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A B S T R A C T

Lithium-ion batteries are ubiquitous in modern society with a presence in storage systems, electric cars,
portable electronics, and many more applications. Consequently, to enable safe and reliable use of LIB
systems, diagnosis and prognosis have become critical. Within the field of Artificial Intelligence, Deep Learning
algorithms have achieved significant impacts for image or object recognition, yet their application for battery
diagnosis is still at an early developing stage. In this paper, we propose a novel approach for battery
degradation diagnosis based on the representation of battery data as images, in order to leverage the use of
well-established Convolutional Neural Networks. Accuracy for diagnosis, via the quantification of degradation
modes was tested on synthetic data. Our approach was shown to be more accurate than current methodologies
with Root Mean Squared Errors around 2% on average for 1000 duty cycles compared to between 2.64 to
7.27% for other state-of-the-art algorithms. We also show that the proposed methodology adapts to various
cell chemistries and constructive configurations, and validate its applicability to a real-world scenario with
experimental data from commercial LIBs.
1. Introduction

Since their commercialization in the early 1990s, Lithium-ion bat-
teries (LIBs) have been widely used in key commercial and industrial
applications, ranging from portable electronic and transportation to
storage systems [1]. Unfortunately, the performance of LIBs declines
with operation because of parasitic reactions taking place at the posi-
tive and negative electrodes (PE and NE respectively) as well as in the
electrolyte [2,3]. In addition, specific side reactions such as lithium
plating may create safety hazards [4,5]. Both performance decline
and safety issues present a major concern for deployed LIB systems,
particularly where long-lasting reliable applications are critical. To
assess LIB performance and to overall ensure safety and reliability,
the determination of the state of health (SOH) and/or state of charge
(SOC) is required [6], and numerous methodologies have been pro-
posed in the literature [7–9]. These methodologies can be based on
testing (both invasive and non-invasive), physics-based models, data-
driven approaches, and hybrid methods [7,10]. Each method provides
a set of key advantages, drawbacks, and range of applicability [11].
Model-based techniques tend to be more accurate, although they re-
quire extensive prior knowledge and often invasive tests while only
non-invasive techniques must be considered for application-oriented
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approaches. For this reason, data-driven methods have become popular
in recent years, as they can model degradation features based solely
on past records from which underlying causalities and correlations can
be modeled [12]. Specifically, new methodologies based upon AI for
the SOH [13,14] and SOC [15] have emerged thanks to the latest
improvements in processor capabilities [16], communications [17,18],
novel devices [19] and Artificial Intelligence (AI) [20,21]. It is expected
that AI and Machine Learning (ML) approaches to compute SOH will
have a profound influence on shaping the future LIB systems diagnosis
and prognosis [22]. However, these methodologies are still in their
early days [23–25] and critical issues remain to be addressed.

AI and Deep Learning (DL) have been exponentially applied to fields
such as health [26], biology [27] or art [28]. Expansion of AI tools to
such a wide range of fields has been possible because the problems to
be solved can be highly abstracted from the field’s domain. In battery
research, however, this is not as easy as most problematics are technical
and require an extensive knowledge of chemistry and physics [29].

Another barrier to the application of DL algorithms is the nature of
the data. DL algorithms are typically oriented to work with 3 major
categories: images, text and time series. For batteries, current, voltage
and temperature records are usually obtained through measurements
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over charge/discharge cycles or a mix of cycling time and calendar
aging time. Accordingly, most Deep Learning-battery related papers
take the available variables and apply time series-oriented neural net-
works, typically, Recurrent Neural Networks (RNNs), in order to predict
capacity loss [30–36]. Unfortunately, this approach often does not
allow satisfactory prognosis because of the possible nonlinearity of the
capacity loss [37]. A SOH tracking method is only useful if it can predict
or accommodate batteries with nonlinear degradations. This could be
done by investigating variations of capacity vs. voltage curves or their
derivatives (electrochemical voltage spectroscopies, EVS). EVS were
proven extremely successful for prognosis of nonlinear degradations
with the tracking of degradation modes [38,39] but, unfortunately,
they do not use time series and thus do not fit into any of the 3 cat-
egories mentioned above. EVS are typically requiring constant current
cycle to be applied properly. For most applications, this is done during
a reference performance test which could be considered independent
of the rest of the aging experiment. This makes EVS data similar to
images because they provide an independent representation of the
variations of capacity vs. voltage. Therefore, analyzing this type of
data as images would allow the use of Convolutional Neural Networks
(CNNs), which are powerful models that have been applied in many
fields with remarkable results since they are able to automatically
find distinctive patterns within images without the need for expert
knowledge.

In addition to the growing sophistication of the needed algorithms,
the amount of data needed for training and validation is also critical as
battery data generation is challenging and time-consuming [40]. The
reality is that existing datasets, while providing invaluable informa-
tion, are scarce and only provide data for a few cells under limited
testing conditions [40]. This is a major barrier to the application of DL
algorithms, where large amounts of data are required for the training
process. Furthermore, models trained on these datasets can lead to a
false sense of confidence in their performance, as the capacity loss
decays linearly in most cases and tests are usually carried on a low
variety of duty cycles which are quite often disconnected from real
applications (e.g., constant current cycling). Real data will be much
more sporadic and sub and supra-linear degradation will be common.
Moreover, since cells are different among datasets, the data cannot be
compounded and knowledge from one dataset cannot be transferred to
another [41].

