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Abstract: Air pollution, especially at the ground level, poses a high risk for human health as it
can have serious negative effects on the population of certain areas. The high variability of this
type of data, which are affected by weather conditions and human activities, makes it difficult
for conventional methods to precisely detect anomalous values or outliers. In this paper, classical
analysis, statistical process control, and functional data analysis are compared for this purpose.
The results obtained motivate the development of a new outlier detector based on the concept of
functional directional outlyingness. The validation of this algorithm is perfomed on real air quality
data from the city of Gijón, Spain, aiming to detect the proven reduction in NO2 levels during the
COVID-19 lockdown in that city. Three more variables (SO2, PM10, and O3) are studied with this
technique. The results demonstrate that functional data analysis outperforms the two other methods,
and the proposed outlier detector is well suited for the accurate detection of outliers in data with
high variability.

Keywords: functional data analysis; air pollution; magnitude outlyingness; shape outlyingness;
COVID-19

MSC: 62R10

1. Introduction

Air pollution is nowadays one of the most important environmental concerns for the
population of urban areas [1–10]. The reason for this lies in the threat that air pollution
poses for the residents of those places, where a broad range of different sources emit
great quantities of different pollutants with distinct health effects [11–13]. Consequently,
a network of stations has been installed that measure the levels of pollution and provide
live data. Certain specific pollutants such as nitrogen oxides (NO and NO2), sulfur dioxide
(SO2), particulate matter (PM10 and PM2.5), and ground level ozone (O3) have gained more
attention because of the health problems they can inflict on the population [11]. In order to
address the problem of air pollution, the national environmental agencies of each country
have to define specific limits. In the case of Spain, these limits are outlined in the regulations
passed by the European Union, which are afterwards adapted to each member state [14,15].

New environmental laws tend to become stricter in an ongoing effort to fight global
warming. However, it still can be normal to see anomalous levels in environmental
databases, which are considered outliers. These unusual recordings are classified as local
or global outliers based on how they compare to the surrounding values [16,17]. Local
outliers are detected through their contrast with their neighbors, while global outliers are
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those which deviate significantly from the rest of the dataset. From an environmental point
of view, global outliers indicate a significant polluting event or an unusual absence of con-
tamination, such as the levels of certain pollutants during the COVID-19 lockdown [18–22].
Observations considered as local outliers can also contain important information regarding
uncommon processes, hidden trends or polluting events of less significance. Outliers
can just be measuring errors or represent an anomalous behavior in the process studied.
These types of values are important, and their identification can lead to the discovery of
new useful information and can help in the selection of the right mitigation techniques or
measures [23].

Functional data analysis (FDA) is the field of statistics studied, and its methods are
implemented in this research for the modeling of this type of data. It was selected to
solve the inefficiency of the classical outlier detection methods for vectorial data, which
was identified by comparing the results obtained with box plots and statistical control
charts, both also tested for the detection of outliers in this research work. Nowadays, FDA
has applications in a broad range of fields, including environmental engineering [24–28],
industrial processes [29,30], sensors [31,32], and medical research [33]. Functional analysis
has the advantage of studying the detection problem from a time-correlated point of view.
This is achieved through the conversion of a time-dependent set of discrete observations
into mathematical functions. Moreover, in this research, the functional outlier detector
proposed by Dai et al. [34] based on directional outlyingness was selected as the best
technique. This method can achieve a higher precision and robustness in the detection of
outliers as it works with two variables: mean directional outlyingness, which compares
the shift of a curve with the rest, and the variation of the directional outlyingness, which
compares the shape of a curve with the others.

Although several methods exist for outlier detection, such as the Grubbs test [35] or
the test proposed by Jäntschi [36], they have a vectorial basis. In this case, conventional
methods were implemented alongside the functional approach, leading to the comparison
and study of both results to identify the most effective technique.

Consequently, the main objective of this research work is to validate the implementa-
tion of directional outlyingness for the detection of functional outliers in real air quality
data from the city of Gijón in Spain. More specifically, the method is validated based on the
detection of the COVID-19 2020 lockdown effects on the air quality of this city. Additionally,
the effectiveness of this technique is compared to those of classical statistical analysis and
statistical process control.

This research paper is divided in several sections. Section 2 introduces the database, the
location of the area studied, and the mathematical methods implemented. Next, Section 3
presents the results obtained with every method and the proposed outlier detector, and
Section 4 analyzes those results in the Discussion. Lastly, Section 5 concludes the research
paper with the most relevant ideas proposed and future research lines.

2. Materials and Methods
2.1. Case Study —Air Quality in Gijon, Spain

The data used on this research was collected by a public air quality station placed
in the coastal city of Gijón, Spain. This urban area is located in Northern Spain, within
the Autonomous Region of Asturias. The city has a population of 271,717 (2020 census), a
density of 1480 habitants/km2 , and an area of 182 km2 [37]. The Cantabrian Sea draws
a heavy influence on the climate of this region. Defined as an Oceanic climate, the mean
temperature of the city is 13.8 ◦C, and it ranges from a mean maximum of 19.7 ◦C in August
to a mean minimum of 8.9 ◦C in January. Winds in this area shift in accordance to the
season, but they are dominated by two main components. During winter, it blows from
W-WSW, while in summer, it comes from E-ENE on the coast [38]. The pluviometry of the
city is high, with a total of 920 L/m2year [39].

Regarding its economy, the port of El Musel plays a key role. Its infrastructure is
adapted to the requirements of the modern market, which has helped it become one of
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the most active ports in Spain and the European continent. The West side of the city
concentrates most of its industrial activity, including a steel factory, a coal-fired power
plant, a concrete factory and several other facilities. The locations of the station and the
main industries in Gijón are shown on Figure 1.

Figure 1. Location of the air quality station, which provided the data for this study, and the main
industrial sites in Gijon.

The air quality station that provided the data for this research is positioned in a major
avenue of the city. The data studied consists of the daily records of this station for a total of
eight years: from 1 January 2014 to 31 December 2021. This results in 2976 points, as all
months have been linearly interpolated to have 31 days in order to satisfy the requirements
of the conversion from discrete to functional data. The variables studied are: (1) NO2, (2)
SO2, (3) PM10, and (4) O3. All variables were measured in µg/m3. The selection of these
substances is based on the fact that they are measured in the majority of public air quality
stations in Spain and their legal concentration limits are clearly defined in the national and
European regulations.

