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Abstract: Placing an electric motor (EM) inside the transmission housing of a hybrid electric ve-
hicle (HEV) implies that the automatic transmission fluid (ATF) needs to accomplish additional
requirements. Among these requirements, electrical compatibility is of critical significance. This
study investigated the influences of the additive concentrations of three commercial ATFs on their
electrical compatibilities and tribological performances. Two variations of each ATF with different
concentrations of the original additive packages were prepared. The viscosity, electrical conductivity,
permittivity, resistivity, dielectric dissipation factor, breakdown voltage, and tribological performance
of the nine resulting ATFs were measured. All the ATFs were found to be electrically compatible
and showed dissipative performance and sufficiently high breakdown voltage, even at increasing
additive concentrations. The tribological performances of the ATFs formulated with the API (Ameri-
can Petroleum Institute) Group III base oils had improved wear reduction at the highest additive
concentrations; the better wear performance was related to the formation of iron phosphates and
polyphosphates on the worn surface.

Keywords: electric vehicles; automatic transmission fluid; electrical properties; additives; friction; wear

1. Introduction

The transportation sector is one of the main sources of greenhouse gas (GHG) emis-
sions, according to the European Environmental Agency (EEA) [1] and the US Environ-
mental Protection Agency (EPA) [2]. The agencies report that 27% and 22% of the total
GHG emissions are from this sector (in their respective geographical areas). For this reason,
taking action in this sector, especially on road transportation, is a key step toward achieving
the targets of the 2030 Agenda for sustainable development [3]. Vehicle electrification is
the main option to accomplish this goal. The main reason for the high impact of electric
vehicles (EV) on GHG emissions reduction is their higher efficiency [4] when compared to
ICE (internal combustion engine) vehicles. However, in addition to full EVs, HEVs (hybrid
electric vehicles) play an important role in the transition to the zero-emissions by 2035
scenario determined at the Conference of the Parties (COP26) [5].

The layout of the configuration of an HEV includes the electric motor (EM) inside the
mechanical transmission housing. In this case, the automatic transmission fluid (ATF) must
meet numerous requirements. Apart from reducing friction and wear, the ATF used in a
HEV must protect against corrosion, avoid foaming and aeration at high speeds, have good
cooling properties, and be compatible with electric and magnetic fields and the polymers
used as seals and structural materials [6,7]. The selection of base oils and the type and
concentration of additives are essential to fulfil the above-mentioned requirements.
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Gao et al. [8] patented a lubricant for HEVs and EVs with no more than 20 wt% of
additives, which is able to maintain the electrical conductivity (κ) and kinematic viscosity
within desirable values. Previously, Flores-Torres et al. [9] patented a method for preventing
electrostatic problems within EV powertrains. According to this method, the lubricant
must have at least one base oil (API Groups I to V), one additive package, and at least one
conductivity agent, which could be included in the additive pack. The base oil should be at
least 70 wt% of the total amount of the lubricant, and the additive pack between 0.01 and
30 wt%. The additive package, which is formulated under the manufacturer’s criteria, must
have at least one of the following additives: antioxidant, detergent, dispersant, antiwear,
corrosion inhibitor, viscosity modifier, or a metal passivator. In these circumstances, the κ of
the lubricant should be between 10 and 20,000 pS/m and the kinematic viscosity between
2 and 20 cSt at 100 ◦C.

The concentration of the additive exerts influence on the tribological performance of
the lubricant and the fulfilment of the special requirements for an ATF to be used in an
electrified driveline. The κ of the fully formulated oils (FFO) is considerably affected by the
additive composition, concentration, and chemistry at similar viscosities, while viscosity
must be considered for κ control as it becomes lower [10]. On the other hand, the ZDDP (zinc
dialkyldithiophosphate) included in the lubricants as an antiwear additive can be activated
by increasing the κ, although the support of other additives, such as tetradecylammonium
tetrakis-(4-fluorophenyl)-borate (TDATPhFB) is necessary to improve this property [11].
This effect could also be achieved with a polar aprotic solvent, such as sodium dodecyl
sulphate (SDS) and ionic liquid additives [12,13].

