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The extent of electron localization and delocalization in molecular and condensed phases has been the sub-

ject of intense scrutiny over the years. In Chemistry, where real, instead of momentum space viewpoints

are many times closer to intuition, a plethora of localization descriptors exist, including a family of indices

invariant under orbital transformations that rely only on an underlying partition of the physical space into

meaningful regions. These localization and delocalization indices measure the fluctuation of the electron

population contained in such domains, and have been rigorously related to the insulating or conductive

character of extended systems. Knowledge of the full electron population probability distribution function

is also available in molecules, where it has provided many meaningful results as well as uncovered ex-

otic interaction regimes in excited states. Electron distribution functions (EDFs), that can be seen as real
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space analogs of Pauling resonance structures, are now reported in periodic systems. In agreement with

what is known in finite systems, ionic compounds display narrow EDFs that get wider as covalency sets

in. Contrarily to conventional wisdom, most electrons delocalize over their nearest neighbours, even in

quasi electron-gas metals like sodium, and it is only in the decay rate of the probability distribution where

conductors and insulators can be distinguished.

Introduction

The many years of efforts devoted to unveil the physical laws behind the behaviour of electrons in normal

matter, which lie at the very root of the science of Chemistry, have been enormously influenced by a rel-

atively small number of extraordinary scientists that cast the language that is still spoken today. Among

these we find Gilbert N. Lewis,1 whose electron-pair paved the way to the modern theory of the chemical

bond, and Linus Pauling,2 who fused the electron pair of Lewis and the Heitler-London3 method to develop

valence bond (VB) theory and to introduce, among many others, the concept of resonance, used for decades

to rationalize the distribution of the electrons in molecules.

With the advent of electronic computers and their exceptional ability to tackle with linear algebra prob-

lems, valence bond theory yielded to the molecular orbital (MO) machinery,4 and with it the theory of

chemical bonding was recast into its one-electron formalism. Although we assist to a renaissance of VB

theory thanks to faster and faster computers and new methodological advances,5 both the VB and MO

frameworks are built in Hilbert space, and not in the physical space of chemical intuition. This situation

has led to the development of a complementary pathway independent of the orbital concept (i.e. invariant

under orbital transformations) that takes the wavefunction itself in position (or momentum) space as the

basic object of scrutiny. Given that not always (actually very rarely) we need the full N -electron infor-

mation contained in Ψ, these real space techniques tend to compress that information by using n-particle

densities, or density matrices with n ≤ N , the so-called n-th order reduced density matrices (nRDMs). The

analysis of the simplest of these, the one-particle electron density, ρ(r), led to the quantum theory of atoms
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in molecules (QTAIM),6 in which an atomic partition of the physical space is provided by the attraction

basins of the ∇ρ(r) vector field. This topological approach has been applied to a number of scalar fields,

in what we know as quantum chemical topology.7

An essential feature of topological approaches is their versatility. They can be equally applied to any

formalism from which RDMs can be obtained, and are thus very useful for comparison purposes. Moreover,

they provide two modes of operation: the local and the global viewpoints. In the former, distinguished

points in space, typically the critical points of the field being used, are related to chemical objects like bonds,

lone pairs, cores, etc, and the values of a large number of magnitudes correlated to chemical behaviour. In

the latter, the expectation value of each quantum mechanical observable is partitioned into a sum of domain

(in the case of one-electron operators) or intra- and interdomain contributions (in the two-electron case).

In the QTAIM, since the interatomic separation surface has zero local flux of ∇ρ, ∇ρ · ndS = 0 with n

being the normal vector to the surface at each point, the domain (atomic) kinetic energy is well defined for

the whole family of Laplacian kinetic energy densities.8 The QTAIM energy decomposition is in this sense

rather well physically defined. Topological approaches induce exhaustive partitions of the real space that

can be envisaged as a coarse–grained mapping of the electron distribution.

The topological method has provided a large number of important insights in the last decades, justify-

ing for instance the extremely successful valence shell electron pair repulsion (VSEPR) model of the late

Ronald Gillesspie,9 or having been adopted as a paradigm by the X-ray crystallography community thanks

to the measurable character of ρ. However, its new language and the lack of immediate correspondence

with either the VB or MO methods have worked against its spread in other realms. It is in this sense that

efforts to connect it to mainstream thinking should be welcome.

As Pauling’s resonance is regarded, a real space analog has already been proposed in isolated molecules

through the so-called electron distribution functions (EDFs),10 which provide the statistical distribution of

the N electrons of a molecule into its m atomic basins. A real space resonant structure (RSRS) is regarded

as one of the possible (N + m − 1)!/{N !(m − 1)!} partitions. The EDF formalism allows us to compute

the probability of finding each of these electron distributions. It also provides a very convenient picture
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in which an atom contains a fluctuating number of electrons, i.e. in which an atom is an open quantum

system (OQS) within a molecule.11 The consideration of an atom as an OQS also allows to compute the

contribution of each of its resonance structures to its local spin12 or to any other observable.

EDFs have been successfully used to recast Pauling’s concepts in an orbital invariant manner,10,13,14 but,

so far, have only been available in finite systems. In this paper we extend the EDF concept to crystalline

solids. We first introduce briefly the EDF framework, paying attention to how the statistical moments of the

EDF can be used to access fluctuation-like concepts like electron localization and delocalization indices,

which constitute the real space analogs of bond orders. The extension of the formalism to periodic systems

follows, and we end by showing results in a set of four paradigmatic systems that have been used in similar

circumstances in the past:15 metallic Na in its bcc phase, NaCl, diamond and graphite. Application to other

chemically or physically interesting systems is straightforward and under way, but out of the scope of this

methodological introduction.