Air pollutants can be classified as primary or secondary. Primary pollutants are the
result of natural or man-made process, such as a volcanic eruption or the combustion of
fossil fuels, respectively. On the other hand, secondary pollutants are not emitted directly;
instead, they form in the air as the result of reactions between primary pollutants. The most
important non-natural primary pollutants in this study include [40–42]:

• Sulfur oxides (SOx): they are a group of molecules formed of sulfur and oxygen
atoms. The vast majority are released into the atmosphere as the result of some
human activities, including the burning of oil and coal, and their respective industrial
processes. When these fuels are burned, the sulfur in them reacts with the oxygen in
the atmosphere, resulting in sulfur oxides. If they are inhaled regularly, it can lead
to bronchitis and/or asthma. Moreover, these components can combine with water
droplets in the atmosphere, originating acid rain with harmful effects on plants and
animals. The most dangerous compound in this group is sulfur dioxide (SO2), which
is usually a product of the combustion of coal and petroleum;

• Nitrogen oxides (NOx): similarly to the previous pollutant, they are a group of
molecules formed of oxygen and nitrogen atoms that form when fuel is burned at
high temperatures, usually in internal combustion engines, power plants, or industrial
boilers. Regarding their environmental impact, nitrogen oxides are of great importance
in the formation of photochemical smog. This is due to their bonding capabilities with
other atmospheric pollutants (such as the non-methane volatile organic compounds),
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which affect the formation of ozone at ground level. Moreover, they are poisonous
and can react with water in the atmosphere to produce acid rain;

• Particulate matter (PM10): very small particles of solid and/or liquid compounds
suspended in the atmosphere. Some dark and large enough particles, including dust,
dirt, soot, or smoke, can be seen with the naked eye. These particles comprise a great
variety of sizes and shapes and can be made up of hundreds of different chemicals.
Their sources are fires, fields, constructions sites, unpaved roads, and smokestacks.
They can be inhaled, causing serious health problems (asthma, bronchitis, high blood
pressure, and heart attack) and even getting into the blood stream. PM10 refers to
particles with aerodynamic diameters equal to or less than 10 µm.

Secondary pollutants included in this research are [40]:

• Ground level ozone (O3): ozone forms naturally in the upper atmosphere, where it is
beneficial for life on Earth, as it protects from ultraviolet rays. At ground level, it forms
through chemical reactions between NOx and volatile organic compounds (VOCs)
emitted from cars, power plants, refineries, chemical plants, etc. This reaction usually
takes place in hot summer days within urban settings, and it results in harmful air for
animals and plants.

The behavior of these pollutants during the lockdown of the COVID-19 pandemic has
been studied by previous research [18–22]. All sources concur on a reduction of the NO2
levels. Nevertheless, the levels of SO2 vary accordingly to the industrial activity of the area,
PM10 can be influenced by atmospheric events, and the levels of ground level ozone show
an increase in most cases due to the reduction of NO2 [18]. Consequently, the methods
tested will be validated on the NO2 data, and the technique presented will be applied to
study the effects of the other three pollutants during this time.

With respect to the current regulations, the Spanish Royal Decree 102/2011 of 28 Jan-
uary [14], which implements the European Directive 2008/50/CE of the European Parlia-
ment and the Council on 21 May 2008 [15], set the limits for air pollutants. These limits are
defined as a certain number of exceedances over different time periods.

2.2. Analysis Methods

Three main mathematical approaches were taken to study the time-series data: classical
analysis, statistical process control (SPC), and functional data analysis. These three methods
are oriented towards detecting anomalies in the data by taking into account several types
of information such as raw data points, trends, and/or variations in different time ranges.
The classical analysis and the SPC study the information discretely, while functional data
analyzes a process as a whole by transforming those singular points in functions over a
continuum. The development was performed on Python 3.7 [43] with the aid of the library
scikit-fda [44] for the functional analysis.

2.2.1. Classical Analysis

The first step in the classical analysis was checking the normality of the data gathered.
This was done based on D’Agostino and Pearson’s [45,46] test, which combines skew and
kurtosis to produce an omnibus test of normality, as defined in Equation (1).

K2 = Z1(g1)
2 + Z2(g2)

2 (1)

where Z1(g1) is the z-score returned by the skew test and Z2(g2) is the z-score returned
by the kurtosis test. If the null hypothesis can be rejected, there are two options for its
analysis: (1) implementing the adapted version of the classical method to non-normal
distributions [47], or (2) applying a transformation to normalize the data sample [48]. The
most widely used method for the second option is the Box–Cox transformation defined in
Equation (2) [49].



Mathematics 2022, 10, 2374 5 of 27

X(λ)
j =


Xλ

j −1
λ , if λ 6= 0

log
(
Xj
)
, if λ = 0

(2)

Next, box plots are implemented as a first approach to the problem. This statistical
method displays graphically the main characteristics of the data studied, including those
points which have a higher probability of being considered outliers.

2.2.2. Statistical Process Control

Statistical process control is a method that analyzes the variability of a given data
set and allows studying, controlling and detecting anomalies within the information pro-
vided. These type of charts were initially developed for industrial processes by Walter
A. Shewhart [50] working for Bell Labs in the 1920s. A key feature of control charts is
the introduction of rational subgroups. This implies that the data have to be divided into
subgroups of a predefined size by the cause of variation detected. Therefore, if this cause of
variation follows a daily, monthly, quarterly or annual pattern, the data have to be divided
into rational subgroups of equal mode [28].

The analysis process has two main stages. In the learning phase, the aforementioned
test of normality is performed, and atypical measurements are removed from the database.
It is in this step that the control line is defined from the values of each rational subgroup.
This line represents the target value. Moreover, the warning limits are set at a distance of
±2 standard deviations of the control line, and the out-of-control limits at ±3 standard
deviations [51]. In the second phase, or control stage, the processed data are plotted against
time, resulting in the control chart per se. Whether the process is under statistical control
can be visually checked on the chart if one or several points exceed the limits established in
the first phase.

These charts have been consistently used due to their precision in the detection of
small variations. However, since they only study the most recent samples, they fail to detect
smaller changes or trends over a long time span. To address this issue, several new sets of
rules were defined [52,53] to complement the initial rules and boost the precision of the
control charts. In this study, the WECO [54] rules were enhanced with those developed by
Lloyd S. Nelson [55]: (1) one point is more than three standard deviations from the mean,
(2) nine or more consecutive points are on the same side of the mean, (3) six or more points
in a row are continually increasing or decreasing, (4) fourteen or more continuous points
alternate in direction, increasing then decreasing, (5) two or three out of three points in a
row are more than two standard deviations from the mean in the same direction, (6) four or
five out of five consecutive points are more than one standard deviation from the mean in
the same direction, (7), fifteen points in a row are all within one standard deviation of the
mean on either side, and (8) eight consecutive points exist, with none within one standard
deviation of the mean, and the points are in both directions from the mean.

2.2.3. Functional Data Analysis

Functional data are observations of a random continuous process at discrete points [56].
Considering a set of samples x(tj) in a set of np points tj ∈ R, where tj represents every time
instant, all samples can be considered as discrete observations of the function x(t) ∈ χ ⊂ F,
with F being a functional space. The function x(t) is estimated by taking into consideration
that F = span{φ1, ..., φnb} is a functional space consisting in a set of basis functions {φk},
with k = 1, 2, ..., n, and n is the needed number of basis functions to define the functional
space F. This expansion is explained in Equation (3) [26]:

x(t) =
nb

∑
k=1

ckφk(t) (3)

where {ck}
nb
k=1 represents the coefficients of the x(t) function regarding the chosen set of

the basis functions. The smoothing problem may be expressed as [26]:
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min
x∈F

np

∑
j=1

{
zj − x

(
tj
)}2

+ λΓ(x) (4)

In Equation (4), zj = x
(
tj
)
+ ε j is the result of evaluating x at the point tj, ε j is

considered the random noise with zero mean, and Γ is an operator which penalizes the
complexity of the solution. The purpose of this penalty is to guarantee a good fit to the
data in the sense that

