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1 Introduction

In this paper, we study the numerical approximation of the optimal control problem

(P) inf
u∈Uad

J(u) :=
1

2

∫
Q

(yu(x, t)− yd(x, t))
2 dx dt+

κ

2

∫
Q

u(x, t)2 dx dt,

where κ > 0, Q = Ω × (0, T ), with Ω ⊂ Rn, n = 2 or 3, a convex polygonal/polyhedral domain with
boundary Γ and 0 < T < +∞ is fixed,

Uad = {u ∈ L∞(Q) : ∥u(t)∥L1(Ω) ≤ γ for a.a. t ∈ (0, T )}

with 0 < γ < +∞. Further yu is the solution of the semilinear parabolic equation{
∂y

∂t
+Ay + a(x, t, y) = u in Q = Ω× (0, T ),

y = 0 on Σ = Γ× (0, T ), y(0) = y0 in Ω
(1.1)

with

Ay = −
n∑

i,j=1

∂xj
(aij(x)∂xi

y).

Precise assumptions on the operator A and the nonlinearity a are given below.
This problem was studied in [8], where the authors proved existence of a solution, and obtained first

and second order optimality conditions. As it is emphasized in that paper, there are two special difficulties
in the study of (P). The first one is given by the fact that, in order to be able to deal with strong nonlinear
terms such as a(x, t, y) = a0(x, t) exp(y) with a0 ∈ L∞(Q), the framework for the control space cannot
be L2(Q), but should be Lq(Q) with q large enough. This implies that the usual techniques to prove
existence of a solution fail, rather, a truncation argument on a is used for this purpose. The second
difficulty is the nondifferentiability of the constraint. First order optimality conditions are obtained using
the convexity of Uad. Second order optimality conditions require a careful setting of the cone of critical
directions in order to obtain sufficient conditions with a minimal gap with respect to the necessary ones.
With the aid of first order optimality conditions, sparsity properties of the optimal control are derived.

There are numerous references regarding the numerical analysis of problems governed by partial differ-
ential equations. Not trying to be exhaustive, and considering only distributed optimal control problems
governed by parabolic equations, we can cite [23] (linear equation, no constraints), [13] (semilinear equa-
tion, but only dimension 2 and not strong nonlinear terms, no constraints), [1] (discontinuous elements
for linear convection-diffusion), [22, 17, 29] (linear, pointwise control-constraints), [20], (space-time spec-
tral discretization), [10, 5] (semilinear, sparsity-promoting term in the functional, no constraints), [11]
(semilinear, pointwise control-constraints, no Thikonov regularization), [12] (linear, state constraints),
[19] (quasilinear, pointwise state constraints).

The only reference that we have been able to find with a pointwise constraint in time on the norm of
the control is [18]. In that reference, the authors impose the differentiable constraint ∥u(·, t)∥2L2(Ω) ≤ 1.
However, they do not address the obtention of error estimates for the discrete problems.

Our objectives in this paper are to discretize (P) in such a way that the sparsity properties are
preserved, to prove convergence of the discrete solutions to the solutions of the continuous problem, and
to obtain error estimates. To discretize the state equation, we use a discontinuous Galerkin scheme,
computationally equivalent to the implicit Euler method. For the discretization in space of the state
and the adjoint state, continuous piecewise linear finite elements are used, while for the control we study
both piecewise constant and continuous piecewise linear approximations. The use of piecewise constant
elements leads in a natural way to sparsity properties of the discrete optimal control consistent with
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those obtained for the continuous problem, but a straightforward discretization of (P) using continuous
piecewise linear space-approximations of the control, may result in a loss of the sparsity properties due to
the use of a mass matrix. To overcome this difficulty, we discretize the norm in Lp(Ω), p = 1, 2 with the
help of the lumped mass matrix and use Carstensen’s quasi interpolation operator. A similar technique
for problems with sparsity-promoting terms in the functional was used in [6] for a problem governed by
a semilinear elliptic equation and in [5] for a problem governed by a semilinear parabolic equation; this
technique is also found in the thesis by [26] and in [28].

The plan of this paper is as follows. In Section 2 we recall some results from [8] concerned with the
continuous problem. In Section 3 the problem is discretized and the sparsity properties of the discrete
solution are established. In Section 4 we prove convergence and obtain error estimates. Finally, in Section
5, numerical examples are presented to illustrate the results obtained in the paper.

2 Assumptions and preliminary results

We make the following assumptions along this paper.
Assumption 1- Ω ⊂ Rn, n = 2 or 3, is a convex polygonal/polyhedral domain, and 0 < T < ∞ is

fixed. Γ denotes the boundary of Ω. The coefficients of the operator A satisfy: aij are Lipschitz functions
in Ω̄ for every 1 ≤ i, j ≤ n, and

ΛA|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ∀ξ ∈ Rn and for a.a. x ∈ Ω (2.1)

for some ΛA > 0. For the initial state we suppose that y0 ∈ H1
0 (Ω) ∩ C0,α(Ω̄), where C0,α(Ω̄) denotes

the space of α-Hölder continuous functions in Ω̄ with α ∈ (0, 1].
Assumption 2- We assume that a : Q×R → R is a Carathéodory function of class C2 with respect to

the last variable satisfying the following properties:

∃Ca ∈ R :
∂a

∂y
(x, t, y) ≥ Ca ∀y ∈ R, (2.2)

a(·, ·, 0) ∈ Lr̂(0, T ;L2(Ω)), with r̂ >
4

4− n
, (2.3)

∀M > 0 ∃Ca,M > 0 :

∣∣∣∣∂ja∂yj
(x, t, y)

∣∣∣∣ ≤ Ca,M ∀|y| ≤M and j = 1, 2, (2.4)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂2a∂y2
(x, t, y1)−

∂2a

∂y2
(x, t, y2)

∣∣∣∣ < ρ ∀|y1|, |y2| ≤M with |y1 − y2| < ε,
(2.5)

for almost all (x, t) ∈ Q.
Assumption 3- In the control problem (P), we assume that κ > 0, γ > 0, and yd ∈ Lr̂(0, T ;L2(Ω)).
As usual we denoteH2,1(Q) = L2(0, T ;H2(Ω)∩H1

0 (Ω))∩H1(0, T ;L2(Ω)). Then, we have the following
result.

Theorem 2.1. Under Assumptions 1 and 2, for every u ∈ Lr(0, T ;Lp(Ω)) with 1
r + n

2p < 1 and r, p ≥ 2

there exists a unique solution yu ∈ C0,β(Q̄) ∩H2,1(Q) of (1.1) with β ∈ (0, α]. Moreover, the following
estimate holds {

∥yu∥C0,β(Q̄) + ∥yu∥H2,1(Q) ≤ η
(
∥u∥Lr(0,T ;Lp(Ω)) +Mr̂,0

)
,

∥yu∥L∞(0,T ;L2(Ω)) + ∥yu∥L2(0,T ;H1
0 (Ω)) ≤ C

(
∥u∥L2(Q) +M2,0

) (2.6)
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for a constant C and a monotone nondecreasing function η : [0,∞) −→ [0,∞) with η(0) = 0 independent
of u, and

Mr̂,0 = ∥a(·, ·, 0)∥Lr̂(0,T ;L2(Ω)) + ∥y0∥C0,α(Ω̄) + ∥y0∥H1
0 (Ω),

M2,0 = ∥a(·, ·, 0)∥L2(Q) + ∥y0∥L2(Ω).

The existence of a unique solution of (1.1) in the space L2(0, T ;H1
0 (Ω)) ∩ L∞(Q) as well as the

estimates in L∞(0, T ;L2(Ω)) and L2(0, T ;H1
0 (Ω)) were proved in [8]. The H2,1(Q) regularity is a well

known consequence of the convexity of Ω and the H1
0 (Ω) regularity of y0. The reader is referred to [21,

Chap. III-§10] or [15] for the C0,β(Q̄) regularity.
Taking p = 2 and r ∈

(
4

4−n ,∞
]
we have that 1

r + n
4 < 1 and r > 2. Then, from Theorem 2.1 we

deduce that the mapping G : Lr(0, T ;L2(Ω)) −→ H2,1(Q) ∩ L∞(Q) given by G(u) = yu is well defined.
Further, we have the following differentiability properties.

Theorem 2.2. The mapping G is of class C2. For u, v, v1, v2 ∈ Lr(0, T ;L2(Ω)) the derivatives zv =
G′(u)v and zv1,v2 = G′′(u)(v1, v2) are the solutions of the equations

∂zv
∂t

+Azv +
∂a

∂y
(x, t, yu)zv = v in Q,

zv = 0 on Σ, zv(0) = 0 in Ω,
(2.7)


∂zv1,v2
∂t

+Azv1,v2 +
∂a

∂y
(x, t, yu)zv1,v2

+
∂2a

∂y2
(x, t, yu)zv1zv2 = 0 in Q,

zv1,v2 = 0 on Σ, zv1,v2
(0) = 0 in Ω

(2.8)

where zvi = G′(u)vi, i = 1, 2.

This theorem was proved in [8] with a change in the range of G, namely G : Lr(0, T ;L2(Ω)) −→
L2(0, T ;H1

0 (Ω)) ∩ H1(0, T ;H−1(Ω)) ∩ L∞(Q). The proof given there can be adapted using the extra
regularity of the data of the state equation and Theorem 2.1.

Theorem 2.2 along with the chain rule leads to the following differentiability properties of the cost
functional J .

Corollary 2.3. If r > 4
4−n , then J : Lr(0, T ;L2(Ω)) −→ R is of class C2 and its derivatives are given

by the expressions

J ′(u)v =

∫
Q

(φ+ κu)v dxdt, (2.9)

J ′′(u)(v1, v2) =

∫
Q

[(
1− ∂2a

∂y2
(x, t, yu)φ

)
zv1zv2 + κv1v2

]
dxdt, (2.10)

where zvi = G′(u)vi, i = 1, 2, and φ ∈ C0,β(Q̄) ∩H2,1(Q) is the solution of the adjoint state equation −∂φ
∂t

+A∗φ+
∂a

∂y
(x, t, yu)φ = yu − yd in Q,

φ = 0 on Σ, φ(T ) = 0 in Ω,
(2.11)

with A∗φ = −
n∑

i,j=1

∂xj
(aji(x)∂xi

φ) the adjoint operator of A.
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Concerning the control problem (P), the following theorem and corollaries follow from [8].