As it will become clear, the EDF formalism depends only on a pre-selected partition of space. This

implies that, after this work, EDFs are available not only for atomic partitions like the one here explored,

but for a plethora of other possibilities, including electron-pair partitionings like those offered, for instance,

by the electron localization function (ELF) of Becke and Edgecombe16 or the Electron Localizability In-

dicator (ELI).17 Since fluctuations of the electron population of electron pair regions are interpreted rather

differently than those of atomic-like domains, only the latter are explored here.

Methodology

Electron distribution functions and real space resonance structures

Let us introduce an atomic partition of the physical space (like that provided by the QTAIM, although many

other options are available in the literature) and count how many electrons are found in each of the m

different atomic regions of the system. In the large numbers limit, this information can be condensed into

the joint probability distribution of finding a given partition S = (n1, n2, . . . , nm) of the electrons into the
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m atomic domains, whereby
∑m

i=1 ni = N is the total number of electrons. The partition S is termed a real

space resonance structure (RSRS) and collected into the electron distribution function (EDF) of the system.

If the latter is described by a wavefunction Ψ(1, . . . , N), then the probability p(S) of partition S is given

by18

p(S) = P
∫
D

Ψ∗Ψdx1x2 · · · dxN , (1)

where electron i is described by its xi spin-spatial coordinate, the combinatorial factor prior to the integral,

P = N !/(n1! . . . nm!), takes into account indistinguishability, and D is a real space domain in which the

first n1 electrons are integrated over atomic region number one, the second n2 electrons over atomic region

two, etc. If the spin coordinates are not integrated, this is the spin-resolved partitition,19 in which we specify

also the ms value of each electron and S ≡ {nα1 , nα2 , . . . , nαm;nβ1 , n
β
2 , . . . , n

β
m}.

In the last years, algorithms to calculate EDFs in finite systems for both single-determinant and ex-

plicitly correlated wavefunctions have been devised.18 In the density functional theory (DFT) context, that

overhwhelms the literature for periodic systems, it has been customary to build Fock-Dirac-like density ma-

trices from the Kohn-Sham determinant,20 although these do not provide true nRDMs. If Ψ(1, . . . , N) =

(N !)−1/2det |χ1(1) . . . χN(N)|, where χ1, . . . , χN are the N occupied orbitals, then the probability of a

partition S is given by (see Ref. 18 and reference therein)

p(S) = N
∑

{kj}∈SN

det
[
S
b(kj)
ij

]
, (2)

where N = P/N !, SN is the set of N ! permutations of the 1 . . . N set and {kj} ≡ {k1, . . . , kN} is one

of these permutations. The overlap integrals Sb(kj)
ij between the orbitals χi and χj are projected over the

atoms in the order that leads to the partition S subjected to permutation kj . If we choose a real space atomic

partitioning, then

S
b(kj)
ij =

∫
Ωb

χi(x)χj(x)dx, (3)

where we integrate over the atomic domain of atom b, Ωb. Notice that the above expression for p(S)

5



involves a combinatorial explosion of terms as the system’s size grows, making it unusable except in the

very simplest cases.

We have already shown18 that, after some algebraic rearrangements, we can obtain p(S) simultaneously

for all S’s as the solution of the linear system,

∑
S

tn1
1 tn2

2 . . . tnm
m p(S) = det

[
m∑
k=1

tkS
k

]
, (4)

where the tk are arbitrary real numbers, Sk is the atomic overlap matrix (AOM) of atom k, and the sum in

the left-hand side only includes the S ≡ {np} sets with n1 +n2 + · · ·+nm = N . This system is solved with

the same strategies already described,13,14,18 with the set of basin restricted overlap integrals as the only

necessary object between all pairs of orbitals in the wavefunction expansion. Although the size of the linear

system may be very large, this technique allows to by-pass the above-mentioned combinatorial explosion.

The number of RSRSs grows rapidly with the number of electrons and nuclei. For instance, it equals 4

in H2, 66 in H2O, or 286 in NH3, but climbs to 76 223 753 060 in benzene.10 Fortunately, as it is done in

conventional VB calculations, we can substantially reduce this number by grouping non-relevant functional

groups together, for instance, leaving only the chemically active components. Similarly, one can impose

restrictions that limit the size of the EDF vector of probabilities. In benzene, the probability of finding all

the 42 electrons in the region associated to a given C or H atom is negligible, and can be discarded from

the start. Chemically sensible approximations can also be done, like associating all core electrons directly

to their appropriate atomic basins without delocalization to other spatial regions.

Localization and Delocalization from EDF statistics

The computation of the EDF provides all kind of statistical measures. Since the full joint probability dis-

tribution has been obtained, we can easily build marginals from it. For instance, the one-atom distribution

p(n1) provides the probability of finding a given number of electrons in atom 1, p(n1) =
∑

n2,...,nm
p(n1, n2, . . . , nm).

This tells us how much the atomic population entangles with the rest of the system. Its Shannon entropy
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∑
i p(i)log2(p(i)) does only vanish if the atom is isolated. Moreover, the first moment of this one-atom

distribution, 〈n1〉 =
∑

i i× p(i) gives the standard atomic electron population, which can also be written as∫
Ω1
ρ(r)dr. Two-, and in general, n-atom marginals contain relevant information about population fluctua-

tions or, in chemical terms, about bonding, be it two- or multicenter in nature. This information is gathered

through the several central or cumulant moments of the distributions.21 Provided that there is only a finite

number of marginal distributions, we can take advantage of this with taxonomic purposes. For instance, if

we are interested in two-electron, two-center bonding, there are only three different electron partitions for

such a system: either the two electrons lie in the first atom, one in the first and the other in the second, or

the two electrons are found in the second atom. Since the sum of the probabilities of these three events add

to one, all 2c,2e electron distributions depend on two independent parameters. A statistical classification of

2c,2e bonds is thus available.10,22 These ideas can be easily generalized.21

The next simplest moments that can be envisioned are the one-center variance and the two-center co-

variance of the atomic populations:

var(nA) =
∑
nA

p(nA)(nA − 〈nA〉)2,

cov(nA, nB) = (5)∑
nA,nB

p(nA, nB)(nA − 〈nA〉)(nB − 〈nB〉). (6)

These provide a direct, orbital invariant measure of the spread of their electron distribution. A zero variance

region implies a perfect spatial electron localization, with a one-center probability that does only contain

one component: p(nA) = 0 ∀nA 6= 〈nA〉. As the width of p(nA) increases and the electrons delocalize over

other atomic regions, the latter can be recognized by the A,B covariance, which determines the correlation

between both electron populations. Obviously
∑

A var(nA) +
∑

A,B cov(nA, nB) = 0.