Recent initiatives like battery archive [42] or battery data genome
[29] should make data more available in the near future. In addition,
the apparition of synthetic cycles [29,43–45] in the public domain
could alleviate the shortage of data, and in particular the lack of
variety in the duty cycles, as they can deliver data under an infinity
of different degradation scenarios. A dataset consisting of millions
of voltage vs. capacity curves with a complete spectrum of degrada-
tion for three major battery chemistries: LiFePO4, Nickel Aluminum
Cobalt Oxide, and Nickel Manganese Cobalt Oxide 811 was recently re-
leased [44] and will be used in this work. An important difference with
respect to previous datasets is that this synthetic data not only provides
information about capacity loss but also about degradation modes.
This enables diagnosability [29] and opens the gate for informed
prognosability [10].

Herein, we propose solutions to improve the application of DL
algorithms to battery data. To this end, we sought a new representation
of battery degradation data that would allow us to apply DL algorithms
that have already been validated in other domains. Our representation
consists of an image highlighting the differences between the EVS
curves of a pristine and aged battery. Subsequently, we exploit the use
of the HNEI’s synthetic dataset [43] to train a Convolutional Neural
Network (CNN) that predicts the battery health state based on its
degradation mechanisms and not just capacity fade. This should enable
the prediction of accelerated degradations. Finally, the adaptability of
the method to deal with different cell configurations was validated with
2

new synthetic data and subsequently on real cells.
2. Degradation mechanisms and degradation modes

Degradation in LIBs is the result of a complex interplay between
physical and chemical mechanisms within the cell, that leads to capac-
ity and power fade. Degradation is path-dependent and different usages
(e.g., temperatures, load currents, duty cycles, depth of discharges,
cut-off voltages, etc.) might inhibit or exacerbate specific degradation
mechanisms [46,47]. Degradation mechanisms include solid electrolyte
growth and decomposition, binder decomposition, graphite exfoliation,
or grain isolation to name just a few [2,3,48]. Regardless of their
origins and nature, the degradation mechanisms can only have a limited
number of impacts on the electrochemical response [6,49]. These wide-
ranging degradation mechanisms can be clustered into degradation
modes, which are the loss of lithium inventory (LLI), the loss of active
material (LAM) on the negative and positive electrodes (NE and PE
respectively) and kinetic alterations.

Although degradation modes have been extensively reported in the
literature [2,3,48], including experimental proofs [49], the underlying
outcomes from the degradation modes on full cell effect are not al-
ways straightforward. For instance, LLI is generally the main source of
degradation, is caused by parasitic reactions that consume lithium, is
nearly always responsible for the entirety of capacity fade [49,50] and
it can be modeled in half-cell configuration as NE ‘‘slippage’’ [51,52].
In contrast, LAM needs to be decomposed at the electrode or blend
component level and is caused by changes in the availability of active
mass for (de)intercalation. LAMs can be modeled as an individual
‘‘shrinkage’’ of the affected electrode or electrode components [50].
LAMs usually do not lead to a straight capacity loss in graphite-based
batteries, hence that they may be referred to as ‘‘silent’’ or ‘‘hidden’’
modes. That is because LIBs yield an excess of relative capacity for each
electrode outside the voltage window of the full cell. For the PE, that
excess is the result of the NE lost during the SEI formation (i.e., the
slippage) and of LLI. For the NE, that excess is there by design to
protect against plating and it is also increased by LLI. Hence, most LAMs
initially do not produce direct capacity loss, even if cell degradation
is occurring. If LAMs eventually start to play a role in capacity loss,
a second stage of accelerated aging arises [37]. The tracking and
extrapolation of degradation modes were proven successful to forecast
knees in the capacity loss [37].

Currently, several non-invasive testing methodologies to character-
ize battery degradation are available, including direct capacity test-
ing characterization [53,54], high precision Coulomb counting [55,
56], electrochemical impedance spectroscopy [57,58] and pulse power
tests [59,60], or EVS [38,39]. In particular, the incremental capacity
(IC) technique has been proven extremely successful [38,39] for quan-
tifying degradation modes. EVS detects gradual changes in cell behavior
with great sensitivity by studying the evolution of minute changes of
the voltage response with cycling.

The relation between battery degradation and changes in the volt-
age response can be explained by changes in the electrode matching,
i.e., how the PE and NE relate to each other and modeled using a
mechanistic model. These models can be used to establish degradation
mapping [61,62] that allows to select Features of Interest (FOIs) [61,
63,64] which correspond to section of the signature especially sensitive
to a specific degradation mode. Typical diagnosis methods must track
FOIs and deconvolute their variations in detail to enable quantification
of the degradation modes.

In most studies, this manual FOI tracking requires both an ex-
haustive analysis and expert knowledge. Data-driven methods could
alleviate this issue and allow faster diagnosis by identifying patterns
associated with degradation. However, data-driven methods are not
always easy to implement and must be carefully designed to ensure the
results have a physical meaning. For this reason, both expert knowledge
and data-driven knowledge must evolve hand in hand. The first exam-
ple of FOI analysis of large synthetic dataset was presented in [61].

Looking at data-driven methods, in [65] the dataset from [43] was used
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Fig. 1. Pipeline of the proposed solution. In the preprocessing step the IC curves are fed to the proposed algorithm to compute their representation as an image. Subsequently,
the processed IC images are treated by a CNN that numerically quantifies the percentage of each degradation mode.
to train well-known Machine Learning methods such as Decision Trees
and Random Forest regressors. In [45] the authors proposed a neural
network composed of 1D convolutions for automatic classification and
quantification of battery-aging modes. [66] proposed a method based
on a simple multilayer feed-forward network for electrode-level Li-
ion battery degradation diagnostics using EVS. The main limitation in
these works is that the knowledge generated by the models cannot be
extrapolated to new cell configurations. The method we propose aims
to fill these gaps by transforming the voltage changes into images that
reflect the degradation regardless of the cell configuration. This will
create patterns that can be analyzed by traditional CNNs.