Theorem 2.4. There exists at least one solution of (P). Moreover, for every local minimizer ū in the
Lr(0, T ;L2(Ω)) sense with r > 4

4−n , there exist ȳ, φ̄ ∈ H2,1(Q) ∩ C0,β(Q̄), and µ̄ ∈ L∞(Q) such that{
∂ȳ

∂t
+Aȳ + a(x, t, ȳ) = ū in Q,

ȳ = 0 on Σ, ȳ(0) = y0 in Ω,
(2.12) −∂φ̄

∂t
+A∗φ̄+

∂a

∂y
(x, t, ȳ)φ̄ = ȳ − yd in Q,

φ̄ = 0 on Σ, φ̄(T ) = 0 in Ω,
(2.13)

∫
Q

µ̄(u− ū) dx dt ≤ 0 ∀u ∈ Uad, (2.14)

φ̄+ κū+ µ̄ = 0. (2.15)

Let us denote by ProjBγ
: L2(Ω) −→ Bγ ∩ L2(Ω) the L2(Ω) projection, where Bγ = {v ∈ L1(Ω) :

∥v∥L1(Ω) ≤ γ}.

Corollary 2.5. Let ū, φ̄, and µ̄ satisfy (2.12)–(2.15) and assume that ū ∈ Uad. Then, the following
properties hold ∫

Ω

µ̄(t)(v − ū(t)) dx ≤ 0 ∀v ∈ Bγ and for a.a. t ∈ (0, T ), (2.16)

ū(t) = ProjBγ

(
− 1

κ
φ̄(t)

)
for a.a. t ∈ (0, T ), (2.17)

ū(x, t)µ̄(x, t) = |ū(x, t)||µ̄(x, t)| for a.a. (x, t) ∈ Q,

if ∥ū(t)∥L1(Ω) < γ then µ̄(t) ≡ 0 in Ω a.e. in (0, T ),

if ∥ū(t)∥L1(Ω) = γ and µ̄(t) ̸≡ 0 in Ω,

then supp(ū(t)) ⊂ {x ∈ Ω : |µ̄(x, t)| = ∥µ̄(t)∥L∞(Ω)}.

(2.18)

Corollary 2.6. Let ū ∈ Uad∩L∞(Q) satisfy (2.15) and (2.18). Then, the following identities are fulfilled

ū(x, t) = − 1

κ
sign(φ̄(x, t))

(
|φ̄(x, t)| − ∥µ̄(t)∥L∞(Ω)

)+
= − 1

κ

{[
φ̄(x, t) + ∥µ̄(t)∥L∞(Ω)

]−
+
[
φ̄(x, t)− ∥µ̄(t)∥L∞(Ω)

]+}
. (2.19)

Moreover, the regularities ū ∈ H1(Q) and µ̄ ∈ H1(Q) hold.

We finish this section by considering the second order optimality conditions. To this end we introduce
some notation. We consider the Lipschitz continuous and convex mapping j : L1(Ω) −→ R defined by
j(v) = ∥v∥L1(Ω). Its directional derivative is given by the expression

j′(u; v) =

∫
Ω+

u

v(x) dx−
∫
Ω−

u

v(x) dx+

∫
Ω0

u

|v(x)|dx ∀u, v ∈ L1(Ω), (2.20)

where
Ω+

u = {x ∈ Ω : u(x) > 0}, Ω−
u = {x ∈ Ω : u(x) < 0} and Ω0

u = Ω \ (Ω+
u ∪ Ω−

u ).
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Given an element ū ∈ Uad satisfying the first order optimality conditions (2.12)–(2.15), set

Iγ = {t ∈ (0, T ) : j(ū(t)) = γ} and I+γ = {t ∈ Iγ : µ̄(t) ̸≡ 0 in Ω}.

Now, we define the cone of critical directions associated with ū

Cū =
{
v ∈ L2(Q) : J ′(ū)v = 0 and j′(ū(t); v(t))

{
= 0 if t ∈ I+γ ,
≤ 0 if t ∈ Iγ \ I+γ ,

}
.

Then, we have the following theorem, whose proof can be found in [8]1.

Theorem 2.7. Let ū be a local solution of (P) in the Lr(0, T ;L2(Ω)) sense with r > 4
4−n . Then, the

inequality J ′′(ū)v2 ≥ 0 holds for all v ∈ Cū. Reciprocally, if ū ∈ Uad satisfies the first order optimality
conditions and the second order condition J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, then there exist δ > 0 and ε > 0
such that

J(ū) +
δ

2
∥u− ū∥2L2(Q) ≤ J(u) ∀u ∈ Uad ∩Bε(ū), (2.21)

where Bε(ū) = {u ∈ Lr(0, T ;L2(Ω)) : ∥u− ū∥Lr(0,T ;L2(Ω)) ≤ ε}.

Given s > 0 we define the extended cone

Cs
ū =

{
v ∈ L2(Q) : |J ′(ū)v| ≤ s∥v∥L2(Q) and

{ |j′(ū(t); v(t))| ≤ s∥v∥L2(Q) if t ∈ I+γ ,
j′(ū(t); v(t)) ≤ s∥v∥L2(Q) if t ∈ Iγ \ I+γ ,

}
.

Then, we have the following result.

Theorem 2.8. Let ū ∈ Uad satisfy the first order optimality conditions (2.12)–(2.15) and the second
order condition J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. Then, for every r ∈

(
4

4−n ,∞] there exist strictly positive
numbers ε, s, λ such that

J ′′(u)v2 ≥ λ∥v∥2L2(Q) ∀v ∈ Cs
ū and ∀u ∈ Bε(ū), (2.22)

where Bε(ū) denotes the Lr(0, T ;L2(Ω)) closed ball.

3 Numerical approximation

In this section we study the numerical discretization of (P) by discontinuous Galerkin finite element
methods. To this end we consider a quasi-uniform family of triangulations {Kh}h>0 of Ω̄, cf. [3, Definition
(4.4.13)], and a quasi-uniform family of partitions of size τ of [0, T ], 0 = t0 < t1 < · · · < tNτ

= T . We will
denote by Nh and NI,h the number of nodes and interior nodes of the triangulation Kh, Ij = (tj−1, tj),
τj = tj − tj−1, τ = max1≤j≤Nτ

τj , and σ = (h, τ). Following [24] we make the following assumptions.
Assumption 4- The next properties hold

∃θ1, θ2 > 0 such that τj ≥ θ1τ
θ2 ∀j = 1, . . . Nτ ,

∃ϱ > 0 such that τ ≤ ϱτj ∀j = 1, . . . Nτ ,

∃θ3, θ4 > 0 and cΩ,T , CΩ,T > 0 such that cΩ,Th
θ3 ≤ τ ≤ CΩ,Th

θ4 ,

τ |Ca| < 1, where Ca satisfies (2.2),

where the constants are independent of τ and h. Observe that θ3 and θ4 can be arbitrarily large and
small, respectively. Hence, it is not a strong restriction.

1At the end of the proof of Theorem 5.1 of that paper, the definition of vk has to be changed to vk(x, t) =
v(x,t)

1+ 1
k
∥v(t)∥

L2(Ω)

and subsequently J ′(ū)vk = 0 follows from Lemma 5.1.
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3.1 Approximation of the state equation.

Now we define the finite dimensional spaces

Yh = {yh ∈ C(Ω̄) : yh|K ∈ P1(K) ∀K ∈ Kh and yh = 0 on Γ},

Yσ = {yσ ∈ L2(0, T ;Yh) : yσ|Ij ∈ Yh ∀j = 1, . . . , Nτ}.
The elements of Yσ can be written as

yσ =

Nτ∑
j=1

yh,jχj =

Nτ∑
j=1

NI,h∑
i=1

yi,jeiχj ,

where yh,j ∈ Yh for j = 1, . . . , Nτ , yi,j ∈ R for i = 1, . . . , NI,h and j = 1, . . . , Nτ , {ei}
NI,h

i=1 is the nodal

basis associated to the interior nodes {xi}
NI,h

i=1 of the triangulation, and χj denotes the characteristic
function of the interval Ij = (tj−1, tj).

For every u ∈ L2(Q), we define its associated discrete state as the unique element yσ(u) ∈ Yσ such
that for j = 1, . . . , Nτ

∫
Ω

(yh,j − yh,j−1)zh dx+ τjb(yh,j , zh) +

∫
Ij

∫
Ω

a(x, t, yh,j)zh dx dt =

∫
Ij

∫
Ω

uzh dxdt ∀zh ∈ Yh,

yh,0 = Phy0,
(3.1)

where Ph : L2(Ω) −→ Yh denotes the L2 projection operator, and b : H1(Ω)×H1(Ω) −→ R is the bilinear
form

b(y, z) =

∫
Ω

n∑
i,j=1

aij∂xi
y∂xj

zdx ∀y, z ∈ H1(Ω).

From a computational point of view, this scheme coincides with the implicit Euler discretization of the
system of ordinary differential equations obtained after spatial finite element discretization. The proof of
existence and uniqueness of a solution of (3.1) is standard by using Brouwer’s fixed point theorem and
the assumption τ |Ca| < 1. Moreover, the system (3.1) realizes an approximation of (1.1) in the following
sense.

Theorem 3.1. Let u ∈ Lr(0, T ;L2(Ω)) hold with r > 4
4−n . Under the assumptions 1, 2, and 4, there

exist h0 > 0, τ0 > 0, δ0 > 0, C > 0, and a monotone nondecreasing function η1 : [0,∞) −→ [0,∞)
independent of u such that for every τ < τ0 and h < h0

∥yu − yσ(u)∥L2(Q) ≤ C
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
(τ + h2), (3.2)

∥yu − yσ(u)∥L∞(Q) ≤ η1
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
| log h|3hδ0 , (3.3)

where Mr̂,0 is taken as in Theorem 2.1.

Proof. For the proof of (3.2) the reader is referred to [24, Corollary 6.2]. To prove (3.3) we use [24,
Theorem 6.5] to deduce the existence of a constant C1 independent of u such that

∥yu − yσ(u)∥L∞(Q) ≤ C1| log h|
(
log

T

τ

)2
∥yu − zσ∥L∞(Q) ∀zσ ∈ Yσ.

Let us select a convenient zσ. We denote by Pτ the L2(0, T ) projection operator

Pτw =

Nτ∑
j=1

1

τj

∫
Ij

w(t) dtχj ∀w ∈ L1(0, T ).
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It is obvious that ∥Pτz∥L∞(Q) ≤ ∥z∥L∞(Q) for every z ∈ L∞(Q).

We also set Πh : C0(Ω̄) −→ Yh the interpolation operator Πhz =

NI,h∑
i=1

z(xi)ei. Then, we take zσ =

PτΠhyu. From (2.6) we get

∥yu − zσ∥L∞(Q) ≤ ∥yu − Pτyu∥L∞(Q) + ∥Pτ (yu −Πhyu)∥L∞(Q)

≤ ∥yu − Pτyu∥L∞(Q) + ∥yu −Πhyu∥L∞(Q)

≤ (τβ + (n+ 1)hβ)∥yu∥C0,β(Q̄) ≤ (τβ + (n+ 1)hβ)η
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
.

Using the assumption cΩ,Th
θ3 ≤ τ ≤ CΩ,τh

θ4 and taking δ0 = min{1, θ4}β we deduce (3.3).

