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Abstract— The correct application of efficient and safe driving 
techniques plays an important role for professional drivers. 
Monitoring and analyzing driving data can promote changes in the 
sector in terms of better use of vehicles, reduction in energy 
consumption and improved on-road safety. However, the results 
in driving performance can vary considerably between different 
fleets that have received the same training in efficient and safe 
driving. The aim of this paper is to perform an in-depth analysis 
of the driving performance of professional drivers during their 
working day, taking into account the influence of the fleet 
management decisions. For this, we have selected 4 urban public 
transport companies with clear differences in terms of the 
employees scheduled and rostered drivers to bus lines. The driving 
behavior of 745 drivers over a period of 10 months has been 
evaluated considering their performance in terms of efficient and 
safe driving using driving patterns. A total of 6,517,983.995 
kilometers of real-time driving data retrieved from vehicles every 
1.5 seconds, has been analyzed. The results show significant 
differences in the evolution and acquisition of the new driving 
habits. In addition, significant observations from this paper 
provide valuable information for fleet managers and allow to take 
advantage of the data provided by the adoption of Intelligent 
Transportation Systems. 
 

Index Terms— data analytics, efficient driving, fleet 
management strategy, intelligent transportation, on-board 
devices, safety driving patterns 

I. INTRODUCTION 
FFICIENT driving has become one of the biggest 
concerns for public transport companies which invest in 
training courses to help professional drivers acquire 

new, efficient and safe habits while driving. To incorporate the 
new habits throughout the working day, transport companies 
employ efficient driving programs. These programs are 
designed with the aim of helping drivers gradually acquire new 
skills in order to be more efficient. In addition, professional 
drivers have certain peculiarities, such as stress or fatigue [1,2]. 
These variables are directly related to driving safety and can be 
reduced by applying efficient driving techniques. For this 
reason, improvements in learning methodologies are proposed, 
with theoretical and practical courses, feedback devices to assist 
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while driving and periodic reports to include the continuous 
improvement process in learning. Moreover, fleet management 
and driving monitoring also allow to analyze the driving styles 
and establish detailed information about the use of the fleet. 

Once efficient driving programs have been implemented in 
transport companies, the next key element is identifying the 
correct application of the efficient and safe habits while driving. 
This is an essential component for any transport company since 
it indicates the level of effectiveness of the driving program. 
For simplicity, in most cases fuel consumption is selected as a 
metric of driving performance. It has been proven that fuel 
consumption is associated with both driving patterns and road 
conditions. Moreover, traffic congestion and steep road slope 
are seen to negatively influence fuel consumption [3]. 
Therefore, fuel consumption can misrepresent the results of 
efficiency and safety performance. For that reason, our previous 
work focused on the design and implementation of an analytic 
system to evaluate efficient driving programs in professional 
fleets from an innovative point of view:  through the analysis of 
driving patterns [4]. Driving patterns infer the driver’s behavior 
from the analysis of different data. This data comes from 
different sources of information, including vehicular data 
collected in real-time such as speed, acceleration, or the use of 
the brake pedal. These patterns allow the fleet managers to 
identify the weaknesses of each driver in terms of efficiency 
and safety. However, if the psychological and cognitive 
requirements are demanding, particularly in safety-sensitive 
jobs, these factors should also be included in the (medical) 
screening of the drivers [5]. With all the collected and analyzed 
information, drivers receive real-time feedback in an on-board 
device coupled with monthly reports. With these components, 
a continuous improvement process in the acquisition of 
efficient driving habits is implemented. 

However, occasionally the results are not as good as might 
be expected, despite the improvements in learning and 
evaluation methodologies. In these situations, the driving 
behavior analysis could detect difficulties in applying certain 
driving techniques (efficient or safe). When this occurs on a 
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personal basis and in isolated situations, the behavior can be 
straightened out with custom-made reinforcement programs. 
Nevertheless, when the results concern the entire fleet, it is 
necessary to carry out a more in-depth analysis to identify the 
origin of the low level of driving performance. In such cases, it 
is necessary to complete the contextual information map, 
including elements such as the company's strategy (Figure 1). 
Therefore, Intelligent Transportation Systems (ITS) and the 
Internet of Things (IoT) open new opportunities to improve the 
traditional fleet management in the public transport sector. 

 

 
Fig. 1. Contextual information map. 

