce too much randomness in the selection,
hereas a too large value may result in a low diversity in subsequent
enerations.
6

Fig. 6. Example of energy optimization heuristic (Algorithm 1).

Then, the Job Order Crossover operator (JOX) (Bierwirth, 1995)
is applied to each pair of parents with probability 𝑐𝑟𝑃 𝑟𝑜𝑏 in order
to generate two offspring solutions. The JOX is a crossover operator
specifically designed for job shop problems when using permutations
with repetitions. It selects a random subset of jobs and copies them
from the first parent to the first offspring solution in the same positions
as they are in the parent. The offspring is then completed taking the
remaining jobs from the second parent in its same relative ordering.
To create the second offspring solution the parents simply reverse
their role. We clarify how JOX works by means of an example. Let us
consider the following two parents:

𝑃𝑎𝑟𝑒𝑛𝑡1
= 1

2 3 2 2 1 1 3 3

𝑃𝑎𝑟𝑒𝑛𝑡2
= 2

1 1 3 3 2 3 1 2

If the selected subset of jobs is that marked in bold in the parents,
i.e. only job 2, then the generated offspring is:
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𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1
= 1

2 1 2 2 3 3 3 1

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2
= 2

1 3 1 1 2 3 3 2

Each offspring solution is then mutated with 𝑚𝑢𝑡𝑃 𝑟𝑜𝑏 probability,
nd the mutation operator consists on swapping two randomly selected
ositions of the chromosome.

.4. Replacement strategy

The replacement strategy is the main difference between a stan-
ard single-objective genetic algorithm and a multi-objective genetic
lgorithm, which in our case is based on the NSGA-II framework. We
ave to select the ‘‘best’’ 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 solutions to build the next population,
hoosing between the 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 solutions of the current population and
he 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 offspring solutions just created by means of the selection,
rossover and mutation operators.

We adopt the strategy proposed in Deb et al. (2002) which is based
n selecting solutions from lower non-domination levels, and using the
rowding distance to break ties when not every solution from a given
evel can advance to the next population. We refer the interested reader
o Deb et al. (2002) in order to see full details of the procedure.

In order to improve the diversity of the new population, we adopt
n additional strategy taken from González et al. (2017) and González
t al. (2019) that eliminates some individuals before applying the
eplacement strategy. It basically consists on removing the duplicated-
itness individuals from the pool of solutions, which is applicable when
ultiple solutions exist in the pool that share same values for all the

bjective functions. A similar procedure is also used in May et al.
2015).

.5. Local search

It is frequent to hybridize genetic algorithms with local searchers
n order to improve their results, because genetic algorithms have
trong diversification capabilities whereas local searchers have strong
ntensification capabilities. Such combination is usually termed memetic
lgorithm. However, the design of multi-objective local searchers can
e difficult, as the dominance relation ≺ only defines a partial order,
nd so selecting the ‘‘best’’ neighbor is a non-trivial issue. In this work
e take the multi-objective hill climbing local search method proposed

n González et al. (2017, 2019), which is fast and efficient and it is
pecifically designed to be combined with a multi-objective genetic
lgorithm.

The selection of the best neighbor is based on the dominance
elation, but it also considers the current set of non-dominated solutions
f the population of the genetic algorithm. The method is detailed
n Algorithm 2. It starts from an initial solution 𝑆′, then it generates
ne of its neighbors (using the neighborhood structure detailed in
ection 3.5.1) and evaluates it (after applying the energy optimization
euristic described in Section 3.2). Then, we check if the neighbor 𝑆′′

fulfills one of the following requirements:

1. 𝑆′′ ≺ 𝑆′.
2. ∄𝑆1 ∈ 𝑃 such that 𝑆′ ≺ 𝑆1 and ∃𝑆2 ∈ 𝑃 such that 𝑆′′ ≺ 𝑆2,

where 𝑃 is the set of non-dominated solutions of the current
population of the genetic algorithm.

Notice that the second requirement allows the local search to select
a neighbor even if it does not dominate the current solution. The idea
is to allow selecting neighbors able to improve the current set of non-
dominated solutions of the genetic algorithm, in case that the current
solution is not able to improve that set.

If at least one of those two requirements is met, we substitute the
current solution 𝑆′ for its neighbor 𝑆′′ and we restart the procedure. In

other case, we try with a different neighbor. The algorithm ends when

7

Algorithm 2: Multi-objective local search based on hill climbing
input : A feasible schedule 𝑆 for a problem instance 𝐼
output: A hopefully improved (with respect to the current set of

non-dominated solutions of the genetic algorithm)
solution 𝑆′ for instance 𝐼

begin
𝑆′ ← 𝑆; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ← 𝑇 𝑟𝑢𝑒;
while 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = 𝑇 𝑟𝑢𝑒 do

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
𝑁(𝑆′) ← neighborhood of 𝑆′;
𝑘 ← 1;
while 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 and 𝑘 ≤ |𝑁(𝑆′)| do

𝑆′′ ← 𝑁(𝑆′)[𝑘];
Evaluate 𝑆′′;
if 𝑆′′ ≺ 𝑆′, or 𝑆′′ would improve the current set of
non-dominated solutions of the genetic algorithm and 𝑆′

would not then
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑇 𝑟𝑢𝑒;

end
𝑘 ← 𝑘 + 1;

end
if 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ← 𝐹𝑎𝑙𝑠𝑒;
else

𝑆′ ← 𝑆′′;
end

end
end

no neighbor of the current solution met any of those requirements,
i.e. we reached a local optimum. Then, the current solution 𝑆′ is
eturned and the chromosome is rebuilt from this improved schedule,
o its characteristics can be inherited in subsequent generations of the
enetic algorithm, an effect known as Lamarckian evolution. As this
ill-climbing based local search is not computationally costly, we are
ble to apply it to every chromosome of the initial population of the
enetic algorithm, and also to all new offspring chromosomes created
ust after performing crossover and mutation.

.5.1. Neighborhood structure
The neighborhood adopted in this paper was initially proposed

n Van Laarhoven et al. (1992) and is one of the most used in the job
hop literature. It relies on the concepts of critical block and critical
ath, described in Section 2.3. In particular, a neighbor of a solution
s created by reversing a single critical arc from a critical block. It can
e proven that reversing a single critical arc cannot form a cycle in the
esulting graph and so it always produces a feasible schedule, hence
epairing procedures are not needed.

Consider, for example, the schedule depicted in Fig. 7 for the toy
nstance described in Section 2.2. Its critical path is marked in bold
rcs: (𝜃21, 𝜃22, 𝜃23, 𝜃12, 𝜃13, 𝜃33), and its length (i.e. the makespan

of the schedule) is 20. It has two critical blocks: (𝜃23, 𝜃12) and (𝜃13,
𝜃33). Then, we consider two possible neighbors: (1) reverse critical arc
(𝜃23𝜃12) and (2) reverse critical arc (𝜃13𝜃33). Fig. 4 shows the disjunctive
graph of the second neighbor, with a makespan of 18. In principle, this
neighborhood structure is designed for makespan minimization, but we
have experimentally seen that it often improves the WEC as well.

When minimizing makespan, there exist in the literature some
non-improving conditions and algorithms for fast estimation of the
neighbors’ makespan. However it is much more difficult to determine
if the WEC will improve or not, and so we are not using these type of
conditions in our work.
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4. A constraint programming approach

In this section we describe a procedure that takes into account the
non-regularity of the WEC objective such that an approximation of the
Pareto front is generated by a Constraint Programming (CP) procedure.
It is worth noting that the proposed CP approach is in principle able to
find an optimal WEC value if given sufficient computational time (we
do not provide any formal proof about this property).

4.1. A CP-based energy optimization model

Constraint Programming (CP) is a declarative programming
paradigm (Apt, 2003) that allows to define programs as a set of
decision variables, each ranging on a discrete domain of values, and
a set of constraints that limit the possible combination of variable-
value assignments. Once a model of the problem is created, the solver
interleaves two main steps: search, such that values are assigned to
decision variables, and constraint propagation, where inconsistent values
are removed from variable domains. CP is particularly suited for solving
scheduling problems where the decision variables are associated to the
problem operations. In particular, each operation variable 𝑎 has at least
two features: 𝑠𝑎 representing its start time, and 𝑝𝑎 representing its du-
ration. For scheduling problems, a number of different global constraints
have been proposed in the literature, the most important being: (i) the
unary-resource constraint (Vilím et al., 2004) for modeling simple
machines, such that the constraint holds if and only if all the assigned
operations never overlap at any time point; (ii) the cumulative
resource constraint (Le Pape et al., 2001) for modeling cumulative
resources (e.g., a pool of workers); (iii) the reservoir (Laborie,
2003) for modeling consumable resources (e.g., a fuel tank).

We describe a CP model based on the problem defined in Section 2,
where the main decision variables are the start times 𝑠𝑎 of the operations
𝑎 ∈ 𝛺 characterized by a processing time 𝑝𝑎. Each start time 𝑠𝑎 ranges
in the interval [0,𝐻 − 𝑝𝑎], where 𝐻 is the problem’s horizon. The set
of decision variables is then extended with the start times 𝑠𝑂𝑛𝑂𝑓𝑓𝑘
of the 𝑂𝑛𝑂𝑓𝑓𝑘 intervals, where each 𝑂𝑛𝑂𝑓𝑓𝑘 interval is defined as
spanning over all the operations executed on machine 𝑘. Hence, the
𝑠𝑂𝑛𝑂𝑓𝑓𝑘

variable represents the first instant when machine 𝑘 is turned
on. The model is built on top of the IBM-ILOG CPLEX Optimization
Studio CP Optimizer 12.10 and will be tested in Section 6. Its details
are as follows.