3.2 Approximation of the control problem.

We will consider two different ways to discretize the space of controls:

I - Piecewise constant controls. We introduce the spaces and sets

Uh = Uh,0 = {uh ∈ L∞(Ω) : uh|K ≡ uK ∈ R ∀K ∈ Kh},

Bh,γ = {uh =
∑

K∈Kh

uKχK ∈ Uh,0 :
∑

K∈Kh

|K||uK | ≤ γ},

Uσ = Uσ,0 = {uσ =

Nτ∑
j=1

uh,jχj : uh,j ∈ Uh,0 for j = 1, . . . , Nτ},

Uσ,ad =
{
uσ ∈ Uσ,0 : uh,j ∈ Bh,γ for j = 1, . . . , Nτ

}
,

where χK and χj denote the characteristic functions of the sets K and Ij , respectively. It is immediate
to check that Uσ,ad = Uσ ∩ Uad ⊂ Uad.

II - Piecewise linear controls. In this case we take

Uh = Uh,1 = {uh ∈ C(Ω̄) : uh|K ∈ P1(K) ∀K ∈ Kh},

Bh,γ = {uh =

Nh∑
i=1

uiei ∈ Uh,1 :

Nh∑
i=1

|ui|
∫
Ω

ei dx ≤ γ},

Uσ = Uσ,1 = {uσ =

Nτ∑
j=1

uh,jχj : uh,j ∈ Uh,1 for j = 1, . . . , Nτ},

Uσ,ad =
{
uσ ∈ Uσ,1 : uh,j ∈ Bh,γ for j = 1, . . . , Nτ

}
,

where P1(K) denotes the space of the polynomials on K of degree ≤ 1. From the inequality

∥uh∥L1(Ω) =

∫
Ω

∣∣∣∣∣
Nh∑
i=1

uiei

∣∣∣∣∣ dx ≤
Nh∑
i=1

|ui|
∫
Ω

ei dx

we infer that Uσ,ad ⊂ Uad.

We observe that Uσ ⊂ L∞(0, T ;Uh) in both cases and every element uσ ∈ Uσ can be written in the
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form

uσ =

Nτ∑
j=1

uh,jχj =



Nτ∑
j=1

∑
K∈Kh

uK,jχKχj if Uσ = Uσ,0,

Nτ∑
j=1

Nh∑
i=1

ui,jeiχj if Uσ = Uσ,1.

Now, we formulate the discrete control problem

(Pσ) inf
uσ∈Uσ,ad

Jσ(uσ) :=
1

2

∫
Q

|yσ(uσ)− yd|2 dx dt+
κ

2
∥uσ∥2σ,

where yσ(uσ) is the solution of (3.1) for u = uσ and

∥uσ∥2σ =

Nτ∑
j=1

τj∥uh,j∥2h

with ∥ · ∥h the norm in Uh defined by

∥uh∥h =



( ∑
K∈Kh

|K|u2K

) 1
2

if Uh = Uh,0,

(
Nh∑
i=1

(∫
Ω

ei(x) dx
)
u2i

) 1
2

if Uh = Uh,1.

We notice that

∥uh∥2L2(Ω) =


∑

K∈Kh

∫
K

|uK |2 dx = ∥uh∥2h if Uh = Uh,0,∫
Ω

( Nh∑
i=1

uiei(x)
)2

dx ≤
∫
Ω

( Nh∑
i=1

ei(x)u
2
i

)
dx = ∥uh∥2h if Uh = Uh,1,

(3.4)

where we have used that 0 ≤ ei(x) ≤ 1 and
∑Nh

i=1 ei(x) = 1 in Ω.

We also introduce ∥uσ∥σ =
√

(uσ, uσ)σ, where the scalar product (·, ·)σ in Uσ is defined by

(uσ, vσ)σ =

Nτ∑
j=1

τj(uh,j , vh,j)h =


(uσ, vσ)L2(Q) =

Nτ∑
j=1

∑
K∈Kh

τj |K|uK,jvK,j if Uσ = Uσ,0,

Nτ∑
j=1

Nh∑
i=1

τj

(∫
Ω

ei(x) dx
)
ui,jvi,j if Uσ = Uσ,1.

Due to the compactness of Uσ,ad in both definitions and the continuity of Jσ, we infer the existence
of at least one solution for (Pσ).

Analogously to Corollary 2.3 we have the following differentiability result.

Theorem 3.2. The functional Jσ : Uσ −→ R is of class C2 and its first derivative is given by the
expression

J ′
σ(uσ)vσ =

∫
Q

φσvσ dxdt+ κ(uσ, vσ)σ, (3.5)
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where φσ(uσ) ∈ Yσ is the solution of the adjoint state equation: for j = Nτ , . . . , 1

∫
Ω

(φh,j − φh,j+1)zhdx+ τjb(zh, φh,j) +

∫
Ij

∫
Ω

∂a

∂y
(x, t, yσ(uσ))φh,jzh dx dt

=

∫
Ij

∫
Ω

(yσ(uσ)− yd)zh dx dt ∀zh ∈ Yh,

φh,Nτ+1 = 0.

(3.6)

Now we compare the continuous and discrete adjoint states.

Theorem 3.3. Let u ∈ Lr(0, T ;L2(Ω)) hold with r > 4
4−n , and let us denote by φu and φσ(u) the

solutions of (2.11) and (3.6) with yσ(uσ) replaced by yσ(u). Under the assumptions 1–4, and taking h0
and τ0 as in Theorem 3.1, there exists a monotone nondecreasing function η2 : [0,∞) −→ R independent
of u such that for every τ < τ0 and h < h0

∥φu − φσ(u)∥L2(Q) ≤ η2
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
(τ + h2), (3.7)

∥φu − φσ(u)∥L∞(Q) ≤ η2
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
| log h|3hδ0 . (3.8)

Proof. Let ψu ∈ C0,β(Q̄) ∩H2,1(Q) denote the solution of the adjoint state equation −∂ψu

∂t
+A∗ψu +

∂a

∂y
(x, t, yσ(u))ψu = yσ(u)− yd in Q,

ψu = 0 on Σ, ψu(T ) = 0 in Ω,
(3.9)

and set φu −φσ(u) = (φu −ψu)+ (ψu −φσ(u)) = eu + ξu. Subtracting the equations (2.11) and (3.9) we
get −∂eu

∂t
+A∗eu +

∂a

∂y
(x, t, yu)eu = (yu − yσ(u)) +

[∂a
∂y

(x, t, yσ(u))−
∂a

∂y
(x, t, yu)

]
ψu in Q,

eu = 0 on Σ, eu(T ) = 0 in Ω.
(3.10)

SettingM = ∥yu∥L∞(Q)+1 and taking h0 and τ0 small enough, we infer from (3.3) that ∥yσ(u)∥L∞(Q) ≤
M for every σ = (h, τ) with h ≤ h0 and τ ≤ τ0. Then, from (3.9) it follows with (2.4) that

∥ψu∥L∞(Q) ≤ C1

(
∥yσ(u)∥L∞(Q) + ∥yd∥Lr̂(0,T ;L2(Ω))

)
≤ C1

(
M + ∥yd∥Lr̂(0,T ;L2(Ω))

)
. (3.11)

From (2.4), (3.3), and the mean value theorem we obtain∣∣∣∣∂a∂y (x, t, yσ(u)(x, t))− ∂a

∂y
(x, t, yu(x, t))

∣∣∣∣ ≤ Ca,M |yσ(u)(x, t)− yu(x, t)|. (3.12)

From (3.10), (3.11), (3.12), and (3.2), we infer

∥eu∥L2(Q) ≤ C2

[
1 + Ca,MC1

(
M + ∥yd∥Lr̂(0,T ;L2(Ω))

)]
∥yσ(u)− yu∥L2(Q)

≤ CMC
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
(τ + h2). (3.13)

The constant CM is a monotone nondecreasing function of M .
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Let us estimate ξu. Since φσ(u) is the solution of the discretization of the linear equation (3.9), the
classical error estimates yield the existence of a constant C3 such that

∥ξu∥L2(Q) ≤ C2(τ + h2)
(
∥yσ(u)∥L2(Q) + ∥yd∥L2(Q)

)
. (3.14)

Hence, (3.13) and (3.14) along with (2.6) lead to (3.7).
To prove (3.8) we first modify (3.13) as follows

∥eu∥L∞(Q) ≤ C2

[
1 + Ca,MC1

(
M + ∥yd∥Lr̂(0,T ;L2(Ω))

)]
∥yσ(u)− yu∥L∞(Q)

≤ CMη1
(
∥u∥Lr(0,T ;L2(Ω)) +Mr̂,0

)
| log h|3hδ0 . (3.15)

Finally, using the linearity of the equations satisfied by ψu and arguing as for the estimate (3.3) we
infer

∥ξu∥L∞(Q) ≤ C3| log h|3hδ0 .
The last inequality and (3.15) imply (3.8).

3.3 First order optimality conditions.

The goal of this subsection is to prove the first order optimality conditions and their consequences.

Theorem 3.4. Let ūσ be a local minimum of (Pσ). Then there exist ȳσ, φ̄σ ∈ Yσ and µ̄σ ∈ Uσ such that

∫
Ω

(ȳh,j − ȳh,j−1)zhdx+ τjb(ȳh,j , zh) +

∫
Ij

∫
Ω

a(x, t, ȳh,j)zh dxdt

=

∫
Ij

∫
Ω

ūh,jzh dxdt ∀zh ∈ Yh and ∀j = 1, . . . , Nτ ,

ȳh,0 = Phy0,

(3.16)



∫
Ω

(φ̄h,j − φ̄h,j+1)zhdx+ τjb(zh, φ̄h,j) +

∫
Ij

∫
Ω

∂a

∂y
(x, t, ȳσ)φ̄h,jzh dxdt

=

∫
Ij

∫
Ω

(ȳh,j − yd)zh dxdt ∀zh ∈ Yh and ∀j = Nτ , . . . , 1,

φ̄h,Nτ+1 = 0,

(3.17)

(µ̄σ, uσ − ūσ)σ ≤ 0 ∀uσ ∈ Uσ,ad, (3.18)
1

|K|

∫
K

φ̄h,j dx+ κūK,j + µ̄K,j = 0 ∀K ∈ Kh and ∀j = 1, . . . , Nτ , if Uσ = Uσ,0,

1∫
Ω
ei dx

∫
Ω

φ̄h,jei dx+ κūi,j + µ̄i,j = 0 ∀i = 1, . . . , Nh and ∀j = 1, . . . , Nτ , if Uσ = Uσ,1.

