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Abstract: Torsional vibration is an oscillation phenomenon occurring at driven railway vehicle
wheelsets. As the resulting dynamic stresses can be significantly larger than the maximum static
motor torque, axle and press fit are at risk of failure. To prevent dangerous vibration events and
with these, press fit and axle from failure, traction drive manufactures nowadays used to implement
vibration suppression algorithms in drive controls. In this paper, the effectiveness of such suppression
algorithms is analyzed. Furthermore, as a pilot survey, we analyze to what extend traction controls
influence the excitation of torsional vibration.

Keywords: torsional vibration; railway drive train; wheel–rail contact; slip control; traction control

1. Introduction

The oscillation phenomenon torsional vibration has been known since the 1980s
when the first three-phase drives with traction controls for a high force utilisation were
developed. Torsional vibration was found to be a self-excited oscillation of the wheelset,
which cannot actively be damped by an appropriately designed traction control. Therefore,
in the following decades, torsional vibration was tolerated as no further safety concerns
appeared. This changed in 2010, when wheel twists were found on traction vehicles [1].
The cause of these twists was investigated in measurements, and torsional vibration was
found to result in exceeding the maximum transferable torque between wheel and axle.

Subsequently, research was undertaken to predict the highest dynamic torque resulting
from torsional vibration. Railway vehicle manufacturers wanted to consider it in the design
phase and enable appropriate dimensioning of a new wheelset. No suitable prediction
method could be developed. However, several approaches have been published to simulate
torsional vibration. Some of these models aim to predict maximum dynamic torque as
described before whereas others are used to investigate the vibration phenomenon itself. A
summary of these approaches is given in the following.

Yu and Breuer [2] and Weinhardt [3] tried to predict the maximum dynamic torque
with empirical or semi-empirical methods. These models could not be transferred to
other traction drive-wheelset configurations but to those they are based on. In a similar
way, Szolc [4], Schneider [5] and Saur [6–8] used analytical simulation methods to predict
maximum dynamic torque. However for these models no validation on measurements is
documented.

Further investigations on the physics of torsional vibration have been performed
by Liu et al. [9], Xu et al. [10], Konowrocki and Szolc [4], Meierhofer et al. [11] and
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Fridrichovsky and Sulc [12]. First investigations on the physics of torsional vibrations
have already been documented by Körner [13], Schwartz [14] and Buscher [15] in the 1980s.
These investigations lack to provide dependencies between the amplitude of torsional
vibration and the physical conditions under which they appear.

Finally, such dependencies were discovered in measurements documented in a study
by Trimpe and Salander [16]. These dependencies are further investigated in simulations
published in Trimpe et al. [17]. These simulations consider the traction control as a
relevant influence for the development of torsional vibration. As the traction control
used in Trimpe et al. [17] does not feature any torsional vibration suppression methods
as documented in Abouzeid et al. [18], the influence of such suppression methods is
investigated in this article. Basing on this, the novelty of the article at hand is firstly
to introduce a simulation procedure enabling realistic simulation of torsional vibration.
Here, realistic simulation especially means the implementation of vibration excitation by
changing wheel–rail conditions. Secondly, the article at hand shall validate the effectiveness
of a torsional vibration protection implementation.

2. System Description

In this section, a system overview for a high-performance locomotive is presented.
The main circuit elements are given in Figure 1 based on the energy flow from the electrical
input (overhead line) to the mechanical output (drive train) of the locomotive.

Firstly, the pantograph, mounted on top of the locomotive, transfers the electrical
energy from the AC overhead line to the main transformer. The AC transmission can be
25 kV/50 Hz or 15 kV/16.7 Hz based on the country, however, cross-border locomotives
are equipped with generalized transformers that meet each country’s standards. The main
transformer consists of a primary high-voltage winding with multiple secondary windings
supplying both the traction converters and the auxiliary inverters for on-board purposes,
like heating/cooling, lighting, etc.

Then, the traction converter transforms the single-phase input, connected to the main
transformer winding, into the three-phase modulated output connected to the traction
motor. The traction converter includes the following elements:

1. the four-quadrant chopper (4QC),
2. the DC-link,
3. the switched inverter.

The 4QC is used to provide and regulate the DC voltage of the DC-link. Meanwhile,
the DC-link capacitor is used to smooth the effects of power unbalances between 4QC and
the inverter. A series resonant circuit (2F) is included to filter the second harmonic content
of the line frequency generated by the 4QC due to the single-phase AC input. In addition,
a chopper module is added to the DC-link to prevent the capacitor from overvoltages.