{
zj − x

(
tj
)}2 is small, but also some aspect of the data captured by

Γ is kept under control. Lastly, the parameter λ sets the intensity of the regularization.
Considering Equation (3), the above can be expressed as:

min
c

{
(z−Φc)T(z−Φc) + λcTRc

}
(5)

where z =
(

z1, . . . , znp

)T
is the vector of observations, c =

(
c1, . . . , cnb

)T is the vector of

coefficients of the functional expansion, Φ is the nb × np matrix with elements Φjk = φk
(
tj
)
,

and R is the np × nb matrix with elements:

Rkl =
〈

D2φk, D2φl

〉
L2(I)

=
∫

I
D2φk(t)D2φl(t)dt (6)

According to Ramsay and Silverman [56], the ridge regression technique is one exam-
ple of the regularization presented. In this case, what is penalized in the size of regression
coefficients. In our case, the problem can be solved with minimization by the ordinary least
squares estimate:

c =
(
ΦtΦ + λR

)−1
Φtz (7)

where as λ gets closer to zero, c approaches the least squares solution, but if λ increases, c
approaches zero.

2.2.4. Functional Depth

The concept of depth was initially defined for multivariate analysis as a measure of the
centrality of a point in comparison with a set of observation. Therefore, in a Euclidean space,
the points closer to the center will have a greater depth since the observations presented as
points can be distributed from the center to the periphery [27]. This definition has been
extended to the functional domain, where the depth concept is considered a measure of
the curve xi’s centrality with respect to a set of curves x1, . . . , xn. In this research, several
functional depths have been implemented:

• Fraiman–Muniz depth (Integrated depth): consider Fi,t(xi(t)) as the cumulative em-
pirical distribution function [57] for the curve values {xi(t)}n

i=1 in a time t ∈ [a, b]
ruled by the following expression [58]:

Fn,t(xi(t)) =
1
n

n

∑
k=1

I(xk(t) 6 xi(t)) (8)

where I(·) is the indicator function. Consequently, the Fraiman–Muniz depth of a
curve xi in a set of curves x1, . . . , xn is defined by:

FMDn(xi(t)) =
∫ b

a
Dn(xi(t))dt (9)

where Dn(xi(t)) is the depth of the point xi(t), ∀t ∈ [a, b] obtained by:

Dn(xi(t)) = 1−
∣∣∣∣12 − Fn,t(xi(t))

∣∣∣∣; (10)
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• Modified Band Depth: this functional depth is a second iteration of the graph-based
band depth developed by Lopez–Pintado et al. [59]. Considering j as a fixed value
within 2 ≤ j ≤ n, Aj is defined as

Aj(x) ≡A
(

x; xi1 , xi2 , . . . , xij

)
≡
{

t ∈ [a, b] : min
r=i1,...,ij

xr(t) ≤ x(t)

≤ max
r=i1,...,ij

xr(t)

} (11)

where the set in the interval [a, b] for a function x is in the collection of real functions
x1, . . . , xn, which is in the band defined by the observations xi1 , xi2 , . . . , xij . If λ is the
Lebesgue measure on [a, b], λr

(
Aj(x)

)
= λ

(
Aj(x)

)
/λ([a, b]) outputs the amount of

time that x is inside the band. Subsequently,

MBD(j)
n (x) =

(
n
j

)−1

∑
1≤i1<i2<...<ij≤n

λr

(
A
(

x; xi1 , xi2 , . . . , xij

))
,

2 ≤ j ≤ n

(12)

and

MBDn,J(x) =
J

∑
j=2

MBD(j)
n (x) (13)

For the finite dimensional case, the value of MBD(j)
n (x) is specified as the fraction of

coordinates of x in the interval defined by j different points from the next sample:

MBD(j)
n (x) =

(
n
j

)−1

∑
1≤i1<...<ij≤n

1
d

d

∑
k=1

[a, b]
{

min
{

xi1(k), . . . ,

xij(k)
}
≤ x(k) ≤ max

{
xi1(k), . . . , xij(k)

}} (14)

and then,

MBDn,J(x) =
J

∑
j=2

MBD(j)
n (x) (15)

2.2.5. Outlier Detection

In a set of functional elements, there may be items with different patterns of character-
istics compared to the rest. Although they do not have to be errors, functional depths are
used to identify these elements defined as outliers. This mathematical method allows com-
paring data observed over time and representing it by functional curves directly, rather than
using mean values, which implies a loss of information. In order to increase the accuracy in
the detection of outliers, the idea of directional outlyingness is implemented alongside with
a point-wise scalar depth. This method can be applied to both multivariate and univariate
functional data with one or multidimensional domains. Moreover, functional directional
outlyingness separates functional outlyingness into two main components: shape outlying-
ness and magnitude outlyingness, which allows studying the centrality of the curves and
their variability. A magnitude outlier is an observation which is shifted from the mass of
the data. In the other hand, an observation can be a shape outlier because it differs in shape
from the mass of the data (even if it lies completely inside the mass of the data) [60].

In a stochastic process, X : I −→ Rp, which takes values in the space C(I,Rp) of
real continuous functions defined on a compact interval I to Rp, for which its probability
distribution is Fx. Let O be the directional outlyingness defined in the following equation:
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O
(

X(t), FX(t)

)
= o

(
X(t), FX(t)

)
· v(t) =

{
1/d

(
X(t), FX(t)

)
− 1
}
· v(t) (16)

where d
(

X(t), FX(t)

)
: Rp −→ [0, 1] is a statistical depth function for X(t) with respect to

FX(t)
, v(t) = {X(t) − Z(t)}/‖X(t) − Z(t)‖ is the spatial sign of {X(t) − Z(t)} [61], Z(t)

represents the mean of the distribution FXt with respect to d
(

X(t), FX(t)

)
, ‖ · ‖ denotes the

L2 norm, and w(t) is a weight function on I , which can be proportional to the local amount
of variability [62] or constant [57,63]. This implementation considers a constant weight func-
tion defined by w(t) = λ(I), where λ(·) is the Lebesgue measure. Based on this concept,
Dai et al. [34] introduced several definitions: functional directional outlyingness (FO),

FO(X, FX) =
∫
I

∥∥∥O
(

X(t), FX(t)

)∥∥∥2
w(t)dt (17)

mean directional outlyingness (MO),

MO(X, FX) =
∫
I

O
(

X(t), FX(t)

)
w(t)dt (18)

and variation of directional outlyingness (VO),

VO(X, FX) =
∫
I

∥∥∥O
(

X(t), FX(t)

)
−MO(X, FX)

∥∥∥2
w(t)dt (19)

FO represents the total outlyingness of the process X, similarly to the classical func-
tional depth. Next, MO studies the relative position (considering both distance and
direction) of X on average to the other curves, and ‖MO‖ is the magnitude outlyingness of
X. Lastly, VO measures the changes of O(O(t), FX(t)

) regarding the norm and the direction
throughout the entire design interval and can be defined as the shape outlyingness of
X. Dissimilar to classical functional depth, the functional directional outlyingness is a
unique scalar. Classical functional depth consists of mapping X ∈ C(I ,Rp) −→ fd ∈ [0, 1],

while functional directional outlyingness is a mapping X ∈ C(I ,Rp) −→
(

MOT, VO
)T
∈

Rp ×R+, which drastically increases the flexibility to analyze curves. Moreover, the weight
function, w(t), can be a constant function [57,59] or proportional to the amount of local
variability in amplitude [62].