 
 
In previous work [4], [6] we have already demonstrated the 

viability of our evaluation and analysis tool, as well as the 
efficient driving learning and evaluation methodology. This 
methodology is implemented in urban public transport 
companies in Spain and Morocco. 745 drivers, distributed in 4 
fleets, took part in the efficient driving program. The selected 
companies show clear differences in terms of the total number 
of different bus lines assigned to each individual driver. In this 
paper we evaluate the overall fleet performance over a period 
of 10 months in terms of efficiency and safety, based on the 
driving patterns. For each driver, the data necessary to calculate 
the driving patterns are collected every 1.5 seconds throughout 
the entire working day. With the results, we can conclude and 
identify which decisions related to fleet management operation 
influence the driving performance results. 

To the best of our knowledge, this is the most extensive 
analysis of driving behavior that also includes fleet 
management information. The results show that there are no 
significant differences in driving patterns related to anticipation 
and safe driving concerning drivers with fewer than 10 bus 
lines. In addition, drivers with more assigned lines also obtain 
acceptable results, possibly due to more cautious driving since 
they do not know the routes in detail. However, to obtain 
satisfactory results in terms of driving performance, the best 
fleet management strategy should be based on reducing the 
number of bus lines assigned to each driver. 

The main contributions of this paper follow: 
• We analyze the influence of the fleet management 

decisions on efficiency and safe driving; 
• We delve deeper into the analysis of the influence of 

other types of contextual information related to the 
operational planning; 

• We promote changes in the sector with the help of the 
analysis of the obtained data and technological 
advances applicable to the public transport companies; 

• We evaluate the overall fleet performance over a 
period of 10 months in terms of efficiency and safety, 
based on the driving patterns. 

 
The rest of the paper is organized as follows: Section 2 

summarizes the main related works. Section 3 covers the 
fundamentals of the driving analysis based on driving patterns. 
The results are discussed in Sections 4 and 5. Conclusions and 
future work are summarized in Section 6. 

II. RELATED WORK 
The analysis of driving efficiency has been the object of 

study in several papers. Commonly, the driving efficiency 
assessment has been represented in [7]. Recent work shows that 
this approach offers a biased view of efficiency and does not 
guarantee that drivers are applying the efficient driving 
recommendations while driving. In addition, the influence of 
other external factors on vehicle consumption are not taken into 
account, and there is evidence that other factors affect not only 
bus consumption [8] but also bus emissions [9]. To overcome 
the shortcomings of this approach, which is widely adopted due 
to its simplicity, proposals have arisen based on evaluating 
driving efficiency according to driver behavior. Under this 
paradigm, different works propose the analysis of driving 
behavior in greater or lesser detail. 

The analysis of driving patterns involves gathering real-time 
driving data such as speed, rpm or accelerations [10]. Authors 
[11] evaluated driving behavior including different indicators, 
but they do not treat the data as driving patterns, but merely as 
particular indicators. However, also analyzed the collected data 
taking into account socio-demographic variables, such as age 
and time working for the company. The work presented in [12] 
also evaluated some driving metrics and their evolution and 
authors in [13] use acceleration data to establish a relationship 
with subjective assessments of driving style and thus be able to 
improve the comfort of transport users. The study of on-board 
comfort has also been analyzed in [14] attending to the bus 
lanes characteristics. However, most related work focuses on 
detecting some specific metrics, but not efficient or safe driving 
behaviors, as we propose with our driving patterns. Liu et al. 
[15] go further, proposing a method to extract driving patterns 
but also visualizing them on a color map. Finally, authors in 
[16] proposed an algorithm using fuzzy logic to classify drivers 
according to their driving style, but the experiments are in an 
initial stage. Detection of aggressive driving styles has also 
been studied in [17], where data collected from the 
accelerometer and gyroscope of a smartphone is used. In this 
sense, mobile phones have proven effective in measuring and 
recording movement [18]. 
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Other considerations are based on the type of efficient 
driving programs and learning process: the use of feedback 
devices (including mobile apps [19]) or training sessions are 
different approaches to change driver behavior. There are 
different studies in the literature comparing both techniques. 
Roy et al. [20] conclude that, although the attitude of drivers is 
positive, there are other factors that restrict the change in 
driving habits: weather or even timetables could affect the 
motivation to acquire new driving habits. Also, the subjective 
workload related to the formative actions has also been 
analyzed [21] with the aim of avoiding the rejection of training 
programs. It must not be forgotten that the driving process has 
a strong human component and it may be influenced by certain 
socio-demographic variables. 

Therefore, we observe that different proposals throughout the 
literature have addressed different problems in the analysis and 
evaluation of efficient and safe driving: from the definition of 
metrics or driving patterns, their analysis and representation in 
maps, or even studies that underline the importance of the 
formative actions and the context in the driving performance. 
However, a detailed analysis with a large amount of real-time 
driving data, bringing together all these issues in a single 
infrastructure as proposed in this paper, has not been found. 