Thus, it is fruitful to build a set of descriptors related to the degree of electron localization and delocal-

ization from the above moments. These are called the (atomic) localization index (LI) λA = 〈nA〉−var(nA)

and the (interatomic) delocalization index (DI) δA,B = −2 cov(nA, nB), respectively.23,24 Since they are
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subjected to the sum rule

λA +
1

2

∑
B 6=A

δA,B = 〈nA〉, (7)

they can be loosely identified with the number of localized electrons λA in the region A and the number of

delocalized electrons δA,B between two regions.

The DI is the real space equivalent of the Wiberg-Mayer (WM) bond order,25,26 and has been widely

used. We have shown22 how to rationalize this equivalence from statistical grounds. An ideal 2c,2e bond,

for instance, is that in which the two electrons delocalize freely over the two atoms. This leads immediately

to a binomial distribution, where the joint probability of finding the two electrons in one of the atoms,

p(2, 0) = p(0, 2) = 1/4, and p(1, 1) = 1/2. It is immediately found that the covariance of this distribution

leads to δA,B = 1. Similarly, when two independent ideal electron pairs exist (like, in an approximate way,

in the double σ, π link in ethylene) the additivity of covariances for independent events leads to δA,B = 2.

It should be noticed that there are in principle many possible EDFs leading to the same LIs and DIs, so that

the availability of the former provides a much thinner description of localization and delocalization than

that provided by the latter.

The DI machinery has already been generalized to periodic systems,15,27,28 paving the way to a better

understanding of how electrons localize and delocalize in solids. After the developments shown below,

the much more fine-grained EDF description enlarges the toolkits available to understand the electronic

structure of solids.

Electron distribution functions in the solid state

Let us then focus on a typical single determinant approximation to the wavefunction of a solid, coming

either from a periodic Hartree-Fock calculation, or from a Kohn-Sham determinant in the DFT case. Then,

the AOMs (Eq. 3) inserted in the Eq. 2 are computed for the occupied Bloch states ψn,k labeled with the

band n and k vector indices and feed the algorithm described in Eq. 4, which has been implemented in the
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EDF code by Francisco and co-workers13,14

Snk,n′k′(Ω) =

∫
Ω

ψ?n,k(r)ψn′,k′(r) dr. (8)

If this approach is used then the delocalization index between regions A and B becomes

δA,B =
2

K2
BZ

∑
n,n′

∑
k,k′

Snk,n′k′(A)Snk,n′k′(B)θ(n,k)θ(n′,k′), (9)

where the occupation number function θ(n,k) selects the corresponding occupied states, allowing for a

convenient smearing of the Fermi surface states in the case of metals, and KBZ is the total number of k

points used in the calculation.

Computational details

In order to get results comparable to those previously obtained in the work by A. Baranov and M. Kohout,15

we have obtained the EDFs of the same systems studied there: NaCl as a model of ionic bonding, diamond

and graphite as covalent prototypes, and Na in its bcc phase as paradigm of metallic behaviour. All those

systems were described within a DFT framework, with wavefunctions obtained through the solid state

FP-LAPW code Elk,29 and using the local spin density approximation with the Perdew-Wang exchange-

correlation functional.30 All calculations were done using a fine logarithmic mesh, by setting the parameter

lradstp= 1 in Elk. A 4× 4× 4 k-points mesh was used in all cases, except in graphite where a 4× 4× 3

grid was selected. The mesh was shifted with vkloff = (0.25, 0.5, 0.75) in NaCl and Na, and with

(0.25, 0.5, 0.625) in diamond and graphite. Additionally, a very small smearing width was used ( swidth

≈ 10−8) in order to provide as pure occupations of the orbitals as possible, except in diamond and graphite

where it was increased to 10−5. In these cases, the width does not impact results and can be chosen large to

speed up the process. The expansion cutoff for the wave function was set to 7.0 a.u. (parameter rgkmax).

Default parameters were used otherwise.
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Table 1 The average atomic population 〈nA〉, the localization index λA and the fluctuation 2σ2
A of atom A in the

examined compounds. δ1,2 and δ1,3 refers to the DIs between the first and second neighbours. In graphite, C–C‖
stands for the DI between first-neighbour carbon atoms in the same layer and C–C⊥ between first-neighbours of
different layers.

A 〈nA〉 λA 2σ2
A A−B δ1,2 δ1,3 δ1,4

NaCl Na 10.142 9.975 0.334 Na–Cl 0.334
molecule Cl 17.858 17.691 0.334

NaCl Na 10.148 9.920 0.456 Na–Cl 0.074
solid Cl 17.852 17.334 1.036 Cl–Cl 0.048

Diamond C 5.994 3.808 4.372 C–C 0.914 0.039

Graphite C‖ 5.991 3.864 4.254 C–C‖ 1.211 0.055 0.039
C⊥ 6.020 3.871 4.298 C–C⊥ 0.020 0.007

Na bcc Na 10.997 10.199 1.596 Na–Na(3.66Å) 0.096 0.003
Na–Na(4.22Å) 0.059

Later on, the space was QTAIM partitioned, and all products of crystal orbitals integrated over the result-

ing basins to yield the AOMs needed to feed Eq. 2 by means of the DGrid code31 (starting with DGrid-5.2

the AOMs can be evaluated also for the FHI-aims solid state program32). The evaluation of molecular EDFs

for both single-determinant as well as for correlated wave functions is implemented in the EDF code.14

Since crystal orbitals are complex in general, and so are the AOMs computed with DGrid, we have coded

a suitable generalization of the EDF program to deal with extended systems. The solid state calculations

were done with this EDF extension, available at https://github.com/eveliofrancisco/EDF.