(3.19)

Proof. Taking ȳσ and φ̄σ as solutions of (3.16) and (3.17), respectively, and using the convexity of Uσ,ad

we infer with (3.5)∫
Q

φ̄σ(uσ − ūσ) dxdt+ κ(ūσ, uσ − ūσ)σ = J ′
σ(ūσ)(uσ − ūσ) ≥ 0 ∀uσ ∈ Uσ,ad. (3.20)

Now we distinguish the cases Uσ = Uσ,0 and Uσ = Uσ,1.

Case Uσ = Uσ,0. In this case, (3.20) can be written as follows

Nτ∑
j=1

∑
K∈Kh

τj

(∫
K

φ̄h,j dx+ κ|K|ūK,j

)
(uK,j − ūK,j) ≥ 0 ∀uσ ∈ Uσ,ad. (3.21)
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Then, defining

µ̄σ =

Nτ∑
j=1

∑
K∈Kh

µ̄K,jχKχj with µ̄K,j = −
(

1

|K|

∫
K

φ̄h,j dx+ κūK,j

)
,

we have that the first identity of (3.19) holds. Inequality (3.18) is a consequence of (3.21):

(µ̄σ, uσ − ūσ)σ =

Nτ∑
j=1

∑
K∈Kh

τj |K|µ̄K,j(uK,j − ūK,j)

= −
Nτ∑
j=1

∑
K∈Kh

τj

(∫
K

φ̄h,j dx+ κ|K|ūK,j

)
(uK,j − ūK,j) ≤ 0 ∀uσ ∈ Uσ,ad.

Case Uσ = Uσ,1. From (3.20) and using the definition of (·, ·)σ we deduce

Nτ∑
j=1

Nh∑
i=1

τj

(∫
Ω

φ̄h,jei dx+ κ
( ∫

Ω

ei dx
)
ūi,j

)
(ui,j − ūi,j) ≥ 0 ∀uσ ∈ Uσ,ad. (3.22)

Now we set

µ̄σ =

Nτ∑
j=1

Nh∑
i=1

µ̄i,jeiχj with µ̄i,j = −
(

1∫
Ω
ei dx

∫
Ω

φ̄h,jei dx+ κūi,j

)
.

Then, the second identity of (3.19) is satisfied. We finish the proof by checking (3.18) with the aid of
(3.22)

(µ̄σ, uσ − ūσ)σ =

Nτ∑
j=1

Nh∑
i=1

τj
( ∫

Ω

ei dx
)
µ̄i,j(ui,j − ūi,j)

= −
Nτ∑
j=1

Nh∑
i=1

(
τj

∫
Ω

φ̄h,jei dx+ κ
( ∫

Ω

ei dx
)
ūi,j

)
(ui,j − ūi,j) ≤ 0 ∀uσ ∈ Uσ,ad.

Let us introduce the following notation:

∥uh∥l∞ =


max
K∈Kh

|uK | if Uh = Uh,0,

max
1≤i≤Nh

|ui| if Uh = Uh,1,

and jh : Uh −→ R is the functional defined by

jh(uh) =



∑
K∈Kh

|K||uK | if Uh = Uh,0,

Nh∑
i=1

|ui|
∫
Ω

ei dx if Uh = Uh,1.

We have the following corollary.
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Corollary 3.5. Let ūσ and µ̄σ satisfy (3.18), and assume that ūσ ∈ Uσ,ad. Then, the following properties
hold for every j = 1, . . . , Nτ

(µ̄h,j , uh − ūh,j)h ≤ 0 ∀uh ∈ Bh,γ , (3.23)

if Uσ = Uσ,0 then µ̄K,j ūK,j = |µ̄K,j ||ūK,j | ∀K ∈ Kh,
if jh(ūh,j) < γ then µ̄h,j = 0,
if jh(ūh,j) = γ and µ̄h,j ̸= 0, then if ūK,j ̸= 0 ⇒ |µ̄K,j | = ∥µ̄h,j∥l∞ .

(3.24)

if Uσ = Uσ,1 then µ̄h,j ūh,j = |µ̄h,j ||ūh,j |,
if jh(ūh,j) < γ then µ̄h,j = 0,
if jh(ūh,j) = γ and µ̄h,j ̸= 0, then if ūi,j ̸= 0 ⇒ |µ̄i,j | = ∥µ̄h,j∥l∞ .

(3.25)

Proof. Given 1 ≤ j ≤ Nτ and uh ∈ Bh,γ we define

uσ =

Nτ∑
l=1

uh,lχl with uh,l =

{
ūh,l if l ̸= j,
uh if l = j.

Then, uσ ∈ Uσ,ad and (3.18) implies

τj(µ̄h,j , uh − ūh,j)h = (µ̄σ, uσ − ūσ)σ ≤ 0,

which proves (3.23). The rest of the proof is divided into two cases.
Case Uσ = Uσ,0. For

uh =
∑

K′∈Kh

uK′χK′ with uK′ =

{
ūK′,j if K ′ ̸= K,
0 if K ′ = K,

(3.23) leads to |K|µ̄K,j ūK,j ≥ 0, which implies the first identity of (3.24). To establish the second
statement of (3.24), given K ∈ Kh arbitrary, we define

u±h =
∑

K′∈Kh

uK′χK′ with uK′ =

{
ūK′,j if K ′ ̸= K,

ūK,j ± ε if K ′ = K.

Then, for ε small enough, due to the fact that j(ūh,j) < γ, we have that u±h ∈ Bh,γ . Then, (3.23) leads
to ±|K|µ̄K,jε ≥ 0, which implies that µ̄K,j = 0 for every K ∈ Kh.

Now, we assume that jh(ūh,j) = γ and µ̄h,j ̸= 0. LetK0 ∈ Kh be such that |µ̄K0,j | = maxK′∈Kh
|µ̄K′,j |.

If ūK,j ̸= 0 we define

uh =
∑

K′∈Kh

uK′χK′ with uK′ =


ūK,j −

ε

|K|
sign(ūK,j) if K ′ = K,

ūK0,j +
ε

|K0|
sign(ūK0,j) if K ′ = K0,

ūK,j otherwise,

where 0 < ε < |K||ūK,j |. Then, jh(uh) = jh(ūh,j) = γ. Hence, uh ∈ Bh,γ and we get with (3.23) and the
first statement of (3.24)

ε|µ̄K0,j | − ε|µ̄K,j | = (µ̄h,j , uh − ūh,j)h ≤ 0.



14 E. Casas, K. Kunisch, and M. Mateos

This proves the last statement of (3.24).

Case Uσ = Uσ,1. Let 1 ≤ i ≤ Nh arbitrary and set

uh =

Nh∑
i′=1

ui′ei′ with ui′ =

{
ūi′,j if i′ ̸= i,
0 if i′ = i.

Then (3.23) implies

−
( ∫

Ω

ei dx
)
µ̄i,j ūi,j = (µ̄h,j , uh − ūh,j)h ≤ 0,

which proves the first statement of (3.25).
To establish the second statement of (3.25), given 1 ≤ i ≤ Nh arbitrary, we define

u±h =

Nh∑
i′=1

ui′ei′ with ui′ =

{
ūi′,j if i′ ̸= i,

ūi,j ± ε if i′ = i.

Then, for ε small enough, due to the fact that j(ūh,j) < γ, we have that u±h ∈ Bh,γ . Then, (3.23) leads
to ±

( ∫
Ω
ei dx

)
µ̄i,jε ≥ 0, which implies that µ̄i,j = 0 for every i = 1, . . . , Nh.

Finally, we assume that jh(ūh,j) = γ and µ̄h,j ̸= 0. Let 1 ≤ i0 ≤ Nh be such that |µ̄i0,j | =
max1≤i′≤Nh

|µ̄i′,j |. If ūi,j ̸= 0 we define

uh =

Nh∑
i′=1

ui′ei′ with ui′ =


ūi,j −

ε∫
Ω
ei dx

sign(ūi,j) if i′ = i,

ūi0,j +
ε∫

Ω
ei0 dx

sign(ūi0,j) if i′ = i0,

ūi,j otherwise,

where 0 < ε <
( ∫

Ω
ei dx

)
|ūi,j |. Then, jh(uh) = jh(ūh,j) = γ. Hence, uh ∈ Bh,γ and we get with (3.23)

and the first statement of (3.25)

ε|µ̄i0,j | − ε|µ̄i,j | = (µ̄h,j , uh − ūh,j)h ≤ 0.

This proves the last statement of (3.25).

Corollary 3.6. Let ūσ ∈ Uσ,ad satisfy (3.19) and (3.24) or (3.25). Then, the following identities hold
for every j = 1, . . . , Nτ

if Uσ = Uσ,0 then ūK,j = − 1

κ
sign

( ∫
K

φ̄h,j dx
)( 1

|K|
∣∣ ∫

K

φ̄h,j dx
∣∣− ∥µ̄h,j∥l∞

)+
= − 1

κ

{[ 1

|K|

∫
K

φ̄h,j dx+ ∥µ̄h,j∥l∞
]−

+
[ 1

|K|

∫
K

φ̄h,j dx− ∥µ̄h,j∥l∞
]+}

, (3.26)

if Uσ = Uσ,1 then ūi,j = − 1

κ
sign

( ∫
Ω

φ̄h,jei dx
)( 1∫

Ω
ei dx

∣∣ ∫
Ω

φ̄h,jei dx
∣∣− ∥µ̄h,j∥l∞

)+
= − 1

κ

{[ 1∫
Ω
ei dx

∫
Ω

φ̄h,jei dx+ ∥µ̄h,j∥l∞
]−

+
[ 1∫

Ω
ei dx

∫
Ω

φ̄h,jei dx− ∥µ̄h,j∥l∞
]+}

. (3.27)

Moreover, the following sparsity property is fulfilled for every j = 1, . . . , Nτ

if Uσ = Uσ,0 then ūK,j = 0 ⇔ 1

|K|
∣∣ ∫

K

φ̄h,j dx
∣∣ ≤ ∥µ̄h,j∥l∞ , ∀K ∈ Kh, (3.28)

if Uσ = Uσ,1 then ūi,j = 0 ⇔ 1∫
Ω
ei dx

∣∣ ∫
Ω

φ̄h,jei dx
∣∣ ≤ ∥µ̄h,j∥l∞ , ∀i = 1, . . . , Nh, (3.29)
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Proof. Let us prove the first identity of (3.26). If ∥µ̄h,j∥l∞ = 0, then (3.19) implies that

ūK,j = − 1

κ|K|

∫
K

φ̄h,j dx ∀K ∈ Kh,

which coincides with (3.26). Assume that ∥µ̄h,j∥l∞ ̸= 0. Then, from (3.24) we deduce that jh(ūh,j) = γ.
Then, the third statement of (3.24) implies that |µ̄K,j | = ∥µ̄h,j∥l∞ if ūK,j ̸= 0. Now, we distinguish three
cases.

i) If ūK,j > 0, (3.19) and the first statement of (3.24) lead to

ūK,j = − 1

κ

{
1

|K|

∫
K

φ̄h,j dx+ ∥µ̄h,j∥l∞
}
,

which coincides with (3.26). Indeed, observe that (3.24) and the positivity of ūK,j imply µ̄K,j ≥ 0. Hence,
we conclude with (3.19) that

∫
K
φ̄h,j dx < 0.

ii) If ūK,j = 0, using again (3.19) we get∣∣ 1

|K|

∫
K

φ̄h,j dx
∣∣ = |µ̄K,j | ≤ ∥µ̄h,j∥l∞ .