A new outlier detector arises from this methodology. Considering the descriptive statis-
tics for a finite set of time points Tk = {t1, t2, . . . , tk}, MOTk ,n, and VOTk,n, Dai et al. [34]

found that the distribution of Yk,n =
(

MOT
Tk ,n, VOTk ,n

)T
can be well approximated with a

(p+1)-dimensional normal distribution when X is generated from a p-dimensional station-
ary Gaussian process. Following this basis, Dai et al. [34] defined a new outlier detection
process consisting of, first, the calculation of the robust Mahalanobis distance of Yk,n with
the Rousseeu’s [64] minimum covariance determinant for shape and location of the data.
Secondly, the authors utilized the approximation presented by Hardin et al. [65] for the dis-
tance distribution and, thirdly, they defined the cutoff value based on the aforementioned
approximation. This process was made up by three steps:

1. Obtaining the robust Mahalanobis distance from a sample of size h ≤ n:

RMD2
(

Yk,n, Y∗k,n, J

)
=
(

Yk,n − Y∗k,n, J

)T
S∗k,n, J

−1
(

Yk,n − Y∗k,n, J

)
(20)

where J denominates the group of h points which minimizes the determinant of the corre-
sponding covariance matrix, Y∗k,n,J = h−1 ∑i∈J Yk,n,i and S∗k,n, J = h−1 ∑i∈J

(
Yk,n,i − Y∗k,n, J

)
(

Yk,n,i − Y∗k,n, J

)T
. The robustness of the method is controlled by the sub-sample of size

h. For a p-dimensional distribution, the maximum finite sample breakdown point is
[(n− p + 1)/2]/n, where [a] denotes the integer part of a ∈ R [34];



Mathematics 2022, 10, 2374 9 of 27

2. Approximate the tail of this distance distribution with Equation (21) according to
Hardin et al. [65],

c(m− p)
m(p + 1)

RMD2
(

Yk,n, Y∗k,n, J

)
∼ Fp+1,m−p (21)

where c and m define the degrees of freedom of the F-distribution and the scaling
factor, respectively. The value of these two parameters is calculated by a simulation
program provided by Hardin et al. [65]. Then a value for the cutoff, C, is chosen as
the α quantile of Fp+1,m−p. Dai et al. [34] set α = 0.993, which is used in the classical
box plot for detecting outliers under a normal distribution [34], and the results of the
Monte Carlo simulation studies with four different contamination models show that
it is more accurate to use the quantile of the Fp+1,m−p than the empirical quantile of
the data or the quantile of the χ2 distribution;

3. Consider as outliers all those curves for which their distance satisfies Equation (22),

c(m− p)
m(p + 1)

RMD2
(

Yk,n, Y∗k,n, J

)
> C. (22)

To facilitate the visualization of the results, an ellipsoid obtained with this method is
added to the graphical representation [66].

3. Results

The results were obtained and analyzed in three different phases. In the first phase,
each air quality variable of the database was studied statistically and graphically with
the aid of several box plots. The second phase started with the implementation of the x̄
chart with monthly rational subgroups to evaluate its precision and offer a general idea
of the trends and mean values of each variable. At the same time, the monthly data were
studied through functional data analysis with the integrated and the modified band depth,
concluding the second phase. Lastly, a second iteration of the Dai et al. [34] outlier detector
was proposed to achieve a higher precision on the detection of outliers on data with high
variability. This algorithm is considered the third phase of the results.

The validation criteria for each of the methods presented consists in the detection of
the lockdown effects in Gijón (14 March 2020–31 April 2020) on air quality parameters.
This time frame corresponds to those weeks with the most strict restrictions for the civilian
population in Spain. Previous research work has demonstrated the improvements in air
quality due to the lockdown of the COVID-19 pandemic [18–22]. All sources agree on
a reduction on the levels of NO2; therefore, it can be considered as a verified event able
to validate the method presented. However, the variations in SO2 levels depend on the
industrial activity of the area, PM10 can be influenced by atmospheric events, and the levels
of ground level ozone show an increase in most cases due to the reduction of NO2 [18].
Considering this circumstances, the method was applied to study the behavior of these
variables during the lockdown in Gijon, Spain.

3.1. Results of the Classical Analysis

Classical statistical analysis was implemented through box plots as the first approach
to the problem presented. The suitability of this method is addressed in Section 4. The box
plots of each variable of the data studied are represented in Figure 2.
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Figure 2. Results of the first phase of the NO2, SO2, PM10 and O3 analysis. Box plot representation of
the air quality data in Gijón from 2014 to 2021. The orange line represents the mean, while the upper
limit of the box is the third quartile, and the lower one corresponds to the first quartile. The red dots
seen on the chart represent outlying values.

Since this method only studies points, these values do not consider the trend of the
data. As a result, the method becomes highly sensitive to measuring errors or anomalies
in the recording of events due to artificial causes. The graphical representation of the
NO2 data displays a mean of 23.19 µg/m3, a maximum of 76.0 µg/m3, and a minimum
of 2.0 µg/m3. The value of the first quartile stands at 15.0 µg/m3, and the third quartile
is 30.0 µg/m3. Regarding the outliers detected, the total number is 23. The analysis of
these results confirms that the anomalies of the lockdown on the records of NO2 are not
identified.

The box plot of the SO2 presents a much higher number of outliers (131). The SO2
mean is 6.26 µg/m3, with a maximum of 44.0 µg/m3 and a minimum of 1.0 µg/m3. The
first quartile of the SO2 is 3.0 µg/m3, and the third quartile is 80 µg/m3. Lastly, there are
no outliers detected during the lockdown.

Following up is the box plot of the PM10. The mean of this variable is 29.96 µg/m3,
while the maximum and minimum are 141.0 µg/m3 and 5.0 µg/m3, respectively. The first
quartile has a value of 22 µg/m3, and the third quartile sets the upper limit of the box at
36.0 µg/m3. The number of outliers detected in this case is 93, most of them in 2014 and
2021. As for 2020, the outliers in that year are detected in the first and last two months.

The last variable analyzed is ozone (O3), which has mean, maximum and minimum
values of 40.21 µg/m3, 97.0 µg/m3 and 4.0 µg/m3, respectively. Its box plot shows a first
quartile of 30 µg/m3 and a third quartile of 50 µg/m3. The total number of outliers is 13,
which are represented by the red dots. However, there are no anomalous events detected
during the lockdown.