Results and discussion

Crystalline NaCl: the ionic case

The NaCl diatomic molecule is a typical example of an ionic system. The high difference in electronegativ-

ity between both atoms give rise to the asymmetric electron sharing: the Cl atom increases its population,
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leading to a distribution close to the canonical picture Na+Cl−. The LIs within the QTAIM basins are high,

λNa = 9.98 and λCl = 17.69, and very similar to the QTAIM populations 〈nNa〉 = 10.14 and 〈nCl〉 = 17.86.

Thus, the variance or fluctuation in the electronic population σ2, obtained as the difference between the

QTAIM population 〈nM〉 and λ (see Ref. 15) can be considered to be very low σ2
Na = σ2

Cl = 0.17. High

localization with values close to the basin population are in good agreement with the results obtained for

the simplest prototype of ionic bond LiH,23,33 with fluctuations of σ2
Li = σ2

H = 0.10.33 The DI and LI values

for the NaCl molecule are summarized in Table 1.

The resonance structure with highest probability in the NaCl diatomic molecule is p1(nNa = 10) =

p1(nCl = 18) = 0.838, leading to the expected ionic Na+Cl− case. In a binary compound, the loss of

one electron by one of the components immediately implies its acceptance by the other with the same

probability, so that the covariance between both populations is necessarily negative, and knowledge of the

one domain probabilities is equivalent to the full EDF.

The above scenario is no longer true in solid NaCl, where an electron lost by a sodium moiety could in

principle delocalize over a large number of other atomic regions. This means that the two-domain probabil-

ities (p2) could, in principle, be decoupled from one-domain probabilities (p1). However, if the populations

of two atoms where fully uncorrelated, with zero mutual covariance, then their joint probability could be

calculated directly from the one-domain probabilities. This is expected to be approximately fulfilled in an

ionic solid. We have gathered some one- and two-domain probabilities calculated for the NaCl crystal in

Table 2.

Let us first examine the one-domain probabilities. The most probable number of electrons in sodium is

10, as expected, with p1(nNa = 10) = 0.798, followed by the neutral population with p1(nNa = 11) = 0.154.

Notice that the sum of these two is around 0.95. On the contrary, the equivalent counts for the Cl atom, 18

and 17 electrons, display probabilities equal to 0.620 and 0.216, respectively. They add to about p = 0.84, a

value considerably different from the sum in Na. Although the most likely electron counts are clearly those

of the ionic situation, the Cl atom is engaged in a more extensive delocalization network than sodium, in

agreement with chemical intuition: given the considerably larger polarizability and softness of the chloride
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Table 2 Probabilities of different RSRSs in the NaCl crystal. p1 and p2 refer to one- and two-domain probabilities,
respectively, indicating in parenthesis the species involved. The last column provides a measure of the deviation
from the independent particle situation, in which the product of the probabilities of the events should equal the
probability of the joint event, p2(nNa, nCl) = p1(nNa)× p1(nCl).

nNa nCl p1(nNa) p1(nCl) nNa nCl p1(nNa)× p1(nCl) p2(nNa, nCl) p2 − p1
Nap

1
Cl

10 18 0.7982 0.6197 10 18 0.4946 0.5086 0.0140
11 17 0.1537 0.2155 10 17 0.1720 0.1620 -0.0100
9 19 0.0335 0.1177 10 19 0.0939 0.0943 0.0004

12 16 0.0132 0.0326 11 18 0.0952 0.0851 -0.0101
13 20 0.0007 0.0110 11 17 0.0331 0.0428 0.0097
8 15 0.0006 0.0027 10 16 0.0260 0.0223 -0.0037

anion, it accommodates much more easily a fluctuation of its electron population than the sodium cation.

It is also informative to consider the RSRSs with smaller probabilities. In Fig. 1 we present the one-

domain probabilities of the RSRSs with the largest weight for all our systems. In the left diagram, the

∆Qref = 0 bar corresponds to the most probable RSRS, and positive (negative) values of ∆Qref imply that

the atom has gained (lost) electrons with respect to it. In the case of solid NaCl, purple and red bars stand for

Na and Cl, respectively, which at ∆Qref = 0 represent the most probable Na+ and Cl− distribution. Both

atoms show a very asymmetrical distribution of their resonance structures, that differ in the width of the

distribution and the shape of its tail. The more polarizable chlorine atom shows a notably wider probability

tail than sodium, and if we order the p(nCl) values by decreasing values of p, we have to run over seven n’s

before reaching the p ≈ 0.0001 threshold. The latter is reached at the fifth n value in the case of the sodium

moiety. Moreover, the tail in Na is heavily displaced toward positive ∆Qref values, while the opposite is

true in Cl. In other words, the ordering of the RSRSs is p(Na+) > p(Na) > p(Na2+) > p(Na−). This

scheme is in tune with results already discussed in the LiH molecule,34 and has a very very clear, simple

physical root. The high energetic cost of removing two electrons from a Na atom (47.286 eV) makes the

Na2+Cl2− a very energetically costly species. The Na−Cl+ is in turn hindered by the expensive ionization

energy of chlorine (12.967 eV).