Our previous work used driving patterns as a basis to 
evaluate driving efficiency and safety behavior. Driving 
patterns identify all the actions during the driving process, from 
the way in which the driver starts the movement of the vehicle, 
the movement and the finalization of the movement (the stop). 
From the analysis of this information, our system can obtain a 
numerical evaluation (from 1 to 10), associated with the level 
of maturity in efficiency and safe driving, by means of fuzzy 
logic techniques [6]. Unlike other proposals, our method of 
analysis and evaluation of driving behavior identifies which 
aspects of efficiency and safety should be improved by drivers. 
In addition, our system takes into account different contextual 
variables such as geographical, temporal or even weather 
conditions. Our previous work also analyzed the influence of 
socio-demographic information, but from a driving pattern 
perspective, considering driving efficiency and safety [22]. 

Therefore, driving behavior analysis based on driving 
patterns is more complex, both in terms of design and 
computational costs. However, the results provide detailed 
conclusions about the correct application of the efficient and 
safe driving recommendations, isolating the external factors 
that are outside the driver’s control. In this way, the problems 
derived from the use of simple metrics are solved [5].  

In addition, our system gathers a great quantity of detailed 
information, which can be applied to other applications, such as 
enhanced operational decisions. For instance, the driving 
performance of professional drivers could be associated to other 
factors related to the operational management of the fleet. Fleet 
management is a relevant activity both at an operational and 

tactical level [23]. Typical problems, such as cost efficiency, 
and new management aspects, such as safety and ecology [24], 
have been approached by mathematical models. We can also 
find proposals that take into account many factors in the 
decision making process, taking into consideration 
sustainability, where the authors identify if there has been a 
change in the driving style of drivers during the pandemic [25], 
[26], costs and emissions to determine bus frequency during 
rush hours [27], the influence of passenger load [28] or the 
passenger waiting times and bus delays [29]. 

Nevertheless, ITS technologies open new opportunities to 
improve fleet management decisions [30], [31]. In this sense, 
including IoT, and a complete ITS architecture as proposed in 
this article, new off-line variables could be incorporated into the 
decision-making process and could also help to improve road 
safety. For instance, the distribution of work shifts or changes 
in the assignments of vehicles or bus lines can be a key factor 
that penalizes the concentration and performance of the drivers. 
In fact, professional drivers must maintain efficient and safe 
behaviors throughout the entire working day. Different studies 
analyze the relationship between professional drivers' work 
shifts and their fatigue, both in terms of mental and physical 
fatigue [32], [33]. However, in urban public transport 
companies, the influence of the staff allocation with bus lines 
should be assessed. This analysis has not been performed in 
detail in the literature. 

In this paper, we have analyzed different types of 
management strategies for urban public transport companies, 
taking into account the number of bus lines assigned to each 
driver. In each fleet, the different bus lines follow different 
routes. For that reason, the impact of assigning more or a 
smaller number of bus lines to each driver must be evaluated. 
The analysis is based on the adoption of efficient and safe 
driving techniques during working hours. The influence of such 
management decisions in a driving context has not been 
previously addressed by other works. From the large amount of 
analyzed data, we have shown that the number of bus lines 
assigned to each driver can influence not only the efficiency 
results in some cases, but also the anticipation and safety 
behavior in other cases. 

III. MATERIALS AND METHODS 
The characterization of driver behavior using real-time 

driving data is possible due to on-board devices. We use the 
hardware and system architecture described in [4] and [34] in 
order to gather real-time driving data. This architecture is part 
of a complex framework, as shown in Figure 2. The proposed 
framework includes different sources of data, different SQL 
databases to store the raw samples and a set of developed tools 
to perform the analysis of the driving behavior. 
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Fig. 2. Framework for driving behavior analysis. 

 
 

The proposed framework includes the following information 
as input data (“Data source” in Figure 2): 

• An on-board device (OBD) is installed in the vehicles 
and collects information from the Engine Control Unit 
(ECU). The OBD gathers information related to speed, 
acceleration, consumption and braking at 0.6 Hz. In 
addition, the on-board device shows real-time 
recommendations, as our previous work demonstrated 
that feedback can encourage drivers to improve their 
driving performance [35]; 

• GPS coordinates and additional modules to improve 
GPS locations (map-matching); 

• Weather information from AEMET1 open data 
sources; 

• Fleet management information. 
 
All the information from the different data sources will be 

stored in an SQL database. In addition, the raw samples from 
the OBD (“On-board device” in Figure 2) will be combined 
with GPS coordinates. A reverse geocoding module is 
implemented in order to store nominal information for cities, 
streets and types of roads. This information is also stored in an 
SQL database and will be useful for fleet management to locate 
specific areas in which driving performance is not as expected. 
Weather information is stored as a summary of rain events and 
temperatures for each day. Finally, drivers are associated with 
the bus-line in each of the complete routes (“Employee 
scheduling, bus line assignment” in Figure 2). 