3. Deep learning approach

This section describes the proposed framework for material-based
diagnosis in intercalation batteries (Li-ion and Na-ion). The process
is summarized in Fig. 1 and consists of two separate steps. First,
a pre-processing step, where charge data from the HNEI diagnosis
dataset [43] is selected, converted to IC curves, and transformed into
images. Second, a treatment step where the resulting images are used
as inputs for a CNN trained to numerically identify and quantify the
degradation modes.

3.1. Battery data to images — dynamic time warping

As stated in the introduction, one of the main difficulties towards
AI to battery research is the type of data. Herein, this is circumvented
by representing cell information as images. This opens up new oppor-
tunities for a consistent application of Deep Learning algorithms such
as CNNs.

Dynamic Time Warping (DTW) [67] is an algorithm used to measure
the similarity between two sequences. First, the Euclidean distance
3

between each pair of points between the two sequences is calculated in
a matrix. Among these distances different warping paths can be found,
that is, possible deformations that a sequence should follow in order
to be as similar as possible to the other. The method quantifies the
similarity between the sequences by finding the best warping path,
which corresponds to the one with the smallest accumulated distance.
Fig. 2a presents the example of the application of DTW to two sine
waves, referred to as Sin #1, located in the left part of the grid and
Sin #2, located in the upper part of the grid, which shows a small
deformation in the second period. The best path found in the matrix
is marked in blue and indicates that for the Sin #2 to be the same
as Sin #1, the deformation to follow is to slightly raise the values
between 15 and 20. The similarity between the two sequences can be
quantified with the resulting distance, i.e., the accumulated Euclidean
distances of the path, which is 0.1946. At the lower left and upper right
corners, the values are marked as inf (infinite) because there are no
deformation paths that extend that far, so they are not calculated in
order to reduce computation time. The method developed originally
for speech recognition, and it is widely used for classification and
clustering tasks [68–72].

DTW was already applied to the estimation of Li-ion battery capac-
ity [73–75] as well as for augmenting the data obtained from different
operating conditions [76]. However, these works make use of the
similarities found in the best warping paths, rather than the full matrix
representation. In this work, we propose for the first time to use the
full matrix, represented as a set of pixels (see Fig. 2b) and thus as an
image. Instead of sine functions, IC curves will be used as sequences,
one pristine and one aged. IC curves were chosen over straight voltage
vs. capacity curves because the derivation enhances small voltage
variations and as a result will provide images with more details. An
image can be generated for each sample in the dataset and each image
will thus represent the similarity between the corresponding IC curve
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Fig. 2. Euclidean distance between each pair of points of the two sequences displayed on a grid (a). Every warping path represented as a set of pixels (b), note that the resolution
depends directly on the length of the sequences, so the resulting image has the same resolution as the length of the sequences in (a), i.e., 30x30. In both images the optimal
warping path is marked in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and the pristine one. Since each degradation path leads to a unique
voltage response, it will also result in a unique image. As an example,
Fig. 3 depicts the IC curves corresponding to 20% of each of the three
degradation modes considered in the dataset: LLI, LAMPE and LAMNE
(dashed lines) with the reference IC curve (solid lines) and their result-
ing images, labeled with the final DTW distance. This is to showcase
that, just as the IC curves after different degradation are unique, the
images are too. Straight IC curve plots cannot be used directly because
they do not contain enough pixels with information. In our images,
changes are reflected in shape, symmetry and colors. Note in the first
degradation, LLI (Fig. 3a), the main peak located at 3.37 V is lost while
in LAMPE the peak that disappears is the minor one, located at 3.23 V.
The images associated with these degradations also change, specifically
in the intensity of the purple color, as well as in the symmetry, which is
mainly lost in the first image, and consequently, the distance is greater,
0.77 vs. 0.31. In the LAMNE degradation, the appearance of the peak
at 3.45 V represents a sign of lithium plating in LFP cells [4]; On
our image, this translates to the appearance of a lighter color band
that coincides exactly with the position of the peak. The changes in
this degradation are much more significant, and accordingly, the final
calculated distance is greater: 1.53. In the end, just as with studying
FOI variations, the degradation modes are decipherable from these
unique images and so image processing algorithms such as CNNs can
be undertaken.

A key property of these images is that they preserve the represen-
tation of the degradation modes regardless of the cell configuration.
While the images were gathered from a dataset composed of synthetic
curves, the differences between the pristine and aged IC curves should
be similar for cells with slightly different cell configurations. In the
mechanistic approach, a cell is defined by its active materials and two
additional parameters, the loading ratio (LR), which corresponds to
the electrode capacity ratio and the offset (OFS), which corresponds to
their slippage compared to one another. Based on cell-to-cell variations
studies [77], variations of LR by +/-0.2 and 𝛥𝑂𝐹𝑆 by +/- 2% were
estimated possible within a batch. As an example, images associated
with different cell configurations for the same degradation (20% of
LLI) are presented in Fig. 4, with varied parameters to simulate cells
from the same batch with slightly different properties (+/-0.01 for LR,
4

+/-1% for OFS). Visually, the three images are almost identical and
this is confirmed by the final DTW distance that were 0.65, 0.66, 0.62,
respectively to be compared to the 0.77, 0.31, 1.53 for LLI, LAMPE
and LAMNE degradations on Fig. 3. This is a key factor when applying
the procedure to batteries with different operating modes or cell con-
figurations, especially since batteries from the same batch have some
cell-to-cell variations and batteries from different manufacturer might
not use the same materials, additives or loading. This differentiates our
method from other models trained on synthetic data that might not be
applicable to real data.