After that, the PWM inverter inverts the regulated DC-link voltage to a three-phase
voltage with variable amplitude and frequency to feed the traction motor. This function is
achieved by the electrical drive control unit which regulates the traction force according
to the locomotives’ driver commands. Induction machines (IMs) are commonly used in
traction systems for railways due to their robustness with less maintenance requirements,
their independency on rare-earth materials (e.g., magnets), and the possibility of feeding
more than one motor from a single inverter [19].

Finally, the electromagnetic torque developed by the traction motor (IM) is trans-
ferred to the wheels through the mechanical drive train. This transmitted torque provides
tangential (traction) force which depends on the wheel–rail condition.
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Figure 1. Main circuit elements of a high-performance locomotive [20].

2.1. Electric Drive

High performance locomotives operate with individual axle control i.e., each wheelset
is fed from an independent PWM inverter (see Figure 1). Thanks to this, high utilization of
wheel–rail adhesion can be achieved. The electric drive control is responsible for achieving
the traction force F∗t demanded by the locomotive driver which consists of two cascaded
control loops:

1. Adhesion control. This control loop aims to adapt the wheel–rail adhesion level (i.e.,
the tractive/breaking force) besides preventing the wheel from slipping during accel-
eration/deceleration of the locomotive or due to changing of the wheel–rail contact
conditions caused by slippery rails. More details will be discussed in Section 3.1.

2. Torque control. A precise, high dynamic torque control is needed to assure that
the machines’ actual torque follows the demanded torque T∗e by the outer adhesion
controller. Modern traction drives are equipped with different control strategies,
which can change dynamically based on the operating speed [18]. Mainly, vector
control schemes are used to decouple the torque and flux components of the machine’s
current, which allows to fully exploit machine torque capability without surpassing
machine or power converter current limits. Typically rotor flux field-oriented control
(RFOC) tuned with a high bandwidth is used (see Figure 2). In this scheme, the d-axis
of the rotating reference frame is aligned with the rotor flux, i.e., λ̂e

dqr = λ̂e
dr = λ̂r ,

the stator voltage and the stator flux equations become (1) and (2), where ωe is the
angular speed in electrical units of the synchronous reference.

ve
dqs = R̂′sie

dqs + pλ̂e
dqs + jωeλ̂e

dqs (1)

λ̂e
dqs =

L̂m

L̂r
λ̂e

dqr + L̂σsie
dqs (2)

ωe = ωr + ω̂sl ; where ω̂sl =
L̂m

τ̂r|λ̂r|
ie
qs (3)
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Thus, the electromagnetic torque Te can be represented by (4) in terms of q-axis of
stator current and the estimated rotor flux.
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Figure 2. Rotor field-oriented control (RFOC) scheme.

The main concerns regarding RFOC methods are their sensitivity to rotor resistance,
and the degradation of current regulator performance when the inverter operates near
its voltage limit. Alternatively, the stator-flux orientation can be used to overcome
these limitations, especially at high speeds. Direct Self-Control (DSC) was proposed
for high power drives operating with low switching to fundamental frequency ratio
(see Figure 3) [21]. Three hysteresis controllers determine the voltage applied to the
machine by comparing the command flux magnitude and the estimated one for each
phase. A two-level hysteresis torque controller determines the amount of zero voltage
vector to be used. Moreover, the switching frequency is controlled by adapting the
torque controller hysteresis band using either proportional or proportional-integral
(P/PI) controller. DSC produces a symmetrical hexagonal stator flux trajectory to the
origin increasing the robustness against input voltage disturbances. From ≈30% to
≈85% of base speed, DSC offers a high dynamic response and reduced switching
losses, but at the price of a high current ripple. At high speeds (>≈85% of base speed),
zero voltage vectors are not selected anymore, DSC providing, therefore, a natural
transition into overmodulation and eventually into six-step [22]. Below ≈30% of the
base speed there is a degradation of the control performance, a detailed description
and potential remedial actions can be found in [23,24].

2.2. Mechanical Model of the Drive Train

The mechanical components of the drive train are implemented in a multibody sim-
ulation (MBS) model. Figure 4 shows the quarter model of a traction locomotive which
is used for the investigations [17]. The mechanical model contains the masses and iner-
tias of a hollow shaft drive train consisting of a rotor, the gear wheels, the coupling, the
hollow shaft, the axle and both wheels. The torsional stiffness and damping of the gear,
the coupling, the hollow shaft and the axle are considered. Also the single-stage gear is
included in the model. Figure 4 gives an overview of the described system. The traction
motor drives the gear wheel which is attached onto the cardan hollow shaft. The hollow
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shaft transmits the torque by its coupling onto the directly driven wheel. Via the wheelset
axle the directly driven wheel drives the indirectly driven wheel. Numerical values for the
torsional stiffness and torsional damping as well as the moments of inertia used for the
MBS model are obtained from [14].
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2.2.1. Simulation Model

The simulation model was built up in the MBS software Simpack as depicted in
Figure 5. The MBS model is linked to the drive control via co-simulation. The model
contains the torque transmitting components of the mechanical drive train, the wheel–rail
contact, as well as the friction forces and inertia forces resulting from the train set. The
whole model of the drive train can follow the track in longitudinal direction and can move
freely in vertical direction. The individual bodies have rotational degrees of freedom
around their lateral axis.

