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a b s t r a c t 

The use of bone implants and prostheses has contributed to a revolution in modern medicine; however, in the 

beginning, not much was asked from the implant and prosthetic materials per se . Therefore, the next game- 

changer in orthopedic research will come from new material designs which for instance can aid in prevention of 

implant-associated bone infections. Here, we describe the development of a new sol-gel coating technique that 

can deliver an efficient antimicrobial surface coating on orthopedic implants. Gentamicin was stocked in a novel 

nanocomposite xerogel made from silica and hyperbranched polyethyleneimine. The xerogel was anchored inside 

a porous surface made by coating of bone implants with titanium microspheres. Thereby, only the small water- 

soluble gentamicin molecules diffused in an aqueous environment, i.e., just after surgical insertion and leaving 

behind a titanium scaffold for osseointegration. The novel xerogel coating prevented development of severe 

Staphylococcus aureus induced osteomyelitis in a porcine model, which untreated, replicated the pathology seen 

in stage 3A on the Cierny–Mader classification system for osteomyelitis in adults. 
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. Introduction 

Orthopedic implants, such as fracture fixation devices and total joint

rostheses, have significantly improved the quality of life for many pa-

ients [1] . However, despite their essential benefits, insertion of bone

mplants exhibits a risk for development of deep biofilm infections

ike prosthetic joint infection (PJI) and implant-associated osteomyeli-

is (IAO) [ 1 , 2 ]. Often PJI and IAO show an exogenous pathogenesis

ue to bacterial contamination at surgery [ 2 , 3 ]. Hence, new antimi-

robial technologies aiming to prevent PJI and IAO should focus on

reating, at surgery, a sufficient local antimicrobial environment on

oth the implant surface and within the surrounding bone tissue [4] .

urrent prophylactic strategies involve preoperative systemic antimi-
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robial therapy, but increasing evidence suggest local adjuvant ther-

py in, e.g., fracture care and primary and revision arthroplasty [1] .

herefore, preclinical studies have for decades focused on to develop

ew and innovative antimicrobial coating solutions for orthopedic im-

lants; however, not many have made it to the clinical market [ 1 , 5 , 6 ].

lthough no prospective randomized control trial has evaluated post-

perative infection rates of available gentamicin-coated tibial nails vs.

ncoated control implants, it was recently concluded that there is an

verall good risk-benefit ratio for patients treated with gentamicin-

oated implants [ 1 , 5 , 6 ]. Therefore, the present study aimed to develop

 new coating material for orthopedic implants and prostheses with

he ability to encapsulate and release gentamicin immediately after in-

ertion. The new coating is a xerogel made from silica and the den-

ritic polymer hyperbranched polyethyleneimine (PEI). In brief, a xe-

ogel is a hydrogel that in a sol-gel process dries into a solid com-

osite. The novel gentamicin-loaded xerogel coating showed extraordi-

arily good results, in comparison to many existing preclinical coating
alia Inc. This is an open access article under the CC BY license 
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Fig. 1. Study overview. A novel gentamicin + silica/PEI xerogel was produced and tested for toxicity in invertebrtes and antibacterial activity in-vitro . Plain steel 

implants were surface coated with titanium microspheres in order to increase the surface area and create a structure into which the xerogel could be anchored. The 

gentamicin + silica/PEI xerogel coated and uncoated implants were applied in a clinicaly relevant porcine model of implant associated osteomyelitis. 
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tudies, as it completely prevented IAO (both implant and surround-

ng tissue were found sterile) in a porcine osteomyelitis model chal-

enged with an extremely high virulent S. aureus strain ( Fig. 1 ) [ 7 , 8 ].

any orthopedic antibacterial-coating studies exists and, therefore, it

s relevant to sum up the novelty of present study: The coating is dual

s it has an inorganic (titanium microspheres) and organic part (silica

nd PEI). The desired antibiotic release profile is pathogenesis based,

s the new coating was designed to release antibiotics directly after pri-

ary insertion in order to eradicate perioperative contamination. It is

he first time; an orthopedic antibacterial coating has been evaluated

n-vivo by using infected pigs and with inclusion of in-vivo microdialysis

harmacokinetic. 