The analysis is performed using a set of developed tools using 
SQL server integration service (SSIS) processes. With our 
approach, raw driving data is filtered and transformed into 
driving patterns associated to safe and efficient behaviors while 
driving. Each obtained pattern is stored with a unique identifier. 
In this sense, the output information obtained accurately 
describes the driving behavior, independent of other external 
factors, such as the type of vehicle or the route. In order to 
complete the evaluation, driving patterns are presented in terms 
of KPIs and a maturity model module will obtain the overall 
performance.  

 
1 https://opendata.aemet.es/ 

In this paper, we have included fleet management information 
to analyze the influence of strategy decisions on driving 
behavior. The following sections will describe the phases of the 
experimental study and evaluation. 

 

A. Phase 1: Data Collection 
The analysis and evaluation methodology described in 

Section III is implemented and tested in 16 professional fleets. 
For this study, we have selected four fleets of urban public 
transport companies. The fleets have been selected taking into 
account the following criteria: we have chosen fleets with a high 
number of drivers in order to obtain statistically relevant results. 
In addition, the selected fleets present different approaches 
regarding the decisions of assigning lines to each driver.   

Table I summarizes the main characteristics of each fleet 
according to the aim of the study. In order to maintain the 
privacy of the transport companies, we have named the fleets 
with a numerical nomenclature. However, note that three of the 
fleets correspond to urban transport companies in Spain and a 
fourth fleet is located in Morocco. 

 
TABLE I 

CHARACTERIZATION OF THE FLEETS 
 

 Total number 
of drivers 

Total number 
of bus lines 

Fleet #1 51 25 
Fleet #2 253 43 
Fleet #3 83 22 
Fleet #4 358 26 

 
 
745 professional drivers were evaluated under the proposed 

framework for 10 months (from January to October 2018). All 
the participants are aware of the data collection process and 
have received the same training in efficient and safe driving. 
The collected data registered a total number of 6,517,983.995 
kilometers in our dataset. Moreover, the samples from which 
the driving patterns are calculated are collected every 1.5 
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seconds. As a result, during a complete working day, millions 
of samples are collected and analyzed to extract the driving 
patterns. Therefore, the results presented in this work represent 
a valuable source of information and conclusions not previously 
seen for the urban transport sector. 

 

B. Phase 2: Analysis of driving performance 
In our previous work [6], we detailed the design and 

implementation of the driving patterns. Our driving patterns 
characterize efficient and safe driving behavior taking into 
account the influence of the driving context. In addition, our 
framework allows to cross the evaluation with other contextual 
information, such as the time of the day, streets or even the 
weather conditions. The characterization of the behavior during 
the starting, movement and stopping of the vehicle allows to 
extract detailed information of all the efficient, inefficient or 
unsafe situations that can occur during the driving process. 
Furthermore, we have employed fuzzy logic techniques and 
adapted the maturity model concept to the driving environment. 
Thus, we have managed to express the level of driver efficiency 
in numerical terms (from 1 to 10), as an evaluation [6]. Among 
the different patterns in [6], we have selected the following 
indicators to characterize the overall performance of the 
drivers: 

• Inertia: it is described as when the vehicle is moving 
without fuel consumption; 

• Idle: it is described as when the engine is running but 
the vehicle is stationary; 

• Acceleration-brake (AB): this pattern is detected 
when the driver uses the brake after a long period of 
continuous acceleration. It detects situations in which 
the driver does not foresee the driving conditions; 

• Brake-acceleration (BA): this pattern is detected 
when the driver brakes with a high-intensity level 
followed by the acceleration of the vehicle. It detects 
situations in which the driver does not maintain the 
safety distance. 

 
The first two indicators are more related with efficient 

driving recommendations while the AB pattern refers to 
anticipation in driving and the BA pattern is related to safety. 
In order to evaluate the driving performance, besides the 
maturity level, we have included the analysis of the KPIs for 
each pattern. The KPI for the inertia (and idle) pattern is 
expressed in terms of time percentage in inertia (or idle) in 
relation to the total time. For the AB and BA patterns, the KPI 
defines the number of times the pattern appears every 100 km. 
For idle, AB and BA patterns, the lower the KPI better is the 
driving performance. On the contrary, the inertia pattern 
conveys better results with higher values of the KPI. 