Let 𝑂𝑘 be the set of problem operations assigned to machine 𝑘 =
1,… ,𝑀 and 𝑈𝑘 be a set of auxiliary unit-duration operations, assigned
to a dummy unary machine mirroring 𝑘 (it is worth noting that the
two sets 𝑂𝑘 and 𝑈𝑘 represent separate processing orders of activities).
The introduction of the auxiliary set of operations 𝑈𝑘.1 is necessary

1 We were inspired to adopt this solution by a post on a discussion board
n the website www.or-exchange.com about the explicit representation of an
nterval position in a OPL sequence This discussion board seems no longer

available.
 f

8

to represent the position of each activity 𝑎 ∈ 𝑂𝑘 in the processing
orders imposed among the operations assigned to each machine 𝑘 ∈
𝑅. More concretely, the auxiliary unit-duration operations indirectly
implement the definition of a successor function 𝑆𝑀𝑎 (returning the
successor of each operation 𝑎 for each total order imposed on the set of
operations 𝑂𝑘 assigned to a machine 𝑘). To the best of our knowledge,
this workaround is necessary because we want to use the native OPL
construct to implement the global constraints 𝚞𝚗𝚊𝚛𝚢 − 𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎(𝑂𝑘) for
efficiency reasons, and the successor function is not natively present
in the OPL language (see IBM ILOG CPLEX Optimization Studio OPL
Language Reference Manual, Version 12 Release 10).

Operationally, the set of unit-duration operations 𝑢 ∈ 𝑈𝑘 can be
ssigned to the dummy machine 𝑘 (in the same fashion of the oper-
tions 𝑎) so that, for each processing order2 imposed on a machine 𝑘,
0 ≺ 𝑎1 ≺ … ≺ 𝑎𝑖 ≺ … ≺ 𝑎𝑀 , an identical order is imposed on the unit-

duration operations 𝑢0 ≺ 𝑢1 ≺ … ≺ 𝑢𝑖 ≺ … ≺ 𝑢𝑀 . In this manner, the
position 𝑖 of the operation 𝑎𝑖 coincides with the start-time value of the
unit-duration operation 𝑢𝑖. For the reasons above, the starting times 𝑠𝑢
of the operations 𝑢 ∈ 𝑈𝑘 must be added to the model as additional set of
decision variables. In addition, a specific global constraint is added in the
CP model given below to impose the same order among the activities
in the sets 𝑂𝑘 and 𝑈𝑘, see constraints (4i).

𝑆𝑀𝑝 =

{

𝑞 ∃𝑢(𝑞) ∈ 𝑈𝑘 ∶ 𝑠𝑢(𝑞) = 𝑠𝑢(𝑝) + 1
𝑛𝑖𝑙 otherwise

(3a)

𝐸𝑘
𝑝𝑞 = 𝑚𝑖𝑛{𝑃 𝑖𝑑𝑙𝑒

𝑘 𝑑𝑝𝑞 ,

𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 (𝑑𝑝𝑞 − 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ) + 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ,

𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓

𝑘 } (3b)

𝐸𝐶 =
∑

𝑘=1,…,𝑀

∑

𝑝∈𝑂𝑘,
𝑞=𝑆𝑀𝑝, 𝑞≠𝑛𝑖𝑙

𝐸𝑘
𝑝𝑞 (3c)

𝐶𝑚𝑎𝑥 = max
𝑎∈𝛺

{𝑠𝑎 + 𝑝𝑎} (3d)

The definition (3a) represents the successor function 𝑆𝑀𝑝, such
hat the position of the operation 𝑝 ∈ 𝑂𝑘 coincides with the start-
ime value 𝑠𝑢(𝑝) of its corresponding unit-duration operation 𝑢(𝑝) ∈ 𝑈𝑘,
nd the successor 𝑞 (if exists) corresponds to the unary activity 𝑢(𝑞) ∈
𝑘, such that 𝑠𝑢(𝑞) = 𝑠𝑢(𝑝) + 1. Whereas, according to Section 2, the
nergy objective WEC (3c) is the total amount of the worthless energy
onsumption 𝐸𝑘

𝑝𝑞 (i.e., when a machine is Idle, switched Off, or switched
o a Stand-by state) of each pair of contiguous operations (𝑝, 𝑞) assigned
n the same machine 𝑘 (3b), where 𝑑𝑝𝑞 = 𝑠𝑞 − 𝑒𝑝 is the difference
etween 𝑞’s start time and 𝑝’s end time. The makespan objective 𝐶𝑚𝑎𝑥
s described at line (3d).

Once all the necessary definitions have been provided and all the
ariables have been introduced, we present the CP model (optimization

2 Here, we use for the precedence relation the same formalism used earlier
or the dominance relation. The difference is clear by the context.

http://www.or-exchange.com
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Fig. 8. Minimal energy consumption 𝐸𝑘
𝑝𝑞 between two consecutive operations (𝑝, 𝑞).
criteria and constraints). Line (4a) represents the lexicographic mini-
mization of the objective pair WEC and 𝐶𝑚𝑎𝑥 with the WEC as primary
objective. According to the implemented 𝜖-constraint method (Mietti-
nen, 2012) for calculating the Pareto set, we optimize the energy WEC,
while we impose an upper bound to the other objective 𝐶𝑚𝑎𝑥 in the
form 𝐶𝑚𝑎𝑥 ≤ 𝐶𝜖 (see (4b)). The constraints in (4c) represent the linear
orderings imposed on the set of operations 𝛺 by the set of jobs 𝐽 .
Constraints (4d) impose to the set 𝑂𝑘 of operations requiring machine
𝑘 to be contained in the spanning operations 𝑂𝑛𝑂𝑓𝑓𝑘, 𝑘 = 1,… ,𝑀 .
More specifically, for each operation 𝑣 ∈ 𝑂𝑘, the following constraints
𝑠𝑂𝑛𝑂𝑓𝑓𝑘

≤ 𝑠𝑣 and 𝑠𝑣 + 𝑝𝑣 ≤ 𝑠𝑂𝑛𝑂𝑓𝑓𝑘
+ 𝑝𝑂𝑛𝑂𝑓𝑓𝑘

hold, such that operation
𝑂𝑛𝑂𝑓𝑓𝑘 starts together with the first present operation in 𝑂𝑘 according
to the order imposed on the 𝑘th machine, and ends together with the
last present operation.

Constraints (4f), (4g), and (4h) impose that the minimal energy is
consumed between the end of the first and the beginning of the second
task, for each pair of contiguous activities (𝑝, 𝑞) on a resource 𝑘. These
constraints rely on the assumption that 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 ≤ 𝑃 𝑖𝑑𝑙𝑒
𝑘 ≤ 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝

𝑘
and 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ≤ 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘 ; under such assumptions, there are

two cutoff values, 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘 and 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓

𝑘 (depicted in Fig. 8), such
that if 𝑠𝑣 − 𝑒𝑢 ∈ [0, 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ] the minimal energy state is Idle, when
𝑠𝑣 − 𝑒𝑢 ∈ (𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 , 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓
𝑘 ] the minimal energy state is Stand-by,

otherwise the minimal energy state is Off.

lex min (𝑊𝐸𝐶,𝐶𝑚𝑎𝑥) (4a)
s.t. ∶

𝐶𝑚𝑎𝑥 ≤ 𝐶𝜖 (4b)

𝑠𝑣 + 𝑝𝑣 ≤ 𝑠𝑆𝐽𝑣 𝑣 ∈ 𝛺 ⧵ {𝜃1𝑛1 , . ., 𝜃𝑁𝑛𝑁 } (4c)

𝚜𝚙𝚊𝚗(𝑂𝑛𝑂𝑓𝑓𝑘, 𝑂𝑘) 𝑘 = 1, . .,𝑀 (4d)

𝑒𝑑𝑝 ∈ {0, 1, 2} 𝑝 ∈ 𝛺 (4e)

𝑆𝑀𝑝 = 𝑞 ∧ (𝑒𝑑𝑝 = 0) ⇒ 𝑠𝑞 − 𝑒𝑝 ≤ 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘 (4f)

𝑆𝑀𝑝 = 𝑞 ∧ (𝑒𝑑𝑝 = 1) ⇒ 𝑠𝑞−𝑒𝑝 > 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘 ∧ 𝑠𝑞−𝑒𝑝 ≤ 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓

𝑘

(4g)

𝑆𝑀𝑝 = 𝑞 ∧ (𝑒𝑑𝑝 = 2) ⇒ 𝑠𝑞 − 𝑒𝑝 > 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓
𝑘 (4h)

𝚜𝚊𝚖𝚎-𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎(𝑂𝑘, 𝑈𝑘) 𝑘 = 1,… ,𝑀 (4i)

𝑠𝑢 ≤ (|𝑂𝑘| − 1) 𝑢 ∈ 𝑈𝑘; 𝑘 = 1,… ,𝑀 (4j)

𝚞𝚗𝚊𝚛𝚢-𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎(𝑂𝑘) 𝑘 = 1,… ,𝑀 (4k)

𝚞𝚗𝚊𝚛𝚢−𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎(𝑈𝑘) 𝑘 = 1,… ,𝑀 (4l)

𝛥𝑡𝑝𝑟𝑜𝑐𝑘 + 𝛥𝑡𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑘 + 𝛥𝑡𝑜𝑓𝑓𝑘 ≤ 𝐶𝑚𝑎𝑥 𝑘 = 1,… ,𝑀 (4m)
9

We introduce a set of decision variables 𝑒𝑑𝑝 ∈ {0, 1, 2}, 𝑝 ∈
𝛺 (constraint (4e)) representing the unload state (i.e., 0 when ma-
chine is Idle, 1 when it is switched to a Stand-by state, and 2 when
switched Off ) imposed on every pair of contiguous activities (𝑝, 𝑞)
on the same machine. The constraints in (4i) impose the same order
between the activities in the two sets 𝑂𝑘 and 𝑈𝑘 by means of the
global constraints same-sequence(𝑂𝑘, 𝑈𝑘). The constraints in (4j)
bound the start-time value of each unit-duration operation 𝑢 to |𝑂𝑘|−1
operations assigned to the machine 𝑘. (4k) and (4l) represents the non-
overlapping constraints imposed by the machines 𝑀 to the operations
in 𝑂𝑘 and 𝑈𝑘, through the global constraints 𝚞𝚗𝚊𝚛𝚢 − 𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎(𝑂𝑘) and
𝚞𝚗𝚊𝚛𝚢 − 𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎(𝑈𝑘), respectively.