. Material and methods 

.1. Development of silica/PEI xerogel and incorporation of gentamicin 

Acid hydrolysis of 5 mL tetraethoxysilane solution 1 M (Sigma-

ldrich, Steinheim, Germany) with 25μL HCl 1 M under stirring

or 15 min resulted in 1 M orthosilicic acid. Afterwards 2.5 mL of

EI 0.1 mM (BASF, Ludwigshafen, Germany) were added, and the

H adjusted to 7.5 with Trizma (Research Organics, Cleveland, OH,

SA). Following 2 h a hydrogel was formed and submitted to dry-

ng overnight under vacuum and over phosphorus pentoxide (P 2 O 5 )

Sigma-Aldrich, Steinheim, Germany) in order to form a silica/PEI

erogel. Subsequently, 100 μl 10% w/w gentamicin sulphate solu-

ion (Sigma-Aldrich, Steinheim, Germany) were drop wise added to

he silica/PEI xerogel layer and the resulting composite hydrogel

as again dried overnight under vacuum and over P 2 O 5 in order
 1  

2 
o re-form the xerogel. An identical second gentamicin addition step

ollowed. 

.2. Antibacterial test of gentamicin-silica/PEI xerogel in-vitro 

In order to investigate if the antibacterial activity was maintained af-

er encapsulation of gentamicin into the silica/PEI xerogel, a MIC (Min-

mum Inhibitory Concentration) assay was carried out following the

uidelines of two established organizations and committees, the Clin-

cal and Laboratory standards Institute (CLSI) and European Commit-

ee on Antimicrobial Susceptibility Testing (EUCAST) [ 9 , 10 ]. A glycerol

tock of the Staphylococcus aureus to be used in-vivo was used. The xe-

ogel were dispersed in 14% MeOH in water (v/v) up to a standardised

tock concentration of 4096 mg/L and serial two-fold dilutions rang-

ng from 1024 to 64 mg/L were carried out in a 96-well U-bottom mi-

rotiter plate with 50 μL of pre-added sterile Milli-Q water. 50 μL of

acterial suspension were added to all wells up to the desired concen-

ration (5 × 10 5 CFU/mL). Growth, sterility and solvent controls were

ncluded. MIC values were defined as the lowest concentration that in-

ibited visible growth. The experiment was carried out by triplicate. 

.3. Toxicity assessment of gentamicin-silica/PEI xerogel using 

aenorhabditis elegans model 

Caenorhabditis elegans worms were grown in Nematode Growth Me-

ia (NGM). Escherichia coli (strain OP50) was grown overnight in

uria Bertani culture. The number of worms was adjusted to 15–

0 worms/50μL in a final volume of 5.5 mL using M9 buffer. A total

f 600 μL of E. coli was added to the worm solution. A black flat bot-

om 96-well plate was filled with 50 μL of worm solution + E. coli (about

5 worms/well). The last well contained the positive growth control.
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Table 1 

Overview of in-vivo study groups. 

Group Inoculum Implant n Time of euthanasia 

In-vivo study of efficacy 

A ∗ saline Plain steel 10 5 days after inoculation 

B ∗ S. aureus 10 4 CFU Plain steel 10 5 days after inoculation 

C S. aureus 10 4 CFU Titanium microspheres + Gentamicin-silica/PEI xerogel 10 5 days after inoculation 

D S. aureus 10 4 CFU Titanium microspheres + Silica/PEI xerogel 3 5 days after inoculation 

In-vivo pharmacokinetic study of gentamicin release 

E S. aureus 10 4 CFU Titanium microspheres + Gentamicin-silica/PEI xerogel 2 24 h after inoculation 

∗ 6 animals in group A and 1 animal in group B were historic controls (3R compliance). Group D was included in order to observe if there were signs 

of positive or negative effects of the coting in itself, i.e., without antibiotics. 
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 death-control was included using acetonitrile as toxic reagent. A flat

ottom 96-well plate was filled with 50 μL of M9 buffer. Afterwards,

0 μL of gentamicin-silica/PEI xerogel solution (32 mg/L) were added

o the first well and 2x serial dilutions were made. 50 μL of each well

f the xerogel plate were transferred to the correspondent well of the

orm plate and incubated at 25 ºC. Using a stereomicroscope worm ac-

ivity/movement was registered by visual observation following 1, 2, 24

nd 48 h of inoculation, respectively. In addition, the self-fertilization

ehavior was also registered following 48 h. 