Traction
Motor

Wheel-Rail
Contact Point

Direct Wheel

Gearbox Cardan Hollow Shaft

Indirect Wheel

Rail Track

Vehicle
&

Load Weight

Figure 5. MBS model of the drivetrain with wheel–rail interaction.

For the calculation of the tangential forces in the wheel–rail contact, the analytical
approach of Polach is used [26]. This approach was developed to achieve an improved fit
of the adhesion characteristics in the simulation with measured data. The tangential force F
calculated in Polach’s formalism depends on the wheel load Q, the wheel–rail adhesion
coefficient µ and the weighting factors kA and kS.

F =
2Qµ

π

(
kAε

1 + (kAε)2 + arctan(kAε)

)
, kS ≤ kA ≤ 1 (5)

The gradient of tangential stress in the adhesion area ε is depending on the relative
(slip) velocity vs between wheel and rail and the contact ellipse in the wheel–rail contact.

ε =
2
3

Cπa2b
Qµ

vs (6)

The decrease of the wheel–rail adhesion coefficient for higher relative velocities is
realized by a relative velocity vs dependent friction value. This is highly relevant for the
simulation of torsional vibrations. The slope of the adhesion coefficient above its maximum
can be determined by the parameters A and B. Figure 6 shows the adhesion characteristics
as a function of the driving speed.

µ = µ0 ·
(
(1− A) · exp−B·|vs |+A

)
(7)

The traction forces are opposed by the friction and inertia forces of the train set. These
opposing forces are represented in the MBS model by the following equations taken from
the literature [17].

Rolling Resistance:

Froll = Mtrain · g · kroll , kroll = 1.5 · 10(−3) (8)
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Air Resistance:

Fair = Mtrain · g · kair, kair = 0.25 · 10(−3) (9)

[–]

[–]

Figure 6. Adhesion characteristics as a function of the driving speed Vtrain and slip Sx [26].

2.2.2. Linear Analysis

A linear eigenvalue analysis was carried out to investigate the dynamics of the drive
train. The wheel–rail contact forces are not taken into account in the analysis. The eigen-
modes and the eigenfrequencies of the six-mass model were calculated (see Figure 7).

Especially, two eigenmodes are important with regard to the assessment of the drive
train dynamics. For mode 2, a chatter oscillation occurs where the whole wheelset is
oscillating in counter phase to rotor and gear. As the resulting oscillation amplitudes of
the wheelset have a similar magnitude as the oscillation amplitudes of the rotor, chatter
oscillations are detectable by the traction motor sensors. As a result, they can actively be
damped by an appropriate design of the traction control [14,25].

This is different in mode 3, which is the relevant mode of torsional vibration. Here,
both wheels of a wheelset oscillate in counter phase and at the same time, oscillation
amplitude of the rotor are close to zero (see Figure 7). As oscillation amplitudes can hardly
be detected at the rotor, torsional vibration of the wheelset cannot be actively influenced by
the drive control. If wheelset torsional vibrations occur, further measures must be taken.
For example, the drive torque of the motor must be reduced or the wheels must be braked.
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Figure 7. Mode shapes of the six-inertia model. The magnitude of the relative rotational angle is
normalized based on the peak value at each mode.

3. Slip Control and Torsional Vibration Protection
3.1. Overview of Slip Control

Anti-slip control is needed in railway traction drives to reduce the wear of the wheel–
rail contact surface, increase traction/breaking capability, and increase passenger comfort
and safety. Commonly, the torque commanded by the train driver Tre f

e is sent to the traction
motor control unit (TCU) meanwhile the slip control is running in parallel without any
action during normal operation. Once slippage is detected, the slip control becomes active
and the output torque correction signal Tα

e is sent to the TCU (see Figure 8). Generally, slip
controller can be classified into:

• Traditional slip controllers, also known as re-adhesion controllers. They are one of
the simplest and stablest solutions to limit the wheel–rail slippage to a predefined
value [27–29]. The slip velocity reference can be kept at a constant value or varied
with the train speed based on previous field-tests and train’ driver experience [30].