Then, the identity (3.26) holds.
iii) If ūK,j < 0, from the first statement of (3.24) and (3.19) we infer that

ūK,j = − 1

κ

{
1

|K|

∫
K

φ̄h,j dx− ∥µ̄h,j∥l∞
}
.

Moreover, arguing as in the case i), we deduce that
∫
K
φ̄h,j dx > 0. Hence, (3.26) holds too.

The second identity of (3.26) is obvious. Following the same arguments as above, (3.27) is proved.
Finally, (3.28) and (3.29) are immediate consequences of (3.26) and (3.27), respectively.

4 Convergence analysis and error estimates

There are two goals in this section. First we prove that the discrete problems (Pσ) provide an approxi-
mation of (P). Second we establish error estimates in terms of σ = (h, τ) for the difference between the
discrete and continuous optimal controls.

Theorem 4.1. For every σ let ūσ be a solution of (Pσ). Then, there exists σ0 = (h0, τ0) such that the

family {ūσ}σ with h < h0 and τ < τ0 is bounded in L∞(Q). If ūσ
∗
⇀ ū in L∞(Q) for a sequence of σ

converging to zero, we have that ū is a solution of (P), and the following convergence properties hold

lim
σ→0

∥ūσ − ū∥Lr(0;T ;L2(Ω)) = 0 ∀r ∈ [1,∞) and lim
σ→0

Jσ(ūσ) = J(ū). (4.1)

To prove this theorem we need the following stability property for the solution of the system (3.1).

Lemma 4.2. Let us assume that 4|Ca|τ < 1. Then, given u ∈ L2(Q) and denoting by yσ ∈ Yσ the
solution of (3.1), we have the stability estimate

∥yσ∥L∞(0,T ;L2(Ω)) + ∥yσ∥L2(0,T ;H1
0 (Ω)) ≤ C

(
∥u− a(·, ·, 0)∥L2(Q) + ∥y0∥L2(Ω)

)
(4.2)

for some constant C independent of u and σ.
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Proof. For j = 1, . . . , Nτ we take zh = yh,j in (3.1), which leads to∫
Ω

(yh,j − yh,j−1)yh,jdx+ τjb(yh,j , yh,j) +

∫
Ij

∫
Ω

[a(x, t, yh,j)− a(x, t, 0)]yh,j dxdt

=

∫
Ij

∫
Ω

[u− a(x, t, 0)]yh,j dx dt.

Using (2.1) and (2.2) along with Young’s inequality we deduce from the above identity

1

2
∥yh,j∥2L2(Ω) +

1

2
∥yh,j − yh,j−1∥2L2(Ω) −

1

2
∥yh,j−1∥2L2(Ω) + τjΛA∥yh,j∥2H1

0 (Ω) + Caτj∥yh,j∥2L2(Ω)

≤ ∥u− a(·, ·, 0)∥L2(Ω×Ij)
√
τj∥yh,j∥L2(Ω) ≤ C1∥u− a(·, ·, 0)∥2L2(Ω×Ij)

+ τj
ΛA

2
∥yh,j∥2H1

0 (Ω).

From here we infer

∥yh,j∥2L2(Ω) + τjΛA∥yh,j∥2H1
0 (Ω) ≤ 2C1∥u− a(·, ·, 0)∥2L2(Ω×Ij)

+ 2|Ca|τj∥yh,j∥2L2(Ω) + ∥yh,j−1∥2L2(Ω). (4.3)

With the discrete Gronwall’s inequality and the fact that ∥yh,0∥L2(Ω) ≤ ∥y0∥L2(Ω) and τj ≤ τ for every
j = 1, . . . , Nτ we get

∥yh,j∥2L2(Ω) ≤ (1− 2|Ca|τ)−j

(
∥y0∥2L2(Ω) + 2C1

j−1∑
k=0

(1− 2|Ca|τ)k∥u− a(·, ·, 0)∥2L2(Ω×Ik+1)

)
; (4.4)

see, for instance, [16]. From our assumptions 4|Ca|τ < 1 and τ ≤ ρτk for every k, and using that

1

1− 2|Ca|τ
= 1 +

2|Ca|τ
1− 2|Ca|τ

≤ exp
( 2|Ca|τ
1− 2|Ca|τ

)
we obtain

(1− 2|Ca|τ)−j ≤ exp
( 2|Ca|τj
1− 2|Ca|τ

)
≤ exp (4ρ|Ca|T ).

Then, (4.4) yields

∥yh,j∥2L2(Ω) ≤ exp (4ρ|Ca|T )

(
∥y0∥2L2(Ω) + 2C1

j−1∑
k=0

∥u− a(·, ·, 0)∥2L2(Ω×Ik+1)

)
≤ exp (4ρ|Ca|T )

(
∥y0∥2L2(Ω) + 2C1∥u− a(·, ·, 0)∥2L2(Q)

)
and consequently

∥yσ∥L∞(0,T ;L2(Ω)) = max
1≤j≤Nτ

∥yh,j∥L2(Ω)

≤ exp (2ρ|Ca|T )max{1,
√

2C1}
(
∥y0∥L2(Ω) + ∥u− a(·, ·, 0)∥L2(Q)

)
. (4.5)

Adding the inequalities (4.3) for j = 1, . . . , Nτ we deduce

ΛA∥yσ∥2L2(0,T ;H1
0 (Ω)) = ΛA

Nτ∑
j=1

τj∥yh,j∥2H1
0 (Ω)

≤ 2C1∥u− a(·, ·, 0)∥2L2(Q) +
(
2|Ca|T∥yσ∥2L∞(0,T ;L2(Ω)) + ∥y0∥2L2(Ω)

)
.

Finally, (4.2) follows from this inequality and (4.5).
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Proof of Theorem 4.1. We divide the proof into three steps.
Step I. {ūσ}σ is bounded in L∞(Q). Let us assume that τ satisfies the condition of Lemma 4.2 and

τ ≤ τ0, given by Theorem 3.1. Since the null control u0 ≡ 0 is admissible for every problem (Pσ), we
deduce from the optimality of ūσ:

κ

2
∥ūσ∥2σ ≤ Jσ(u0) =

1

2
∥y0σ − yd∥2L2(Ω),

where y0σ denotes the discrete state associated with u0. From Lemma 4.2 we infer that {y0σ}σ is bounded
in L2(Q). Hence, with (3.4) we deduce the existence of a constant C1 independent of ūσ such that

∥ūσ∥L2(Q) ≤ ∥ūσ∥σ ≤ 1√
κ
∥y0σ − yd∥L2(Q) ≤ C1.

We denote by ȳσ and φ̄σ the state and adjoint state associated with ūσ. Using again Lemma 4.2 we
obtain

∥ȳσ∥L∞(0,T ;L2(Ω)) ≤ C
(
∥ūσ − a(·, ·, 0)∥L2(Q) + ∥y0∥L2(Ω)

)
≤ C

(
C1 + ∥a(·, ·, 0)∥L2(Q) + ∥y0∥L2(Ω)

)
= C2.

Arguing as in the proof of Lemma 4.2 we deduce the stability estimate for the solution of (3.6)
corresponding to ūσ

∥φ̄σ∥L∞(0,T ;L2(Ω)) ≤ C3∥ȳσ − yd∥L2(Q) ≤ C3

(
C2

√
T + ∥yd∥L2(Q)

)
= C4.

Next we prove the estimate

∥ūσ∥L∞(0,T ;L2(Ω)) ≤
C4

κ
. (4.6)

We distinguish two cases according to the definition of Uσ.
Case Uσ = Uσ,0. From (3.26) we get for every j = 1, . . . , Nτ

∥ūh,j∥L2(Ω) =

( ∑
K∈Kh

|K|ū2K,j

) 1
2

≤ 1

κ

( ∑
K∈Kh

1

|K|

(∫
K

φ̄h,j dx
)2) 1

2

≤ 1

κ

( ∑
K∈Kh

∥φ̄h,j∥2L2(K)

) 1
2

=
1

κ
∥φ̄h,j∥L2(Ω).

This inequality implies (4.6).
Case Uσ = Uσ,1. This time we use (3.27) to deduce

∥ūh,j∥L2(Ω) =

(∫
Ω

( Nh∑
i=1

ūi,jei

)2
dx

) 1
2

≤

(∫
Ω

Nh∑
i=1

ū2i,jei dx

) 1
2

≤ 1

κ

(
Nh∑
i=1

1∫
Ω
ei dx

(∫
Ω

φ̄h,jei dx
)2) 1

2

≤ 1

κ

(
Nh∑
i=1

∫
Ω

φ̄2
h,jei dx

) 1
2

=
1

κ
∥φ̄h,j∥L2(Ω).

Hence, (4.6) is satisfied as well in this case. Then combining (2.6) and (3.3) along with the estimate (4.6)
we obtain

∥ȳσ∥L∞(Q) ≤ ∥yūσ
∥L∞(Q) + ∥yūσ

− ȳσ∥L∞(Q) ≤ C5
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for every σ = (h, τ) with h < h0 and τ < τ0. From this estimate, (4.6) and (3.8) we deduce the existence
of C6 independent of σ such that ∥φ̄σ∥L∞(Q) ≤ C6 for the same range of σ as before. Now using again
(3.26) and (3.27) we conclude that

∥ūσ∥L∞(Q) ≤
C6

κ
(4.7)

for h < h0 and τ < τ0.
Take a sequence such that ūσ

∗
⇀ ū in L∞(Q) as σ → 0.

Step II: ū ∈ Uad. It is immediate to check that ∥uh∥L1(Ω) = jh(uh) if uh ∈ Uh = Uh,0 and ∥uh∥L1(Ω) ≤
jh(uh) if uh ∈ Uh = Uh,1. Therefore, we have

∥ūσ∥L∞(0,T ;L1(Ω)) = max
1≤j≤Nh

∥ūh,j∥L1(Ω) ≤ max
1≤j≤Nh

jh(ūh,j) ≤ γ,

and thus {ūσ}σ ⊂ Uad. Since Uad is convex and closed in L2(Q), it is weakly closed as well. Then, the
weak convergence ūσ ⇀ ū in L2(Q) implies that ū ∈ Uad.