.4. Coating of implants with gentamicin-silica/PEI xerogel for in-vivo 

tudies 

Implants for the in-vivo study were made of stainless steel (K-wire,

 × 15 mm). A porous layer of metallic titanium microspheres was de-

osited on the implant surface using Cold High Velocity Oxygen Fuel

Cold HVOF) thermal spray. The aim was to obtain optimal surface

oughness and porosity characteristics, i.e., a larger surface area before

pplication of gentamicin-silica/PEI xerogel. The titanium microsphere

ayer was fabricated with a METCO DJ 2700 HVOF gun. The delivered

pherical titanium particles were 15–45 microns sprayed with a pressure

f 30 bar at 600 °C. Nitrogen was used as spraying gas. The spray dis-

ance was 40 mm and the spraying velocity 250 m/se. The porosity was

valuated with scanning electron microscopy (SEM) (EDS, JEOL, JSM-

390, Tokyo, Japan). Titanium microspheres covered implants were im-

ersed into the silica/PEI hydrogel forming solution as described in the

eginning. After drying, the procedure was repeated once in order to

dd a second xerogel layer. Gentamicin was added dropwise in two sin-

le steps as described in the beginning. SEM and Fourier-transform in-

rared spectroscopy (FTIR) using a Nicolet Magna-IR Spectrometer 550

Thermo Nicolet Co., Madison, WI, USA) were used to verify the mor-

hology and molecular interactions of coated implants. Finally, ther-

ogravimetry experiments were used to assess the gentamicin loading

fficiency of the wetting procedure using a Setaram SETSYS Evolution

7 instrument 8, (SETARAM, Caluire, France) with a 5 °C/min heating

ate under oxygenic atmosphere. 

.5. In-vivo study of efficacy of coated implants 

In total, 35 female specific pathogens free (SPF) pigs were included

n the study. The body weight of the pig was 25–35 kilogram. The pigs

ere housed in pens with 2–4 animals in each. They were feed a nor-

al standard pig diet and had free access to tap water. The pigs were

nspected by authorized personal several times a day during the study

eriod. The Danish Animal Experiments Inspectorate approved the ex-

erimental protocol (license No. 2013/15-2934-00946). Table 1 gives,

n overview of the animals used. The pigs were randomized into the

tudy groups A-D. 

.5.1. Inoculation procedure 

Anaesthetised pigs were placed in right lateral recumbency exposing

he medial side of the right tibia. An incision through skin, subcutis and
3 
eriosteum was made over the drilling point of the implant cavity lo-

ated parallel and distal (10 mm) to the proximal tibial growth plate. A

0 mm deep implant cavity was drilled with a 4 mm K-wire. The inocu-

um (or sterile saline) was injected into the implant cavity followed by

nsertion of a small steel implant with or without coating (2 × 15 mm),

ee Table 1 . Once the implant was inserted, the periosteum, subcuta-

eous tissue and skin were sutured. All animals received daily anal-

esic treatment with non-steroidal anti-inflammatory drugs (NSAIDs)

hroughout the study period. Impaired ability to stand, anorexia and

ystemic signs of sepsis, e.g., depressed respiration and fever, were set

s human endpoints. Animals were euthanised by an intravenous over-

ose of pentobarbital. All drugs and doses used for anesthesia, analgesia

nd euthanasia has previously been reported in detail [8] . No systemic

ntibiotics was used at all. 

.5.2. Inoculum 

Group B-D animals were inoculated with S. aureus S54F9 10 4 CFU

n 10 μL sterile saline. The dose of 10 4 CFU/kg BW was estimated to be

mong the lowest infective dose, based on a former dose-response study

sing the same model and S. aureus strain [ 7 , 8 ]. The S. aureus strain

as originally isolated from a porcine lung abscess and has previously

een used to model human osteomyelitis, endocarditis and sepsis in pigs

11] . The strain has been whole genome sequenced and belong to SPA-

ype t1333 and multi-locus sequence type (MLST) ST433 [9] . Recently,

t was demonstrated that the strain produces biofilm [12] . The strain is

ighly virulent and has genes encoding several toxins, including phage-

ssociated enterotoxin, exotoxins and superantigen [11] . 

.5.3. Computed tomography 

Following euthanasia, the right hindlimb was scanned with a single

lide computed tomography (CT) scanner (Siemens Somatom Emotion,

rlangen, Germany). The tibia was scanned in the craniocaudal direc-

ion with a slide thickness of 2 mm (kV = 130 and mAs = 55). The

cans were reconstructed using a standard soft tissue algorithm (B80s).

T volumetry (cm 

3 ) of the implant cavity and associated osteomyelitis,

f present, was estimated using the software system Osirix MD (Pixmeo,

eneva, Switzerland) [ 7 , 13 ]. The evaluation of CT scans was blinded. 