Finally, (4m) represent the so-called energy aware constraints im-
posed on the subset of (energy) decision variables 𝑒𝑑𝑝 associated to
each subset of operations 𝑂𝑘, 𝑘 = 1,… ,𝑀 . The rationale behind these
constraints is the following: for each machine 𝑘, the set of operations 𝑂𝑘
requiring that machine must be totally ordered. In addition, according
to the values of the decision variables 𝑒𝑑𝑢, with 𝑢 ∈ 𝑂𝑘, a minimum
(non zero) delay equal to 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 (when 𝑒𝑑𝑢 = 1) or 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓
𝑘

(when 𝑒𝑑𝑢 = 2), must be inserted between the operation 𝑢 and its
successor (if it exists). Hence, each machine’s total order has a lower-
bound of the total execution time (from the start-time of the first
operation to the end-time of the last one) which can be calculated as
the sum of the three terms 𝛥𝑡𝑝𝑟𝑜𝑐𝑘 + 𝛥𝑡𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 + 𝛥𝑡𝑜𝑓𝑓𝑘 , such that: 𝛥𝑡𝑝𝑟𝑜𝑐𝑘 =
∑

𝑢∈𝑂𝑘
𝑝𝑢 is the sum of the operation processing times in machine 𝑘;

𝛥𝑡𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑘 =
∑

𝑢∈𝑂𝑘 , 𝑒𝑑𝑢=1 𝑇
𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘 is the minimum total delay due to

Stand-by states; 𝛥𝑡𝑜𝑓𝑓𝑘 =
∑

𝑢∈𝑂𝑘 , 𝑒𝑑𝑢=2 𝑇
𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓
𝑘 is the minimum total

delay due to Off states. Such lower-bound cannot be greater than the
solution makespan 𝐶𝑚𝑎𝑥, hence decisions on the variables 𝑒𝑑𝑢 can be
pruned according to the constraints (4m).

The previous proposed model basically coincides with the one pro-
posed in Oddi et al. (2018), in Section 6 we evaluate it against the
hybrid evolutionary algorithm described in Section 3. In particular, we
will consider a larger benchmark set (size of instances ranging from 36
to 300 activities) than the one used in Oddi et al. (2018), where the
sizes of the instances were from 36 to 100 activities. Under these new
conditions, as we will see in Section 6, the model proposed in Oddi
et al. (2018) degrades its performance as the size of the instances is
greater than 100 activities. In particular, the above given model within
the imposed time limits is able to find a very small number of solutions
for each run. Hence, we have tested two different modifications of the
constraints contained in the original model, for a total of four different
CP models.
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– The first proposed modification reverses the lexicographic min-
imization objective (4a) 𝑙𝑒𝑥 𝑚𝑖𝑛 (𝑊𝐸𝐶,𝐶𝑚𝑎𝑥) into 𝑙𝑒𝑥 𝑚𝑖𝑛 (𝐶𝑚𝑎𝑥,
𝑊 𝐸𝐶).

– In the second one we test the idea of reversing the constraint (4b)
𝐶𝑚𝑎𝑥 ≤ 𝐶𝜖 into 𝐶𝑚𝑎𝑥 ≥ 𝐶𝜖 . As this choice limits the utility of the
propagation rules (4m) for obvious reasons, we will not consider
them in the corresponding generated model.

Hence, the idea is to use the four combinations of the proposed
odifications in conjunction with the bi-criterion 𝜖-constraint method,

described in the following Section 4.2, the goal is to increase the
number and the quality of the solutions in the output Pareto set. In
fact, the use of the objective 𝑙𝑒𝑥 𝑚𝑖𝑛 (𝐶𝑚𝑎𝑥,𝑊 𝐸𝐶), with 𝐶𝑚𝑎𝑥 as primary
key, might leverage the use of the default propagation rules used within
the CP Optimizer 12.10. In addition, we note that without the upper
bound constraint (4b) the randomized solving process used within the
CP Optimizer 12.10 is able to generate a higher number of different
solutions, even if the quality of such solutions might be lower than the
ones obtained by the contribution of the constraints (4b) and (4m). In
fact, as the size of the instances increases, a lighter model (without the
constraints (4b) and (4m)) is clearly more scalable.

4.2. The bi-criterion 𝜖-constraint method

A well-known multi-objective optimization method to generate the
Pareto front is the 𝜖-constraint method (Miettinen, 2012). It works by
choosing one objective function as the only objective and properly
constraining the remaining objective functions during the optimization
process. Through a systematic variation of the constraint bounds, differ-
ent elements of the Pareto front can be obtained. Algorithm 3 presents
the 𝜖-constraint method for the case of a bi-criterion objective function
𝐟 = (𝑓 (1), 𝑓 (2)). The algorithm is used in the experimental section of the
work in two different variants.

The first variant takes the following inputs: (i) the objective 𝐟 ,
(ii) the bounds 𝑓 (2)

𝑚𝑖𝑛 and 𝑓 (2)
𝑚𝑎𝑥 on the second component of the objec-

tive, and (iii) the decrement value 𝛿. As previously mentioned, the
method iteratively leverages a procedure provided in input to solve
constrained optimization problems, i.e., the CP() procedure correspond-
ing to the constraint programming model previously described. Note
that we consider a slightly different 𝜖-constraint method, such that the
given CP procedure considers a lexicographic minimization instead of
single-objective minimization problem, with 𝑓 (1) as primary and 𝑓 (2) as
secondary key. The algorithm proceeds as follows: after initializing the
constraint bound 𝜖 to the 𝑓 (2)

𝑚𝑎𝑥 value, a new solution 𝑆 is computed by
calling CP() at each step of the while solving cycle. If 𝑆 is not dominated
by any of the existing solutions in the current Pareto front approxima-
tion 𝑃 , then 𝑆 is inserted in 𝑃 , and all the solutions dominated by 𝑆
are removed from 𝑃 . The rationale behind this method is to iteratively
tighten the constraint bound by a pre-defined constant 𝛿 at each step
of the solving cycle.

The second variant is similar to the previous one, the only difference
is the use of the first component of the objective function 𝑓 (1) in place
of 𝑓 (2). Hence, the algorithm accepts as an input the bounds 𝑓 (1)

𝑚𝑖𝑛 and
𝑓 (1)
𝑚𝑎𝑥 and proceed analogously as previously described.

5. A mixed-integer linear programming approach

In this section we propose a Mixed-Integer Linear Programming
(MILP) model (Fourer et al., 2003) for finding a solution to the problem
defined in Section 2. The proposed model considers five different sets
of decision variables.

– The start times 𝑠𝑢 of the operations 𝑢 ∈ 𝛺 characterized by a
processing time 𝑝𝑢.

– The set of ordering decision variables 𝑆𝑢𝑣 ∈ {0, 1}, 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠

𝑣, 𝑘 = 1,… ,𝑀 , such that 𝑆𝑢𝑣 = 1 iff the simple precedence

10
Algorithm 3: Bi-criterion 𝜖-constraint method

input : The objective 𝐟 , the bounds 𝑓 (2)
𝑚𝑖𝑛 and 𝑓 (2)

𝑚𝑎𝑥, and the
decrement value 𝛿

output: 𝑃
begin

𝑃 ← ∅;
𝜖 ← 𝑓 (2)

𝑚𝑎𝑥;
while 𝜖 ≥ 𝑓 (2)

𝑚𝑖𝑛 do
𝑆 ← CP(𝐟 , 𝜖);
if (𝑆 ≠ 𝑛𝑖𝑙) ∧ (∄𝑆 ′ ∈ 𝑃 ∶ 𝑆 ′ ≺ 𝑆) then

𝑃 ← (𝑃 ∪ {𝑆}) ⧵ {𝑆 ′ ∈ 𝑃 ∶ 𝑆 ≺ 𝑆 ′}
end
𝜖 ← 𝜖 − 𝛿;

end
return (𝑃 );

end

constraint 𝑢 ≺ 𝑣 is imposed between the two operations 𝑢 and
𝑣.

• The set of ordering decision variables 𝑋𝑢𝑣 ∈ {0, 1}, 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠
𝑣, 𝑘 = 1,… ,𝑀 , representing the successor function 𝑆𝑀𝑢 (see
Section 2) on the imposed machine orderings, such that 𝑋𝑢𝑣 = 1
iff 𝑆𝑀𝑢 = 𝑣 on the corresponding machine.

– The set of 𝐸𝑢 decision variables, 𝑢 ∈ 𝛺, representing the worthless
energy consumption (WEC) after the execution of operation 𝑢 and
before the execution of an eventual successor 𝑣 on the same
machine. The previous set of variables is strictly connected to the
following set of decision variables, 𝑖𝑑𝑙𝑒𝑢, 𝑠𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢 ∈ {0, 1}, such
that for each operation 𝑢, at most only one of the previous vari-
ables has the value 1, and such assignment corresponds to turn
the machine into one of the corresponding states Idle, Stand-by or
Off, just after the execution of the operation 𝑢.

– The two objectives: WEC and 𝐶𝑚𝑎𝑥.

he MILP model minimizes the total worthless energy consumption
EC, see (6a) and (6b), under the two upper-bound constraints on 𝐶𝑚𝑎𝑥

6c) and WEC (6b).
Constraints (6e) represent the linear orderings imposed on the set

f operations 𝑣 ∈ 𝛺 by the jobs 𝐽 = {𝐽1, 𝐽2,… , 𝐽𝑁}, note that they hold
or each operation 𝑣 ∈ 𝛺 except when 𝑣 is the last operation of a job 𝐽𝑖.
nequalities (6f) impose to the first operation 𝜃𝑖1 of each job 𝐽𝑖 to start
fter the reference value 0, whereas constraints (6g) impose to the last
perations 𝜃𝑖𝑛𝑖 of each job 𝐽𝑖 to end before the makespan value 𝐶𝑚𝑎𝑥.