 

C. Phase 3: Statistical analysis 
Based on the results of the driving performance, we have 

carried out several statistical analyses and added information 
related to decisions on the fleet management strategy. We have 
used IBM SPSS Statistics 24 in order to accomplish the 

analysis. An initial assessment of the normality of data 
determined that our samples do not follow a normal 
distribution. We have used the Kruskal-Wallis test, with a 
significance level of p<0.05, to ascertain if there are significant 
differences between the groups. A Mann Whitney test was used 
in order to ascertain which groups show significant differences, 
with a significance level of p<0.05.  

With the aim of finding conclusive results, we have divided 
the analysis into two main groups: in an initial approach, we 
have grouped the data according to which fleet they belong. In 
the second, we have analyzed the data taking into account the 
number of bus lines assigned to each individual driver. 

IV. RESULTS 
The general purpose of this study is to carry out a detailed 

analysis of the driving performance of professional drivers 
based on the total number of bus lines assigned to them. To 
characterize the strategy of the fleet managers, we have 
classified drivers into four groups according to the number of 
bus lines assigned: those who drive on less than 5 bus lines, 
between 5 and 10 lines, between 10 and 15 lines and, finally, 
with more than 15 bus lines. According to this classification, 
the drivers of each fleet are distributed as presented in Table II. 

In order to envisage the characteristics of each fleet based on 
this classification, we show the results graphically in Figure 3. 
As shown, Fleet #2 and #3 have opposed behaviors: the former 
has more drivers with fewer lines assigned and the latter 
chooses high turnover among several lines. Fleet #1 and Fleet 
#4 have a more uniform allocation policy, distributing drivers 
in almost all categories. 

 
TABLE II 

DISTRIBUTION OF DRIVERS INTO GROUPS 
 

 Drivers 
with 1-5 
bus lines 

Drivers 
with 6-
10 bus 
lines 

Drivers 
with 11-
15 bus 
lines 

Drivers 
with >15 
bus lines 

Fleet #1 19 15 13 4 
Fleet #2 179 68 6 0 
Fleet #3 0 54 29 0 
Fleet #4 124 114 74 46 
 
 

 
Fig. 3. Characterization of the fleet management strategies. 
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A. Evaluation of the KPIs for each fleet  

Based on the characterization of the fleets, we have analyzed 
the KPI values for each pattern. Figure 4 summarizes the 
obtained results. Figure 4.a shows the idle and inertia pattern 
for each fleet in terms of % time of duration of the pattern 
among the complete routes. Figure 4.b shows the KPI values 
for the AB and BA patterns, expressed in the total number of 
events/100Km, as explained previously. Except for the inertia 
pattern, better results are achieved with lower values of the KPI. 
In addition, a complete statistical parameter description is 
shown in Table III, including mean and standard deviation but 
also confidence intervals. Comparing all the fleets, Figures 4a 
and 4b show that Fleet #1 and Fleet #4 have similar values in 
almost all the patterns. However, Fleet #2 and Fleet #3 have a 
different behavior, with Fleet #2 showing the worst results both 
for inertia (less use) and for the AB and BA patterns (higher 
values). As previously explained, Fleet #2 was characterized by 
a more conservative strategy of allocation of lines to drivers 
(drivers with few bus lines, as shown in Figure 3). However, the 
results are worse. Based on these preliminary results, it seems 
that drivers with fewer bus lines show overconfidence, paying 
less attention to the driving context and, therefore, obtain lower 
performance level in anticipative and safety patterns. 
Furthermore, the inertia pattern is also affected, possibly by 
drivers who have more lines (up to 10) and therefore do not 
have a good command of all the routes. These preliminary 
conclusions will be confirmed in subsequent analysis. 

The Kruskall-Wallis test confirms the presence of significant 
differences between the fleets in terms of the KPI values for 

each pattern. Therefore, we performed the Mann-Whitney test 
between pairs and it has been found that, for all patterns, there 
are significant differences between fleets except for the idle 
pattern of Fleet #2 and Fleet#3 (p-value=0.27). 

 

B. Evaluation of the KPIs considering the number of bus lines 
We have performed an in-depth analysis of the driving 

behavior taking into account the number of bus lines. We have 
kept the initial classification of drivers who drive between 1 and 
5 different bus lines, between 6 and 10, 11 and 15 and, finally, 
more than 15 bus lines. A detailed description of the number of 
drivers in each group is shown in Table II. This analysis 
includes all drivers of all fleets. With our evaluation system 
based on driving patterns, the driving context is taken into 
account and, therefore, we can include drivers from different 
fleets in the analysis. Statistical analysis found significant 
differences between the groups. Table IV summarizes the pairs 
in which significant and no significant differences have been 
found. With the aim of clearly showing the information in the 
Table, we have renamed drivers who drive between 1 and 5 bus 
lines as “Group 1”; between 6 and 10 as “Group 2”; between 11 
and 15 as “Group 3” and “Group 4” includes drivers with more 
than 15 bus lines. As shown, there are significant differences 
between the groups in almost all the patterns. The exceptions 
are: for the idle pattern there are no significant differences 
between groups 1-2 and 3-4; for the inertia pattern there are no 
significant differences between groups 2-3; for the AB and BA 
patterns (anticipative and safety related patterns) no significant 
differences have been found between groups 1-2. 