.5.4. Macroscopic pathology 

Abdomen and thorax were cut open and all organs were inspected

nd palpated. A small sample of the lung, kidney and liver were col-

ected for histology. The surgical wound was inspected and cut open.

he subcutaneous tissue was inspected and dissected in order to expose

he periosteal sutures. The implant was removed, and the tibial bone

as sagittal sectioned through the implant cavity. During necropsy of

he right tibial bone the following findings were registered; (1) wound

nfection, (2) subcutaneous inflammation (oedema, hemorrhage, and

welling), (3) subcutaneous abscess formation, (4) exudate in implant

avity, and (5) signs of bone infection (including intra osseous pus, se-

uestrum formation, and osteolysis) [14] . Registration with a “yes ” re-

ulted in one point and, thereby, a total of 5 points could be given in

acroscopic pathology score. 
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.5.5. Microbiology 

During necropsy, a small piece of lung tissue was collected for mi-

robiological examination in order to disclose systemic spread of the

noculated bacteria. In relation to the operated bone, a swab was taken

rom the subcutaneous tissue and the implant cavity, respectively. Swabs

ere inoculated on blood agar supplied with 5% sterile bovine blood

nd incubated at 37 °C for 24 h. Isolates were identified by matrix-

ssisted laser desorption ionization-time of flight (MALDI-TOF) mass

pectrometry (Vitek MS RUO, bioMérieux, France). SPA-typing was used

o disclose the genetic identity of isolated S. aureus strains [15] . The

one implants were analyzed for biofilm attachment using sonication

s previously described [16] . The detection limit for sonication was 50

FU/mL. Evaluation of swabs and sonication results were blinded. 

.5.6. Histology and immunohistochemistry 

The right tibial bone was placed in 10% neutral buffered formalin for

 week followed by 4 weeks of decalcification in formic acid (22%). Fol-

owing decalcification, the bone was cut into representative pieces con-

aining the implant cavity and processed through graded concentrations

f alcohol and embedded in paraffin wax. Tissue sections (4–5 μm) were

tained with haematoxylin and eosin (HE). The peri ‑implanted patholog-

cal bone area (PIBA) was described and measured. PIBA was defined as

he maximal perpendicular distance from the border of the implant cav-

ty until normal pattern of trabecular bone and bone marrow appeared.

he number of neutrophil granulocytes (NGs) inside PIBA was counted

y the method developed by Morawietz et al. [17] . Briefly, potential

hot spots’ rich in NG were identified at low magnification. These ar-

as were then evaluated under high power (400 x magnification) and

ll cells clearly identifiable as NG were counted. In each high-power

eld (HPF), a maximum of 10 NG was counted. In this way 10 HPFs

ere examined, resulting in a maximum count per pig of 100 NG [17] .

mmunohistochemistry (IHC) with a primary antibody against S. aureus

Monoclonal, mouse, Clone 704, Abcam, ab37644, Cambridge, UK) was

erformed in order to visualize bacteria inside PIBA. The protocol has

reviously been described [18] . Positive bacteria were red, and the num-

er of positive colonies were registered, although a maximum of 100

olonies were counted. All PIBA measurements, NG and bacterial counts

ere obtained blinded. 

.6. Pharmacokinetic in-vivo study of gentamicin release from coated 

mplants 

Two pigs (Group E) were anaesthetized [19] and an implant cav-

ty was drilled as previously described. Microdialysis (MD) catheters

membrane length 20 mm, molecular cut-of 20 kDa) were placed in the

djacent subcutaneous tissue, within the implant cavity, and within the

one tissue 10 mm next to the implant cavity. All MD catheters were

onnected to separate 107 MD precisions pumps producing flowrates

f 1 μL/min. MD pumps and catheters were obtained from M Dialysis

B, Stockholm, Sweden. Briefly, microdialysis is a minimally invasive

atheter-based technique that allows for continuous sampling of solutes

n the interstitial space (extracellular fluid) [20] . Calibration of each

eparate catheter is imperative if total tissue concentrations are to be

etermined. In the present study, the MD catheters were calibrated be-

ore introduction of the gentamicin-silica/PEI xerogel coated implant

ith 0.9% NaCl containing gentamicin at a concentration of 2.5 μg/mL.

fter a 30 min tissue equilibration period, all catheters were individu-

lly calibrated by collecting a 60-min sample. Following calibration, the

erfusate was changed to blank isotonic saline, and a 180-min washout

eriod was allowed for. Prior to sampling start, the implant cavity was

noculated with S. aureus S54F9 (10 4 CFU in 10 μL sterile saline) and a

entamicin-silica/PEI xerogels coated implant was inserted. Afterwards,

ialysates from the MD catheters and venous blood samples were col-

ected regularly for 24 h. The animals were euthanized after the last

ample by administration of intravenous pentobarbital. The free gen-

amicin concentration in plasma and dialysates was measured by ho-
4 
ogenous enzyme immunoassay technique and liquid chromatography-

andem mass spectrometry, respectively, as previously described [19] .

 swab was taken for microbiological examination (see Microbiology for

rocedure) from the implant cavity after 12 h and just before euthanasia.

urthermore, the implants were sampled for sonication (see Microbiology

or procedure). 