Constraints on the ordering decision variables are the ones from
6h) to (6m). (6h) guarantees that for each pair of operations 𝑢, 𝑣 ∈ 𝑂𝑘,
≠ 𝑣, either the simple precedence constraint 𝑢 ≺ 𝑣 or 𝑣 ≺ 𝑢 is imposed.
hereas the rest of the constraints guarantee that the values assumed

y the decision variables 𝑋𝑢𝑣 represent a successor function 𝑆𝑀𝑢 on
he machine orderings. In particular, (6i) guarantees that either 𝑣 is the
uccessor of 𝑢 or 𝑢 is the successor of 𝑣. Note that the ≤ constraint in (6i)
ncludes the particular case 𝑋𝑢𝑣+𝑋𝑢𝑣 = 0, which holds when 𝑢 is the last
ctivity in a machine ordering. This is also the reason of imposing the
et of constraints (6k), which limits the number of successors for each
achine ordering to the value 𝑀−1. (6j) guarantees that 𝑋𝑢𝑣 orderings
o not contradict the 𝑆𝑢𝑣 orderings. Finally, the two sets of constraints
6l) (6m) impose a set of flow constraints, such that, for each activity
∈ 𝑂𝑘, at most one activity 𝑣 ∈ 𝑂𝑘, 𝑣 ≠ 𝑢, is the successor (predecessor)

of 𝑢 ∈ 𝑂𝑘.
The energy decisions 𝑖𝑑𝑙𝑒𝑢, 𝑠𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢 ∈ {0, 1} are constrained by

set of Eqs. (6n), hence, for each operation 𝑢 the three variables can
exclusively take the value 1, except for the last operation 𝑢 of each
machine 𝑘 ordering, where ∑

𝑣∈𝑂𝑘
𝑋𝑢𝑣 = 0. The three sets of inequalities

(6o), (6p) and (6q) set the worthless energy values according to the
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values of the corresponding decision variables 𝑖𝑑𝑙𝑒𝑢, 𝑠𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢 and
𝑢𝑣 as explained in Fig. 8, 𝐵 is a large positive penalty constant. The
ssigned values of the energy, according to the possible state values
dle, stand-by, and off are defined as follows:

𝑖𝑑𝑙𝑒
𝑘 (𝑒𝑢, 𝑠𝑣) = 𝑃 𝑖𝑑𝑙𝑒

𝑘 (𝑠𝑣 − 𝑒𝑢) (5a)
𝑠𝑡𝑏𝑦
𝑘 (𝑒𝑢, 𝑠𝑣) = 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦

𝑘 (𝑠𝑣 − 𝑒𝑢 − 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘 )

+ 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 (5b)

𝐸𝑜𝑓𝑓
𝑘 = 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝

𝑘 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘 (5c)

Lastly, Eq. (6r) guarantees the value 𝐸𝑢 = 0 for each operation 𝑢 which
s the last operation of a machine ordering.

About the imposed temporal constraints, the set of inequalities (6s)
nd (6t) represent the set of temporal constraints implied by the set of
ecision variables 𝑆𝑢𝑣 and 𝑋𝑢𝑣. Whereas, the set of inequalities from
6u) to (6x) represent the imposed temporal interval constraints for
ach pair of successive operations 𝑢 and 𝑣 (see Fig. 8) according to the
alue of the decision variables 𝑖𝑑𝑙𝑒𝑢, 𝑠𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢.

Finally, inequalities (6y) represent a set of constraints on the deci-
ion variables 𝑠𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢, analogously to the energy aware constraints
escribed for the CP model (see Section 4). In this case we introduce
wo set of bounds 𝐿𝐵𝑚𝑘 (𝑈𝐵𝑚𝑘) 𝑘 = 1,… ,𝑀 on the start-times 𝑠𝑢
end-times 𝑠𝑢 + 𝑝𝑢) of the set of activities 𝑢 ∈ 𝑂𝑘 requiring machine 𝑘.
n particular, for the calculus of the bounds 𝐿𝐵𝑚𝑘 (𝑈𝐵𝑚𝑘), we have to
onsider that each activity 𝑢 ∈ 𝑂𝑘 is part of a job 𝐽𝑢. Let 𝑃 𝑢

𝑏𝑒𝑓𝑜𝑟𝑒 (𝑃 𝑢
𝑎𝑓𝑡𝑒𝑟)

he sum of the processing times of the operations in the job ordering
𝑢 before (after) 𝑢, 𝐿𝐵𝑚𝑘 = 𝑚𝑖𝑛𝑢∈𝑂𝑘

{𝑃 𝑢
𝑏𝑒𝑓𝑜𝑟𝑒} (𝑈𝐵𝑚𝑘 = 𝑚𝑖𝑛𝑢∈𝑂𝑘

{𝑃 𝑢
𝑎𝑓𝑡𝑒𝑟}).

ence, for each machine 𝑘, given the value of the decision variables
𝑡𝑏𝑦𝑢, 𝑜𝑓𝑓 𝑢, with 𝑢 ∈ 𝑂𝑘, it is easy to verify that the sum of the terms
n the left of the inequalities (6y) is a lower-bound of the makespan
nd cannot be greater than the value 𝐶𝑚𝑎𝑥.

min𝑊𝐸𝐶 (6a)
.𝑡. ∶

∑

𝑢∈𝛺
𝐸𝑢 ≤ 𝑊𝐸𝐶 (6b)

𝐶𝑚𝑎𝑥 ≤ 𝐶0 (6c)

𝑊𝐸𝐶 ≤ 𝑊𝐸𝐶0 (6d)

𝑠𝑣 + 𝑝𝑣 ≤ 𝑠𝑆𝐽𝑣 𝑣 ∈ 𝛺 ⧵ {𝜃1𝑛1 ,… , 𝜃𝑁𝑛𝑁 } (6e)

0 ≤ 𝑠𝜃𝑖1 𝑖 = 1,… , 𝑁 (6f)

𝑠𝜃𝑖𝑛𝑖 + 𝑝𝜃𝑖𝑛𝑖 ≤ 𝐶𝑚𝑎𝑥 𝑖 = 1,… , 𝑁 (6g)

𝑆𝑢𝑣 + 𝑆𝑣𝑢 = 1 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 < 𝑣, 𝑘 = 1,… ,𝑀 (6h)

𝑋𝑢𝑣 +𝑋𝑣𝑢 ≤ 1 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 < 𝑣, 𝑘 = 1,… ,𝑀 (6i)

𝑋𝑢𝑣 ≤ 𝑆𝑢𝑣 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6j)
∑

𝑢,𝑣∈𝑂𝑘

𝑋𝑣𝑢 = 𝑁 − 1 𝑘 = 1,… ,𝑀 (6k)

∑

𝑣∈𝑂𝑘

𝑋𝑢𝑣 ≤ 1 𝑢 ∈ 𝑂𝑘, 𝑘 = 1,… ,𝑀 (6l)

∑

𝑣∈𝑂𝑘

𝑋𝑣𝑢 ≤ 1 𝑢 ∈ 𝑂𝑘, 𝑘 = 1,… ,𝑀 (6m)

𝑖𝑑𝑙𝑒𝑢 + 𝑠𝑡𝑏𝑦𝑢 + 𝑜𝑓𝑓 𝑢 =
∑

𝑣∈𝑂𝑘

𝑋𝑢𝑣 𝑘 = 1,… ,𝑀 (6n)

𝐵(𝑖𝑑𝑙𝑒𝑢 +𝑋𝑢𝑣 − 2) ≤ 𝐸𝑢 − 𝐸𝑖𝑑𝑙𝑒
𝑘 (𝑒𝑢, 𝑠𝑣) ≤ 𝐵(2 − 𝑖𝑑𝑙𝑒𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6o)
𝐵(𝑠𝑡𝑏𝑦𝑢 +𝑋𝑢𝑣 − 2) ≤ 𝐸𝑢 − 𝐸𝑠𝑡𝑏𝑦

𝑘 (𝑒𝑢, 𝑠𝑣) ≤ 𝐵(2 − 𝑠𝑡𝑏𝑦𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6p)
𝐵(𝑜𝑓𝑓 𝑢 +𝑋𝑢𝑣 − 2) ≤ 𝐸𝑢 − 𝐸𝑜𝑓𝑓

𝑘 ≤ 𝐵(2 − 𝑜𝑓𝑓 𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6q)

𝐸𝑢 ≤ 𝐸𝑜𝑓𝑓
𝑘 (𝑖𝑑𝑙𝑒𝑢 + 𝑠𝑡𝑏𝑦𝑢 + 𝑜𝑓𝑓 𝑢) 𝑘 = 1,… ,𝑀 (6r)
𝑠𝑢 + 𝑝𝑢 − 𝑠𝑣 ≤ 𝐵(1 − 𝑆𝑢𝑣) 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6s)

11
𝑠𝑢 + 𝑝𝑢 − 𝑠𝑣 ≤ 𝐵(1 −𝑋𝑢𝑣) 𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6t)
𝑠𝑣 − (𝑠𝑢 + 𝑝𝑢) − 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ≤ 𝐵(2 − 𝑖𝑑𝑙𝑒𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6u)
𝑠𝑣 − (𝑠𝑢 + 𝑝𝑢) − 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝑘 ≥ 𝐵(2 − 𝑠𝑡𝑏𝑦𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6v)
𝑠𝑣 − (𝑠𝑢 + 𝑝𝑢) − 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓

𝑘 ≤ 𝐵(2 − 𝑠𝑡𝑏𝑦𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6w)
𝑠𝑣 − (𝑠𝑢 + 𝑝𝑢) − 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓

𝑘 ≥ 𝐵(2 − 𝑜𝑓𝑓 𝑢 −𝑋𝑢𝑣)

𝑢, 𝑣 ∈ 𝑂𝑘, 𝑢 ≠ 𝑣, 𝑘 = 1,… ,𝑀 (6x)
𝐿𝐵𝑚𝑘 +

∑

𝑢∈𝑂𝑘

𝑝𝑢 + 𝑇 𝑖𝑑𝑙𝑒-𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑘

∑

𝑢∈𝑂𝑘

𝑠𝑡𝑏𝑦𝑢

+ 𝑇 𝑠𝑡𝑎𝑛𝑑𝑏𝑦-𝑜𝑓𝑓
𝑘

∑

𝑢∈𝑂𝑘

𝑜𝑓𝑓 𝑢 + 𝑈𝐵𝑚𝑘 ≤ 𝐶𝑚𝑎𝑥

𝑘 = 1,… ,𝑀 (6y)

. Experimental results

In this section we will report the results obtained with our methods.
he evolutionary metaheuristic is implemented in C++ using a single
hread and runs in a Intel Core i5-2450M CPU at 2.5 GHz with 4 GB
f RAM, using Windows 10 Pro. The Constraint Programming (CP)
ethod is implemented using IBM-ILOG CPLEX Optimization Studio

12.10, running on a Intel Core i7-7700 CPU @3.60 GHz with 16 GB
f RAM, using Ubuntu Linux 16.04. As we are dealing with stochastic
lgorithms, we perform 10 runs for each method and each instance in
rder to obtain statistically significant results.

Firstly in Sections 6.1 and 6.2 we will define the benchmark in-
tances and the performance measures used, respectively. Then, in
ection 6.3 we will study the best values for the configuration of the
arameters used in our evolutionary algorithm. Section 6.4 presents
ome preliminary experiments to compare the performance of a set
f different CP solver configurations. Finally, Section 6.5 presents the
esults and the comparison with state-of-the-art algorithms.

.1. Benchmark instances

In the papers related to the state of the art (which, as far as we
now, are May et al. (2015), Oddi et al. (2017, 2018)) the authors
nly considered 3 problem instances in their experimental study, in
articular those denoted 𝐹𝑇 06, 𝐹𝑇 10 and 𝐹𝑇 20, and firstly introduced
n Fisher and Thomson (1963). The 𝐹𝑇 06 instance has 6 jobs and 6
achines, whereas 𝐹𝑇 10 has 10 jobs and 10 machines and 𝐹𝑇 20 has
0 jobs and 5 machines. The optimal makespan of these instances can
e found in the literature and is, respectively, 55, 930 and 1165.

We argue that 3 instances are not enough for extracting meaningful
onclusions, and so we are considering 41 extra benchmark instances:
he 𝐿𝐴01 to 𝐿𝐴40, introduced in Lawrence (1984) for makespan min-
mization, plus the well-known challenging 𝐴𝐵𝑍7 instance. The size
f the 𝐿𝐴01 − 𝐿𝐴40 instances vary from 10 × 5 (the smaller ones) to
0 × 10 and 15 × 15 (the largest ones), while the size of the 𝐴𝐵𝑍7
nstance is 20 × 15. We have to define the exact power consumptions
nd transition times, and we propose using for all instances the same
arameters described in May et al. (2015) for every resource 𝑅𝑘:

– 𝑃 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑘 = 10𝑘𝑊

– 𝑃 𝑖𝑑𝑙𝑒
𝑘 = 6𝑘𝑊

– 𝑃 𝑠𝑡𝑎𝑛𝑑-𝑏𝑦
𝑘 = 4𝑘𝑊

– 𝑃 𝑟𝑎𝑚𝑝-𝑢𝑝
𝑘 = 8𝑘𝑊

– 𝑇 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
𝑘 = 𝐴𝑣𝑔𝑃 𝑟𝑜𝑐, where 𝐴𝑣𝑔𝑃 𝑟𝑜𝑐 is the average of the

processing times of all operations requiring 𝑅𝑘
𝑟𝑎𝑚𝑝-𝑢𝑝-𝑠𝑡𝑎𝑛𝑑-𝑏𝑦 𝑟𝑎𝑚𝑝-𝑢𝑝-𝑜𝑓𝑓
– 𝑇𝑘 = 0.5 × 𝑇𝑘
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Table 2
Results of the parametric analysis for the evolutionary
metaheuristic, showing the values tested and, in bold,
the best configuration found.

Parameter Values tested

𝑝𝑜𝑝𝑆𝑖𝑧𝑒 500, 1000, 2000
𝑡𝑆𝑖𝑧𝑒 2, 4, 8, 16
𝑐𝑟𝑃 𝑟𝑜𝑏 0.6, 0.8, 1.0
𝑚𝑢𝑡𝑃 𝑟𝑜𝑏 0, 0.1, 0.2, 0.3

For the parameter tuning and preliminary analysis performed in
ections 6.3 and 6.4 we have selected a subset of 7 instances, in
articular those indicated in Applegate and Cook (1991) to be the
ost difficult and challenging job shop instances (at least for makespan
inimization) from the benchmark set introduced in Lawrence (1984):
𝐴21, 𝐿𝐴24, 𝐿𝐴25, 𝐿𝐴27, 𝐿𝐴29, 𝐿𝐴38 and 𝐿𝐴40. We also consider

nstance 𝐴𝐵𝑍7, known to be very challenging.

.2. Performance measures

The comparison of multiobjective algorithms is not trivial and there
s a lot of research and proposals about how to compare them. In our
ork, we can consider solutions as points in a 2-dimension space, as
e are considering two objective functions. As it is well-known that
single indicator is not enough to compare several Pareto sets, we

ropose to use the hypervolume indicator (Zitzler and Thiele, 1998)
to be maximized) and the binary 𝜖-indicator (Zitzler et al., 2003) (to
e minimized). The hypervolume can be defined as the area of the
et of points relative to a reference point, and in this work we take
s reference point, for each instance, the worst values observed for
ach objective in any run multiplied by 1.05. On the other hand, the
inary 𝜖-indicator can be briefly described as the factor by which a set
f points is worse than another with respect to all objectives. As the
ptimal Pareto set for each instance is not known, for calculating this
ndicator we use an approximation taking, for each instance, the non-
ominated points considering all solutions from all runs of all methods.
oth indicators are normalized and so they range between 0 and 1.

.3. Parameter tuning and analysis of the evolutionary metaheuristic

In a preliminary parametric analysis we tested some values for
he parameters of the evolutionary metaheuristic, in order to find a
atisfactory configuration. Table 2 summarizes the tested values, indi-
ating in bold the configuration that reached the best average results
regarding hypervolume and binary 𝜖-indicator) in the selected subset
f 8 instances (see Section 6.1).

We have experimentally seen that the proposed configuration
chieves proper convergence patterns in reasonable running times. We
ill see along this study that in 10 min it reaches high quality solutions,
nd in hard instances these solutions can be further improved by using
ong runs of 3 h. As an example, we show in Fig. 9 two convergence
atterns of single runs with 3 h time limit in 𝐿𝐴21 (size 15 × 10) and
𝐵𝑍7 (size 20 × 15) instances, where we see how the convergence

n the largest instance is slower, as expected, as it is more difficult to
each high quality solutions due to the much larger search space.

Table 3 shows a comparison between the proposed configuration
nd alternative configurations built by taking the base configuration
nd modifying a single parameter. We can see that most of the time
he proposed configuration achieves the best values for hypervolume
nd 𝜖-indicator. Regarding the parameter popSize, it obviously has a
arge influence on the number of generations performed in the 10 min
ime limit, and the worst value for it seems to be 2000, which results in
smaller number of generations that are not enough for the algorithm

o converge. Regarding the parameter tSize, it is interesting that in the
argest instances (see 𝐴𝐵𝑍7) it seems to be beneficial to choose high
 i
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alues in order to accelerate the convergence and reach good results
n the considered time limit. It is well-known that in short executions
t can be good to apply more selective pressure, however in long
xecutions this might cause premature convergence. About parameter
rProb, it is interesting that using value 0.6 also produces competitive
esults, maybe because of the ability to perform some more generations
n the given time limit, although overall it seems to perform slightly
orse than the value 1.0. Finally, about mutProb, it seems that too high
utation probabilities are not recommended, as the 0.3 configuration
erforms the worst between the four different values.

Then, we have also performed some experiments in order to assess
he efficiency of the proposed energy-optimization heuristic and to
rove that the local search alone and the plain genetic algorithm
erform worse than the combination of both methods.

Table 4 shows the results of several variants of our memetic al-
orithm, all of them with a time limit of 10 min. For each method
e show the average values of the hypervolume and 𝜖-indicator for
ach instance, and also the average number of generations made in the
0 min time limit, in order to assess the differences in computational
ost required by each configuration. We marked in bold the best values
f each indicator obtained in each instance. The configurations tested
ere the following, where configuration (8) is our base configuration
escribed in the rest of the paper.

– (1) No energy heuristic at all.
– (2) No energy heuristic during the execution, but first step and

second step in recursive mode in the last generation.
– (3) Only first step of the energy heuristic.
– (4) Only first step of the energy heuristic, and also second step in

recursive mode in the last generation.
• (5)[–] Only second step of the energy heuristic.
– (6) Only second step of the energy heuristic, and also applying it

in recursive mode in the last generation.
– (7) Both first and second steps of the energy heuristic.
– (8) Both first and second steps of the energy heuristic, and also

in recursive mode in the last generation.
– (9) Both first and second steps, and also in recursive mode during

all the execution.
– (10) The same as (8), but without using local search
– (11) The same as (8), but without using the genetic algorithm

(i.e. performing a number of local searches starting from random
solutions)

Looking at Table 4, the best performing methods overall seem to be
4) and (8), as they always obtain the best values for both performance
ndicators (also (7), however it is always worse than or equal to
8)). Method (8) is our base configuration described in Section 3.2,
.e. perform both first and second steps, and perform the second step in
ecursive mode only in the last generation of the memetic algorithm,
hereas method (4) omits the second step until the last generation, and

7) only omits the recursive mode in the last generation.
We have done some statistical tests to analyze differences between

he different variants, in order to confirm the superiority of variants (4)
nd (8). As we have multiple-problem analysis, we used non-parametric
tatistical tests. First, we run a Shapiro–Wilk test to confirm the non-
ormality of the data. Then we used paired Wilcoxon signed rank
ests to compare the hypervolume and the 𝜖-indicator values between
ethods. In these tests, the level of confidence used was 95% and

he alternative hypothesis were ‘‘the difference between hypervolume
alues is smaller than 0’’ or ‘‘the difference between 𝜖-indicator values
s larger than 0’’, i.e. the corresponding indicator is better.