On the other hand, the improvement of tribological behaviour by means of a given
additive concentration can worsen other properties, such as κ and dielectric strength,
which are very important in HEV cases with EMs inside the transmission housing. When
considering the hypothesis that conventional ATFs used in ICE vehicles are not suitable
to fulfil the requirements of the abovementioned HEV cases, it is useful to determine how
different concentrations of the additive package can affect both tribological and electrical
properties. The aim of this study was to investigate the combined effects of the additive
concentrations in three conventional ATFs on their electrical and tribological properties.
The compatibility of these ATFs with structural polymers and elastomers and the oxidation
influences of these ATFs on their electrical conductivities were previously studied [14–16].
The novelty (and practical application) of this research consists of studying the feasibility of
using conventional ATFs in HEVs and observing how changing the additive concentrations
of one property can be improved without worsening another one (to an unacceptable
value), which is important for both academic and industry stakeholders.

2. Experimental Details
2.1. Materials

Three commercial–automatic transmission fluids (ATFs) were used as reference oils
(ATFs A, B, and C); their properties are listed in Table 1. ATF A was composed of a mixture
of two mineral oils (SP90H and LN-100HS) from API Group I as a base fluid and the
additive package EDR-219. Meanwhile, ATFs B and C were composed of a mixture of two
mineral oils (YUBASE 3 and YUBASE 6) from API Group III as base fluids and the additive
packages HiTEC 3460 and HiTEC 3488, respectively. The chemical elements included in
the additive packages were determined for the three abovementioned ATFs and the results
are reported in Table 2.



Lubricants 2022, 10, 276 3 of 18

Table 1. Properties of the automatic transmission fluids.

ATFs Base Oils (wt. %) Additive (wt. %)
Kinematic Viscosity (mm2/s) Viscosity

Index40 ◦C 100 ◦C

A 88.80 11.20 44.3 8.0 154
A0 80.00 20.00 68.5 11.8 169
A1 95.00 5.00 34.4 6.2 130

B 89.00 11.00 28.5 5.8 152
B0 80.00 20.00 37.1 7.2 161
B1 95.00 5.00 24.4 5.0 135

C 83.00 17.00 33.8 7.1 180
C0 80.00 20.00 37.6 7.8 184
C1 90.00 10.00 26.2 5.7 168

Table 2. Content of the additive elements in the non-modified commercial ATFs.

Additive Elements Standards ATF A ATF B ATF C

Ca, ppm ASTM D 4951 150–240 – 170–220
B, ppm ASTM D 4951 78 59–88 140–210
P, ppm ASTM D 4951 160–250 136–194 410–540

Zn, ppm ASTM D 4951 – 20 –
S, % ISO 8754 0.192 0.066
N, % ASTM D 5291 0.105–0.162 – –

Two additional lubricant samples were studied for each ATF, changing the base fluid
concentration by approximately ± 9%, except in the case of ATF C0, whose base fluid
concentration decreased by 3.7%. Thus, three lubricant samples with a base fluid/additive
ratio of 80/20 (expressed in wt.%) were studied, and other lubricant samples with higher
and lower base fluids/additive ratios were also analysed. The mixtures of the base oils
and the additive packages were prepared in a planetary centrifugal mixer (Kakuhunter
SK-300 SII) for 30 min at 1600 rpm.

2.2. Viscosity and Electrical Property Measurements

The viscosities of the different ATFs were measured from 20 to 100 ◦C, every 10 ◦C,
in a Stabinger SVM 3001 viscometer (Anton Paar, Graz, Austria). The temperature range
was selected by considering the temperatures that were potentially reached inside the
transmission (by gears) and in the main parts of the EM (if the latter was included in the
transmission housing). The potential temperatures that could be reached in the EM were
reported in a recent paper [14].