3.2. Results of Statistical Process Control and Functional Data Analysis
3.2.1. First Variable: NO2

Figure 3 shows the results of the second phase of the NO2 analysis. In the first place,
Figure 3a displays the x̄ of the whole NO2 dataset with monthly rational subgroups. The
8 Nelson rules are integrated in this chart and included in its representation, the mean is
represented by the black horizontal line, and the green, yellow and red lines define the±1σ,
±2σ, and ±3σ limits, respectively. Figure 3b shows the functional results obtained with
the integrated depth for the NO2 data; on the left side, the pair of values of the magnitude-
shape outlyingness of each function are plotted in Cartesian coordinates with magnitude
outlyingness on the x-axis and shape outlyingness on the y-axis. Those points outside the
ellipse are considered outliers. On the right side, the NO2 function of every month is plotted
versus time, and each function corresponds to a point on the left. In both cases, outliers
are marked in red, while nonoutliers are marked in blue. Lastly, Figure 3c represents the
results obtained with the modified band depth in the same manner as Figure 3b.
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The x̄ chart of the data registered by the Argentina Ave. air quality station displays
an annual cycle in the levels of this molecule. The highest recordings of NO2 tend to be
between November and February; from this point on, the values start decreasing until
reaching the minimum, usually in July or August. After the summer months, the levels
of NO2 rise progressively towards the annual maximum again. The Nelson rules were
analyzed in their respective order and omitting those without detection results. Rule
number 2 detected November 2021 as an outlier, which implies that there is a trend of
values below the mean around those dates. Next, rule number 3 pointed out several
outlying values, especially in the beginning of 2015, 2017 and 2019, as well as the end
of summer for 2020 and 2021. It is also noticeable how the levels of NO2 show local
minimums between spring and summer of 2020 and 2021, but the lockdown months were
not automatically detected as outliers. This method failed to identify those months due to
the high variability of the data, which breaks most of the trends and makes it difficult for
the system to detect apparently visible outliers.

(a)

(b)

(c)

Figure 3. Results of the second phase of the NO2 analysis: (a) x̄ chart with the monthly rational
subgroups and the Nelson rules implemented; (b) (left) Cartesian representation of the magnitude
and shape outlyingness of each function with the integrated depth, (right) functional plot of the NO2

values of each month; (c) (left) Cartesian representation of the magnitude and shape outlyingness of
each function with the modified band depth, (right) functional plot of the NO2 values of each month.
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Regarding the functional data analysis, the two depths yield different results. In
Figure 3b, it can be seen that the integrated depth on the magnitude-shape plot shows
a very limited number of outliers (1). On the other hand, the magnitude-shape outlier
detector implemented with the modified band depth in Figure 3c labels as outliers a
considerable number of months (27.1%) as it is subject to overfitting; however, it includes
April and May of the lockdown.

In order to improve detection and avoid overfitting, we proposed a series of changes
to the modified-band-depth method to increase its precision for high-variability data. In
the first place, a time frame of the annual cycle was considered instead of the whole year.
Therefore, the year was divided into quarters that ensure less variability. Given the annual
cycle, and that the validation rule is the detection of the lockdown’s effect on the NO2,
the selected months were January, February, March, and April. Secondly, to counter the
reduction of data points and achieve a finer detection, the time unit was switched from
months to weeks. Lastly, a double filter was implemented on both depth functions to
keep the coherency of the results. This new outlier detection algorithm starts by checking
the number of outliers detected, and if there are none, it passes. Otherwise, the values
of magnitude and shape outlyingness of each point are extracted. Then, a new ellipse
is defined based on their distribution, and all those points that lay outside its limits are
considered outliers. This ellipse is centered in the origin, and its major and minor axes are
defined in Equations (23) and (24).

a = P80(magnitude)− P20(magnitude) (23)

b = P85(shape) (24)

The results obtained with this new algorithm can be observed in Figure 4. Firstly,
Figure 4a displays the x̄ of the first four months of every year with weekly subgroups.
The 8 Nelson rules are also integrated in this chart and included in its representation, the
mean is represented by the black horizontal line, and the green, yellow and red lines define
the ±1σ, ±2σ, and 3± σ limits, respectively. In this chart, the red dots represent those
weeks detected as outliers by the modified band depth. Figure 4b shows the functional
results obtained with the new outlier detection algorithm and the integrated depth for the
weekly NO2 data of the first four months of every year; on the left side, the pair of values of
magnitude-shape outlyingness of each function are plotted in Cartesian coordinates with
magnitude outlyingness on the x-axis and shape outlyingness on the y-axis. Those points
outside the new ellipse are considered outliers. On the right side, the NO2 function of every
month is plotted against time; each function corresponds to a point on the left. Outliers are
marked in red, while nonoutliers are marked in blue. Lastly, Figure 4c represents the new
results obtained with the modified band depth in the same manner as Figure 4b.

Analyzing the Nelson rules by their numerical order and skipping those that do not
detect anything, it can be seen how rule number 2 identifies several trends, among which
it is worth noting the local maximum on the last week of February 2019 and the effect
of the lockdown, also detected by rules 5 and 6. This last rule also identifies February
2016 as an outlier. Besides those results, the Nelson rules are unable to identify all local
maximums and minimums. The outlier detection performed with the integrated depth
shown on Figure 4b sees an increase in the number of alerts but does not detect the first
months of the pandemic; consequently, it is dismissed as a valid method.
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(a)

(b)

(c)

Figure 4. Results of the third phase of the NO2 analysis: (a) x̄ chart with the weekly rational subgroups
of the first four months of every year, the Nelson rules implemented, and the functional outliers
detected with the modified band depth marked with red dots; (b) (left) Cartesian representation of
the magnitude and shape outlyingness of each function with the integrated depth; (right) functional
plot of the NO2 values of each week; (c) (left) Cartesian representation of the magnitude and shape
outlyingness of each function with the modified band depth; (right) functional plot of the NO2 values
of each week.

The modified band depth in Figure 4c detects the effects of the lockdown and points
out 75% of the local maximums and minimums. These results are included in Table 1. It is
also important to mention there are several red dots on the x̄ chart, which are apparently
close to the mean. This is due to the loss of information that this control chart suffers from,
because it only works with an average value per week, and it has low suitability for data
with high variability. The aforementioned points are clearly detected as outliers by the
functional method because of their anomalous values of magnitude and shape outlyingness.
For example, the first functional outlier (26 January 2015, 1 February 2015) has a magnitude
outlyingness of 13.94 and a shape outlyingness of 689.94, while the average for those
parameters are 0.02 and 57.55, respectively.
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Table 1. Weekly NO2 outliers of the improved method with the modified band depth. The first
column includes those outlying weeks of the first four months of every year, defined by their first
and last day. The second column presents the magnitude outlyingness of those functions, which
quantifies how much a function is shifted compared to the rest. The last column shows the shape
outlyingness, a parameter that expresses to what degree a function has a different structure than
the others.

Date Magnitude Outlyingness Shape Outlyingness

26 January 2015→ 1 February 2015 13.94 689.94
9 February 2015→ 15 February 2015 27.84 670.24

16 February 2015→ 22 February 2015 4.35 81.42
10 April 2015→ 16 April 2015 11.52 403.41

12 February 2019→ 18 February 2019 12.19 179.78
26 February 2019→ 1 March 2019 11.27 113.62

14 January 2020→ 20 January 2020 −14.35 676.87
22 March 2020→ 28 March 2020 −14.39 146.50
29 March 2020→ 4 April 2020 −9.05 45.80
5 April 2020→ 11 April 2020 −24.11 243.15

19 April 2020→ 25 April 2020 −22.03 293.41
17 February 2021→ 23 February 2021 −20.34 909.81
24 February 2021→ 30 February 2021 −9.04 145.01

28 March 2021→ 3 April 2021 4.29 72.27
11 April 2021→ 17 April 2021 −19.23 586.20

The same analysis sequence is implemented with the rest of variables.