The 𝑝- values obtained with these tests prove that (4) is the best per-
orming method regarding hypervolume (the 𝑝- value against method
8) is 0.0002601, and against all other methods is even lower) and
lso regarding the binary 𝜖-indicator (the 𝑝- value against method (8)
s 0.006799, and against all other methods is much lower).
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h

Fig. 9. Examples of convergence graphs of one run with 3 h time limit in 𝐿𝐴21 and 𝐴𝐵𝑍7 instances. The graphs show the hypervolume indicator with respect to generation
number.
Table 3
Comparison of different parameter configurations for the proposed evolutionary metaheuristic with respect to the base
configuration, using 10 min time limit. In bold, the best value for each indicator found in each instance.

Inst. Base popSize tSize crProb mutProb

500 2000 4 8 16 0.6 0.8 0 0.1 0.3

Average hypervolume

ABZ7 .741 .738 .606 .748 .764 .780 .757 .729 .706 .694 .682
LA21 .811 .752 .739 .751 .763 .751 .801 .762 .775 .761 .768
LA24 .802 .780 .776 .755 .772 .737 .798 .784 .740 .783 .779
LA25 .911 .881 .887 .902 .864 .846 .890 .890 .899 .896 .898
LA27 .811 .797 .691 .805 .794 .784 .804 .772 .777 .782 .760
LA29 .788 .748 .684 .767 .758 .799 .766 .772 .757 .733 .747
LA38 .780 .749 .743 .758 .750 .745 .763 .789 .805 .796 .748
LA40 .848 .828 .811 .837 .842 .815 .844 .845 .847 .837 .827

Average binary 𝜖-indicator

ABZ7 .153 .175 .274 .156 .149 .147 .145 .174 .197 .198 .208
LA21 .112 .172 .168 .157 .156 .171 .115 .163 .144 .147 .139
LA24 .151 .166 .145 .160 .171 .183 .144 .153 .173 .148 .154
LA25 .064 .081 .080 .068 .094 .092 .071 .073 .070 .069 .067
LA27 .105 .130 .227 .112 .123 .142 .120 .141 .139 .132 .157
LA29 .147 .173 .232 .181 .177 .149 .182 .164 .189 .188 .189
LA38 .127 .149 .163 .161 .148 .157 .140 .135 .120 .118 .147
LA40 .092 .105 .111 .096 .089 .108 .091 .096 .085 .093 .101

Average number of generations

524 1069 249 532 534 539 684 597 529 515 511
Table 4
Comparison of different variants of the proposed evolutionary metaheuristic, with 10 min time limit. In bold, the best value
for each indicator found in each instance.

Inst. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Average hypervolume

ABZ7 .615 .789 .786 .857 .657 .661 .814 .814 .605 .783 .364
LA21 .689 .747 .844 .866 .756 .758 .854 .854 .792 .818 .430
LA24 .625 .789 .845 .860 .663 .668 .845 .845 .790 .743 .315
LA25 .697 .775 .879 .898 .769 .770 .919 .919 .870 .883 .446
LA27 .795 .856 .903 .908 .794 .794 .884 .884 .764 .840 .370
LA29 .618 .749 .887 .898 .640 .640 .817 .817 .614 .757 .288
LA38 .696 .845 .831 .889 .806 .809 .873 .873 .787 .866 .461
LA40 .738 .860 .839 .914 .817 .819 .914 .914 .829 .865 .414

Average binary 𝜖-indicator

ABZ7 .336 .171 .135 .090 .270 .264 .115 .115 .253 .140 .432
LA21 .276 .225 .114 .094 .183 .179 .090 .090 .139 .118 .392
LA24 .352 .182 .119 .108 .311 .305 .120 .120 .144 .162 .557
LA25 .276 .202 .083 .070 .192 .192 .051 .051 .079 .086 .395
LA27 .180 .124 .056 .055 .175 .175 .074 .074 .165 .100 .493
LA29 .362 .232 .103 .096 .328 .327 .155 .155 .293 .168 .543
LA38 .267 .118 .135 .081 .145 .141 .083 .083 .130 .091 .355
LA40 .219 .096 .121 .052 .130 .129 .048 .048 .103 .101 .420

Average number of generations

1849 1843 1712 1703 607 606 525 524 125 6434 380550
It can also be proven that (8) is the second best method regarding
ypervolume (the 𝑝- value against method (3) is 0.006357, against (7)

is 0.0001575 and against all other methods, except (4), is even lower)
13
and also regarding the binary 𝜖-indicator, tied with method (7) (the
𝑝- value against method (7) is 0.1855, against (3) is 0.0006342 and
against all other methods, except (4), is even lower).
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When we compare columns (8), (10) and (11) we can conclude that
he hybridization of genetic algorithm and local search produces much
etter results than each method alone. This is true even when (10)
s able to perform many more generations than (8) in the same time
imit. It is remarkable that the number of local searches performed by
11), which is in average 380550, is lower than the number performed
y (8), which is in average 524000 (as it is run an average of 524
enerations and the population size is 1000). This is due to the fact that
ocal searches starting from random solutions take many more steps to
each a local optimum than when starting from good solutions.

Approach (1), i.e. never using the energy-optimization heuristic,
erformed poorly, even if the algorithm was able to perform many more
enerations, and approach (9), i.e. using the recursive mode through all
he execution, also produced bad results, as in this last case the memetic
lgorithm was able to perform very few total generations because the
omputational burden was too high, and so it had not enough time to
onverge.

The results also indicate that the first step is more important than
he second step, and also less computationally expensive. Regarding
he application of the second step in recursive mode only in the
ast generation, we can see that configuration (2) is better than (1),
onfiguration (4) is better than (3), configuration (6) is better than
5), and configuration (8) is better than (7) although in these last two
ases the improvement is certainly minimal (we could see there are in
act improvements if we show more significant digits in Table 4). This
roves that this is an efficient compromise, as the increase in running
ime is negligible but the final results do sometimes improve, even if
he improvement is minor when using the second step during all the
xecution. As an example, when comparing (7) to (8) in one of the runs
f the instance ABZ7, by applying the recursive mode we were able to
lightly improve the energy consumption in 3 of the 17 solutions of the
btained Pareto set.

However, we argue that configuration (8) might have better poten-
ial than (4) for reaching better results in long executions. Additionally,
e have seen that always applying the recursive mode (configuration

9)) had not enough time to converge, so it might obtain great results
n very long executions. Hence, we performed another round of exper-
ments with a 3-hour time limit, comparing configurations (4), (8) and
9). The results are reported in Table 5, where we show for each method
he average and best values of the hypervolume and 𝜖-indicator for each
nstance, and the average number of generations made in the 3 h time
imit.

We see that in long executions, configuration (8) is clearly better
han the others, and so comparing it to (4) and (9) we conclude
hat the proposed way of applying the energy-optimization heuristic is
etter than the other possibilities. This can be confirmed with statistical
ests, as in this case, regarding hypervolume, the 𝑝- value against
ethod (4) is 0.0003702 and against (9) is 0.0000002346, and also

egarding the binary 𝜖-indicator, where the 𝑝- value against method
(4) is 0.000002417 and against (9) is 0.00002364.

In conclusion, in very short runs the best method is (4) (i.e. not
using the second step of the energy heuristic until the last generation)
whereas in long runs the best method is (8) (using that second step
during all the execution). We argue that in most real applications of
this scheduling problem the time limit will not be an issue, and so we
choose method (8) as the winner and we will use it to compare with
other algorithms and with the state of the art. However we suggest that
variant (4) should be used in any real application that imposes a very
short time limit.

6.4. Preliminary analysis on the CP approach

In Section 4.1 we have presented a CP model that implements a
lexicographic approach for the minimization of the objective pair WEC
and 𝐶𝑚𝑎𝑥 with the energy WEC as primary objective, and that exploited

the energy constraint propagation rule (constraint (4m), in the model).

14
Table 5
Comparison of different variants of the utilization of the energy-optimization heuristic,
with 3 h time limit. In bold, the best value of each indicator found in each instance.

Inst. (4) (8) (9)

Hypervolume: Avg. (Best)

ABZ7 .624 (.649) .691 (.764) .552 (.580)
LA21 .798 (.869) .821 (.871) .800 (.867)
LA24 .686 (.888) .705 (.746) .678 (.723)
LA25 .799 (.843) .839 (.879) .831 (.872)
LA27 .776 (.848) .794 (.870) .756 (.809)
LA29 .811 (.898) .738 (.858) .667 (.785)
LA38 .694 (.745) .732 (.799) .701 (.796)
LA40 .823 (.859) .860 (.889) .835 (.853)

Binary 𝜖-indicator: Avg. (Best)

ABZ7 .246 (.182) .170 (.120) .297 (.246)
LA21 .141 (.073) .108 (.050) .128 (.073)
LA24 .263 (.029) .227 (.166) .247 (.166)
LA25 .108 (.079) .079 (.026) .074 (.034)
LA27 .137 (.112) .137 (.113) .146 (.122)
LA29 .167 (.080) .209 (.087) .259 (.198)
LA38 .193 (.131) .136 (.087) .169 (.087)
LA40 .115 (.101) .070 (.055) .078 (.060)

Average number of generations

31095 9227 2340

Table 6
Comparison among different variants of the CP approach with 3 h time limit, used
in the preliminary analysis. In bold, the best value of each indicator found in each
instance.