It is noteworthy mentioning that the resolution of the data used
in this work is of 1001 points over the voltage window. To reduce
computation time calculating the images the resolution was downscaled
to a point every 2.3 mV per IC curve using a 1-D monotonic cubic
interpolation with the Scipy Pchip Interpolator [78]. This kept the main
features of interest intact while limiting the file size. As a result, the
generated images, Figs. 3 and 4 included, are of 128 by 128 pixels.
The dtaidistance package [79] was used to compute the DTW matrix.

3.2. Model

With the new approach for the generation of high-quality training
data established, attention can be set to the DL model. DL methods
are sophisticated ML approaches that can handle high-dimensional data
and are capable of automatically capturing underlying features to make
accurate predictions. Convolutional Neural Networks (CNN) are a sub-
set of DL models that are particularly well-suited for image recognition
tasks and with multiple derived architectures such as AlexNet [80],
U-NET [81] or the recent vision transformers [82].

CNNs consist of multiple layers of neurons. The structure of the
proposed model is depicted in Fig. 5. The detailed description of each
layer is as follows:

• Masking layer: this layer is used to mask data to be omitted by
the next layer. In the DTW matrix, paths farther away from the
diagonal lose importance (the inf values) and can be omitted.

• Convolutional layers (Conv1 to Conv4): these layers are com-
posed each of a conv2D layer (light orange) and a Max-Pooling
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Fig. 3. IC signatures from the initial state (solid line) for each degradation in the dataset: LLI (a), LAMPE (b) and LLI(c) at 20% degradation (dashed line) together with the
associated DTW image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. DTW images for 20% LLI degradation for three different cell configurations.
Fig. 5. Model architecture. Conv1 to Conv4 represent the convolution layers followed by the max pooling layers. The features extracted are condensed in a flattened layer from
which the 3 degradation modes are predicted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
layer (dark orange). The conv2D layers consist of multiple filters,
which are applied to the image to highlight certain features that
make the image unique such as the direction of the lines or their
shape. The resulting images are known as feature maps. 64 filters
are applied in each of the first two layers to obtain the features
maps that mainly characterize the image, while in the last two
layers more filters are needed (128 each) to capture finer details
5

like color intensity or brightness. The Max-Pooling layer reduces
the spatial size of the feature maps and learns to ignore irrelevant
and redundant information, that is why the dimension of the
blocks is reduced in each layer.

• Flatten layer: after the convolution and max pooling flow, the
shape of the matrices is flattened to a single vector containing
all the information needed for predictions.
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• Dense layer: this layer applies a sigmoid activation function to
obtain a value between 0 and 1 representing the percentage
prediction of each of the degradation modes.

The activation function used after every convolution is ReLU and
lso a dropout layer was included to randomly set input units to 0,
hich can generally help to prevent overfitting. Nevertheless, we found

hat including this layer led to a premature regularization and as a
esult to a sub-optimal model, therefore it was not used in the final
odel.

The WandB framework [83] was used to find the optimal config-
ration of filters and layers. In addition, to achieve the best possible
erformance of our model, callbacks to relegate the training stop
ondition to the validation error were used instead of the number of
pochs.

In summary, each sample in the dataset consists of an image re-
lecting the differences between an aged IC curve and the pristine one.
hese images, along with the associated diagnosis, are fed to the model
hich learns the features that characterize each type of degradation
nd then compress all the knowledge in the last layer to predict the
ercentages of each degradation mode.

. Experimental design

The training data used in this work is publicly available [44] and
s composed of more than 700,000 unique voltage vs capacity C/25
harge curves each for LFP, NMC, and NCA. They were generated with
ifferent combinations of LLI, LAMPE and LAMNE at a resolution of at
east 0.85% between 0 and 85%, encapsulating the full spectrum of
egradation. The resulting capacity losses were capped to 85%.

The end of life (EoL) of a battery is usually driven by the application,
owever, usage after 40% capacity loss is rarely allowed. In practice,
he benefit of diagnosing a battery lies in predicting its remaining useful
ife or, if it is partially deteriorated, knowing whether it can be put to a
econd use. Since our goal is to provide a methodology to detect subtle
vidence to forecast durability, data above 40% capacity loss was not
sed for training.

The choice of the testing data was carefully made. To statistically
alidate the performance of a ML algorithm, it is common to divide
he data into two independent parts: the first is used for training and
he second for testing. A possible approach would be to consider one
esolution for the training set and another for the test set to test the
nterpolation capability of the model. The main drawback of such a
etting is that the test set is a sparser subset of the same initial data,
herefore training is not as complete as it could have been and test
ets are not independent. As a consequence, the model accuracy may
e optimistic because samples in the test set are close to those in the
raining set, a well-known problem in ML called overfitting [84].