 
                           a) Idle and inertia pattern                                                       b) AB and BA pattern 

Fig. 4. KPI values for driving patterns. 
 

TABLE III 
STATISTICAL VALUES OF DRIVING PATTERNS (MEAN ± STANDARD DEVIATION [CONFIDENCE INTERVAL 1 – CONFIDENCE INTERVAL 2]) 

 
 Fleet 

#1 #2 #3 #4 
Idle pattern KPI 21,32 ± 3,83 

[20,92 – 21,72] 
28,56 ± 4,42 

[28,25– 28,86] 
30,45 ± 9,10 

[29,68 – 31,22] 
24,81 ± 6,68 

[24,51 – 25,12] 
Inertia pattern 
KPI 

18,23 ± 5,7 
[17,61 – 18,86] 

11,03 ± 2,11 
[10,89– 11,18] 

23,70 ± 10,75 
[22,54 – 24,87] 

12,31 ± 7,60 
[11,92 – 12,69] 

AB pattern KPI 252,03 ± 53,91 
[246,34–257,72] 

410,14 ± 64,73 
[404,99 – 415,28] 

303,66 ± 57,02 
[299.07 – 308.24] 

196,37 ± 56,92 
[193.78 – 198.96] 

BA pattern KPI 122,81 ± 39,67 
[118,58 – 127,04] 

206,02 ± 52,2 
[202,38 – 209,66] 

193,69 ± 64,3 
[188,51 – 198,86] 

113,27 ± 40,29 
[111,35 – 115,18] 
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TABLE IV 
SIGNIFICANCE DIFFERENCE RESULTS 

 
Pattern  Idle Inertia AB BA 

Test  Mann-Whitney 
Group 1 – Group 2 No sig. diff (p=0.59) Sig. diff (p<0.05) No sig. diff (p=0.60) No sig. diff (p=0.84) 
Group 1 – Group 3 Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) 
Group 1 – Group 4 Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) 
Group 2 – Group 3 Sig. diff (p<0.05) No sig. diff (p=0.49) Sig. diff (p<0.05) Sig. diff (p<0.05) 
Group 2 – Group 4 Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) 
Group 3 – Group 4 No sig. diff (p=0.57) Sig. diff (p<0.05) Sig. diff (p<0.05) Sig. diff (p<0.05) 

 
 

  
                                           a) Idle pattern                                                       b) Inertia pattern 

Fig. 5. Influence of the number of bus lines on efficient driving patterns. 
 
 

 
                                           a) AB pattern                                                                        b) BA pattern 

Fig. 6. Influence of the number of bus lines on anticipative and safety driving patterns 
 
 
.

The evaluation of the influence of the number of bus lines on 
driving performance is shown in Figures 5 and 6. In general 
terms, for all drivers, the fewer the bus lines, the better the 
results in driving patterns. It should be noted that the tendency 
seems to revert in the AB and BA patterns, where drivers with 
a high number of bus lines show driving behaviors similar to 
drivers with fewer lines. Due to the lack of knowledge of the 
routes, drivers tend to show safer behaviors while driving. 

 

C. Influence of the number of bus lines on the evolution of 
driving behavior 

Another question to assess is the evolution of drivers over 
several months in the use of new techniques for safe and 
efficient driving. The aim of this analysis is to answer the 
following question: Does high rotation between different bus 
lines influence the application of new driving habits over time? 
As previously explained, for this purpose we have analyzed all 
the drivers of all the fleets classified, based on the number of 
bus lines. The results are shown in Figures 7 to 10. 
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Figure 7 shows the results for the idle pattern. The evolution 
throughout the analyzed period shows that drivers tend to revert 
to their original habits in this pattern. However, this behavior is 
more noticeable regarding drivers who have more than 5 bus 
lines assigned. On the contrary, for those extreme cases with 
more than 15 bus lines, the behavior is similar to those with 
fewer lines. In the light of the results, we can conclude that this 
is another indicator where drivers show more attention when 
exposed to different routes on a daily basis. 