Inst. CP CP-Prop CP CP-Prop
MK-WEC MK-WEC WEC-MK WEC-MK

Hypervolume: Avg. (Best)

ABZ7 .170 (.198) .000 (.000) .114 (.119) .000 (.000)
LA21 .394 (.523) .224 (.354) .237 (.246) .329 (.509)
LA24 .512 (.546) .280 (.456) .096 (.143) .365 (.388)
LA25 .523 (.571) .251 (.444) .111 (.179) .433 (.548)
LA27 .263 (.342) .000 (.000) .054 (.054) .000 (.000)
LA29 .371 (.453) .000 (.000) .087 (.134) .000 (.000)
LA38 .174 (.224) .000 (.000) .054 (.058) .000 (.000)
LA40 .200 (.259) .000 (.000) .085 (.088) .000 (.000)

Binary 𝜖-indicator: Avg. (Best)

ABZ7 .830 (.802) – (–) .886 (.881) – (–)
LA21 .605 (.476) .776 (.645) .757 (.748) .670 (.489)
LA24 .488 (.453) .719 (.544) .902 (.854) .635 (.612)
LA25 .476 (.428) .748 (.554) .887 (.817) .567 (.452)
LA27 .736 (.658) – (–) .946 (.946) – (–)
LA29 .628 (.547) – (–) .912 (.866) – (–)
LA38 .826 (.776) – (–) .946 (.942) – (–)
LA40 .800 (.741) – (–) .915 (.912) – (–)

In the current analysis however, given the extended set of benchmark
instances to be solved compared to our previous work, as well as the
significant size of many of those instances, we found advisable to test
slight variations of the model. For instance, we tested the inversion
between the primary (WEC) and the secondary (𝐶𝑚𝑎𝑥) key, as well as
the CP model deprived of the (4m) constraint.

This preliminary experimental analysis therefore leads to four pos-
sible cases, whose results in terms of hypervolume and 𝜖-indicator
average measurements are shown in

Table 6. In particular, the CP-PROP WEC-MK results correspond to
the application of the full model presented in Section 4.1, with WEC as
primary key and 𝐶𝑚𝑎𝑥 as secondary key; the CP WEC-MK results corre-
spond to the application of the model presented in Section 4.1 without
the (4m) constraint, with WEC as primary key and 𝐶𝑚𝑎𝑥 as secondary
key; the CP-PROP MK-WEC results correspond to the application of the
full model presented in Section 4.1, with 𝐶𝑚𝑎𝑥 as primary key and WEC
as secondary key; finally, the CP MK-WEC results correspond to the
application of the model presented in Section 4.1 without the (4m)
constraint, with 𝐶 as primary key and WEC as secondary key.
𝑚𝑎𝑥
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Fig. 10. Hypervolumes: CP Vs. GA algorithms.
Fig. 11. 𝜖-Indicator: CP Vs. GA algorithms.
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All tests are performed within maximum CPU times of 3 hours
ivided in 10 solving runs. As known, the lexicographic multi-objective
ptimization procedure of CPLEX returns the best solution found at
he end of each run (candidate solutions), out of which the Pareto set
s built, by considering the non-dominated solutions. Moreover, each
olution is computed by optimizing the primary objective first, and
rying to optimize the secondary objective during the time between
ne improvement of the primary objective and the next. However,
his approach lends itself to disregarding some good solutions possibly
iscovered during the optimization process, because as soon as the
rimary objective is improved, the value of secondary objective of
he previous solution is lost, and its optimization must start anew. In
his paper however, we use a slightly different method to save the
andidate solutions, by considering all the solutions computed during
he optimization process,3 and not only the single solution returned
t the end of each individual run. Finally, the Pareto set is computed
iltering the non-dominated solutions out of this set.

Table 6 clearly shows that the most performing configuration across
he range of the selected benchmark set is the CP MK-WEC, followed
y the CP-PROP MK-WEC configuration, which however seems to be
sable only over the benchmark’s smallest instances (i.e., from 𝐿𝐴21,
𝐴24 and 𝐿𝐴25). We conjecture that this behavior is mainly due to
omputational burden imposed by the propagation rule, which is heavy
n the largest instances and precludes the synthesis of good solutions
n the available time. The CP WEC-MEC configuration solves instead all
he instances though with poor performance. Statistical tests also prove

3 In fact, IBM-ILOG CPLEX maintains an engine log of the whole op-
timization process, containing the history of all the produced solution
values.
 t

15
that the differences between CP MK-WEC and the other three methods
re statistically significant in both hypervolume and 𝜖-indicator. Given
he results obtained from this preliminary analysis, in the comparison
hat follows we will select the CP MK-WEC configuration.

.5. Results and comparison with the state of the art

In our experiments we consider two types of executions: short runs
ith a time limit of about 10 min, and long runs with a time limit
f about 3 h. In this way, we can better see the convergence of our
ethods, and conclude if there is some better method depending on

he available computational time.
Figs. 10 and 11 show a graphical comparison among the hypervol-

me and 𝜖-indicator values produced by the genetic algorithm (GA) and
he constraint programming algorithm (CP), with total CPU times of
ither 10 min or 3 h. In the CP case, we consider a further subdivision
ased on the number of random restarts (steps) performed within the
PU time allotted for each run; in particular, we uniformly distribute
he total CPU time over 1, 5 or 10 steps when the total CPU time is

h, and over 1 or 5 steps when the total CPU time is 10 min (we
ave experienced that 1-minute runs do not return any solution). As
first result, we observe that the proposed genetic approach shows the
est performance over the full benchmark set, with the only exception
f the smallest 𝐹𝑇 06 instance. In particular, we note that 10 min of
omputation are enough for the GA to outperform over the set of CP
esults; quite naturally, the 3 h GA results produce a further improve-
ent over the respective 10 min results, though this improvement is
articularly evident only for the bigger instances ranging from 𝐿𝐴26
o 𝐿𝐴40. The rather similar performance exhibited by both the 10 min
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nd 3 h version of the GA approach proves that the GA has very good
onvergence speed towards the optimum.

Similarly as in Section 6.3, we have confirmed these results with
tatistical tests. Regarding hypervolume, the GA using 3 h run time
s the best method (𝑝- value against GA using 10 min is 4.171e−07,

whereas against all CP methods is even lower), and also regarding the
binary 𝜖-indicator (𝑝- value against GA using 10 min is 6.169e−07 and
against all CP methods is even lower). It can also be confirmed that GA
using 10 min is significantly better than all CP methods regardless of
its running time (all 𝑝- values are below 5.004e−08).

As the figures show, the CP approach is also able to obtain high
quality results but, as opposite to the GA case, there is substantial
difference between the 10 min and the 3 h results. These differences
are statistically significant. We conjecture that this is due to the fact
that the time necessary for the CP approach to find a first solution
is considerably higher than the time necessary for the GA approach
(which is immediate), and hence the CP’s optimization phase starts
much later, ultimately exhibiting a much lower convergence speed
than GA. This is also indirectly confirmed by the observation that
when the total imposed CPU time on the CP approach is 10 min, the
best performance on the majority of instances (i.e., the larger ones) is
obtained by the 1 step version of the procedure (i.e., 10 min per run)
rather than by the 5 step version (i.e., 2 min per run). Indeed, it is
evident that 2 min is often not enough to both find an initial solution
and perform an effective optimization phase.

Statistical tests confirm that when using CP with 10 min time
limit, using 1 step is better than using 5 steps (𝑝- value of 0.0002754
regarding hypervolume and 𝑝- value 0.0009918 regarding the binary
𝜖-indicator).

Fig. 12 shows one example of the Pareto sets for the 𝐿𝐴03 (a) and
the 𝐿𝐴34 (b) instances (whose hypervolume and 𝜖-Indicator values are
respectively charted in Fig. 10 and Fig. 11), obtained with the GA and
the CP approach. As readily observable, the GA approach outperforms
the CP in both cases, though the difference in performance is not as
large in case of smaller instances (𝐿𝐴03).

Similarly to what we did with Fig. 12, in Fig. 13 we present an
example of the differences between the Pareto sets obtained with our
new methods and the Pareto sets in previous state of the art, limited to
the two instances 𝐹𝑇 10 and 𝐹𝑇 20, given that the 𝐹𝑇 06 instance has
in fact a Pareto set composed of a single point (55, 124) that represents
its optimal solution. In particular, we compare the results obtained by
the genetic algorithm proposed in May et al. (2015) and the constraint
programming approaches of Oddi et al. (2017, 2018) (see Section 1)
against those obtained with the 10 minute version of our current GA
procedure, to keep the comparison fair. Note that both the Best and
the Worst Pareto sets obtained by the GA are shown in the plots. As
the figure shows, the GA approach outperforms all the other methods
16
Fig. 13. Comparison with previous state-of-the-art.

ven in the worst of the ten runs performed; the GA’s superiority is
articularly clear in the 𝐹𝑇 10 instance.

Regarding the FT20 instance, we remark that in May et al. (2015) it
is only tackled using single-objective optimization, either makespan or
WEC: when minimizing w.r.t. the makespan they report a solution with
makespan 1242 and WEC 1584, whereas when minimizing w.r.t. the
WEC they report a solution with makespan 1630 and zero WEC. The
authors do not perform multi-objective optimization in this instance,
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arguing that preliminary tests show that room for improvement is
negligible. However, our hybrid evolutionary metaheuristic was able
to obtain a solution with 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 1173 and 𝑊𝐸𝐶 = 0 in all 10
runs. Moreover, further interesting solutions were found; for example,
our evolutionary metaheuristic also reached a solution with 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =
1165 (i.e. the optimal makespan) and 𝑊𝐸𝐶 = 126, in 8 of the 10
runs. Hence, our results in the FT20 instance look vastly superior than
those reported in May et al. (2015), and demonstrate our capability to
minimize over the WEC objective, capability which is confirmed on all
the other instances of this study.