• Advanced slip controllers aimed to operate at maximum possible adhesion
level [15,31–36]. Due to the unpredictability of the adhesion-slip phenomena, finding the
optimal slip velocity increases the complexity of the control and its real time implementa-
tion becomes more challenging.

In this article, slip velocity control is used. From the measured motor speed signal
ωm, the wheel velocity vw and acceleration signals αw can be obtained (see speed signal
processing block in Figure 8). Slip velocity vslip is obtained by subtracting wheel linear
velocity vw from train velocity vtrain. Slip speed is compared to a preset value v∗slip, the error
signal feeding a conventional PI regulator. The correction signal coming out from the slip
velocity controller could be the commanded torque directly. However, to ensure passengers
comfort, an additional acceleration control is employed to control the acceleration/jerk of
the wheel (see Figure 8). Additionally, adaptation of slip velocity ∆v∗slip is added to damp
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vibrations excited in the drive train wheelset through vibration detection and protection
block seen in Figure 8. Vibration suppression will be discussed in the following subsection.
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Figure 8. Overall slip control scheme with torsional vibration protection.

3.2. Torsional Vibration Control

Torsional vibrations occur in the drive trains axle due to changing of the adhesion
conditions (from high to low values P1 → P3 or vice versa), track irregularities, and/or
operating at high slip velocities (i.e., unstable region in Figure 9a). The envelope magnitude
of the torque vibration component, which is referred to dynamic torque |Tdynamic|, is

proportional to the slope of the adhesion characteristic curve δµ
δVslip

in the unstable region

(i.e.,
δµP1

δVslipP1

>
δµP2

δVslipP2

>
δµP3

δVslipP3

in Figure 9a) [5].

To mitigate torsional vibrations in traction drive trains, passive readhesion controller
is usually used (see vibration detection and protection block in Figure 8). The readhesion
controller reduces the slip velocity to protect the wheelset axle from excessive vibration
events. This can be achieved by extracting the vibration component from the speed sensor
signal of the IM ωm using a band-pass filter. Then the envelope of the extracted vibration
Env(|vosc|) is controlled to avoid surpassing a predefined limit |vosc| using a conventional
PI regulator (see Figure 9b). The output signal ∆v∗osc reduces the slip velocity command
once the vibration envelope exceeds the defined limit bringing the operating point back
into the stable region (e.g., P

′
1 → P1 in Figure 9a). Consequently, the reference torque T∗e is

reduced during the vibration mitigation process, T∗e being returned to its original value
after vibration events clearance. In this paper, passive readhesion control is used to limit
the slip velocity, being aware of its adverse impact on traction. Alternatively, advanced
control techniques can be employed to actively damp the torsional vibrations in the traction
drive, but at the cost of higher complexity and parameter dependency [20,25].
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Figure 9. Torsional vibrations occurrence and mitigation method: (a) migration of operating point
from stable (micro-slip) to unstable (macro-slip) regions, and (b) Vibration protection control scheme.

4. Simulation Results and Experimental Verification

In this section, the entire traction drive system and control are modeled and simulated
using the MATLAB-SIMPACK co-simulation tool. Furthermore, changes in the wheel–rail
conditions with activated and deactivated torsional vibration protection will be analyzed.
Finally, simulation results will be compared with measured data already published in [16].

Based on the dependencies between maximum dynamic torque and wheel–rail condi-
tions documented in [16,17], the wheel–rail adhesion coefficient was modified during the
simulation at hand during an acceleration process. The introduced co-simulation tool (see
Figure 10) was used.

The simulation batch starts by defining the number of simulations to be carried out.
This depends on the ranges of train speeds and wheel–rail conditions to be tested. Variables
to be set for each simulation include train velocity, adhesion coefficient and the travelling
distance where the adhesion change is applied for both wheels. The slip and vibration
protection control algorithms are executed via MATLAB/SIMULINK toolbox where the
torque command is sent to the drive train and vehicle model implemented in the SIMPACK
environment. The train velocity and motor speed measurements are fed back to SIMULINK
model where the co-simulation communication is done via internet protocol (IP-Server
2000). Finally, the output data (dynamic torque, slip velocity, etc.) are stored in a vector
table then the same process is repeated for the rest of simulation steps.
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Figure 10. Flow chart for parametric sweep analyzes of torsional vibrations in mechanical drives
using MATLAB-SIMPACK co-simulation tool.