.7. Statistic 

Primary endpoint; gentamicin-silica/PEI coated implants + bacterial

noculation should result in the same quantity of pathology as inocula-

ion with saline only. A power analysis showed that a sample size of 9

ad an 80% power to detect an effect size of 2 mm PIBA assuming a 5%

ignificance level and a one-sided test. A one-way ANOVA analysis fol-

owed by post hoc comparison was used to look for differences in macro-

copic pathology score, CT bone lesion volume, sonication results, NG

ount, and PIBA size between Groups A, B and C. Statistical significance

as assigned to differences having P-value ≤ 0.05. All calculations were

erformed using Prism version 7 (Graphpad Software Inc., San Diego,

A, USA). All analysis was performed blinded, i.e., the animal ID could

ot be identified during either preparation or evaluation. 

. Results 

.1. Development of xerogel and incorporation of gentamicin 

The produced silica/PEI hydrogel consisted of a hydrogen bond net-

ork between PEI and orthosilicic acid with subsequent polymerization

f silanol groups to siloxane bridges in neutral pH ( Fig. 2 ). 

.2. Antimicrobial test in-vitro 

Gentamicin-silica/PEI xerogel inhibited the growth of S. aureus with

n estimated MIC value of 128 μg/mL . All controls performed as ex-

ected. 

.3. Toxicity assessment using Caenorhabditis elegans model 

The gentamicin-silica/PEI xerogel showed no toxicological or lethal

ffects to any of the examined time points, i.e., all worms had normal

ehavior. Furthermore, the self-fertilization behavior was not affected.

ositive and death controls performed as expected. 

.4. Coating of bone implants for in-vivo study 

Cold HVOF coating with titanium microspheres increased the sur-

ace area and porosity of the bone implants ( Fig. 3 ). FTIR revealed that

itanium microsphere covered bone implants successfully were coated

y silica/PEI xerogel and that gentamicin was incorporated ( Fig. 4 ).

hermogravimetry was used to assess the gentamicin loading efficiency

 Fig. 4 .) An initial weight loss was observed up to 150 °C due to in-

rinsic moisture, i.e., water molecules loosely hydrogen bonded to PEI

nd evaporation of silanol groups (7.4% of the initial silica/PEI xero-

el, 5.1% after the first and 4.25% after the second gentamicin wetting

tep.) At higher temperatures, silica/PEI xerogel lost 17.85% of its ini-

ial weight up to 700 °C. Thus, the rest of the decomposition percentages

33.9% and 37.8%) were due to gentamicin, indicating an 18.5% incor-

oration of the drug after the first treatment and a 24.3% in total. A

imple comparison of the weights of uncoated and coated implants re-

eals that each pin was loaded with about 50 μg gentamicin. 

.5. In-vivo study of efficacy of coated implants 

All animals eat, drink and demonstrated normal behavior during the

-day study period. One Group C animal was excluded from the study

ue to inoculation procedure failure, i.e., non-correct drilled implant

avity. 
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Fig. 2. Chemical reactions for formation of the 

silica/PEI hydrogel and structure depicting the 

hydrogen bonds network before drying of the 

hydrogel into xerogel. 
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.5.1. Computer tomography 

The 3D estimated volumes of implant cavity plus bone lesions were

ignificantly ( p-value = 0.016) increased in Group B in comparison to

roup A. ( Figs. 5 and 6 ). 

.5.2. Macroscopic pathology 

Lesions were not observed in any abdominal or thoracal organs. The

ommon macroscopic finding in tibial bones with plain steel implants

nd saline inoculation (Group A) was minor subcutaneous inflammation

ue to surgery per se . In contrast, all animals with plain steel implants

nd S. aureus inoculation (Group B) demonstrated several confirmatory

iagnostic criteria for IAO and PJI in humans like wound swelling, soft

issue abscesses, and pus surrounding the implant [ 3 , 20 ]. Furthermore,

steolysis and necrosis were seen in the osseous tissue around the im-

lant cavity. All animals with gentamicin-silica/PEI xerogel coated im-

lants were comparable to Group A. Coating with silica/PEI xerogel

lone (Group D) resulted in severe pathology as seen in Group B. The
5 
acroscopic pathology score of bone lesions was significantly reduced

 p-value > 0.000001) between Group B and C, but not between Group A

nd C ( Fig. 5 ). 