We will now compare the results obtained from the GA and CP
approaches (see Figs. 14 and 15), focusing on the most CPU-time
intensive versions that we have used (3 hours). On the top of both
figures, the size of each instance batch is shown in terms of the
(𝐽𝑜𝑏𝑠×𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠) indicator, while the total number of involved activities
is shown between brackets. In these figures, the mean hypervolume
and 𝜖-indicator values are respectively plotted, together with the 95%
confidence interval, around the mean.

As previously described, the CP approach was run in three different
flavors: in the first (ℎ𝑣_𝑐𝑝3ℎ10𝑠), the 3 hours CPU time is equally di-
ided in 10 different steps (thus favoring exploration over exploitation),
hile in the third (ℎ𝑣_𝑐𝑝3ℎ1𝑠), all the CPU time is used for one step only

thus relying on a purely exploitation approach). The second method
 b

17
ℎ𝑣_𝑐𝑝3ℎ5𝑠) places itself halfway between the previous two, in that the
PU time is divided in 5 different steps. Beyond the fact that the GA
pproach is the best performing method, which was already clear in
ig. 10, the following further observations can be made.

The results are interesting as they show how the different ratio be-
ween exploration and exploration affects the algorithm’s performance
epending on the given instance’s complexity (i.e., its size). To begin
ith, we observe that the ℎ𝑣_𝑐𝑝3ℎ1𝑠 approach performs particularly
ell on the bigger instances, that is, from 𝐿𝐴26 to 𝐿𝐴40, including
𝐵𝑍7, while the ℎ𝑣_𝑐𝑝3ℎ5𝑠 and ℎ𝑣_𝑐𝑝3ℎ10𝑠 approaches are generally

ess effective. We also observe that the ℎ𝑣_𝑐𝑝3ℎ10𝑠 method exhibits
articularly poor performance against the bigger instances, the reason
eing that the exploration granted by the approach is not sufficient if
t is not coupled with an intensive exploitation phase. In this respect,
he results show that the ℎ𝑣_𝑐𝑝3ℎ5𝑠 approach do not provide sufficient
xploitation power to effectively solve the biggest benchmark instances,
.e., those ranging from 𝐿𝐴31 to 𝐿𝐴35 (300 activities). Conversely,
he ℎ𝑣_𝑐𝑝3ℎ10𝑠 and the ℎ𝑣_𝑐𝑝3ℎ5𝑠 approaches do perform better than
𝑣_𝑐𝑝3ℎ1𝑠 on the smaller instances, providing an example of how a wise
ixture of exploitation and exploration can be very effective when the

nstances’ complexity allows. Regarding statistical tests to confirm these
esults about the 𝐶𝑃 approach, it can be proven that in the overall
enchmark there are no statistical differences between using 1 step or
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Table 7
MILP and GA: Pareto sets comparison.
Inst. MILP HV 𝜖-I GA HV 𝜖-I

FT06 (55*,124*) 1.00 .000 (56,124), (55*,134) .842 .263

LA01 (677,390), (666*,408) .253 .714 (677,294), (666*,354) .891 .000

LA02 (671,544), (669,760),
(655*,898)

.379 .577 (747,0), (734,102),
(731,150), (715,156),
(707,204), (703,228),
(678,350), (677,398),
(674,478), (672,484),
(671,520), (669,556),
(665,618), (663,850),
(660,868), (657,886),
(655*,898)

.744 .000

LA03 (646,368), (606,544),
(605,622), (604,1024),
(599,1042), (597*,1108*)

.691 .239 (729,108), (646,240),
(643,320), (636,392),
(632,458), (630,520),
(608,538), (606,544),
(605,622), (604,1024),
(599,1042), (597*,1138)

.813 .039

LA04 (607,368), (600,632),
(596,776), (595,800),
(590*,818)

.771 .175 (611,368), (607,386),
(603,452), (600,464),
(598,506), (596,782),
(595,818), (590*,848)

.827 .057

LA05 (593*,240) 1.00 .000 (593*,240) 1.00 .000
5 steps, but the differences between these two versions and the version
using 10 steps is in fact statistically significant, even if the version using
10 steps can perform better in some groups of instances.

Finally, we provide in Table 7 some results obtained with the MILP
procedure described in Section 5, and compare them with the best
results obtained with the GA. For each instance, the Table’s columns
report the best Pareto set found by both solving methods (for each
solution we show its makespan and its WEC), together with the cor-
responding hypervolume value (HV column) and 𝜖-indicator value (𝜖-I
column) of the Pareto set.

The number of instances used for this comparison is limited because
the complexity of the MILP model did not allow to solve any instance of
size greater than the 𝐿𝐴05, within the given CPU time limit. Given the
small size of the instances, the Pareto fronts computed during the GA’s
10 runs allowed for each instance are the same or extremely similar;
therefore, it is sufficient to report only one of them in the table.

Despite the limitation on the number of instances, some interesting
conclusions can however be drawn. First of all, the MILP model allowed
to guarantee the optimality of some solutions found (represented in
bold with asterisks, in the table), see for instance the instance 𝐹𝑇 06
nd the instance 𝐿𝐴03. These are solutions that the GA procedure (the
est performing approach in our work) could not reach. Secondly, we
ould like to highlight that the overall quality of the solutions found
y the MILP is rather high, see in particular the values for the 𝐿𝐴04
nstance, where the underlined pairs represent solutions that remained
nparalleled by the GA. Accidentally however, the reader may notice
hat the GA’s hypervolume and 𝜖-indicator values are better than the
ILP’s (0.771 Vs. 0.827 and 0.175 Vs. 0.057); this is partly due to the

act that the GA’s Pareto set contains a higher number of solutions.

The overall lesson we can learn by observing the MILP performance
s that despite the solutions returned by the GA are very good, there
ay be still significant room for further improvement on the overall

enchmark. The detailed schedules of the solutions found by our hybrid
volutionary algorithm for all instances considered in this experimental
tudy are openly available on the web.4

4 Repository section in http://di002.edv.uniovi.es/iscop
18
7. Conclusions

In this paper we have considered the job shop scheduling problem,
minimizing both the makespan and the energy consumption. The con-
sidered energy model allows each machine to be in several states: Off,
Stand-by, Idle or Processing. Each state consumes a different amount of
energy, and some transitions between states consume some time and
energy. This is a very relevant problem in real scenarios, but it is very
complex. To solve it we propose different techniques: a hybrid evo-
lutionary algorithm that combines a NSGA-II based genetic algorithm
with local search and energy optimization heuristics, a constraint-
programming (CP) approach and a mixed-integer linear programming
(MILP) approach. Our methods are analyzed and compared with the
state-of-the-art algorithms, obtaining competitive results.

The results of the experimental study show that the genetic algo-
rithm is the best performing approach, compared to both the CP and the
MILP, mainly because of its ability to find the best balance between the
diversification and the exploration aspects of the optimization process,
and because of the efficacy of the energy optimization heuristic. An-
other important aspect relative to the methods compared in this work
are the conclusions we can draw about their convergence speed. In
fact, the analysis of the results obtained in the 10 minutes and the 3
hours versions of the GA and CP approaches clearly shows that the
GA generally converges to very good solutions much earlier than the
CP. Given sufficient time however, the latter succeeds in achieving
comparable results, even though the CP’s solution quality generally
remains behind. Regarding the energy optimization heuristic used in
the GA, we have seen that when the time limit is very reduced it is
better to omit its second step until the last generation.

Relatively to the future work, the most interesting research direction
is to consider energy models with more characteristics present in real
environments. One possibility is to explicitly consider an additional
‘‘Setup’’ state for machines, representing the energy and time needed
to readjust it between the execution of two consecutive operations. The
energy model would be more realistic than that considered in this paper
in the cases where setup times are sequence-dependent, which happens
in some real environments, as painting and printing industries or some
manufacturing environments (Wilbrecht and Prescott, 1969). It would
also be interesting to allow different processing modes in machines,
i.e. having the possibility to consume extra energy in order to reduce
processing time (Zhang and Chiong, 2016), or even shifting energy
costs (Grimes et al., 2014).

http://di002.edv.uniovi.es/iscop
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Another possibility is to tackle variants of the job shop, as for
xample flexibility in machine selection, so each operation can be
xecuted by different machines, possibly with different duration and
nergy consumption. In fact, the flexible job shop scheduling problem
s possibly the most studied job shop variant in the literature. Parallel
achines are also common in scheduling literature. In these variants,

he utilization of Grouping Genetic Algorithms (Ramos-Figueroa et al.,
021) could be interesting.

The use of automated planning in scheduling problems is a recent
nd promising research direction. For example, in Parkinson et al.
2017) the authors minimize energy consumption and machine error
onsidering an energy model where machines can be in different states,
ach consuming different energy. They use automatic planning to vary
he energy consumed in between the processing intervals by machine
ools. The machine error measure minimized in the paper is also an
bjective function worthy of further study, as it is relevant in some real
nvironments.

The evolutionary algorithm proposed in this paper can also be
mproved, for example by designing a local search neighborhood fo-
used on energy reduction. Moreover, the removal of duplicated-fitness
ndividuals described in Section 3.4 can possibly be improved, by
eeping a larger number of them and/or by choosing them using some
imilarity metric instead of randomly. More research is needed in this
opic. Finally, MOEA/D (Zhang and Li, 2007) is a multi-objective evo-
utionary algorithm which is based on decomposing a multi-objective
roblem into several single-objective subproblems. It could be inter-
sting to design it and perform a comparison with the proposal of
his paper, to assess whether a dominance-based metaheuristic or a
ecomposition-based metaheuristic is better suited to our particular
roblem.
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