The results for the inertia pattern are shown in Figure 8. With 
regard to inertia, the influence of the number of bus lines is 
clear: in general terms, all drivers show an initial improvement. 
After that, the use of inertia gets worse and finally the drivers 
stabilize their values. However, the fewer the bus lines, the 
better the use of inertia over time. This behavior is indicative of 
the relation between the domain of inertia and the 
characteristics of the route: drivers who regularly drive on the 
same route can easily detect the areas of the route in which 
inertia should be used. 

 

 
Fig. 7. Evolution of the idle pattern. 
 
 

 
Fig. 8. Evolution of the inertia pattern. 
 
 
The results of the evolution for the AB pattern are shown in 

Figure 9. In this case, the trend is reversed: in general terms, 
better results are obtained for drivers with more bus lines 
assigned. After the first months, there is a clear decrease in the 
KPI of this pattern for all groups. However, the worst results 
are in the group with fewer bus lines assigned. As previously 
explained, this pattern is related with anticipation while driving. 
Therefore, our results indicate that drivers who regularly drive 

on the same route pay less attention to the driving context. As a 
consequence, these drivers do not respond adequately to 
anticipation behavior while driving.  

Finally, results for the BA pattern are shown in Figure 10. The 
BA pattern is related with the safety distance and the general 
behavior is the same as for the AB pattern. In the initial months 
there is a period of adaptation and learning. After that, there is 
a gradual decrease in the KPI value, which indicates an 
improvement in the pattern. However, drivers with fewer bus 
lines show worse results than the rest of the groups.  

 

 
Fig. 9. Evolution of the AB pattern. 
 
 

 
Fig. 10. Evolution of the BA pattern. 
 
 

D. Influence of the number of bus lines on the maturity level 
We have also analyzed the results of the maturity level of the 

drivers based on the number of bus lines assigned.  
The maturity level allows the driver's behavior to be 

expressed in numerical terms, as an evaluation. In our analytical 
system, we have developed a method based on fuzzy logic to 
identify driving efficiency in linguistic terms (very high, high, 
intermediate or low) based on empirical data from KPIs. Thus, 
we obtain linguistic results in different driving circumstances: 
at the start of the movement, during movement or when 
stopping the vehicle. Finally, we calculate the maturity level 
based on the results of these three dimensions and assign a 
numerical value to said results. The details of the 
implementation of this maturity model are described in [6]. 

Figure 11 shows that the overall performance of the driver is 
better with fewer assigned lines. For drivers with more than 13 
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bus lines, the results are also acceptable. The lowest results in 
terms of maturity are found in drivers with an average number 
of bus lines between 6 and 11, with the worst data 
corresponding to drivers with 8 different bus lines. 

 

 
Fig. 11. Influence of the number of bus lines on the maturity 
level. 

 
 

E. Overall evolution of driving behavior 
Finally, the results of the driving behavior of each fleet are 

shown individually. We have analyzed the percentage of 
variation of the KPIs of the patterns over the months. Figure 12 
includes the results of the mean variation between the months 
for each pattern. The background in red indicates a negative 
evolution on the driving pattern, while green indicates a 
positive variation of the overall performance over the period of 
10 months. 

As shown, driving performance on efficient driving related 
patterns (idle and inertia) presents a negative variation (except 
for the idle pattern of Fleet #1). This infers that drivers are more 
reluctant to apply the new efficient behaviors and tend to revert 
to their original habits. Fleet #3 shows the worst results for both 
patterns. 

Regarding anticipative and safety patterns (AB and BA 
respectively), only the results of Fleet #4 worsen. Fleet #3, as 
opposed to efficient driving patterns, shows the best results in 
incorporating the anticipative and safety recommendations. 

 

  
Fig. 12. Overall evolution throughout the months. 

V. DISCUSSION 
We have performed different statistical analysis with the aim 

of establishing the influence on the driving patterns of the 
number of bus lines assigned to each driver. The analyzed 
driving patterns correspond to efficient driving patterns (idle 
and inertia), anticipative pattern (AB pattern) and safety pattern 
(BA). 

To perform the evaluation, we have chosen four urban public 
transport companies. A baseline of 10 months is selected in 
order to gather real-time driving data for 745 professional 
drivers. The driving pattern evaluation is integrated in a 
complex architecture including on-board devices, database 
storages and the integration of different data sources. This is 
complemented with off-line analysis using SSIS processes in 
order to extract driving patterns and KPIs.  

According to the total number of bus lines assigned to each 
driver, we have created four groups: fewer than 5 lines, between 
6 and 10, between 11 and 15 and more than 15 lines. With this 
classification, we have found that the fleet management policy 
for Fleet #1 and Fleet #4 distributes drivers among all groups. 
Fleet #2 is characterized by the predominance of drivers with 
fewer bus lines, while Fleet #3 is formed, principally, by drivers 
with a medium/high concentration of bus lines.  