In the AB rock-salt structure the ion A is surrounded by six B nearest neighbours (nn) and twelve A

next nearest neighbours (nnn). We notice that, as shown in Fig. 2, the QTAIM Na-domain displays nn
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Figure 1 Bar chart representation of the largest one-centre probabilities for X = Na+, Cl− (in NaCl), C in diamond
and graphite, and Na bcc. Left: ∆Qref refers to the deviations in the number of electrons nX of the atoms with
respect to the most probable resonant structure, so that at ∆Qref = 0 each atom has the electrons of the most
probable RSRS. Right: Q refers to the atomic charge, and each atom at Q = 0 is neutral, with a probability that will
be that of the atom with a number of electrons equal to its atomic number ZX .

Na-Cl bond critical points only,35 so that its six interatomic surfaces are the Cl contacts. On the contrary,

given the considerably larger size of the chlorine domain, the Cl basin shows 6 concave Na contacts and

12 planar Cl-Cl ones. Just from this geometrical basis, which was used years ago to justify Pauling’s rules

from topological grounds,36,37 the larger delocalization of Cl can be rationalized.

The total DI of a Na atom with the rest of the solid is 2σ2
Na = 0.455, cf. Table 1, while that of a chlorine

atom is considerably larger, 2σ2
Cl = 1.038. For the Na atom, the total delocalization is almost exclusively

due to the six nn-interactions yielding the close sharing15 ςNa
c = 6 × δNa,Cl = 6 × 0.074 = 0.444 (the

next 12 closest Na atoms plays no role in the electron sharing with the examined Na atom). The value of

0.444 is somewhat larger than the DI value δNa,Cl = 0.334 for the NaCl diatomic. This means that the

valence capacity of a sodium atom is almost fully saturated in the molecule. This effect lies behind the

well known lengthening of bond distances with increasing coordination dictated by Pauling’s rules. The

bonding capacity of stiff cationic species has to be shared among their neighbours. In case of the Cl atom

there are additionally 12 relatively high DIs δCl,Cl = 0.048 with the neighboring Cl atoms, yielding for the

Cl atom the close sharing ςCl
c = 6 × δNa,Cl + 12 × δCl,Cl = 6 × 0.074 + 12 × 0.048 = 1.02. Thus, the
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Figure 2 QTAIM basins of Na and Cl atoms in the NaCl crystal. Na atoms in magenta are smaller than the Cl atoms,
in green.

close sharing is much larger for the Cl atom than for the Na counterpart. It is instructive to compare the

distant sharing15 ςd for the two atomic sorts, i.e. sharing reaching outside the close atoms. This leads to

ςNa
d = 2σ2

Na−ςNa
c = 0.455−0.444 = 0.011 and ςCl

d = 2σ2
Cl−ςCl

c = 1.038−1.02 = 0.018, values very close

to each other. This tells us about the short-range, exponentially decaying nature of electron delocalization

in insulators, a subject that has been already analyzed.38,39

Each of the numbers that have been analyzed in the paragraph above can be dissected in much more

detail once EDFs are available, since DIs and a plethora of other multicenter delocalization descriptors are,

as we have summarized, nothing but appropriately built moments of the statistical distribution of electron

populations24,33,40,41 (see Eq. 5). Since the aim of this work is to present EDFs in solids, we will restrict to

the nn Na-Cl interaction in Table 2. The nn Na-Cl delocalization index δNa,Cl is now understood as the two-

domain covariance in Eq. 5. Although the number of RSRSs contributing is larger than the once compiled

in the Table 2, the data displayed suffices for the following. The joint distribution is not far from, but it is

clearly different from the product of one-domain probabilities (otherwise the covariance would vanish). The

last column in the Table shows the difference between p2 and the product of independent-like p1 events. The

ionic distribution (10, 18), for instance, has a positive p2 − p1p1 difference, while others, like the (11, 17)

one display a negative value. This shows how the correlation between the basin populations is built. Some

joint distributions become over-represented with respect to others. It is important to recognize that there
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Table 3 Probabilities of different RSRSs in diamond. C’ is a nn C atom.

nC p1(nC) nC nC′ p1(nC)× p1(nC′) p2(nC, nC′) p2 − p1
Cp

1
C′

6 0.2640 6 6 0.0697 0.0708 0.0011
5 0.2200 5 6 0.0581 0.0587 0.0005
7 0.2078 6 7 0.0549 0.0556 0.0006
4 0.1158 5 7 0.0457 0.0507 0.0050
8 0.1079 5 5 0.0484 0.0437 -0.0047
9 0.0363 7 7 0.0432 0.0392 -0.0040
3 0.0349 4 6 0.0306 0.0302 -0.0004

are infinitely many electron distributions compatible with a given DI.22 This means that the EDF contains

far more chemical information than standard delocalization measures. For instance, one can readily check

that over-expressed resonance structures tend to be Na-Cl electron conserving, i.e. nNa + nCl = 28. These

structures thus maintain the electroneutrality of the Na-Cl group, a result that is easily interpreted from the

chemical point of view. The generality of this and other findings remains to be studied.

The large ionicity in NaCl implies that it is better to measure population fluctuations with respect to the

ionic Na+ and Cl− charged species and not the neutral populations. This reference provides the smallest

variance possible if an integer number of electrons is assumed. For instance, taking the standard variance

measured with respect to the mean, nNa − λNa = 0.228.

Diamond and graphite: the covalent cases

Crystalline carbon provides us with two extensively studied covalently bonded networks where the impact

of electron delocalization on the width and global structure of the EDF can be easily studied: the diamond

and graphite structures. Their computed QTAIM basins are found in Figs. 3 and 4, respectively.