To avoid this problem and to differentiate whether the model has
ctually learned the degradations we elected to calculate new synthetic
ata sets for each of the chemistries with slightly different configura-
ions than the cells in the training sets. This allows having completely
ndependent training and validation sets to provide a benchmark for
he fair and equal evaluation of different ML models. Details about the
est sets, each consisting of 1000 duty cycles, can be seen in Table 1.
ig. 9(a) in Appendix A shows the capacity losses associated with the
uty cycles calculated in [44]. As prognosis is the ultimate goal, we
ecided to select a 1000 subset of these duty cycles to provide a test set
hat can be used both for diagnosis (as is the case of this work) and for
rognosis (for future works). Combinations of the [LLI, LAMPE, LAMNE]

degradations were selected to generate the duty cycles for the new cell
configurations to show a wide range of both sublinear and supralinear
degradations. Emphasis is placed on the latter due to their interest in
identifying knees in capacity loss, correlated with the so-called silent
modes. Calculations are done for the following cycles: 10, 50, 100, 200,
400 and 1000 (Fig. 9(c)) with capacity losses up to 40% (Fig. 9(d)).
6

Table 1
Details about test sets. Three cells, labeled as C1, C2, C3, were generated using the
‘alawa toolbox [50] for each chemistry. The values of LR (Loading Ratio) and OFS
(offset) with which they were generated are included. Parameters used for the training
data are also added to highlight the differences with respect to the test sets.

Training data C1 C2 C3

LR OFS LR OFS LR OFS LR OFS

LFP 0.95 12.5 0.96 11.5 0.94 12.5 0.95 11.5
NCA 1.05 1.5 1.06 0.5 1.04 2.5 1.05 0.5
NMC 0.90 10 0.91 9 0.89 11 0.90 9

5. Results

The experimental validation of the proposed framework will be
performed first on synthetic data, then on real data. In both cases,
our framework will be compared to the state-of-the-art for degradation
modes quantification. The metric chosen for evaluation, defined in
Appendix B, is the Root Mean Squared Percentage Error (RMSPE).

5.1. Validation on synthetic cycles

In this section, the performance of our method was compared to
state-of-the-art methods apple to apple using the same synthetic dataset
with different cell configurations.

Results for degradation mode quantification for all methods are
presented in Tables 2 and 3 for the LFP cells. Results for NCA and
NMC are included in Appendix C.1. Among the tested methods were
the works described at the end of Section 2 and the one described
in this work, labeled in the tables as ‘‘RF’’ for the Random forest Re-
gressor [65], ‘‘1DConv’’ for the 1D convolutional neural network [45],
‘‘FNN’’ for the Feed-forward neural network [66] and ‘‘DTW-CNN’’ for
our Dynamic Time Warping-convolutional neural network approach. It
should be noted that only our method uses DTW images while the other
approaches use the IC curves directly. In addition, a CNN is also used
in [45], but 1D convolutions are applied, which are not suitable for
images. These methods did not provide any public code implementa-
tion, consequently, the steps described in their corresponding papers
were followed to reproduce their models adapted to these test sets
(see Appendix C.2 and https://github.com/NahuelCostaCortez/DTW-
Li-ion-Diagnosis for details). Table 2 lists the diagnosis accuracy (by the
means of RMSPE values) for the quantification of the three degradation
modes at six different cycles (10, 50, 100, 200, 400 and 1000) for
the three different LFP cell configurations (C1 to C3 in Table 1).
The best predictions are highlighted in bold. Overall, the approach
presented in this work clearly outperforms the others with an average
error of 2.00% (see Table 3). Yet, there are certain cycles where other
methods perform slightly better. This may be due to some bias during
training that may lead to unbalanced predictions and, as a consequence,
to reasonable performance in one degradation mode but not in the
others. For instance, the predictions of ‘‘1DConv’’ for cycle 400 in
C1. Numerically in LAMPE it has a better result than our approach
(3.38% vs 3.59%), however for LLI (1.68% vs 1.31%) and especially for
LAMNE (2.83% vs 1.93%) the performance is considerably worse. This
is quickly identified in the standard deviation, where our model with a
value of 1.96 shows a lower dispersion compared to the other models.
Tables 4 and 6 in Appendix C.1 present the same analysis for the NCA
and NMC cells, respectively. The results are similar with an average
error of 2.03% (see Table 7) for NMC, compared to errors from 2.56
to 7.27% for the other methods. The approach seems to perform better
for NCA cells with an average error of 1.11% (see Table 5), compared
to errors from 1.31 to 7.01% for the other methods.

The main reason behind the consistent estimations in our approach
is that the representation of degradations in the images is largely pre-
served between different cell configurations, something that is not the
case in pure IC curve processing, where peaks, despite having similar

https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
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Table 2
RMSPE results for each degradation mode and cycle for the LFP test set.

LLI LAMPE LAMNE

FNN [66]
C1 1.89 1.93 2.00 1.82 1.67 3.91 2.53 2.90 3.09 3.28 3.58 11.11 2.30 2.32 2.32 2.10 2.15 6.31
C2 2.06 2.16 2.23 1.81 1.55 3.67 3.30 2.94 2.94 2.73 3.46 11.32 3.41 3.29 3.28 2.77 2.35 6.19
C3 1.45 1.93 1.88 1.68 1.73 4.02 2.27 3.14 3.40 3.52 3.78 11.31 3.04 3.06 2.98 2.64 2.44 6.37

RF [65]
C1 6.32 5.69 4.94 3.62 3.23 9.21 5.89 5.13 4.26 3.15 5.16 9.13 7.00 6.06 5.02 3.82 6.24 11.83
C2 6.32 5.69 4.94 3.64 3.14 9.22 5.89 5.13 4.26 3.17 4.97 9.79 7.00 6.06 5.02 3.82 6.38 11.55
C3 6.32 5.69 4.94 3.62 3.20 9.13 5.89 5.13 4.26 3.15 5.07 9.37 7.00 6.06 5.02 3.82 6.18 11.66