The electrical conductivities of the abovementioned lubricant samples were measured
at 40, 60, 80, and 100 ◦C with a digital conductivity meter (Emcee Model 1153 (Emcee
Electronics, Inc., Venice, FL, USA)). At least three electrical conductivity measurements
were made for each lubricant sample. The dielectric breakdown voltage was measured at
room temperature. VDE (Verband Deutscher Elektrotechniker) electrodes were used, with
a separation of 2.5 mm. The tension at the electrodes increased by 2 kV·s−1 ± 0.2 kV·s−1

and the uncertainty of the measuring equipment was 4.3 kV. The volume of the lubricant
sample was approximately 400 mL; the electrodes were completely covered in oil, and the
lubricant sample was subjected to continuous mechanical agitation. All of these parameters
correspond to the EN 60156 standard. The resistivity (ρ), relative permittivity (ε), and
dielectric dissipation factor (tan δ) were measured at room temperature (25 ◦C) with an
LCM calculator v3.0 by Alff Engineering. The frequency was 50 Hz, and the measurements
were made according to the UNE-EN (IEC) 60247 standard.

2.3. Tribological Tests

All the lubricant samples were tested in a Mini Traction Machine (MTM2 (PCS In-
struments, London, UK)) performing two different tests: the so-called Stribeck curve
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determination and the traction test. The Stribeck curves were obtained at 40, 60, 80, and
100 ◦C for an entrainment speed range of 10–2500 mm·s−1. The load was set at 25 N, which
implied a maximum contact pressure of 0.9 GPa. The slide-to-roll ratio (SRR) was 100%.
The traction tests were performed under the same loads and temperatures as the Stribeck
curve tests, but they were performed at a continuous entrainment speed of 2000 mm·s−1.
The SRR values increased periodically from 0 to 100%.

Equations (1) and (2) define the entrainment speed and SRR, respectively. The dif-
ference between the tangential speed of the disc (udisc) and the ball (uball) at the point of
contact determines the entrainment speed (VS). The volume of the lubricant used in each
test was 10 mL. The balls (9.525 mm-radius) and discs (23 mm-radius) were made of AISI
52100 steel, with a maximum surface roughness of 0.020 µm.

Vs = udisc − uball (1)

SRR = 2· |(udisc − uball)|
(udisc + uball)

× 100% (2)

Ball-on disc reciprocating friction and wear tests were also performed in a CETR
UMT-3 (San José, CA, USA) tribometer. The properties of the specimens used in these
tribological tests were: balls of 6 mm-diameter, 58–66 HRC hardness, and 0.05 µm Ra
surface roughness; and discs of 10 mm-diameter, 190–210 HV30 hardness, and 0.018 µm
Ra surface roughness. Both specimens were manufactured from AISI 52100 steel. The
tribometer was configured with a 4 mm stroke length and a frequency of 15 Hz. The
duration of the tests was 60 min, the fluid temperature was set at 100 ◦C, and the load was
10 N (corresponding to 1.43 GPa of maximum contact pressure). The coefficient of friction
(COF) was instantaneously recorded, and the wear volume was measured on the disc’s
surface with a confocal microscope (Leica DCM 3D (Leica Biosystems, Wetzlar, Germany)).
Each test was performed at least twice with a fresh lubricant sample and new specimens.
Before and after all tribological tests, the specimens were ultrasonically cleaned in heptane
for 10 min, rinsed in ethanol, and then air-dried with hot air.

2.4. Worn Surface Characterization

The worn surface was analysed by scanning electron microscopy and energy dispersive
spectroscopy (SEM/EDS) with a JEOL JSM-5600 (Jeol, Tokyo, Japan) unit, which operated
at 15 kV. The wear mechanism and the elemental chemical composition of the worn surface
were determined by using these techniques, respectively. Later, the surface lubricant
chemical interaction was studied by X-ray photospectroscopy (XPS) with a monochromatic
X-ray source equipped with an Al cathode (1486.7 eV). Survey spectra were taken at a
pass-energy of 90 eV and 1 eV step energy, whereas high-resolution spectra were measured
at 30 eV of pass-energy and a resolution (step energy) of 0.1 eV. The size spot of the
X-ray source was about 2 mm2 and focused on the wear scar, to avoid information of the
unlubricated area.