3.2.2. Second Variable: SO2

The second phase of the SO2 analysis includes the x̄ chart with monthly rational
subgroups and the Nelson rules, as well as the functional analysis of the monthly data
with the integrated and the modified band depth. These results are presented on Figure 5.
The x̄ chart of this variable on Figure 5a shows an annual cycle. The lowest values tend
to take place between May and September before rapidly increasing to the maximums,
which happen from November to February. From this point, the values of SO2 decrease
quickly until reaching the yearly minimum, consequently closing the cycle. Regarding the
outliers detected in this chart, Nelson rule number 1 points to January 2015 as a month
with an average value higher than three times the standard deviation of the mean. The
second Nelson rule detects an important number of points below the mean, ranging from
November 2020 to November 2021. In addition, rule number 3 detects a group of 7 points
continuously decreasing until October 2019. Lastly, the fifth rule defines as outliers those
points included in the time frame from July 2020 to October 2020, and September plus
October 2021. Despite those results, this method does not detect the first two months of
the lockdown as outliers. It can be seen that the levels of SO2 between November 2020
and February 2021 never reached the peak of the cycle in those months, which is above
the mean in all previous years, due to the reduction in the emission of SO2 during the
year 2020.
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(a)

(b)

(c)

Figure 5. Results of the second phase of the SO2 analysis: (a) x̄ chart with the monthly rational
subgroups and the Nelson rules implemented; (b) (left) Cartesian representation of the magnitude
and shape outlyingness of each function with the integrated depth; (right) functional plot of the SO2

values of each month; (c) (left) Cartesian representation of the magnitude and shape outlyingness of
each function with the modified band depth; (right) functional plot of the SO2 values of each month.

In Figure 5b, the functional data analysis with the integrated depth detects an increased
number of outliers compared to the previous case (18.8%), but no months in 2021 satisfy
this condition. The modified band depth of Figure 5c detects 13.5% of the functions as
outliers, including January 2021, which is when the annual peak should have taken place.
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(a)

(b)

(c)

Figure 6. Results of the third phase of the SO2 analysis: (a) x̄ chart with the weekly rational subgroups
of the first four months of every year, the Nelson rules implemented, and the functional outliers
detected with the modified band depth marked with red dots; (b) (left) Cartesian representation of
the magnitude and shape outlyingness of each function with the integrated depth; (right) functional
plot of the SO2 values of each week; (c) (left) Cartesian representation of the magnitude and shape
outlyingness of each function with the modified band depth; (right) functional plot of the SO2 values
of each week.

The results obtained in the third phase by studying the first four months of every year,
changing the time unit to weeks, and the new outlier detector successfully implemented
for the NO2 are shown in Figure 6. The x̄ chart of Figure 6a includes the outliers detected
with the modified band depth as red dots. Nelson rule number 1 detects the two major
outliers higher than three standard deviations from the mean: the second week of January
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2015 and the last week of 2017. It is also worth noting how rule number 3 and 5 identify
outliers in several weeks of March and April 2020. The integrated depth does not detect
the weeks of the lockdown, which represent an anomaly in the levels of SO2. Its results are
included in Figure 6b. With respect to the modified band depth, the graphical results are
shown in Figure 6c, and the numerical results are included in Table 2. Almost half (41%)
of the outliers detected are in 2020, including the weeks of the lockdown. Besides these
outputs, all local maximums which display values outside the norm are identified.

Table 2. Weekly SO2 outliers of the improved method with the modified band depth. The first
column includes those outlying weeks of the first quarter of every year, defined by their first and last
day. The second column presents the magnitude outlyingness of those functions, which quantifies
how much a function is shifted compared to the rest. The last column shows the shape outlyingness,
a parameter that expresses to what degree a function has a different structure than the others.

Date Magnitude Outlyingness Shape Outlyingness

7 March 2014→13 March 2014 5.626255 63.812306
5 January 2015→ 11 January 2015 31.910835 782.922973

12 January 2015→ 18 January 2015 6.574228 82.721158
9 February 2015→ 15 February 2015 9.991058 136.293751
17 January 2017→ 23 January 2017 6.462673 72.093495
28 February 2017→ 3 March 2017 25.187203 480.681219
18 March 2017→ 24 March 2017 17.930567 669.504009

23 January 2018→ 29 January 2018 7.053569 92.688184
7 January 2020→ 13 January 2020 21.048451 452.726218

4 February 2020→ 10 February 2020 −7.972081 419.256577
11 February 2020→ 17 February 2020 −9.399330 166.035485
18 February 2020→ 24 February 2020 −15.593749 649.645403

22 March 2020→ 28 March 2020 −6.807899 74.728096
29 March 2020→ 4 April 2020 −11.164611 338.940421
5 April 2020→ 11 April 2020 −11.988441 54.003313

12 April 2020→ 18 April 2020 −12.839921 115.184531
19 April 2020→ 25 April 2020 −11.988441 54.003313

20 January 2021→ 26 January 2021 −7.605015 158.613293
3 February 2021→ 9 February 2021 −14.618797 669.824183

24 February 2021→ 30 February 2021 −8.993194 22.934123
7 March 2021→ 13 March 2021 −15.645523 645.544555

14 March 2021→ 20 March 2021 −7.828102 27.494763
Average: 0.11 54.55

3.2.3. Third Variable: PM10

The results of the second phase of the PM10 analysis are displayed in Figure 7. This
includes the analysis of the levels of PM10 with the x̄ chart and monthly rational subgroups,
as well as the functional analysis with both depths on the monthly data. Unlike the previous
variables, the annual cycle is not so easily identified. The local maximums tend to appear
between November and January, and from there, a rapid decrease takes place, leading to a
period of lower values, which contains the minimums from May to July, before increasing
progressively to the highest values. Among the Nelson rules, number 5 detects a sequence
of points in March 2021 more than 2 standard deviations from the mean. Rule 6 identifies
two local minimums on July 2016 and August 2020, leaving all local maximums undetected.
Finally, it is noticeable how number 7 detects a consistent trend of values within one
standard deviation from the mean on 2017 and 2018. This should not be picked up as an
outlier by the functional method based on the concept of functional depth, although the
shape outlyingness of those functions can change that result.

The integrated depth shown in Figure 7b only detects October 2014 and March 2021 as
outliers, which implies 2.1% of the data set. On the contrary, the modified band depth of
Figure 7c detects up to 30% due to the bigger dispersion of the data in the MS plot.
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(a)

(b)

(c)

Figure 7. Results of the second phase of the PM10 analysis: (a) x̄ chart with the monthly rational
subgroups and the Nelson rules implemented; (b) (left) Cartesian representation of the magnitude
and shape outlyingness of each function with the integrated depth; (right) functional plot of the PM10

values of each month; (c) (left) Cartesian representation of the magnitude and shape outlyingness of
each function with the modified band depth; (right) functional plot of the PM10 values of each month.