1DConv [45]
C1 1.18 0.95 0.73 1.06 1.68 3.21 1.90 1.23 1.80 2.80 3.38 10.73 1.18 1.33 1.27 1.71 2.83 6.60
C2 0.63 0.59 0.86 1.11 1.62 3.15 0.41 1.28 2.76 2.62 3.50 10.85 2.05 1.83 2.03 2.36 2.86 6.58
C3 1.95 0.89 0.60 0.96 1.75 3.35 2.08 1.15 2.01 2.95 3.44 10.86 2.86 1.97 1.59 2.07 2.93 6.61

DTW-CNN
C1 0.14 0.53 0.72 1.16 1.31 2.47 0.96 0.98 1.82 2.67 3.59 8.64 0.17 0.70 1.40 1.98 1.93 3.86
C2 0.44 0.84 0.91 1.18 1.32 2.15 0.78 2.06 2.76 3.22 3.92 8.89 0.21 0.57 0.80 1.11 1.41 4.01
C3 0.80 0.56 0.56 0.95 1.12 2.58 2.30 1.32 2.03 2.72 3.67 8.63 0.59 0.55 1.00 1.43 1.64 3.94

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000
Table 3
RMSPE results summary for the LFP test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DConv DTW-CNN

Mean ± std 3.32 ± 2.21 5.87 ± 2.23 2.64 ± 2.42 2.00 ± 1.96

morphologies, suffer from shifts that can cause models to misleading
predictions.

The method performs remarkably well and surpassed the tested
state-of-the-art approaches; however, it still has room for improvement.
For instance, note the large errors in later cycles (400 and 1000),
which correspond to degradations around 40% of capacity loss. Al-
though these errors are still much lower than in the other methods
the estimations for these cycles could be further improved. Some other
comparative tests could also be added to the discussion; however, the
main objective of this work was to enable the use of images to exploit
the potential of CNNs. We have developed and used one of the many
architectures that can be found in the literature, but predictions could
be improved by other newer and more robust models. Furthermore, the
key factor, and in fact, one of the essential features of Deep Learning,
is precisely reusability. The knowledge of large models trained on a
specific task can be transferred to a new, similarly related task. This
is known as Transfer Learning [85] and is especially useful when
little data is available, instead of training a model from scratch it can
leverage the knowledge generated by a pre-trained model for fine-
tuning on the available data. This technique is mainly focused on
images, therefore the preprocessing we propose, besides providing an
adaptive method, also allows the application of this technique: we
have pre-trained a large model on the training set (DTW-CNN), so its
knowledge can be now used by other models on the test sets or on
new data. This path, as well as other complementary ones such as the
explainability of the models or the choice of the CNN architecture, will
be explored in future work.

Finally, to demonstrate the performance of the model in a more real-
istic application context, we provide a demo in https://huggingface.co/
spaces/NahuelCosta/DTW-CNN. The cycles associated with the three
LFP test cells can be selected to display their IC curves, the correspond-
ing DTW image and the final diagnosis given as the percentage of each
predicted degradation mode.

5.2. Validation on real battery data

As demonstrated above, one of the strengths of the model is its
applicability to cells with configurations other than those seen during
training. This also includes real cells so in this section our model was
tested on cycling data from two commercial high-power graphite//LFP
cells manufactured by A123 Systems (ANR26650M1, 2.3 Ah) that
have been previously studied. The cells will be referred as CReal#1
7

Fig. 6. Model predictions for Cell#1 for every available cycle.

and CReal#2 for simplicity; CReal#1 was tested under multistage fast
charging [86] while CReal#2 was tested under dynamic stress test
(DST) driving schedule [38]. In these studies, the degradation modes
were quantified using the ’alawa toolbox [50]. It should be noted
that the toolbox uses the same mechanistic model than the one that
generated the training data used in this study. Therefore, in the end,
the predictions of our model are an automatic way of making the same
diagnosis without relying on prior knowledge in the field.

CReal#1 was cycled to simulate fast charge and discharge condi-
tions. Every 300 cycles, a reference performance test (RPT) was done
to determine the state of health (SOH) of each cell. Fig. 6 shows the
model predictions for each of the voltage curves of the available cycles.
The diagnosis established by our model in terms of degradation mode
quantification and capacity loss estimation matched the experimental
observations. The capacity estimation adjusted remarkably well to the
evolution along the cycles and for the degradation modes, despite some
fluctuations, they tended to follow a linear degradation with LAMNE
and LLI being the main actors, while the effect of LAMPE is almost
negligible. These predictions meet the results reported in [86], where
the degradation was concluded to be caused by a linear loss of LLI of
0,0032% per cycle followed by a linear loss of LAMNE of 0,0022%.

CReal#2 was cycled differently to study the impact of fast charge
with an EV type discharge rather than constant current. The degra-
dation path was quite different than of CReal#1 and significant Li
plating occurred. Plating is considered one of the most detrimental
phenomena in lithium-ion batteries, as it increases cell degradation and
might lead to safety issues. RPTs were again performed every 300 full
DST cycles. Model predictions are presented in Fig. 7 together with
the diagnosis reported in [38]. Despite the few cycles available, the
capacity estimation is quite correct. Looking at the degradation modes,
their evolution is more complex than of CReal#1. LAM is calculated
NE

https://huggingface.co/spaces/NahuelCosta/DTW-CNN
https://huggingface.co/spaces/NahuelCosta/DTW-CNN
https://huggingface.co/spaces/NahuelCosta/DTW-CNN
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Fig. 7. Model predictions for Cell#2 for every available cycle (a). Diagnosis estimated in [38] (b).
Fig. 8. IC curves for cycles 1 and 1800 in the real cell (a) and in the synthetic cell generated for the predicted degradation percentages (b).
Table 4
RMSPE results for each degradation mode and cycle for the NCA test set.