3. Results and Discussions
3.1. Viscosity and Electrical Properties

Figure 1a shows the electrical conductivity (κ) behaviour of ATFs A, A0, and A1 with
the temperature. The κ values are representative of the dissipative behaviours and the
differentiations between the lubricant samples can be observed at increasing temperatures
and changing additive concentrations. ATF A0 shows the highest κ values, corresponding
with its higher additive concentration and, on the contrary, ATF A1 shows the lowest
κ values. These changes in κ are below one order of magnitude, so they can be consid-
ered small. Figure 1b shows the dynamic viscosity behaviours of these ATFs with the
temperature. Differences between the ATFs in the viscosity values were found over the
whole temperature range, being higher at lower temperatures. At higher temperatures,
the differences in viscosity between the lubricant samples were lower, while the higher
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the additive concentration, the higher the viscosity values. Therefore, the differences in κ
values at high temperatures were mainly related to the additives concentration and not to
the different viscosities (Figure 1a,b). This conclusion about the influence of additives on
the κ values was reported by Kwak et al. [10] and Chen et al. [15]. The so-called Walden plot
(Figure 1c) shows that independently of the additive content used and, thus, independently
of the κ of the sample, all the lubricant samples remained in the sub-ionic regime.
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The κ values of ATFs B, B0, and B1 (Figure 2) showed similar trends to those found in
their counterparts A, A0, and A1. This similarity could be based on their identical additives
concentration and no influence of the base oil could be identified. However, the κ values of
ATFs B, B0, and B1 were higher than those of A, A0, and A1, likely due to the influence
of the lower viscosity of the former. On the other hand, the κ values of ATFs C, C0, and
C1 also bring out the influence of the additives (type and concentration) on the κ of fully
formulated oils (Figure 3). ATF C0 showed lower κ values than ATF B0, having the same
base oil/additive ratio and base oils from API Group III, but a different additive package.
In addition, ATFs C and C1 showed higher κ values than ATF B and B1 due to a higher
concentration and a different additive package. Thus, the composition of the additive
package is also relevant for the κ value.

Independently of the base oils used, all the ATFs showed stronger dependencies of
κ on the type and concentration of the additive package than on the oil viscosity. The
relationship between the κ values of these fully formulated oils and their viscosities (at
given temperatures) positions all of these ATFs in the sub-ionic regime; their κ values
classify them as dissipative lubricants.
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The resistivity, permittivity, and dielectric dissipation factors (or tan δ) of the lubri-
cant samples were measured at 20, 40, 60, 80, 90, and 100 ◦C. In addition, the dielectric
breakdown voltage was also measured at room temperature (25 ◦C). The results of these
measurements are presented in Figures 4–6.
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The resistivity of the base oils at room temperature is ~1013 Ω·m [16], while the values
measured in all the lubricant samples are within the range 107–108 Ω·m. These differences
are due to some additives (antifriction, antiwear, detergent, corrosion inhibitor, and antioxi-
dant) commonly used in the formulation of the ATFs, such as zinc dialkyldithiophosphates
(ZDDP), molybdenum dialkyl dithiocarbamate (MoDTC), and magnesium alkyl sulfonate.
These additives increase the polarity of the ATF, and the number and type of carriers,
resulting in a huge reduction in the resistivity of the finished ATF [17]. The detections of
zinc (Zn), phosphorus (P), sulphur (S), calcium (Ca), and boron (B) in the ATFs used in
this work, Table 2, confirm the presence of the additive types abovementioned, (although
it is not possible to specify which compound was used). This explains why the lubricant
samples with the higher additive concentrations (ATFs A0, B0, and C0) showed the lowest
resistivity values, and on the contrary, ATFs A1, B1, and C1 showed the highest resistivity
values. In addition, the resistivity decreased by around one order of magnitude when
the temperature increased from 20 to 100 ◦C. This is due to the fall in viscosity with the
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increasing temperature; it can be observed that the higher the viscosity decreases with the
temperature (samples with lower viscosity indices), the higher the decrease in resistivity
and, thus, the higher the increase in electrical conductivity. The resistivity of an ATF, such
as the electrical conductivity, should not be too high or too low, in order to avoid excessive
current leakage (if resistivity is too low) and a possible discharge if a build-up of charge
cannot be dissipated (if resistivity is too high).
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As expected, the temperature dependence of the permittivity of the ATFs was very
weak, decreasing only around 4% when the temperature increased from 20 to 100 ◦C.
However, the permittivity showed a strong proportional relationship with the additive
concentration, especially in the B ATFs. By contrast, the tan δ of the ATFs was more sensitive
to temperature, and also varied proportionally with the additive concentration.