.6. Microbiology 

Groups C and A animals were S. aureus free in both subcutis and im-

lant cavity. In contrast, all group B animals had S. aureus bacteria in

ubcutis and within the implant cavity. The S. aureus isolates were found

dentic to the strain used for inoculation (SPA-type t1333). Sonication

howed that one control animal (Group A) had a few bacteria on the im-

lant (the implant cavity was found positive for a porcine Streptococcus) .

or the gentamicin-silica/PEI xerogel coated group (Group C) bacteria

ere not identified on any implants. Thus, CFU load on implants were

ignificantly ( p-value > 0.000001) reduced between Group B and C, but

ot between Group A and C ( Fig. 7 ). All lung samples were found sterile.
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Fig. 3. A: Cross-sectional scanning electron 

microscopy (SEM) of an uncoated implant. 

Bar = 100 μm. Insert shows the uncoated im- 

plant. B: Cross-sectional microstructure of an 

implant coated with titanium microspheres us- 

ing cold high velocity oxygen fuel (HVOF) ther- 

mal spray. Unmolten larger titanium powder 

particles are observable in layers, while smaller 

powder particles have melted and formed 

splats acting as binding material throughout 

the coating. SEM, Bar = 200 μm. C + D: Cross- 

sectional micrographs of titanium microsphere 

coating showing the increased porosity and sur- 

face area. E + F: SEM of implant coated with 

both titanium microspheres and silica/PEI xe- 

rogel. The xerogel follows and covers the pro- 

file of the microspheres. Bar = 100 and 50 μm, 

respectively. Insert in F shows a coated implant 

ready for in-vivo application. 

Fig. 4. Analysis of gentamicin-silica/PEI xe- 

rogel coating. A: Fourier-transform infrared 

(FTIR) spectra depicting the various process- 

ing stages of the stainless-steel (SS) bone im- 

plants; Treatment with titanium microspheres 

(black), two stages of coating by silica/PEI xe- 

rogels (red), two stages of wetting by gentam- 

icin sulfate solution (green). B: FTIR spectra of 

pure silica/PEI xerogel (black), gentamicin sul- 

fate (green) and xerogel after the first (red) and 

second (blue) treatment with gentamicin sul- 

phate solution. C + D: Thermogravimetric anal- 

ysis profile of silica/PEI xerogel before and af- 

ter 2 gentamicin wetting steps (For interpreta- 

tion of the references to color in this figure, the 

reader is referred to the web version of this ar- 

ticle.). 

6 
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Fig. 5. Pathology results in a porcine model 

of implant associated osteomyelitis euthanised 

5 days after inoculation. Group A; Pigs inoc- 

ulated with saline and plain implants, Group 

B; Pigs inoculated with S. aureus and plain im- 

plants, Group C; Pigs inoculated with S. aureus 

and gentamicin- silica/PEI xerogel coated im- 

plants, Group D; Pigs inoculated with S. aureus 

and silica/PEI xerogel coated implants. A, C, 

D; Mean ± SD. B; Median with 95 confidence 

intervals. PIBA; Peri-implant pathological bone 

area. ∗ P < 0.05, ∗ ∗ P < 0.01, ∗ ∗ ∗ P < 0.001. 
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.7. Histology and immunohistochemistry 

In saline inoculated animals (Group A) and animals inoculated with

acteria and gentamicin-silica/PEI xerogel coated implants (Group C),

he surgical inoculation procedure per se resulted in thermal bone necro-

is, debris, and a small amount of inflammatory cellular infiltration,

hich resulted in PIBA values of approximately 1.3 mm ( Fig. 5 ). A quite

ifferent PIBA pattern was observed in the infected animals of Group B

nd D. In these animals, a layer of cells that included fibroblasts, neu-

rophils (NG) (sometimes arranged as micro-abscesses), macrophages,

iant cells, and bone debris was observed around the implant cavity

 Fig. 8 ). A significant reduction ( p-value > 0.000001) was seen in NG

ount between Group B and C, but not between Group A and C ( Fig. 5 ).

mmunohistochemistry visualized bacterial localization within PIBA in

 out of 10 Group B animals and in 7 pigs, more than 100 colonies (max-

mum count) were reported ( Figs. 7 and 8 ). Bacteria were not observed

n the peri ‑implant tissue of any Group A or C animals. Histologically,

oth lung, liver, kidney and spleen within all animals were found free for

nflammation and lesions like sublethal cellular damage and necrosis. 