In diamond, see Table 3, in contrast to what is found in NaCl the carbon atom displays a one-domain

distribution which is centered at its neutral population of six electrons, extending almost symmetrically

to the left and to the right of this number. Fig. 1 shows that there exists a non-negligible probability of

finding from two to ten electrons in the carbon basin, and that the width of the distribution is the largest

among all the ones studied here. In agreement with previous works,18,19 this distribution is compatible with
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Figure 3 QTAIM basins in diamond.

multinomial statistics. In chemical terms, each of the four equivalent C-C bonds is able to provide or extract

an electron of its Lewis pair, so that each C atom may display from Z − 4 to Z + 4 electrons.

If no further delocalization is allowed beyond that of a carbon and its tetrahedral network, then the

simple multinomial model corresponds to a quadruple two-center, two-electron (2c,2e) ideal bond between

the C and its tetrahedral environment. We have repeatedly shown21 that such a 2e link provides a binomial

distribution in which the (0, 2), (1, 1), and (2, 0) structures have probabilities of 1/4, 1/2, 1/4, respectively.

The quadruple direct product of this binomial set yields in carbon (with a reference population of six elec-

trons) p(6 ± n) =
(

8
4−n

)
/28, which gives p(6) = 0.273, p(5) = p(7) = 0.219, p(4) = p(8) = 0.109,

p(3) = p(9) = 0.031, and p(2) = p(10) = 0.004. It is surprising how such simple electron counting

arguments are reproduced by actual calculations. Notice that the variance of a set of independent events is

additive, and that for such an atom engaged in an ideal 2c,2e bond (the variance of the binomial set above)

is equal to 1/2. This leads to a value equal to 2 for four independent 2c,2e ideal links. Our data show that

for diamond var(C) = 〈nC〉 − λC = 2.186, relatively close to 2. This means that only about 0.2 units out

of the total variance of the C atom population is due to anything outside its tetrahedral arrangement of first

neighbor bonds, pointing to small long-range delocalization.

Two-domain joint probabilities allow us to reconstruct the C-C delocalization indices. As shown in

Table 1, the nn distribution yields a value close to that expected for a single bond, δC,C′
= 0.914, which can
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be compared to the the equivalent δ1,2 = 0.988 computed in the analogous C–C single bond in C2H6.33

Table 4 1- (p1) and 2- (p2) domain probabilities between nearest neighbour C atoms in the same layer (p2
‖) and

between layers (p2
⊥) of graphite.

nC p1(nC) nC nC′ p1(nC)× p1(nC′) p2
‖(nC, nC′) p2

⊥(nC, nC′) p2
‖ − p1

Cp
1
C′ p2

⊥ − p1
Cp

1
C′

6 0.2666 6 6 0.0711 0.0734 0.0708 0.0029 0.0003
5 0.2187 5 6 0.0583 0.0592 0.0587 0.0019 0.0004
7 0.2116 6 7 0.0564 0.0576 0.0565 0.0009 0.0001
4 0.1128 5 7 0.0463 0.0532 0.0469 0.0074 0.0006
8 0.1094 5 5 0.0478 0.0414 0.0479 -0.0055 0.0001
9 0.0358 7 7 0.0448 0.0392 0.0444 -0.0065 -0.0004
3 0.0332 4 7 0.0239 0.0299 0.0244 0.0065 0.0005

10 0.0070 5 8 0.0239 0.0302 0.0244 0.0063 0.0005

Graphite provides another interesting example, for the traditional viewpoint assigns an aromatic-like

intra-layer bonding network of sp2 bonded carbons with much weaker dispersion enhanced inter-layer inter-

actions. Carbon atoms occupy two Wyckoff positions (2b, 2c), and display two types of bond critical points:

one links the 2b, 2c atoms (the intra-layer or parallel bond) and the other links atoms of the same sublattice

belonging to neighbouring layers (the inter-layer or perpendicular bond, Fig. 4). Aromatic systems have

been fully studied from several real space viewpoints.41–43 In graphite, we have found δC,C′

‖ = 1.211 with

var(C)graphite = 2.127. As it is expected,38 the DI drops one order of magnitude when considering second

neighbors or the meta-DI, δ1,3
graph,‖ = 0.055, but is of similar magnitude as the δ1,4

graph,‖ = 0.039 or para-DI.

The inter-layer delocalization δC,C′

⊥ = 0.020 is much smaller. These values are again in very good agree-

ment with ideal models of aromatic bonding, e.g the ideal DI between nearest neighbour carbon atoms in

benzene is equal to 1 + 4/9 ≈ 1.44, and show that the inter-layer interaction is of a fundamentally differ-

ent nature than the intra-layer one. Notice that much can be written about these results, which anticipate

the future power of our approach. For instance, in a tight-binding (or Hückel) description of benzene and

other alternate conjugate hydrocarbons it can be readily shown,38,39 that the meta-like delocalization indices

vanish, while the para-like ones do not. This is a result of quantum mechanical interference which is pro-

gressively destroyed as electron correlation sets in, as modeled by, for instance, a Hubbard Hamiltonian.

The fact that the para delocalization index in graphite is larger than the one expected for its associated C-C
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distance given an exponential decay law, as well as the non-zero, but small, value of the meta delocalization,

are providing interesting clues about how the extended network and the interlayer contacts in graphite affect

the overall delocalization pattern.

Just to summarize, in their 2011 analysis, Baranov and Kohout15 provided electron-pair sharing values

of 83% with the first neighbourhood, 11% with the second and 6% with the rest of the solid in diamond.

Graphite leads to an almost identical relative distant sharing, with 15% of the shared pairs being delocalized

within the second and farther distant neighbour shells. Relevant EDF descriptors for graphite are found in

Table 4. At first sight, no striking differences in the probabilities themselves can be observed for the intra-

and inter-layer interactions. Actually, both the one- and two-domain probabilities are rather similar to

those in diamond. This shows how transferable probabilities can be in similar environments, a fact that

has already been reported.44 However, upon a closer inspection, Table 4 reveals that the two-domain inter-

layer probabilities are extremely close to the product of the appropriate one-basin events. In other words,

the electron populations of atoms belonging to different layers are basically decoupled, or statistically

independent, and their interaction is very weak. This also stems from the difference between the intra-

and interlayer δ’s, 1.211 versus 0.020 au.