With these basic differences, we have found that Fleet #1 and 
Fleet #4 have similar results in terms of mean values of the KPIs 
for all patterns. Fleet #2 has the worst results on three of the 
four analyzed patterns, including inertia, AB and BA. 
Therefore, contrary to what might be expected, worse results 
are obtained in fleets with a policy of more restrained bus line 
assignment. This indicates that drivers have deeply entrenched 
driving habits in their usual routes and the change in driving 
behavior is less noticeable.   

We have also verified that idle and inertia patterns are the 
driving behaviors which drivers appear more reluctant to 
incorporate. The same does not happen with anticipative and 
safety patterns (except for Fleet #4).  

KPI values were also analyzed taking into account the total 
number of bus lines of each driver. For idle pattern KPI, results 
worsen with the increase of bus lines per driver. However, 
drivers with a high number of bus lines in their work shift show 
similar values to those with fewer bus lines. The inertia pattern 
shows clear deterioration within each group (less than 5 lines, 
between 6 and 10, between 11 and 15 and more than 15) with 
the increase of bus lines. Nevertheless, an exception has been 
found in the group between 6 and 10 bus lines, in which the 
tendency is inverted (the more bus lines, the better the results). 
AB and BA patterns show similar behaviors, that is, a 
deterioration in each group when the number of bus lines is 
incremented, except for the group of 11-15 bus lines. This 
indicates higher than average levels of fatigue in professional 
drivers and that this has an impact on their driving behaviour. 
Similar results observed in [36] suggest that high levels of 
fatigue that drivers are prone to develop during their working 
hours, could be an important issue to address through 
occupational health strategies. The results are in line with those 
obtained in other studies with similar research domain [37]. 
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The evolution over the 10 months has also been analyzed. It 
has been proven that the idle pattern shows increasing values 
throughout the month period in all groups. The inertia pattern 
tends to improve in the initial months, but with stable values 
after that. The group with fewer bus lines shows a slight 
improvement in the last months. It is noticeable that the groups 
with more assigned lines have worst results regarding inertia. 
This is a clear indication of the relationship between the domain 
of the inertia pattern and the knowledge of the bus route. For 
the AB and BA patterns, the evolution is more contained over 
time.  

Finally, we have analyzed the maturity level of the drivers. 
The maturity level computation involves more complex driving 
patterns. In this sense, results are insightful: driving 
performance worsens with an increased number of bus lines. 
However, drivers with more than twelve lines show results 
analogous to drivers with fewer bus lines. Therefore, drivers 
who drive on routes sporadically also obtain good driving 
performance results as they pay more attention to the driving 
context. 

VI. CONCLUSIONS 
In this paper we have carried out a comprehensive analysis 

of real-time driving data using a large number of samples. We 
have also integrated fleet management information into a 
complex analytic system. This has allowed us to draw 
conclusions that, otherwise, would not have been easily 
observed. 

In the light of the results, we can conclude that the fleet 
management strategy based on reducing the number of bus lines 
for each driver is the best policy to achieve satisfactory results 
in terms of driving performance, but not so much in terms of 
anticipation and security. However, the decisions based on a 
moderate number of bus lines per driver could accomplish 
better results in anticipative and safe driving patterns. This is 
due to paying greater attention while driving due to not 
knowing the routes in detail. Thus, attending to the fleet 
management strategy, reinforcement driving courses should be 
incorporated, focused on the use of inertia, (with a moderate 
number of bus lines per driver) or focused on anticipative and 
safe driving (with fewer bus lines per driver). 

Therefore, the fleet management sector can benefit from the 
results of this study, not previously addressed by any other 
work. In this sense, urban transport companies could also carry 
out an analogous analysis such as that presented in this paper. 
In that way, they will be able to verify if their management 
policy is aligned with the business goals. 

Our future work includes the design of new complex driving 
patterns, including vertical accelerations and turns, and more 
information context, which can bring more detail to fleet 
management decisions. In addition, the analyses can be 
extended to include other management information, such as 
work shifts, driving experience or passenger comfort. 
Moreover, we can include an additional module in our 
framework to detect the appearance of unsafe driving patterns 
at specific locations in the route. The inclusion of this additional 

data in a dashboard, such as that presented in [6], provides 
evident added value in the field of fleet management. Moreover, 
we shall explore ways to collect data at a lower cost by using 
smartphones that provide good reliability in measuring and 
recording movement. Finally, given the fact that electric 
vehicles are being gradually incorporated to the fleets of 
transport companies, new patterns must be designed, and 
further studies need to be carried out. 
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