In the third phase, analyzing the first four months of every year, we change the time
unit to months and implement the new outlier detector outputs the results shown in
Figure 8. On the x̄ chart shown in Figure 8a, rule 1 identifies the first week of April 2021
as an outlier. Rule 2 detects two chains of values on the same side of the mean on April
2016 and March–April 2021. A downward trend can be seen in 2020, yet it is not detected
by any of the Nelson rules. Lastly, Nelson rule 7 again detects the trend between 2017
and 2018. The main difference between the two depths relies on the null detection of the
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local minimums by the integrated depth displayed on Figure 8b. On the other hand, the
modified band depth of Figure 8c identifies the low values of 2015 and 2017 as outliers.
Moreover, this depth also detects the slight downward trend of 2020, which results in an
outlier in the second week of 2020. Finally, both methods detect all local maximums. These
results are included in Table 3.

(a)

(b)

(c)

Figure 8. Results of the third phase of the PM10 analysis: (a) x̄ chart with the weekly rational
subgroups of the first quarter of every year, the Nelson rules implemented, and the functional outliers
detected with the modified band depth marked with red dots; (b) (left) Cartesian representation of
the magnitude and shape outlyingness of each function with the integrated depth; (right) functional
plot of the PM10 values of each week; (c) (left) Cartesian representation of the magnitude and shape
outlyingness of each function with the modified band depth; (right) functional plot of the PM10

values of each week.
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Table 3. Weekly PM10 outliers of the improved method with the modified band depth. The first
column includes those outlying weeks of the first four months of every year, defined by their first
and last day. The second column presents the magnitude outlyingness of those functions, which
quantifies how much a function is shifted compared to the rest. The last column shows the shape
outlyingness, a parameter that expresses to what degree a function has a different structure than
the others.

Date Magnitude Outlyingness Shape Outlyingness

13 January 2014→ 19 January 2014 4.89 94.36
7 March 2014→ 13 March 2014 19.53 282.79

14 March 2014→ 20 March 2014 8.95 125.27
19 January 2015→ 25 January 2015 −7.74 30.78
26 January 2015→ 1 February 2015 −5.79 44.07
2 February 2015→ 8 February 2015 −14.26 324.18

23 February 2015→ 29 February 2015 −19.06 580.55
20 February 2015→ 5 March 2015 −13.96 303.93
20 March 2015→ 26 March 2015 −19.61 593.69
10 April 2015→ 16 April 2015 8.27 84.65

15 February 2016→ 21 February 2016 −8.82 142.91
5 March 2016→ 11 April 2016 −13.21 80.98

19 March 2016→ 25 March 2016 −6.31 177.74
26 March 2016→ 1 April 2016 −8.24 40.49
2 April 2016→ 8 April 2016 −6.64 57.83

16 April 2016→ 22 April 2016 −24.70 597.71
10 January 2017→ 16 January 2017 −7.49 87.34

19 February 2019→ 25 Feb 2019 8.30 23.86
25 February 2020→ 31 February 2020 10.91 149.45

5 April 2020→ 11 April 2020 −10.46 355.77
17 February 2021→ 23 February 2021 4.58 93.48

28 March 2021→ 3 April 2021 57.11 277.13
18 April 2021→ 24 April 2021 9.43 140.62

Average: −0.02 42.04

3.2.4. Fourth Variable: O3

The results of the second phase of the last variable analyzed, O3, are shown in Figure 9.
In this phase, the O3 data set is studied by month with the x̄ chart and the two functional
depths: integrated depth and modified band depth. The O3 presents an easily identifi-
able annual cycle, which is displayed on the x̄ chart with monthly rational subgroups
of Figure 9a. Within the variability of this cycle, the local minimums usually take place
between November and December. Over the course of the next 2 to 3 months, the values
of O3 escalate to the annual maximum, which tends to appear from April to June. After
September, the data transitions to the minimum, starting the cycle over. Nelson rule number
2 detects several trends in the data plotted, with those being present on February 2017
(below the mean) and October 2018 (higher than the mean). Rule number 3 defines May
2018 as an outlier, which is a period of anomalies located over two standard deviations
from the mean. Lastly, rule number 6 detects an outlying set of values in the end of summer
of that same year. This information indicates that between spring and summer of the year
2019, there was a higher concentration of O3 than usual. Moving on to the functional data
analysis, the integrated depth method, shown in Figure 9b, does not detect any month as an
outlier, while the modified band depth of Figure 9c defines 21.9% of the months as outliers.
This mismatch leads to discarding the integrated depth and the third phase, which consists
of studying the first four months of every year, changing the time unit from months to
weeks, and implementing the new outlier detector. Its results are displayed in Figure 10.
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(a)

(b)

(c)

Figure 9. Results of the second phase of the O3 analysis: (a) x̄ chart with the monthly rational
subgroups and the Nelson rules implemented; (b) (left) Cartesian representation of the magnitude
and shape outlyingness of each function with the integrated depth; (right) functional plot of the O3

values of each month; (c) (left) Cartesian representation of the magnitude and shape outlyingness of
each function with the modified band depth; (right) functional plot of the O3 values of each month.

In the x̄ included in Figure 10a, the Nelson rules do not detect more than 3 trends.
Rule 2 identifies more than 9 consecutive points below the mean in 2017, which is correctly
detected by the functional data analysis in the right weeks. Rule 5 detects a below-the-mean
trend in the first two months of 2020, which is also correctly identified by the functional data
analysis with the modified band depth. Lastly, rule number 6 coincides with the functional
data methods on a local maximum on March 2020. The modified band depth shown in
Figure 10c successfully detects 90% of the local minimums and maximums, including the
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increasing trend of 2020. In this time frame, the levels of O3 present a fast increase from the
end of February to the end of April, similar to the likes of 2015, 2017, and 2021. In this case,
the integrated depth yields more similar results to the modified band depth with a higher
sensibility to local minimums, but its performance is still lacking of a higher detection
rate of this kind of points, as can be seen on Figure 10b. For example, it does not detect
the second week of April 2015, included in Table 4, because it is detected by the modified
band depth.

(a)

(b)

(c)

Figure 10. Results of the third phase of the O3 analysis: (a) x̄ chart with the weekly rational subgroups
of the first four months of every year, the Nelson rules implemented, and the functional outliers
detected with the modified band depth marked with red dots; (b) (left) Cartesian representation of
the magnitude and shape outlyingness of each function with the integrated depth; (right) functional
plot of the O3 values of each week; (c) (left) Cartesian representation of the magnitude and shape
outlyingness of each function with the modified band depth; (right) functional plot of the O3 values
of each week.
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Table 4. Weekly O3 outliers of the improved method with the modified band depth. The first column
includes those outlying weeks of the first four months of every year, defined by their first and last
day. The second column presents the magnitude outlyingness of those functions, which quantifies
how much a function is shifted compared to the rest. The last column shows the shape outlyingness,
a parameter that expresses to what degree a function has a different structure than the others.