Regarding the breakdown voltage, the obtained results indicate that the ATFs are
safe for use in electric vehicles, where the rated voltage of the EM is typically below 1
kV. For this property, a correlation with the additive concentration was not found when
considering the results shown by ATFs B and C.

3.2. Tribological Tests

The tribological behaviours of the three commercial ATFs and the corresponding
lubricant samples with changes in the additive concentrations were studied by means
of three different tests: Stribeck curve determination and traction tests performed under
rolling/sliding conditions, and friction and wear tests under reciprocating motion condi-
tions.

The Stribeck curve tests show how a lubricant performs under different contact condi-
tions leading to distinct lubrication regimes (from hydrodynamic to boundary lubrication).
As expected, the transition from elastohydrodynamic lubrication (EHL) to mixed lubrica-
tion (ML) occurs at a higher speed when the temperature rises, Figures 7–9. Under the
EHL regime, the lubricant samples derived from each commercial ATF (ATFs A, B, and
C) showed similar friction coefficients independently of the initial temperature of the test.
This could be related to the similar viscosity of the lubricant samples, which controlled the
lubricant film thickness. On the other hand, the differences in the friction coefficient under
the mixed lubrication regime between the lubricant samples of each commercial ATF can
be explained by the effect of increasing/decreasing additive concentrations on lubricant
viscosity and/or tribofilm formation. The lubricant samples from ATFs A (Figure 7) and



Lubricants 2022, 10, 276 9 of 18

C (Figure 9) showed slight friction differences, with the exception of ATF C0, in which its
higher additive concentration seemed to reduce the possible shear-thinning rheological be-
haviour, resulting in higher lubricant viscosity and, thus, lower friction values. This could
also explain the friction behaviour shown by ATFs B and B0 (Figure 8). In summary, the
effects of the additive concentration on friction values under the ML regime depend on the
rheological behaviour of the base oil, the viscosity increment with additive concentration,
and the tribofilm formation due to the additive–surface chemical interaction.
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The traction properties of the ATFs are shown in Figure 10. Both the high entrain-
ment speed and low-medium SRR conditions used led this test to be performed under a
hydrodynamic lubrication regime, where friction was controlled by the lubricant viscos-
ity. The small viscosity differences of ATFs A, A0, and A1, and possible shear-thinning
rheological behaviour, resulted in no differentiation of the traction coefficient of these
lubricant samples at the temperatures tested. In addition, ATFs B, B0, and B1 showed
lower traction coefficient values than their counterparts A, A0, and A1 due to the lower
viscosities of the former. ATFs C, C0, and C1 showed similar traction coefficient values
at each temperature tested and these traction results were also similar to those of ATFs B,
B0, and B1. In general, the changes in additive concentrations hardly affected the traction
properties of the ATFs studied.
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Figure 11 shows the results of the friction and wear tests. The friction and wear be-
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in the opposite. ATF A0, with a higher additive concentration than A, showed a signifi-
cantly higher COF and, thus, slightly higher wear, while the lower additive concentration 
of ATF A1 led to double the wear obtained with ATF A, even showing similar COF values. 
This could be explained by the fact that the two abovementioned scenarios are not mutu-
ally exclusive. For lubricant sample B, the one with the highest additive content (ATF B0) 
showed similar COF and slightly lower wear values than those of ATF B. Finally, ATF C0 
showed the best antiwear behaviour and similar COF values of the C lubricant samples. 