Step III: ū is a solution of (P). Let ũ be a solution of (P). For every σ we define

uσ =


PτPhũ =

Nτ∑
j=1

∑
K∈Kh

1

τj |K|

∫
Ij

∫
K

ũ(x, t) dx dtχjχK if Uσ = Uσ,0,

PτEhũ =

Nτ∑
j=1

Nh∑
i=1

1

τj
∫
Ω
ei dx

∫
Ij

∫
Ω

ũ(x, t)ei(x) dxdtχjei if Uσ = Uσ,1,

(4.8)

where Pτ is the L2(0, T ) projection operator defined in the proof of Theorem 3.1, Ph : L2(Ω) −→ Uh,0 is
the L2(Ω) projection operator, and Eh : L1(Ω) −→ Uh,1 is the Carstensen quasi-interpolation operator;

see [4]. First we prove that uσ ∈ Uσ,ad. In case Uh = Uh,0 we have uσ =
∑Nτ

j=1 uh,jχj and for every
j = 1, . . . , Nτ

jh(uh,j) =
∑

K∈Kh

|K|

∣∣∣∣∣ 1

τj |K|

∫
Ij

∫
K

ũ(x, t) dxdt

∣∣∣∣∣ ≤ ∑
K∈Kh

1

τj

∫
Ij

∫
K

|ũ(x, t)|dxdt = 1

τj

∫
Ij

∥ũ(t)∥L1(Ω) dt ≤ γ.

This implies that uσ ∈ Uσ,ad. In the case Uh = Uh,1, we have

jh(uh,j) =

Nh∑
i=1

∣∣∣∣∣ 1

τj
∫
Ω
ei dx

∫
Ij

∫
Ω

ũ(x, t)ei(x) dxdt

∣∣∣∣∣
∫
Ω

ei dx ≤ 1

τj

∫
Ij

(∫
Ω

|ũ(x, t)|
Nh∑
i=1

ei dx

)
dt

=
1

τj

∫
Ij

∥ũ(t)∥L1(Ω) dt ≤ γ.

Using that
Nτ∑
j=1

∑
K∈Kh

χjχK =

Nτ∑
j=1

Nh∑
i=1

eiχj = 1 in Q,

we get ∥uσ∥L∞(Q) ≤ ∥ũ∥L∞(Q) for every σ.
In the case Uσ = Uσ,0, we have that PτPh : L2(Q) −→ Uσ,0 is the L2(Q) projection operator, hence

uσ → ũ in L2(Q) when σ → 0. If Uσ = Uσ,1, then we have

∥ũ−uσ∥L2(Q) ≤ ∥ũ−Pτ ũ∥L2(Q)+∥Pτ (ũ−Ehũ)∥L2(Q) ≤ ∥ũ−Pτ ũ∥L2(Q)+∥ũ−Ehũ∥L2(Q) → 0 as σ → 0.

Indeed Corollary 2.6 implies that ũ ∈ H1(Q). Hence, from the convergence properties of the Carstensen
operator Eh we infer the convergence of the last term in the above expression. The boundedness of {uσ}σ
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in L∞(Q) and its strong convergence to ũ in L2(Q) imply the strong convergence in every Lp(0, T ;Lq(Ω))
space with 1 ≤ p, q <∞.

Next we prove that lim supσ→0 Jσ(uσ) ≤ J(ũ). Let us denote by ỹ and yuσ
the continuous states

corresponding to ũ and uσ, respectively. We also denote by yσ the discrete state associated with uσ.
Then, using the established convergence uσ → ũ, (2.6), and (3.3) we can easily prove

∥ỹ − yσ∥L∞(Q) ≤ ∥ỹ − yuσ
∥L∞(Q) + ∥yuσ

− yσ∥L∞(Q) → 0.

The proved convergences of {yσ}σ and {uσ}σ imply that Jσ(uσ) → J(ũ) as σ → 0 if Uσ = Uσ,0; see (3.4).
For the case Uσ = Uσ,1 we have

∥uσ∥2σ =

Nτ∑
j=1

Nh∑
i=1

τj

(∫
Ω

ei dx
)
u2i,j =

Nτ∑
j=1

Nh∑
i=1

1

τj
∫
Ω
ei dx

(∫
Ij

∫
Ω

ũei dxdt
)2

≤
Nτ∑
j=1

Nh∑
i=1

∫
Ij

∫
Ω

|ũ|2ei dxdt = ∥ũ∥2L2(Q),

which leads to the desired inequality lim supσ→0 Jσ(uσ) ≤ J(ũ).
Using the same arguments as above, we deduce that ȳσ → ȳ strongly in L∞(Q), where ȳ denotes the

continuous state associated with ū. Finally, from the optimality of ūσ and the established convergence
properties we obtain with (3.4)

J(ū) ≤ lim inf
σ→0

{
1

2
∥ȳσ − yd∥2L2(Q) +

κ

2
∥ūσ∥2L2(Q)

}
≤ lim inf

σ→0
Jσ(ūσ) ≤ lim sup

σ→0
Jσ(ūσ)

≤ lim sup
σ→0

Jσ(uσ) ≤ J(ũ) = inf (P).

These inequalities imply that ū is a solution of (P). Moreover, since the identity J(ū) = J(ũ) holds, we
conclude that Jσ(ūσ) → J(ū). Further we have

J(ū) ≤ lim inf
σ→0

{
1

2
∥ȳσ − yd∥2L2(Q) +

κ

2
∥ūσ∥2L2(Q)

}
≤ lim sup

σ→0

{
1

2
∥ȳσ − yd∥2L2(Q) +

κ

2
∥ūσ∥2L2(Q)

}
≤ lim sup

σ→0
Jσ(ūσ) ≤ lim sup

σ→0
Jσ(uσ) ≤ J(ũ) = J(ū).

This property and the strong convergence ȳσ → ȳ in L2(Q) yield that ∥ūσ∥L2(Q) → ∥ū∥L2(Q). To-

gether with the weak∗ convergence ūσ
∗
⇀ ū in L∞(Q) this implies the strong convergence ūσ → ū in

Lr(0, T ;L2(Ω)) for every r <∞. Thus, (4.1) is proved.
The following theorem can be considered as a converse of Theorem 4.1.

Theorem 4.3. Let ū be a strict local minimum of (P) in the Lr(0, T ;L2(Ω)) sense with r ∈
(

4n
4−n ,∞).

Then, there exist positive numbers τ0, h0, ε0, and a sequence {ūσ}σ ⊂ Bε0(ū) of local minima of (Pσ)
such that (4.1) holds and

Jσ(ūσ) = min
uσ∈Uσ,ad∩Bε0 (ū)

Jσ(uσ) for τ < τ0 and h < h0, (4.9)

where Bε0(ū) is the closed ball of Lr(0, T ;L2(Ω)) centered at ū with radius ε0.

Proof. Since ū is a strict local minimum of (P) in the Lr(0, T ;L2(Ω)) sense, there exists ε0 > 0 such that
ū is the only solution of the problem

(Q) inf
u∈Uad∩Bε0

(ū)
J(u).
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Now, we consider the problems

(Qσ) inf
uσ∈Uσ,ad∩Bε0 (ū)

Jσ(uσ).

If we define uσ by (4.8) with ũ = ū, then uσ ∈ Uσ,ad and uσ → ū in Lr(0, T ;L2(Ω)). Therefore, there
exist τ1 > 0 and h1 > 0 such that uσ ∈ Bε0(ū) for every σ with τ < τ1 and h < h1. Hence, Uσ,ad∩Bε0(ū)
is a compact nonempty set for every τ < τ1 and h < h1. Then, the continuity of Jσ implies the existence
of at least one solution ūσ of (Qσ) for every σ with τ and h satisfying the previous conditions. Since
{ūσ}σ is bounded in Lr(0, T ;L2(Ω)), taking a subsequence if necessary, we can assume that ūσ ⇀ û in
Lr(0, T ;L2(Ω)) for some û. Due to the inclusion Uσ,ad ⊂ Uad we deduce that û ∈ Uad∩Bε0(ū). Moreover,
we have

J(û) ≤ lim inf
σ→0

Jσ(ūσ) ≤ lim sup
σ→0

Jσ(ūσ) ≤ lim sup
σ→0

Jσ(uσ) ≤ J(ū).

Since ū is the unique solution of (Q), this inequality is only possible if û = ū. Consequently, the whole
family {ūσ}σ converges weakly to ū in Lr(0, T ;L2(Ω)) as σ → 0 and Jσ(ūσ) → J(ū). Arguing as in
the proof of Theorem 4.1, we deduce the strong convergence ūσ → ū in Lr(0, T ;L2(Ω)). This leads to
the existence of τ0 ≤ τ1 and h0 ≤ h1 such that ūσ belongs to the interior of the ball Bε0(ū) for every
σ = (τ, h) with τ < τ0 and h < h0. Hence, every of these ūσ is a local minimum of (Pσ) satisfying
(4.9).

The rest of this section is dedicated to the proof of the following theorem.

Theorem 4.4. Let us assume that ū is a local solution of (P) in the Lr(0, T ;L2(Ω)) sense with r ∈(
4

4−n ,∞
)
. We also assume that J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. Let {ūσ}σ be a family of local solutions of

problems (Pσ) such that ūσ → ū in Lr(0, T ;L2(Ω)); see Theorem 4.3. Then, there exist positive numbers
δ0, τ0, and C such that the following inequality holds:

∥ūσ − ū∥L2(Q) ≤ C(h+ τ) for every σ = (h, τ) with h < h0 and τ < τ0. (4.10)

We prove this theorem arguing by contradiction. If (4.10) does not hold, then there exists a sequence
{ūσk

}∞k=1 such that σk = (hk, τk) → 0 as k → ∞, hk > 0 and τk > 0, and

∥ūσk
− ū∥L2(Q) > k(hk + τk) ∀k ≥ 1. (4.11)

We will get a contradiction for this sequence. First we prove the next lemma.

Lemma 4.5. Let λ be as in (2.22). There exists k0 such that

(J ′(ūσk
)− J ′(ū))(ūσk

− ū) ≥ 1

2
min{λ, κ}∥ūσk

− ū∥2L2(Q) ∀k ≥ k0. (4.12)

Proof. Applying the mean value theorem, we get for some ûk = ū+ θk(ūσk
− ū)

(J ′(ūσk
)− J ′(ū))(ūσk

− ū) = J ′′(ûk)(ūσk
− ū)2. (4.13)

Set vk =
ūσk

−ū

∥ūσk
−ū∥L2(Q)

. Taking a subsequence, if necessary, we can suppose that vk ⇀ v in L2(Q). Below

we prove that v ∈ Cū. Assuming that this is true, then we argue as follows. From (2.10), the fact that
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∥vk∥L2(Q) = 1, and (2.22) we infer

lim
k→∞

J ′′(ûk)v
2
k = lim

k→∞

{∫
Q

(
1− ∂2a

∂y2
(x, t, yûk

)φûk

)
z2ûk,vk

dxdt+ κ

}
=

∫
Q

(
1− ∂2a

∂y2
(x, t, ȳ)φ̄

)
z2v dxdt+ κ = J ′′(ū)v2 + κ

(
1− ∥v∥2L2(Q)

)
≥ κ+ (λ− κ)∥v∥2L2(Q).