Figure 4 Graphite QTAIM basins in different layers.

Being statistical data, we can subject probabilities to many insightful manipulations. For instance, in

Table 5, we add up all the two-domain A,B probabilities that conserve the number of electrons, nA +nB =
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Table 5 Probabilities of the one-domain A,B superbasin containing a given number of electrons given by
n = ZA + ZB and n± 1, n± 2 in the systems under scrutiny.

A−B p(n = ZA + ZB) –1 +1 –2 +2
NaCl nn: Na-Cl 0.5594 0.1848 0.1894 0.0303 0.0290

nnn: Na-Na 0.6473 0.2464 0.0537 0.0448 0.0021
nnn: Cl-Cl 0.4472 0.1464 0.2749 0.0253 0.0844

diamond nn: C-C 0.2118 0.1821 0.1864 0.1188 0.1239
nnn : 0.1891 0.1669 0.1711 0.1190 0.1225

graphite nn: (C-C)‖ 0.2241 0.1918 0.1923 0.1206 0.1198
(C-C)⊥ 0.1905 0.1690 0.1722 0.1200 0.1233

Na bcc nn: Na-Na 0.3149 0.2052 0.0639 0.2698 0.0973
nnn : 0.3011 0.2179 0.2439 0.1038 0.0872

n, and compare them across systems. The p(n = ZA + ZB) column displays the probability that the two

basins exchange electrons between themselves, and the rest the likeliness that an external transfer takes

place. First, it should be clear that these superbasins, containing approximately double the number of

neighbours than a single atomic domain, can exchange electrons with more partners, so that the superbasin

probabilities tend to decrease over those in the single-domain case. Second, it is clear that given the overall

formal electroneutrality of the superbasins in all cases the p(n = ZA + ZB) is always maximum, and that

the larger the overall localization, the larger its value.

It is also clear that the n ± 1 and n ± 2 probabilities decay from the n = ZA + ZB maximum very

differently in these systems as compared to the ionic cases, with small asymmetries between the plus and

minus signs. For instance, the Na-Cl superbasin allows only for ±1 electron exchanges, much like the

Na-Na and Cl-Cl ones, which are characterized by very asymmetric profiles: the Na-Na pair preferentially

loses its electron, while the Cl-Cl pair prefers gaining it, as it graphically illustrated in Fig. 1. In both the

diamond and graphite superbasins the ±1 and ±2 electron exchanges are all relevant, with no major sign

asymmetry, which is also clearly appreciable in Fig. 1, in which for both systems, the C atom shows a

symmetrical distribution, showing a flexible nature, gaining or loosing electrons with the same probability.

This is another sign of the larger spatial extension of covalency in these systems.

Closer inspection reveals that the intra-layer superbasin probabilities in graphite are slightly larger than

their equivalent in diamond.
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Table 6 Probabilities of selected RSRSs in bcc Na. Na′ denotes a nearest neighbour.

nNa p1(nNa) nNa nNa′ p1(nNa)× p1(nNa′) p2(nNa, nNa′) p2 − p1
Nap

1
Na′

11 0.4159 11 11 0.1730 0.1733 0.0003
10 0.3254 10 11 0.1353 0.1352 -0.0001
12 0.2019 10 10 0.1059 0.0971 -0.0088
13 0.0489 11 12 0.0840 0.0844 0.0004
14 0.0069 10 12 0.0657 0.0712 0.0055
15 0.0006 12 12 0.0408 0.0378 -0.0030
9 0.0003 11 13 0.0203 0.0205 0.0002
16 0.0003 10 13 0.0159 0.0186 0.0027

This result may in principle appear counter-intuitive, since the electrons in graphite are expected to be

a more delocalized than in diamond. There is no dissonance, however: whereas electrons in diamond have

a short-range strong delocalization in the three spatial directions, graphite displays strong two-dimensional

short-range exchanges,15 plus much smaller longer-ranged metallic-like components. This is already ev-

ident from DIs. The graphite δ1,2
⊥ = 0.020 is of the same order as the nnn δ1,3 = 0.039 in diamond.

Delocalization of electrons between graphite layers, even if the shortest way is taken, encounter as much a

resistance as that for an electron being exchanged with its second neighbours in diamond.

Na bcc: the metallic case

The tight association between metallic bonding and long-range electron delocalization has not only been

put forward in many instances (see Refs. 45–47 and references therein), but has also already been proven by

us.38,48 With Pauling’s words, a metal can be seen as a system with its atoms bonded by a partially covalent

tie.49 The partial covalent character of metallic bonding is quickly confirmed by the DI values in crystalline

sodium, larger than in an ionic picture but smaller than that of a pure covalent bond δNa,Cl < δNa,Na < δC,C

(see Table 1). Notice that the number of neighbors should also be taken into account. If the total variance of

an atom is taken into account with the data in the Table, the above ordering is also unchanged. The partial

covalency of the metallic link is also evidenced by the EDFs’ distribution tail, wider than that of crystalline

NaCl but narrower than the distribution in diamond, as shown in Fig. 1.

Metallic sodium and other simple alkali metals are usually introduced as models of the free-electron
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Figure 5 QTAIM basins of the Na bcc.