Figure 10. Traction curves of the ATFs.

Figure 11 shows the results of the friction and wear tests. The friction and wear
behaviour of the ATFs could be explained in a similar way to that of ZDDP-containing
fully formulated oils, where under a mixed lubrication regime most tribofilms formed are
composed of phosphates, sulphates, and sulphides of Fe/Zn [18]. Higher antiwear additive
concentrations, which correspond with a higher additive package concentration, can lead
to two scenarios: (1) higher viscosity values, resulting in a thicker lubricant film and lower
COF, or (2) a higher probability of tribofilm formation resulting in a possible inhibition of
fluid film entrainment and, thus, thinner lubricant film and higher COF [19]. Both scenarios
lead to less wear. On the contrary, lower antiwear additive concentrations can result in
the opposite. ATF A0, with a higher additive concentration than A, showed a significantly
higher COF and, thus, slightly higher wear, while the lower additive concentration of ATF
A1 led to double the wear obtained with ATF A, even showing similar COF values. This
could be explained by the fact that the two abovementioned scenarios are not mutually
exclusive. For lubricant sample B, the one with the highest additive content (ATF B0) showed
similar COF and slightly lower wear values than those of ATF B. Finally, ATF C0 showed
the best antiwear behaviour and similar COF values of the C lubricant samples. In general,
the antiwear behaviours of ATF B and C can be improved if the additive concentration is
raised, while this solution worsens the friction reduction properties of ATF A.
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3.3. Worn Surface Characterization

The SEM images of the worn surface after friction and wear tests with ATFs A, A0,
and A1 show that the wear mechanisms were adhesive, and more plastic deformation was
found at the edge of the worn surface after testing with ATF A1, Figure 12. The elemental
analysis of the worn surface detected phosphorous when using ATFs A and A0, Table 3.
On the contrary, this element was not found for ATF A1 at the detection limit of the EDS
technique, which may explain the greater wear (Figure 11) found with this lubricant sample.
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Figure 12. SEM of the worn surface after friction and wear tests with ATFs A, A0, and A1.

Table 3. EDS analysis from the wear scar on the disc after friction and wear tests with oils A.

ATF
Concentrations of Chemical Elements (wt%)

C O Si P Ca Cr Mn Fe

ATF A 3.43 14.33 0.44 0.78 0.18 2.81 0.54 76.44
ATF A0 3.62 8.44 0.26 0.50 - 0.90 - 84.28
ATF A1 5.78 10.32 0.29 - 0.29 2.95 0.61 79.76

The wear mechanisms found after tests with ATFs B, B0, and B1 were similar to those
for ATFs A, A0, and A1, Figure 13. No P was found by the EDS analysis technique (Table 4);
nonetheless, taking into account the detection depth of this technique, P could still be found
nearer to the surface at a lower concentration than in the tests with ATFs A, A0, and A1.
The higher wear with ATFs B, B0, and B1, with respect to their counterparts A, A0, and A1,
could be related to the lower amount of phosphorous found.
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Table 4. EDS analysis from the wear scar on the disc after friction and wear tests with oil B.

ATF
Concentration of Chemical Elements (wt%)

C O Si P S Cr Mn Fe Zn

ATF B 6.88 10.41 0.16 - 0.73 2.90 0.64 78.28 -
ATF B0 3.29 9.04 - - 3.35 3.19 0.64 79.62 0.88
ATF B1 5.4 7.20 0.20 - 0.48 2.76 0.97 82.99 -



Lubricants 2022, 10, 276 13 of 18

ATFs C, C0, and C1 showed the same wear mechanisms as the other ATFs (Figure 14),
even with P being found in similar concentrations for all cases through the EDS analysis
(Table 5). The lower wear obtained with the ATF C0 must be studied further.
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Figure 14. SEM of the worn surface after the tribological test with ATFs C, C0, and C1.