Above, we denoted zûk,vk = G′(ûk)vk and zv = G′(ū)v, where G : Lr(0, T ;L2(Ω)) −→ H2,1(Q) ∩ L∞(Q)
is the mapping associating to each control the associated state. Since ∥v∥L2(Q) ≤ 1, the above inequality
proves that

lim
k→∞

J ′′(ûk)v
2
k ≥ min{λ, κ}.

Therefore, there exists k0 > 0 such that

J ′′(ûk)v
2
k ≥ 1

2
min{λ, κ} ∀k ≥ k0,

or equivalently

J ′′(ûk)(ūσk
− ū)2 ≥ 1

2
min{λ, κ}∥ūσk

− ū∥2L2(Q) ∀k ≥ k0.

This inequality along with (4.13) leads to (4.12).
Now, we verify that v ∈ Cū. From the optimality of ū and the fact that ūσk

∈ Uσk,ad ⊂ Uad we obtain
J ′(ū)vk ≥ 0. Then, passing to the limit in this inequality when k → ∞, it follows that J ′(ū)v ≥ 0. Let
us prove the converse inequality. We consider again the approximations uσk

∈ Uσk,ad defined as in (4.8)
with ũ = ū. Then, we have

∥uσk
− ū∥L2(Q) ≤ C1(hk + τk)∥ū∥H1(Q) ∀k ≥ 1. (4.14)

Indeed, if Uσk
= Uσk,0, the above estimate follows from the fact that uσk

is the L2(Q) projection of ū. If
Uσk

= Uσk,1, the estimate was proved in [5, Lemma 6.6]. From the local optimality of ūσk
we have that

J ′
σk
(ūσk

)(uσk
− ūσk

) ≥ 0. Using this fact we get

J ′(ū)vk =
1

∥ūσk
− ū∥L2(Q)

{J ′(ū)(ūσk
− uσk

) + J ′(ū)(uσk
− ū)}

≤ 1

∥ūσk
− ū∥L2(Q)

{
[J ′(ū)− J ′(ūσk

)](ūσk
− uσk

) + [J ′(ūσk
)− J ′

σk
(ūσk

)](ūσk
− uσk

) + J ′(ū)(uσk
− ū)

}
= Ik,1 + Ik,2 + Ik,3.

Now, we estimate every Ik,i term. For Ik,1 we use the mean value theorem, the convergence ūσk
→ ū in

Lr(0, T ;L2(Ω)), and (4.14) as follows

|Ik,1| =
|J ′′(ū+ ρk(ūσk

− ū))(ūσk
− uσk

, ū− ūσk
)|

∥ūσk
− ū∥L2(Q)

≤ C2∥ūσk
− uσk

∥L2(Q)

≤ C2

{
∥ūσk

− ū∥L2(Q) + ∥ū− uσk
∥L2(Q)

}
→ 0 as k → ∞.

To estimate Ik,2 we use (2.9) and (3.5) to get

Ik,2 =
1

∥ūσk
− ū∥L2(Q)

∫
Q

(φūσk
− φ̄σk

)(ūσk
− uσk

) dx dt

+
κ

∥ūσk
− ū∥L2(Q)

[∫
Q

ūσk
(ūσk

− uσk
) dxdt− (ūσk

, ūσk
− uσk

)σk

]
. (4.15)
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To estimate the first integral in (4.15) we use (3.7) and (4.11) along with the boundedness of {ūσk
−uσk

}∞k=0

in L2(Q) (actually ∥ūσk
− uσk

∥L2(Q) → 0) as follows∣∣∣∣ 1

∥ūσk
− ū∥L2(Q)

∫
Q

(φūσk
− φ̄σk

)(ūσk
− uσk

) dx dt

∣∣∣∣ ≤ 1

∥ūσk
− ū∥L2(Q)

∥φūσk
− φ̄σk

∥L2(Q)∥ūσk
− uσk

∥L2(Q)

≤ C3
h2k + τk

∥ūσk
− ū∥L2(Q)

∥ūσk
− uσk

∥L2(Q) → 0 as k → ∞. (4.16)

In the case Uσk
= Uσk,0, the scalar products (·, ·)L2(Q) and (·, ·)σk

coincide. Hence, the last two terms
of (4.15) cancel and we get from (4.16) that |Ik,2| → 0. If Uσk

= Uσk,1, we first observe that

(uσ, PτEhu)σ =

∫
Q

uσudxdt ∀uσ ∈ Uσ and ∀u ∈ L1(Q). (4.17)

It is immediate to check this identity. Moreover, from (3.4) we have that ∥ūσk
∥L2(Q) ≤ ∥ūσk

∥σk
. This

property, (4.17) with uσ = ūσk
and u = ū, (4.14), and (4.11) yield

1

∥ūσk
− ū∥L2(Q)

{∫
Q

ūσk
(ūσk

− uσk
) dxdt− (ūσk

, ūσk
− uσk

)σk

}
≤ 1

∥ūσk
− ū∥L2(Q)

∫
Q

ūσk
(ū− uσk

) dx dt

≤
∥ū− uσk

∥L2(Q)

∥ūσk
− ū∥L2(Q)

∥ūσk
∥L2(Q) ≤ C1

hk + τk
∥ūσk

− ū∥L2(Q)
∥ūσk

∥L2(Q) → 0 as k → ∞. (4.18)

From (4.15), (4.16), and (4.18) we infer that limk→∞ Ik,2 ≤ 0. The estimate of the last term Ik,3 is an
immediate consequence of (2.9), (4.11) and (4.14)

|Ik,3| ≤ ∥φ̄+ κū∥L2(Q)

∥uσk
− ū∥L2(Q)

∥ūσk
− ū∥L2(Q)

≤ C1∥φ̄+ κū∥L2(Q)
h+ τ

∥ūσk
− ū∥L2(Q)

→ 0 as k → ∞.

Thus, we have that J ′(ū)v = limk→∞ J ′(ū)vk ≤ 0, and consequently J ′(ū)v = 0, which is the first
condition to have v ∈ Cū.

Now, take t ∈ Iγ . This means that ∥ū(t)∥L1(Ω) = γ. Since ūσk
∈ Uad we have that ∥ūσk

∥L1(Ω) ≤ γ.
As a consequence, we get with (2.20) and the convexity of j

j′(ū(t); vk(t)) =
1

∥ūσk
− ū∥L2(Q)

j′(ū(t); ūσk
(t)− ū(t))

=
1

∥ūσk
− ū∥L2(Q)

lim
ρ→0

j(ū(t) + ρ(ūσk
(t)− ū(t)))− j(ū(t))

ρ

≤ 1

∥ūσk
− ū∥L2(Q)

[j(ūσk
(t))− j(ū(t))] =

1

∥ūσk
− ū∥L2(Q)

[∥ūσk
(t)∥L1(Ω) − γ] ≤ 0.

Define now
E = {u ∈ L2(Q) : j′(ū(t);u(t)) ≤ 0 for a.e. t ∈ Iγ}.

Since the mapping L2(Q) ∋ u 7→ j′(ū(t);u(t)) is convex and continuous for a.e. t ∈ Iγ , we have that E
is closed and convex in L2(Q), and hence weakly closed. As we have just seen vk ∈ E for all k, therefore
its weak limit v also belongs to E and we have that j′(ū(t); v(t)) ≤ 0 for a.e. t ∈ Iγ .

It remains to prove that j′(ū(t); v(t)) = 0 if t ∈ I+γ . The inequality j′(ū(t); v(t)) ≤ 0 for t ∈ I+γ implies

−
∫
Ω+

ū(t)

v(t) dx+

∫
Ω−

ū(t)

v(t) dx ≥
∫
Ω0

ū(t)

|v(t)|dx. (4.19)
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Using (2.15), (2.18), and (4.19) we obtain

0 = J ′(ū)v =

∫
Q

(φ̄+ κū)v dxdt = −
∫
Q

µ̄v dx dt = −
∫
I+
γ

∫
Ω

µ̄v dxdt

= −
∫
I+
γ

[∫
Ω+

ū(t)

∥µ̄(t)∥L∞(Ω)v dx−
∫
Ω−

ū(t)

∥µ̄(t)∥L∞(Ω)v dx+

∫
Ω0

ū(t)

µ̄v dx

]
dt

≥
∫
I+
γ

∫
Ω0

ū(t)

[
∥µ̄(t)∥L∞(Ω)|v| − µ̄v

]
dx dt.

This inequality is possible if and only if ∥µ̄(t)∥L∞(Ω)|v| = µ̄v in Ω0
ū(t) × (0, T ). Now, from this latter

identity and the fact that µ̄(t) = 0 if t ̸∈ I+γ we infer

0 ≥
∫
I+
γ

∥µ̄(t)∥L∞(Ω)j
′(ū(t); v(t)) dt =

∫
I+
γ

∥µ̄(t)∥L∞(Ω)

[∫
Ω+

ū(t)

v(t) dx−
∫
Ω−

ū(t)

v(t) dx+

∫
Ω0

ū(t)

|v(t)|dx

]
dt

=

∫
I+
γ

∫
Ω

µ̄v dxdt =

∫
Q

µ̄v dx dt = −J ′(ū)v = 0,

which implies that j′(ū(t); v(t)) = 0 for almost every t ∈ I+γ . This concludes the proof of v ∈ Cū.

Proof of Theorem 4.4. Let us take k0 big enough so that (3.7) and (4.12) hold. The goal is to prove
that (4.11) is not possible. To this end, we take uσk

∈ Uσk,ad as in the proof of Lemma 4.5. Using the
optimality of ūσk

we get

0 ≤ J ′(ūσk
)(uσk

− ūσk
)

= J ′(ūσk
)(ū− ūσk

) + J ′(ū)(uσk
− ū) + [J ′(ūσk

)− J ′(ū)](uσk
− ū) + [J ′

σk
(ūσk

)− J ′(ūσk
)](uσk

− ūσk
).