.8. Pharmacokinetic study – release behavior of gentamicin 

Gentamicin could only be detected within the implant cavity. The

entamicin content peaked immediately after insertion ( Fig. 9 ). The

entamicin concentration within the implant cavity was above the MIC

alue for gentamicin against S. aureus for several hours. Microbiological

wab analyses taken 12 h into the sampling procedure were found ster-

le. Following euthanasia, after the 24 h sampling period, the implants

ere also found sterile by sonication. 

. Discussion 

A new gentamicin-silica/PEI xerogel coating of bone implants suc-

essfully prevented infection in a well-characterized porcine IAO model

7] . The porcine IAO model corresponded to stage 3A on the Cierny–

ader classification system for osteomyelitis in adults [21] . This
7 
tage describes localised osteomyelitis, usually involving cortical and

edullary bone in a patient without systemic or local compromising fac-

ors [ 21 , 22 ]. Previously, and in several studies, the porcine IAO model

as been reported to be 100% effective, i.e . , all animals inoculated with

acteria develop osteomyelitis [7] . This is central and emphasizes the

eliability of the present results as the results of prophylactic antimicro-

ial interventions only can be completely trusted, if the applied animal

odel has an absolute infection rate [23] . The absence of osteomyelitis

n pigs with coated implants was due to a complete bacterial elimina-

ion and thus prevention of the cardinal step of biofilm formation, bac-

erial adherence [24] . Complete eradication of infection has previously

lso been shown in other preclinical coating studies by Diefenbeck et al.

25] and Metsemarkers et al. [26] . However, most preclinical studies

iming to investigate the prophylactic effect of antimicrobial surface

oatings for orthopedic devices, have only been able to demonstrate a

eduction in the bacterial load [ 24 , 27–32 ]. It is difficult to evaluate the

ffect of a bacterial reduction in terms of clinical significance. An inter-

ention which almost eliminates the bacterial load may have an impact,

ut a re-established biofilm infection is likely [23] . A recent review of

nimal models of bone infection by Moriarty et al. suggested that clini-

ally relevant efficacy of anti-infective interventions should be assessed

n terms of complete eradication of infection [ 23 , 33 ]. 

Polymers possessing cavities with groups capable of intermolecu-

ar interactions have attracted scientific interest, as they have emerged

n the frontier for local controlled drug release [34] . One of the most

romising categories is dendritic polymers due to their tree-like struc-

ure, which derive from radial instead of conventional linear polymer-

zation [35] . The main classification of dendritic polymers is the sym-

etric monodisperse dendrimers and the non-symmetric analogues, the

yperbranched dendritic polymers. PEI, the basis for the developed sil-

ca/PEI xerogel coating, is classified as a cationic hyperbranched den-

ritic polymer. In the present study, a hydrogel solution based on PEI

as transformed into a solid xerogel in a sol-gel process. Normally, the

rying (or aging process) from hydrogel to xerogel is slow, and if high

emperatures are used to speed up the process, internal stresses are exer-

ised during shrinking [36] . For this reason, drying under vacuum and
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Fig. 6. CT scans in a porcine model of implant associated osteomyelitis euthanized 5 days after inoculation. Upper panel; inoculation with S. aureus and no coating 

of the implant in 6 pigs. The contour of the implant cavity is lost due to surrounding osteolysis and trabecular sequesters are seen. Lower panel; inoculation with 

S. aureus and gentamicin-silica/PEI coated implants in 6 pigs. The contour of the implant cavity is clear and sclerotic with no signs of surrounding osteolysis. The 

inserts show an example of the estimated 3D volume of the lesions. 

Fig. 7. Microbiology results in a porcine model of implant associated osteomyelitis. A: Identification of bacteria on implants. B: Identification of S. aureus within 

peri ‑implant pathological bone area (PIBA). Group A; saline and plain implants, Group B; S. aureus and plain implants, Group C; S. aureus and gentamicin- silica/PEI 

xerogel coated implants, Group D; S. aureus and silica/PEI xerogel coated implants. ∗ P < 0.05, ∗ ∗ P < 0.01, ∗ ∗ ∗ P < 0.001. 

8 
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Fig. 8. Histology in a porcine model of implant 

associated osteomyelitis euthanized 5 days af- 

ter inoculation with S. aureus. The pictures 

represent the bone tissue surrounding the im- 

plant which was located in the implant cavity 

(ic). A: Pig with a gentamicin silica/PEI xero- 

gel coated implant. Next to the implant cav- 

ity minor fibroplasia (only a few cell leayer) is 

present. No signs of infection is seen. HE x 40. 