Figure 6 QTAIM basins of the Na bcc.

gas. According to it, their valence s electrons in their ground state give rise to a partially filled valence

band in which the Fermi level lies, yielding gapless systems in the one-particle approximation. However,

it is relevant to keep in mind that in these ground states electron delocalization, although much more long-

ranged than in other systems, still decays fast with distance. The inspection of DIs in Na carried out by

Baranov and Kohout15 showed a distant sharing of 0.44 pairs for Na bcc, which is notably higher than the

0.02 value obtained for the NaCl crystal, but smaller than the distant sharing observed in diamond (0.74

pairs) and graphite (0.64 pairs). It is even smaller than the 0.66 distant shared pairs in the metallic Cu fcc

system. However, one must take into account that the Na atom has formally only one valence electron
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available for sharing. It is consequently informative to take a look at the fraction of distant pairs being

shared, which indicates a distant sharing almost twice as large as that in graphite, diamond and crystalline

copper.15

Each Na atom has 8 nearest neighbours at a distance of 3.66 Å located along the diagonal of the cubic

unit cell, as depicted in Fig. 6, but displays also bond critical points with its 6 second nearest neighbours,

4.22 Å apart. The delocalization to the 8 closest neighbors amounts to 8 × δNa,Na = 8 × 0.096 = 0.771

(see Table 1). Considering additionally the 6 next nearest neighbors (i.e., 6× 0.06 = 0.36) yields the close

sharing ςNa
c = 1.13. The sharing with the over-next 8 neighbors in the diagonal direction is much smaller

(8 × 0.003 = 0.024). Notice the slow decay of the electron sharing. Actually, we have shown that the DIs

decay exponentially with distance in insulators while algebraically in metals.38,39,48 This is the real space

signature of metallic character, and helps to understand why metallic densities do not necessarilly show

some peculiar feature when compared other type of bonds.

Table 6 collects a representative set of probabilities from the EDF of crystalline sodium. p1(nNa =

11) = 0.416, and a rather interesting asymmetry appears with p1(nNa < 10) being significatnly under-

represented with respect to p1(nNa > 10). This has a relatively simple physical origin in the very costly

second and further ionization energies of sodium. Given the low ionization energy of sodium, the second

highest probability is that corresponding to a Na+ cation (nNa = 10), whereas p1(nNa = 9) for the Na2+

cation is seventh in the list, a result of the very high second electron affinity. This means that the physical

properties of atoms are thus visible in the shape of EDFs. The joint two-domain distribution shows once

more the tendency toward nearest-neighbour electron sharing, and also toward the formation of stabilizing

neighbouring ionic pairs. Thus, joint events in which an electron is shared between nearest neighbors, so

that nNa + nNa’ = 22, are favoured, as well as those giving rise to oppositely charged neighbours. Notice

that both the probability of a double cation as well as a double anion are clearly under-represented with

respect to their independent events value. It would certainly be interesting to examine how the probabilities

of variable arrangements of cationic and anionic centers vary with distance, since these were used in the

early valence-bond ideas of metallic bonding. We expect to do that in the near future.
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Conclusions

Electron Distribution Functions (EDFs) provide a real space analog of Pauling resonance structures, and

allow for the computation of chemical bonding descriptors based on the fluctuation of electron populations

in terms of their cumulant moments. This includes not only the standard two-center delocalization indices,

but general n-center bond orders. EDFs provide the probability of finding a given partition of the N elec-

trons of a system when a real space decomposition, like that provided by the QTAIM, is selected. In a

sense, they tell us about how likely it is to ”observe” a given electron distribution, or electronic snapshot.

To each two-center bond order or DI, the EDF assigns a joint two-domain probability distribution, i.e. a

rather large set of probabilities. EDFs thus provide a fine-grained description of spatial electron localiza-

tion and delocalization. A plurality of different bond types may be compatible with a given localization or

delocalization index that can be uncovered by analyzing their EDFs. Most importantly, in many cases, the

EDF probabilities can be directly related to simple physical and chemical behaviour.

In the present study the EDF machinery has been generalized to extended solids. It has been shown, by

examining few archetypal ionic, covalent and metallic examples, that the information stored in the EDF is

valuable, justifying with exquisite detail how, to what extent, and how far, electrons localize and delocalize

spatially in the solid state. These results are completely compatible with previous knowledge regarding LIs

and DIs in the same systems here examined. The width of EDFs is very narrow in ionic systems, getting

increasingly wider as they evolve toward covalency. In all cases, from NaCl to metallic sodium, electron

sharing is basically found to be a short-range phenomenon occurring between nearest neighbours, although

the remaining delocalization tails may decay more or less fast depending on the insulating or metallic

character of the systems.

The calculation of EDFs in extended systems may be added to the real space toolkit of orbital invariant

quantities with an impact on the understanding of chemical interactions in solids.

23



Acknowledgements

We thank the Spanish MINECO, grant PGC2018-095953-B-I00 and the European Union FEDER for fund-

ing.

References

(1) Lewis, G. N. The atom and the molecule. Journal of the American Chemical Society. 1916, 38, 762–786.

(2) Pauling, L. The shared-electron chemical bond. Proceedings of the national academy of sciences 1928, 14, 359–362.

(3) Heitler, W.; London, F. Interaction between neutral atoms and homopolar binding according to quantum mechanics. Zeitung

Physik 1927, 44, 455–472.

(4) Gimarc, B. M. Molecular structure and bonding: the qualitative molecular orbital approach; Academic Press, 1979.

(5) Shaik, S.; Hiberty, P. A chemist’s guide to valence bond theory; John Wiley & Sons. Hoboken, N.J., 2008.

(6) Bader, R. F. Atoms in molecules; Wiley Online Library, 1990.
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(19) Martı́n Pendás, Á.; Francisco, E.; Blanco, M. Spin resolved electron number distribution functions: How spins couple in

real space. The Journal of chemical physics 2007, 127, 144103.

(20) Francisco, E.; Casals-Sainz, J. L.; Rocha-Rinza, T.; Martı́n Pendás, A. Partitioning the DFT exchange-correlation energy

in line with the interacting quantum atoms approach. Theoretical Chemistry Accounts 2016, 135, 1–8.
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