Three different wheel–rail condition scenarios for both wheels were conducted to
investigate effectiveness of torsional vibration protection of electric driven wheelsets (see
Figure 11). x1...4 indicates the distance at which the change of the adhesion value µ is
applied (starting from 10 to 400 m with separation of 10 m each step). Additionally, the
simulations carried out are repeated (traction and electrical braking) for different train
velocities (from 0 to 200 km/h).

[–
]

[–
]

[–
]

Figure 11. Wheel-rail contact friction configuration scenarios for SIMPACK model.

Figure 12 shows dynamic torque plotted against slip velocity where all simulation
results for different adhesion scenarios (mentioned in Figure 11) are combined and plotted
in the same graph (i.e., Figure 12). It is observed that without vibration protection (see
left subplot in Figure 12), the vibration magnitude is increasing linearly with slip velocity
up to the maximum value (Tdyn ≈ 180 kNm at vslip ≈ 2.5 m/s) for traction mode. It is
noted that though the maximum dynamic torque is found to be less (Tdyn ≈ 160 kNm at
vslip ≈ 2 m/s) in braking mode, still the trend is the same as for traction mode.
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Enabling vibration protection control limits the dynamic torque magnitude (see right
subplot in Figure 12). The maximum dynamic torque achieved is Tdyn ≈ 72 kNm at
vslip ≈ 0.7 m/s for traction mode and Tdyn ≈ 51 kNm at vslip ≈ 0.6 m/s for braking mode.

– – – –

Figure 12. Simulation results. Dynamic torque vs. slip velocity with and without vibration protection
during traction and braking, provoked by different adhesion scenarios.

Given that the adhesion characteristic is highly stochastic, it is striking that data
points resulting from simulations show good conformity with data points resulting from
measurements. Measurements have been conducted with a similar drive train and traction
control as the one implemented in the simulation model at hand. Measurement conductions,
as well as measurement data analysis have been published in [16]. Furthermore, for both,
simulations and measurements, maximum dynamic torque increases linearly by increasing
slip velocity. Although in Figure 13 this linearity appears more accurate for simulations
than for measurements, conformity can be considered good as deviations in the accuracy of
the linearity can be traced back to the limitations of the real test execution. After exceeding
a certain slip velocity vslip,crit ≈ 0.5 m/s) data points are not increasing linearly but rather
decreasing. This decreasing process of data points conforms with observations documented
in other publications [2,37]. Most likely, for further increasing slip velocities above vslip,crit,
dynamic processes vanish and the wheelset transitions into global slipping.

– – – –

Figure 13. Comparison between Simulation and Measurement results. Dynamic torque vs. slip
velocity during traction and braking process, provoked by different adhesion scenarios.

5. Conclusions and Outlook

In this article, the implementation of a complete traction drive system including
electrical components, control strategies and mechanical drive train is presented. The
implementation is realized by a co-simulation tool and this tool is used to simulate torsional
vibration. In simulations, torsional vibration is provoked by changes of the wheel–rail
conditions. Furthermore, the effectiveness of a torsional vibration detection is investigated.
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For this, a torsional vibration protection is implemented as part of the traction control.
Simulations are conducted with activated and deactivated vibration protection.

As a first step, the functionality of the simulation model implementation has suc-
cessfully been verified on measurement results. This includes coincidence of maximum
dynamic torque of simulations and measurements as well as the linear dependency of
dynamic torque and slip (find further investigations on this dependency in [37]).

As a second step, simulations were performed to investigate the effectiveness of a
torsional vibration protection. The received results show that the implemented vibration
protection helps to suppress torsional vibration and therefore, to prevent the wheelset from
high dynamic torque. As torsional vibration is suppressed indirectly by dynamic torque
reductions, the vibration detection requires reliable wheelset rotation speed data. Here,
linear analysis shows that rotation speed sensors of the traction motors may not provide
wheel rotation speed data of sufficient quality.

Consequently, the presented investigations and results verify that suppressing tor-
sional vibration indirectly by dynamically reducing the traction torque is an effective way to
prevent a railway wheelset from high dynamic torque. Therefore, the implementation of an
effective vibration protection is capable of reducing the maximum torsional loads applied
to wheelset axle and press fit by a significant amount. With this, a vibration protection
contributes to the safety and reliability of rail traffic.

Moreover, with the introduced model, torsional vibration has been successfully simu-
lated in accordance with track measurements. Basing on this achievement, the simulation
model shall be applied to other vehicles in order to validate prediction of maximum dy-
namic torque values. The capability of predicting maximum dynamic torque values is
needed by railway vehicle manufacturers, to enable a more efficient development of new
wheelsets. In the same way, such simulations can help manufacturers to study evidence of
the effectiveness of their torsional oscillation protection implementations.
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