LLI LAMPE LAMNE

FNN [66]
C1 0.13 0.69 1.05 1.17 0.89 1.19 1.27 1.66 1.55 1.67 1.78 1.41 0.21 1.10 2.01 2.37 1.82 2.48
C2 0.11 0.51 0.67 0.81 0.82 1.30 0.52 0.64 0.76 0.87 0.84 1.09 0.19 1.21 2.18 2.96 2.56 2.87
C3 0.16 0.62 0.90 1.04 0.77 1.19 1.98 1.51 1.36 1.45 1.52 1.19 0.19 1.20 2.28 3.07 2.47 2.72

RF [65]
C1 5.58 8.58 8.04 8.65 8.90 9.35 5.08 7.77 7.10 7.15 6.55 11.58 5.64 5.82 4.82 4.63 7.16 13.34
C2 4.58 4.41 5.67 6.81 7.87 9.23 4.16 3.93 4.95 5.61 6.41 11.68 5.40 4.56 4.07 3.8 7.35 13.75
C3 5.43 7.53 6.97 8.05 8.71 9.29 4.95 6.76 6.13 6.60 6.73 11.58 5.60 5.42 4.50 4.12 6.82 13.48

1DConv [45]
C1 0.32 0.33 0.56 0.77 0.80 1.5 2.31 2.07 2.05 2.01 1.90 1.43 0.37 0.74 1.36 1.99 1.95 3.06
C2 0.33 0.42 0.44 0.53 0.69 1.10 0.94 0.79 0.83 0.82 0.79 0.87 0.22 1.09 1.69 2.56 2.77 3.44
C3 0.34 0.36 0.47 0.68 0.71 1.36 2.08 1.74 1.72 1.67 1.57 1.18 0.20 1.01 1.75 2.69 2.68 3.37

DTW-CNN
C1 0.35 0.34 0.56 0.99 1.43 2.36 0.47 0.64 0.67 0.96 1.41 2.06 1.79 1.50 1.40 1.41 1.52 2.57
C2 0.69 0.93 1.03 1.24 1.80 1.93 0.21 0.43 0.63 0.73 0.94 1.43 0.27 0.69 0.78 1.06 1.37 2.68
C3 0.12 0.44 0.72 0.97 1.28 2.05 0.60 0.40 0.65 1.03 1.40 2.00 0.40 0.59 0.69 1.00 1.39 3.16

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000
as linear with a higher slope than of CReal#1. LLI started linear and
then accelerated after 700 cycles. LAMPE evolution fluctuates a lot but
seems rather linear with a much higher slope than of CReal#1. The
overall evolution of the degradation modes matched quite well the
analysis performed in [38] where the high pace of LAMNE induced some
Li plating of which most passivated in LLI. The main difference is the
LAMPE estimation. LAMPE is extremely difficult to quantify for LFP type
cells as was considered in [38] as it was inducing neither capacity loss
nor was at the origin of the knee.

In contrast, our model took every possible degradation into account
during training and predicted some LAMPE. The true extend of it could
not be verified on the electrochemical data as no post-mortem study
was carried on the aged cell. Fig. 8 shows the IC curves for cycles 1
8

Table 5
RMSPE results summary for the NCA test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DCov DTW-CNN

Mean ± std 1.31 ± 0.77 7.01 ± 2.51 1.32 ± 0.86 1.11 ± 0.67

and 1800 in the real cell and in the synthetic cell generated for the
predicted degradation percentages. It is expected that the curves will
not be exactly the same due to the differences between the simulation
and the real data, the interest lies in the peak appearing at around
3.47 V, which is known to imply some reversible plating in the cell.
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Fig. 9. Evolution of capacity loss over the 127662 duty cycles presented in [44] for the LFP cell (a). Same plot as in (a) for the first 1000 cycles and at 60% of capacity (b).
Evolution of capacity loss over the 1000 duty cycles selected for test (c). Same plot as in (c) for the first 1000 cycles and at 60% of capacity (d).
Table 6
RMSPE results for each degradation mode and cycle for the NMC test set.

LLI LAMPE LAMNE

FNN [66]
C1 0.39 0.48 0.84 1.18 2.00 2.12 3.02 3.57 3.54 3.28 2.98 3.08 0.26 1.16 2.27 3.68 4.91 7.18
C2 2.71 2.60 2.48 2.25 1.91 2.34 1.29 1.24 1.51 1.30 1.21 2.41 5.43 5.30 5.12 4.77 5.07 8.23
C3 0.29 0.30 0.60 0.93 1.91 1.99 2.69 2.90 3.09 2.95 2.69 2.97 0.17 1.11 2.20 3.43 4.51 6.76

RF [65]
C1 8.30 7.52 6.57 4.83 3.79 11.41 6.91 6.16 5.29 3.96 5.96 9.42 9.25 8.37 7.35 5.72 5.62 14.37
C2 8.30 7.52 6.57 4.83 3.49 11.68 6.91 6.16 5.29 3.96 5.36 8.96 9.25 8.37 7.35 5.72 5.63 15.26
C3 8.30 7.52 6.57 4.83 3.73 11.41 6.91 6.16 5.29 3.96 6.11 9.54 9.25 8.37 7.35 5.72 5.67 14.25