Table 5. EDS analysis from the wear scar on the disc after friction and wear tests with oil C.

ATF
Concentrations of Chemical Elements (wt%)

C O Si P S Ca Cr Mn Fe

ATF C 4.44 11.94 0.41 0.57 0.32 - 3.29 1.04 77.98
ATF C0 4.69 10.28 0.21 0.59 0.30 - 2.22 0.39 81.34
ATF C1 5.29 8.96 0.25 0.58 0.59 0.35 2.86 0.68 80.44

XPS was performed in order to verify the results obtained from the EDS analysis
and confirm the chemical states of the elements on the wear scar. The results of the XPS
measurements can be observed in Figures 15–17.

Lubricants 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 15. XPS spectra of P2p and O1s on the worn surface after tribological tests with ATFs A, A0, 
and A1. 

Figure 15. XPS spectra of P2p and O1s on the worn surface after tribological tests with ATFs A, A0,
and A1.



Lubricants 2022, 10, 276 14 of 18Lubricants 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 16. XPS spectra of P2p and O1s on the worn surface after tribological tests with ATFs B, B0, 
and B1. 
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The XPS analysis of the worn surface on the disc after tribological tests with oil A
is shown in Table 6. The worn surfaces on the discs after tribological tests with ATF oil
A, with different additive loads, were scanned at high resolutions for P2p and O1s peaks.
The analysis revealed the presence of a P peak between 133.4 and 133.8 eV for ATFs A,
A0, and A1, which is assignable to iron phosphate [20]. This compound is easily formed
after reactions of phosphate compounds with steel [20] and is known to be an excellent
wear-resistant species [21]. These results seem to agree with the phosphorus content of the
additive lubricant (reported in Table 3), where the sample with the lowest concentration of
this element (ATF A1) is also the sample with the higher worn wear volume.

O1s high-resolution spectra for ATF A fitted according to the positions described by
Massoud et al. [22] for non-bridging oxygen with a P–O structure (NBO, at 531.6 ± 0.3
eV), bridging oxygen with a P–O–P structure (BO at 533.3 ± 0.3 eV), and metallic oxide
(MO at 530.0 ± 0.3 eV), which show very similar compositions (Table 6). Deeper studies
would be needed to accurately identify the kind of metal oxide formed, although according
to Li et al. [23], it is most likely Fe3O4. This information is congruent with the presence
of phosphates as detected in the P2p peaks, with the presence of bridging oxygen and
polyphosphate characteristics at very low ratios.
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Table 6. Peak positions, FWHM (Full Width at Half Maximum), and corresponding peak assignments
for the O1s and P2p spectra under ATFs A, A0, and A1.

ATF BE/eV FWHM/eV Area Percentage Assigned to

O1s

A
531.7 2.5 71% NBO
532.9 1.8 12% BO
530.4 1.4 16% Fe3O4

A0
531.6 2.6 80% NBO
533.0 1.8 5% BO
530.4 1.4 15% Fe3O4

A1
531.5 2.8 79% NBO
532.9 1.6 6% BO
530.5 1.6 15% Fe3O4

P2p

A 133.4 2.8 100% FePO4
A0 133.9 1.9 100% FePO4
A1 133.6 2.3 100% FePO4
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Table 7 shows the XPS analyses of the worn surfaces after the tribological tests made
with ATFs B, B0, and B1, which, with respect to oxygen and phosphorus, are very similar to
those of ATFs A, A0, and A1 (Table 7). The presence of iron phosphates seems to be evident
from the P2p and O1s spectra, as well as the presence of Fe3O4, although the presence of
polyphosphates (assumed to appear as P–O–P) was even lower for oil B than for oil A.
We should note that the worst wear behaviour of oil B is presented by ATF B1 (Figure 8),
which is also the sample with the lowest content of iron phosphates (60% versus 75% for B
and B0).