We also have that J ′(ū)(ūσk
− ū) ≥ 0. Adding these two inequalities and using (4.12) we infer

1

2
min{λ, κ}∥ūσk

− ū∥2L2(Q) ≤ [J ′(ūσk
)− J ′(ū)](ūσk

− ū) ≤ J ′(ū)(uσk
− ū)

+ [J ′(ūσk
)− J ′(ū)](uσk

− ū) + [J ′
σk
(ūσk

)− J ′(ūσk
)](uσk

− ūσk
) = Ik,1 + Ik,2 + Ik,3. (4.20)

To estimate Ik,1 we use the property

∥uσk
− ū∥H1(Q)∗ ≤ C1(h

2
k + τ2k )∥ū∥H1(Q); (4.21)

see [5]. With this inequality we get

|Ik,1| ≤ ∥φ̄+ κū∥H1(Q)∥uσk
− ū∥H1(Q)∗ ≤ C1(h

2
k + τ2k )∥φ̄+ κū∥H1(Q). (4.22)

For the estimate of Ik,2 we use the mean value theorem, the convergence ūσk
→ ū in Lr(0, T ;L2(Ω)),

and (4.14) to get

|Ik,2| = |J ′′(ū+ ρk(ūσk
− ū))(uσk

− ū, ūσk
− ū)| ≤ C2∥uσk

− ū∥L2(Q)∥ūσk
− ū∥L2(Q)

≤ C3(h+ τ)∥ūσk
− ū∥L2(Q). (4.23)

To deal with Ik,3 we apply (2.9) and (3.5) to deduce

Ik,3 =

∫
Q

(φ̄σk
− φūσk

)(uσk
− ūσk

) dxdt+ κ

[
(ūσk

, uσk
− ūσk

)σk
−
∫
Q

ūσk
(uσk

− ūσk
) dx dt

]
. (4.24)
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With (3.7) and (4.14) we obtain∣∣∣∣∫
Q

(φ̄σk
− φūσk

)(uσk
− ūσk

) dxdt

∣∣∣∣ ≤ ∥φ̄σk
− φūσk

∥L2(Q)∥uσk
− ūσk

∥L2(Q)

≤ C4(h
2
k + τk)

(
∥uσk

− ū∥L2(Q) + ∥ū− ūσk
∥L2(Q)

)
≤ C5(h

2
k + τk)(hk + τk) + C4(h

2
k + τk)∥ū− ūσk

∥L2(Q). (4.25)

The last two terms of (4.24) cancel if Uσk
= Uσk,0. In the case Uσk

= Uσk,1, (3.4), (4.17), (4.14), and
(4.21) yield

(ūσk
, uσk

− ūσk
)σk

−
∫
Q

ūσk
(uσk

− ūσk
) dxdt ≤

∫
Q

ūσk
(ū− uσk

) dx dt

=

∫
Q

(ūσk
− ū)(ū− uσk

) dxdt+

∫
Q

ū(ū− uσk
) dxdt

≤ ∥ūσk
− ū∥L2(Q)∥ū− uσk

∥L2(Q) + ∥ū∥H1(Q)∥ū− uσk
∥H1(Q)∗

≤ C6(hk + τk)∥ūσk
− ū∥L2(Q) + C7(h

2
k + τ2k )∥ū∥H1(Q). (4.26)

The estimates (4.24)-(4.16) lead to

|Ik,3| ≤ C8(h
2
k + τ2k ) + C9(hk + τk)∥ūσk

− ū∥L2(Q). (4.27)

Finally, (4.20), (4.22), (4.23), and (4.27) imply

∥ūσk
− ū∥L2(Q) ≤ C10(hk + τk) ∀k ≥ k0,

which contradicts (4.11).

5 Numerical Examples

Let Ω be (0, 1)n, n = 1 or n = 2, A = −∆, a ≡ 0, y0 ≡ 0, T = 1, κ = 10−4, and

yd(x, t) = exp(−20[(x− 0.2)2 + (t− 0.2)2]) + exp(−20[(x− 0.7)2 + (t− 0.9)2]) if n = 1,

or

yd(x, t) = exp(−20[(x1 − 0.2)2 + (x2 − 0.2)2 + (t− 0.2)2])

+ exp(−20[(x1 − 0.7)2 + (x2 − 0.7)2 + (t− 0.9)2]) if n = 2.

Notice that all the results obtained in the paper are also valid for dimension n = 1. For dimension 1,
these data correspond to the problem presented in [7, Remark 2.11] and also studied in [10, 5]. The
problem in dimension 2 was introduced in [5].

To discretize the problems, we use two families of uniform partitions in space and time, with hi =
2−i

√
2n − 1 and τj = 2−j , and denote σi,j = (hi, τj). The discrete problems are solved using a projected

gradient algorithm with the Barzilai-Borwein strategy as line search; see [2, eq. (5)]. Projection strategies
onto the L1-ball can be found in [14].
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5.1 Sparsity patterns

In Figure 1 we show the solutions obtained for the one-dimensional problem as the bound parameter γ
varies in {0.5, 1, 2, 3}. To discretize the problem we use the control space Uσ,1 at the discretization level
i = j = 10. We also plot at the left hand side of the graph the norm in L1(Ω) of ūσ(·, t) for all t ∈ [0, 1],
(this norm is computed with the approximation jh(uh,j)). We use a dark green line for the norm and a
magenta line for the bound. Notice that when the control constraint is attained, the solution exhibits a
sparsity pattern that varies with time. We have coloured in grey the zero-level set of ūσ to emphasize this
behaviour. For γ = 0.5 and γ = 1, we have that the control constraint is active for all t ∈ [0, 1] (green
line and magenta line coincide). For γ = 2, we have that ∥ūσ(·, t)∥L1(Ω) < γ if t ∈ J1 = (0.4814, 0.5723)
and if t > 0.9980; for γ = 3, ∥ūσ(·, t)∥L1(Ω) < γ if t ∈ J2 = (0.4502, 0.6182) and if t > 0.9971. Black
lines are drawn to separate these regions. As soon as the norm constraint is not active we do not observe
sparsity, in the sense that there are no subintervals in space where the control is identically zero. This
behavior is consistent with the optimality condition expressed in (2.18).

The sparsity behavior obtained by means of the constraint imposed by u ∈ Uad should also be
compared to sparsity phenomena implied by nonsmooth cost-functionals, as considered in [7], for example.
The functional in that paper, which is closest to the situation of the present one is given by u →
∥u∥L2(0,T ;L1(Ω)), ie. it considers the L2-norm in time, compared to the L∞-norm used here. In both
cases the L1 norm in space is used. In [7, Figure 1] a numerical result with the same desired state
as in Figure 1 of the present paper is presented. It lies in the nature of these two different sparsity
enhancing approaches, that the solution in [7, Figure 1] also exhibits intervals of sparsity in the regions
corresponding to J1, J2.

In Figure 2 we show, at nine different instants of time, the solution obtained for the two-dimensional
problem, using the control space Uσ,0 at the discretization level i = j = 7. The control constraint
parameter is set to γ = 2. The norm of the optimal control in L1(Ω) is also reported at the indicated
time instances. Again, the solution exhibits a sparsity pattern that varies with time, and there is not
sparsity if the control constraint is inactive. The subdomains where ūσ(x, t) vanishes are coloured in grey.

5.2 Convergence rates

We show convergence rates for the problem in dimension 1. In this case we take the bound γ = 4. Since
we do not have the analytic solution, we denote I = 13 and take as reference solution the one obtained
for σI,I .

Three tests are carried out for each of the three discretizations of the control proposed in Section 3.2.
In the first test, we take hi = τi, i = 8, 9, 10; in the second one, we take a fixed fine discretization in time
given by τI , I = 13, and solve for hi, i = 8, 9, 10; finally, we fix the discretization parameter in space
to hI , I = 13, and solve for τi, i = 8, 9, 10. We measure the experimental order of convergence (EOC)
between two consecutive simultaneous refinement levels by setting

EOC = log2 ∥ūσI,I
− ūσi−1,i−1

∥L2(Q) − log2 ∥ūσI,I
− ūσi,i

∥L2(Q),

and analogously for the refinement in space and in time, respectively.
Results are shown in Table 1 for simultaneous refinement, Table 2 for refinement in space, and Table

3 for refinement in time. The observed orders of convergence for the control are as predicted in Theorem
4.4, with the exception of the spatial convergence described in Table 2, when we use continuous piecewise
approximations of the control. This can be expected from the improved spatial regularity exhibited by the
solution; see [27] or [9] for similar situations. However, the method of proof used in the previous references
cannot be applied here. For the convenience of the reader, we have also included the experimental orders
of convergence for the error in the state variable. A superconvergence phenomenon as the one described
in [25] can also be observed in Table 2.
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Figure 1: 1D problem. Continuous piecewise linear approximation in space, piecewise constant approx-
imation in time, of the optimal control for different values of γ. The norm in L1(Ω) at every instant of
time is also shown with a dark green line located on the plane x = −0.1 together with the magenta line
z = γ. In grey, the zero-level set of ūσ .

Figure 2: 2D problem. Piecewise constant approximation of the optimal control. In grey, the level sets
ūσ(·, tj) = 0.
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Uσ,0 Uσ,1

hi = τi ∥ūσI,I
− ūσi,i

∥L2(Q) EOC ∥ūσI,I
− ūσi,i

∥L2(Q) EOC
2−8 2.01E− 1 − 1.76E− 1 −
2−9 1.02E− 1 0.98 8.93E− 2 0.98
2−10 5.11E− 2 0.99 4.49E− 2 0.99

hi = τi ∥ȳσI,I
− ȳσi,i

∥L2(Q) EOC ∥ȳσI,I
− ȳσi,i

∥L2(Q) EOC
2−8 2.75E− 3 − 2.75E− 3 −
2−9 1.36E− 3 1.02 1.36E− 3 1.02
2−10 6.49E− 3 1.06 6.49E− 4 1.06

Table 1: Experimental order of convergence. Simultaneous refinement in space and time.

Uσ,0 Uσ,1

hi ∥ūσI,I
− ūσi,I

∥L2(Q) EOC ∥ūσI,I
− ūσi,I

∥L2(Q) EOC
2−8 9.86E− 2 − 1.10E− 02 −
2−9 4.93E− 2 1.00 3.87E− 03 1.51
2−10 2.45E− 2 1.01 1.34E− 03 1.53

hi ∥ȳσI,I
− ȳσi,I

∥L2(Q) EOC ∥ȳσI,I
− ȳσi,I

∥L2(Q) EOC
2−8 1.35E− 5 − 1.80E− 05 −
2−9 2.79E− 6 2.28 4.85E− 06 1.90
2−10 5.85E− 7 2.25 1.21E− 06 2.00

Table 2: Experimental order of convergence. Refinement in space.

Uσ,0 Uσ,1

τi ∥ūσI,I
− ūσI,i

∥L2(Q) EOC ∥ūσI,I
− ūσI,i

∥L2(Q) EOC
2−8 1.76E− 1 − 1.76E− 1 −
2−9 8.93E− 2 0.98 8.93E− 2 0.98
2−10 4.49E− 2 0.99 4.49E− 2 0.99

τi ∥ȳσI,I
− ȳσI,i

∥L2(Q) EOC ∥ȳσI,I
− ȳσI,i

∥∥L2(Q) EOC
2−8 2.75E− 3 − 2.75E− 3 −
2−9 1.35E− 3 1.02 1.35E− 3 1.02
2−10 6.49E− 2 1.06 6.49E− 4 1.06

Table 3: Experimental order of convergence. Refinement in time.
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