1DConv [45]
C1 0.47 0.40 0.52 0.73 1.23 2.68 4.01 4.02 3.95 3.83 3.91 3.60 0.29 1.18 2.11 3.02 3.75 7.82
C2 1.96 2.00 1.94 1.72 1.59 2.47 0.57 0.38 0.41 0.48 1.14 1.80 4.54 4.35 4.33 4.39 4.84 7.91
C3 0.47 0.35 0.54 0.70 1.27 2.76 3.90 3.74 3.61 3.55 3.54 3.34 0.19 1.03 1.80 2.43 3.17 7.36

DTW-CNN
C1 0.65 0.67 0.72 0.64 0.96 4.32 1.70 1.92 1.99 1.92 2.29 3.91 0.44 0.48 1.06 2.18 3.55 7.58
C2 1.00 1.00 0.82 0.74 1.23 3.00 0.80 0.59 0.52 0.86 2.36 4.54 2.19 1.94 1.71 1.91 2.91 7.48
C3 0.76 0.90 0.82 0.64 1.17 4.47 1.86 2.03 2.00 1.85 2.05 3.78 0.77 0.79 0.93 1.82 3.28 7.37

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000
Table 7
RMSPE results summary for the NMC test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DConv DTW-CNN

Mean ± std 2.68 ± 1.81 7.27 ± 2.66 2.56 ± 1.90 2.03 ± 1.72

Hence, model predictions also suggest that the occurring degradation
mechanism is irreversible lithium plating.

All things considered, it appears that the model adapted well to
conditions different from those seen during training, with the predic-
tions meeting to a large extent the previous diagnosis. Since different
combinations of degradation modes can lead to the same capacity loss,
which gives room to confusion in results interpretation, the model
needs not only to estimate a concrete percentage of the degradation
modes to offer a possible range of degradations with a certain degree
9

of confidence. This only can enable prognosis [44], which will be the
topic of future work.

6. Concluding remarks and future work

Data-driven methods are a promising avenue for lithium-ion battery
diagnostics and prognostics. Thus, efforts to use AI for state estimation
and lifetime prediction have emerged in recent years. However, the
application of modern AI algorithms is still at an early stage. In this
work, we proposed a novel method for battery degradation diagnosis,
that represents battery data as images, with the aim of enabling the use
of powerful AI models in this domain. Especially, the IC curves from
HNEI’s synthetic datasets were used to train a CNN that successfully
predicts the main degradation mechanisms on several commercial cells
of different chemistries and with different characteristics. The perfor-
mance of the model was compared to other state-of-the-art methods,
where the superiority of our approach was clearly demonstrated, with
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Table 8
Configurations of the models used. In [66] and [45] ‘‘layers config’’ refers to the number of neurons per layer. Also, in [45], the authors built a 1D
CNN to quantify LLI only while here we used the same model to predict the three degradation modes.

Method Hyperparameters

FNN [66] num_layers layers layers config
3 Fully Connected layers 64 × 32 × 3

RF [65] max_depth random_state n_estimators
10 42 100

1DConv [45] num_layers layers layers config
5 2 1D CNN layers and 3 Fully Connected layers 32 × 32 × 128 × 64 × 3
RMSPE errors around 2% in average for 1000 duty cycles compared to
between 2.64 to 7.27% for the other tested methods. The successful
performance of the model is largely due to its adaptive nature to
different cell configurations. To validate this claim, the model was also
tested on real cells, where the diagnosis corresponded to a large extent
with previously existing studies on the subject. This opens up new
opportunities for collaboration between AI and battery research.

In future works we aim to explore the use of Transfer Learning as
well as the suitability of the approach for prognosis, evaluating the
evolution of the peaks throughout the cycles, rather than independent
cycle diagnosis. In addition, for this study the data used were only
from charge cycles, however, considering discharge data is also of great
interest for a more complete diagnosis. Lastly, our interests are aligned
with the extension of the study of degradation modes, a key subject to
contribute to the electrochemical understanding of cell deterioration.
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ppendix A. Duty cycles selection

See Fig. 9.
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Appendix B. Model evaluation

In regression problems, the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) metrics, or their versions expressed as
a percentage MAPE and RMSPE are commonly used. MAE measures
the mean magnitude of errors in a set of model estimates while RMSE
is the root of the averaged quadratic score. In RMSE the errors are
squared before averaged, whereas in MAE all individual differences
are equally weighted in the mean. This makes RMSE more sensitive
to large errors. Consequently, RMSE is considered more effective for
testing model performance, especially when large errors are undesir-
able. For simplicity in the interpretation of results, RMSE expressed as
a percentage (RMSPE) is chosen:

𝑅𝑀𝑆𝑃𝐸 =

√
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√

√

√

√

1
N

N
∑

𝑖=1
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2

× 100

number of samples

real value

predicted value

(1)

However, using this metric requires dividing the prediction error
by the actual value. In the dataset used in this problem, there are
combinations where the actual value (the degradation mode) is simply
0, so the calculation would be invalid. Because of this, the denominator
is replaced by the nominal capacity of the cell understood as the
initial capacity expressed in percentage, i.e., 100%. Predicted values
are already given in percentages (for the degradation modes) therefore
the definitive metric used is:

𝑅𝑀𝑆𝑃𝐸 =

√
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Appendix C. Supplementary tables

C.1. RMSPE results for NCA and nmc

See Tables 4–7.

C.2. Summary of model configurations used

See Table 8.
Code availability
All models and experiments were implemented in TensorFlow [87].

Further details regarding the experimental setup and the source code
to reproduce the experimental results are available in the following
public git repository: https://github.com/NahuelCostaCortez/DTW-Li-
ion-Diagnosis.
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