B + C + D: From S. aureus inoculated pig with a 

non-coated implant. B + C: The peri ‑implant tis- 

sue demonstrates a massive inflammatory re- 

sponse dominated by fibroplasia, neutrophils 

and macrophages. HE x 100 and 200, respec- 

tively. D: Bacteria (in red) are seen inside the 

peri ‑implant bone tissue. IHC towards S. aureus 

x 150 (For interpretation of the references to 

color in this figure, the reader is referred to the 

web version of this article.). 

Fig. 9. Pharmacocenteic study of gentamicin 

release from a gentamicin-silica/PEI xerogel 

coated implant. Results of 24 h microdialysis 

study in two anesthetized pigs. Prior to mi- 

crodialysis S. aureus bacteria was inoculated 

into the drilled implant cavity and a coated 

implant was inserted. Microdialysis catheters 

were placed in the implant cavity and extracel- 

lular fluid collected continuasly and measured 

for gentamicin content. The pink area shows 

the common range for gentamicin MIC values 

against S. aureus . 
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ver phosphorus pentoxide (P 2 O 5 ) was developed in order to maintain

he structure of the hydrogel within the xerogel. FTIR analysis indicated

hat gentamicin sulphate was successfully encapsulated in the silica/PEI

atrix and that no significant chemical or physic interaction, that could

ave changed the gentamicin molecule, occurred. The fast and efficient

entamicin immersion from the xerogel seen in-vivo , together with the

ery high in-vitro gentamicin-silica/PEI xerogel MIC value of 128 mg/L,

upport that the gentamicin was encapsulated in the xerogel and not

hemically bonded to it. Due to stereochemical limitations the silica/PEI

erogel was anchored inside the pores of the titanium microspheres and

nly the small water-soluble gentamicin molecules diffused within the

queous environment of the implant cavity, i.e., just after surgical in-

ertion. 

The present pharmacokinetic study confirmed a fast burst release

rofile for the new coating. Of note, the pharmacokinetic study repre-

ents the first microdialysis study to investigate antimicrobial release

rom a surface coating within a bone infection model. The new coating

eleased gentamicin concentrations above the reported clinical break-

oint, MIC value of 2 mg/L (reported aggressive target for gentamicin
9 
gainst S. aureus ), already from the first measurements of the MD study

nd until 8 h [37] . This means that the critical time point of most rel-

vant surgical procedures potentially could be protected by the novel

oating [ 38 , 39 ]. The PROtect tibial nail (Synthesis GmbH, Oberdorf,

witzerland) is a commercially available gentamicin-coated tibial nail

hat shows good clinical results in the prevention of infection follow-

ng correction of fractures [6] . The PROtect tibial nail system uses a

iodegradable poly(lactic acid) (PLA) coating for the release of gentam-

cin. The gentamicin release profile of the PROtect coating has been ex-

mined in-vivo using a rat model (uninfected model with 1 × 20 mm

oated implant, total gentamicin load pr implant = 64 μg) [38] . In

hat study, the gentamicin release profile from the PROtect coating was

ound completely identic to the present silica/PEI xerogel coating (in-

ected model with 2 × 15 mm coated implant, total gentamicin load pr

mplant = 50 μg), i.e., the main release from both coatings occurred

ithin the first hour [38] . 

The novel gentamicin-silica/PEI xerogel coating shows clinical prop-

rties for local gentamicin prophylaxis in cementless arthroplasty or os-

eosynthesis. During arthroplasty, local antimicrobials are normally pro-
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ided using antimicrobial-loaded bone cement. However, there is estab-

ished a trend for application of cementless components at both primary

nd revision surgeries, and currently, there are only limited antimi-

robial delivery systems for these cementless procedures [ 39 , 40 ]. The

entamicin-silica/PEI xerogel coating is designed to prevent infection,

.e., by eradicating perioperative contamination and, therefore, there is a

articular perspective for application in patients at high risk of infection

41] . Antimicrobial coating of implants, like the present, primarily re-

uces the patient’s susceptibility to infection [38] . In the present study,

o signs of acute toxicity could be observed, and serum concentrations

f gentamicin could not be measured. However, this might change when

ignificantly larger amounts of gentamicin-silica/PEI coating are applied

n full-scale implants or prostheses. In the future, we aim to investigate

he gentamicin-silica/PEI xerogel coating in-vivo by using porcine mod-

ls with larger size implants and longer study periods in order to ex-

mine pharmacokinetics including modulating of time with maximum

elease (days) and combination with a second long-term release pro-

le (weeks), osseointegration, mechanical stability and bioavailability

n more details. The present study was designed to show antibacterial

roof of concept for the new coating and this was successfully achieved,

lthough, limited by the fact that only one single bacterial strain and

pecies were used. 
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