Date Magnitude Outlyingness Shape Outlyingness

6 January 2014→ 12 January 2014 −6.39 57.99
5 January 2015→ 11 January 2015 −40.13 466.26

2 February 2015→ 8 February 2015 7.63 405.32
9 February 2015→ 15 February 2015 −5.68 30.89

3 April 2015→ 9 April 2015 6.39 28.17
18 January 2016→ 24 January 2016 −13.93 164.05

3 January 2017→ 9 January 2017 −17.78 607.46
17 January 2017→ 23 January 2017 −7.52 18.98
24 January 2017→ 30 January 2017 −7.58 28.62

15 April 2017→ 21 April 2017 23.21 798.25
29 January 2019→ 4 February 2019 9.77 147.90

23 March 2019→ 29 March 2019 28.24 381.43
30 March 2019→ 5 April 2019 6.28 26.29
6 April 2019→ 12 April 2019 16.52 630.17

13 April 2019→ 19 April 2019 8.21 81.09
7 January 2020→ 13 January 2020 −15.18 323.62

21 January 2020→ 27 January 2020 −9.32 39.16
28 January 2020→ 3 February 2020 −27.23 484.60

22 March 2020→ 28 March 2020 7.35 53.58
29 March 2020→ 4 April 2020 17.65 228.64
19 April 2020→ 25 April 2020 6.27 8.71

13 January 2021→ 19 January 2021 −5.94 2.77
27 January 2021→ 2 February 2021 −7.57 111.92

4 April 2021→ 10 April 2021 7.99 79.31
11 April 2021→ 17 April 2021 10.98 344.05

Average 0.0047 48.53

4. Discussion

The classical analysis through box plots offers a first sight into the data by outputting
several statistical parameters and representing graphically its spread and skewness. The
classical methods tend to be robust with data that present a normal distribution when that
distribution is known. Moreover, the classical analysis studies the data set as individual
points, while the limits for pollutant particles are usually defined over a fixed time pe-
riod. Under these conditions, punctual observations are not enough, and the trend has to
be studied.

Considering the cons presented, it can be concluded that the box plots are able to
detect certain outliers, but in all cases, this number is disproportionate, or the validation
events are not identified. The non-normality of the data also plays against this method by
making it unable to detect outliers in the range below the minimum limit of the box plot.

Control charts, in this case, the x̄ chart, are capable of detecting trends. However,
they present several flaws that lead to poor results for this type of data. They were
initially designed for industrial processes in which the variables do not present such a high
variability. Moreover, the concept of rational subgroups and their mean values accounts
for an important loss of information that does not contribute to a more accurate detection
of outliers. Nevertheless, their results are better and more consistent than those of the
box plots, and they offer a great graphical representation of how each variable changes
with time.

In contrast, the functional approach studies the whole dataset. Therefore, there is a
much smaller loss of information, and this allows a reliable study of the trends hidden in the
data. As was explained above, the pollution limits are usually defined as a certain number
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of deviations that exceed the legal limit over a time period. Moreover, the transformation
from discrete information points to functional data smooths the data and reduces the
influence of those points which can be instrumental errors and would be detected by the
classical analysis and the control charts. Lastly, it is not necessary to know the original
distribution of the data.

This research implements the concept of directional outlyingness for functional data [34],
which is decomposed in two parts: magnitude outlyingness and shape outlyingness. This
method is tested with two functional depths, integrated depth [57] and modified band depth [59].
The results of the outlier detector [34] are displayed on a magnitude-shape plot proposed by
Dai et al. [66]. The original outlier detector does not achieve the desired results, which leads to
the proposed version of the algorithm. This new iteration of the method is implemented with
the modified band depth, uses weeks as the time unit to increase the data points, and studies
the year divided in each quarter to reduce the effects of the high variability. These changes,
along with the analysis of the distribution of the magnitude and shape outlyingness of each
curve, lead to a better clustering of the magnitude-shape pairs of each curve and a more precise
detection of outliers.

Regarding the validation of the method, the low values of NO2 seen in the second
half of March and all of April 2020 are successfully detected by the functional model. It
also achieves a precision of 75% for local minimums and maximums, and points to certain
shape outliers corresponding to weeks of fast changes in the levels of NO2. On the other
hand, despite the x̄ being able to detect the effects of the lockdown, it also identifies some
annual trends that are perfectly normal compared to how the values evolve in other years.

The analysis of the SO2 leads initially to the x̄ chart of Figure 5a, in which there can
be seen a below-the-trend on the values of 2020 and 2021. This, indeed, is detected by the
proposed method, along with the most relevant local minimums and maximums, which
confirms a decrease in the levels of SO2 in Gijón during March and April 2020. The Nelson
rules behave similarly to the previous case, detecting the lockdown but also firing when
there is a trend of values close to the mean.

In the case of the PM10, the proposed algorithm identifies all relevant local minimum
and maximum, including the local maximum at the beginning of March 2020 and the local
minimum at the end of April 2020. However, this reduction in the levels of PM10 during
the lockdown is nothing extraordinary compared to the same time period in the previous
years. The Nelson rules fail to detect the local minimum and maximum values and point
as outliers several ranges of values close to the mean. It is worth noting that the local
maximum detected by the functional analysis and the Nelson rules has been verified with
the data from other urban air quality station in Gijón, and it is not a measuring error.

Finally, the analysis of the O3 with the new algorithm performs with a 90% of accuracy
on local minimums and maximums, and is able to detect an increase from the minimum of
February 2020 to the maximum of April 2020 in the levels of O3. This is due to the decrease
of NO2 [18]. In this case, the Nelson rules do not detect more than three trends, and only
one agrees with the results of the functional analysis.

5. Conclusions

In this research paper, several mathematical methods have been analyzed and com-
pared for the detection of outliers in environmental data with high variability. These
methods were validated on real data from the Spanish city of Gijón. The database contains
daily records of several air quality parameters (NO2, SO2, PM10, and O3) from January 1st,
2014 to December 31st, 2021. More specifically, previous research [18–22] shows evidence
on the reduction of NO2 levels during the COVID-19 lockdown of March and April 2020.
Consequently, this proven fact was used to validate all methods.

With this scope in mind, the classical vectorial approach, applied through box plots,
remains too simple. Although it provides interesting statistical information, its discrete
basis leads to several weak points regarding the time correlation structure of the data set.
Moreover, it fails to detect all those outliers or trends that present a behavior far from the
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average, with high or low values just below the limits. Statistical process control (x̄ chart)
was the second mathematical method studied. It takes the time series correlation of the
data, but the concept of rational subgroups increases the loss of information. Additionally,
the non-normality of the data leads to false alarms. However, this method provides an
insightful graphical representation of the underlying trends of the data and is able to detect
the most noticeable outliers.

The last method implemented was functional data analysis, based on the concept
of directional outlyingness. It has the advantage of using full time units, studying the
entire time frame of the data in a continuous manner, which implies a smaller loss of
information, and it is not affected by the distribution of the data. The functional method
presented in this research paper is more precise than the classical analysis techniques and
the statistical process control. In addition, the new outlier detector proposed enables the
use of this mathematical method for the identification of outliers on environmental data
characterized by its high variability. Furthermore, the obtained results have been validated
with the effects on the air quality data from a verified event, which in this case is the
COVID-19 lockdown in Gijón, Spain. Therefore, it contributes to a better assessment of the
air pollution events. Additionally, it is scalable and can be deployed for the processing of
other databases from different parts of the globe.

Finally, future research work will be focused on the elimination of the dependence
on percentiles to define which functions are outliers. This will be attempted through the
testing and implementation of several classification algorithms, such as isolation forest or
k-means. Furthermore, the validation of the model presented will enable its application in
other data sets that lack additional verified information regarding their outliers.
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