Table 7. Peak positions, FWHM, and corresponding peak assignments for O1s and P2p spectra under
ATFs B, B0, and B1.

ATF BE/eV FWHM/eV Area Percentage Assigned to

O1s

B
531.4 2.6 76% NBO
532.9 1.3 2% BO
530.4 1.5 24% Fe3O4

B0
531.6 2.5 74% NBO
533.5 1.5 2% BO
530.4 1.5 24% Fe3O4

B1
531.6 2.4 60% NBO
532.8 1.6 2% BO
530.4 1.7 38% Fe3O4

P2p

B 133.8 2.1 100% FePO4
B0 133.4 1.8 100% FePO4
B1 133.3 2.4 100% FePO4

Considering the composition of the additives (Table 2), the S2p XPS region was
also scanned for ATFs B, B0, and B1 searching for the presence of sulphates. However,
sulphur could not be detected on the surface of the samples, probably because of the low
concentration of the element in the additive package. This seems to be a contradiction with
the presence of sulphur detected with EDS (Table 4), but XPS is a surface analysis area whose
depth is in the nanometre range, whereas EDS has a larger penetration. Taking into account
the phenomenological model of the tribofilms generated using different ionic liquid-based
lubricants, as described by Sharma et al. [18], the sulphur compounds of the tribofilm tend
to be formed in the deeper layers. This explains why surface-sensitive techniques, such as
XPS, do not detect sulphur, whereas techniques with deeper penetrations (e.g., EDS), do.

Regarding the XPS analysis of the worn surfaces after tribological tests with oil C,
Table 8 shows that the most relevant feature found in the surface analysis of ATFs C, C0,
and C1 was the relatively high content of bridging oxygen (P–O–P from polyphosphates)
of sample C0 (15 %) compared to the other tested samples. The presence of these polyphos-
phates in C0 is probably related to its better performance in wear behaviour (Figure 8).
Again, sulphur could not be detected on the surface, although this was expected consider-
ing that the concentration had to be even lower than that of the B series, where sulphur
content was negligible.
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Table 8. Peak positions, FWHM, and corresponding peaks assignments for O1s and P2p spectra
under ATFs C, C0, and C1.

ATF BE/eV FWHM/eV Area Percentage Assigned to

O1s

C
531.6 2.1 52% NBO
532.8 2.2 9% BO
530.4 1.5 39% Fe3O4

C0
531.9 2.1 55% NBO
532.7 2.0 15% BO
530.4 1.6 30% Fe3O4

C1
531.7 2.3 64% NBO
533.4 2.5 2% BO
530.5 1.5 34% Fe3O4

P2p

C 133.4 1.7 100% FePO4
C0 133.3 2.0 100% FePO4
C1 133.5 1.4 100% FePO4

4. Conclusions

The influences of additive concentrations on the electrical compatibilities and tribolog-
ical behaviours of three commercial–automatic transmission fluids (ATFs A, B, and C) were
studied. Measurements of electrical properties, such as electrical conductivity, permittivity,
resistivity, dielectric dissipation factors at different temperatures, and dielectric breakdown
voltage at room temperature were made. In addition, tribological properties were studied
by both the so-called Stribeck curve and traction tests under rolling/sliding motions, as
well as friction and wear tests under reciprocating motions. The main conclusions that can
be drawn from the results are the following:

• Although the electric conductivity increased with the additive concentration, all the
ATFs continued to have a dissipative character, and the breakdown voltage continued
to be safe for application in EVs.

• The highest additive concentration used in ATFs B and C had a better antiwear
performance than the original formulation without deteriorating the friction reduction
and the electrical compatibility.

• The presence of iron phosphates and polyphosphates on the worn surface correlated
with a better antiwear performance. Despite the presence of sulphur in the chemical
compositions of some of the additive packages, the concentration of this element was
too low to be detected by XPS on the worn surface.
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