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Abstract: Ruddlesden–Popper type electrodes with composition La2CuO4−δ are alternative cathode
materials for solid oxide fuel cells (SOFCs); however, the undoped compound exhibits low electrical
conductivity for potential applications, which is usually increased by alkaline-earth doping. A
promising alternative to alkaline-earth doping is the modification of the anionic framework by
halogen doping. In this study, La2CuO4−0.5xAx (A = F, Cl, Br; x = 0–0.3) compounds are prepared
by a freeze-drying precursor method, using an anion doping strategy. The composition, structure,
morphology and electrical properties are studied to evaluate their potential use in solid oxide fuel
cells (SOFCs). The halogen-doped materials show higher electrical conductivity and improved
electrocatalytic activity for oxygen reduction reactions when compared to the pristine material, with
polarization resistance values 2.5 times lower, i.e., 0.20, 0.11 and 0.08 Ω cm2 for undoped, F- and
Cl-doped samples, respectively, at 800 ◦C. Moreover, halogen doping prevents superficial copper
segregation in La2CuO4−δ, making it an attractive strategy for the development of highly efficient
electrodes for SOFCs.

Keywords: La2CuO4−δ; Ruddlesden–Popper; anion doping; halogenation; solid oxide fuel cell

1. Introduction

There is great interest in developing intermediate-temperature solid oxide fuel cells
(IT-SOFCs) to overcome the drawbacks related to durability and manufacturing costs that
still hinder the wide commercialization of these electrochemical devices [1–5]. Nevertheless,
decreasing the operating temperature involves a considerable reduction in the activity of
the electrodes, especially for the cathode material.

The main function of the cathode is to provide active sites for the oxygen reduction
reactions (ORRs); thus, high ionic and electronic conductivity values are needed [6]. Nowa-
days, the most employed cathode material for SOFC application is La1−xSrxMnO3−δ (LSM),
which has a high electronic conductivity value (235 S cm−1 at 900 ◦C) and is compatible
with most common electrolyte materials, Zr0.84Y0.16O1.92 (YSZ) [7]. However, the poor
ionic transport properties of LSM restricts its use at temperatures below 800 ◦C [8]. Other
cathode materials with perovskite-type structures are the La1−xSrxCo1−yFeyO3−δ (LSCF)
(x ≤ 0.6; 0 ≤ y ≤1) series, which present higher mixed ionic and electronic conductivity
when compared to LSM, although these materials are not compatible with YSZ [9,10].
Another drawback of Sr-containing perovskite cathodes is the tendency of Sr to segregate
on the electrode surface, blocking the active sites for the ORR and decreasing the elec-
trode efficiency [11]. Hence, the development of durable cathodes without alkaline-earth
elements is still a major concern for the viability of this technology [12].

Ruddlesden–Popper-type electrodes, Ln2MO4−δ (Ln = La, Pr and Nd; M = Ni and
Cu), are promising cathode materials with improved oxygen transport properties [13,14].
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Moreover, the lack of alkaline-earth elements makes them less prone to surface phase seg-
regation [15–17]. Among these Ruddlesden–Popper-type phases, lanthanum nickelates
(La2NiO4−δ) have received great attention due to their high electronic conductivity [15,17–19].
However, sintering temperatures above 1200 ◦C are needed to obtain a single compound [20].
In contrast, lanthanum cuprates (La2CuO4−δ) [21] can be synthesized as pure compounds
at only 800 ◦C, much lower than that of the analogous nickelates, although their electrical
conductivity is substantially lower [22–25].

Lanthanum cuprates have been intensively studied in the literature due to their super-
conducting properties at low temperature [26]; however, some studies have also reported
their potential use as SOFC cathodes [24,27,28]. La2CuO4−δ is a mixed ionic and electronic
conductor due to the presence of intrinsic oxygen vacancies in the structure. In order to
further improve the conductivity, La3+ is partially replaced by Sr2+, generating additional
oxygen vacancies in the lattice. Thus, the tailoring of the oxygen non-stoichiometry has a
significant impact on the structure and electrochemical properties of these materials. For
instance, Kanai et al. reported the ability of La2−xSrxCuO4−δ to create different types
of oxygen defects, i.e., oxygen vacancies and interstitial oxygens, by varying the oxygen
partial pressure, Sr content and synthesis temperature [29]. Mazo et al. reported that
La2−xSrxCuO4−δ presented high oxygen diffusivity in the temperature range of 475–725 ◦C,
with La1.63Sr0.37CuO4−δ being the composition with the highest value of ~10−6 cm2 s−1 [30].

A promising alternative to alkaline-earth doping is the modification of the anionic
framework by halogen doping, which weakens the metal–oxygen bond energy and favors
oxygen mobility during the ORR [31]. Recently, the electrochemical performance of sin-
gle and layered perovskite-type electrodes, such as SrFe0.9Ti0.9O3−δ, Sr2Fe1.5Mo0.5O6−δ,
La0.5Ba0.5FeO3−δ and NdBaCoFeO5+δ, have been enhanced by anion doping, improving the
oxygen surface exchange coefficients and decreasing the polarization resistance [32–35]. For
instance, Zhang et al. observed a change in the crystal symmetry of Sr2Fe1.5Mo0.5O6−x−δFx,
SFMF, x = 0, 0.1, 0.2 and 0.3), as well as enhanced electrocatalytic activity for the ORR with
a polarization resistance of 0.072 Ω cm2 at 800 ◦C [31].

F doping has also been proved successful in enhancing the electrical properties of triple-
conducting materials (H+, O2− and e−), such as BaCo0.4Fe0.4Zr0.1Y0.1O3−δ and Pr2NiO4−δ,
improving both the oxygen exchange capability and hydration of the electrodes [36,37].
Some authors have successfully introduced F− and Cl− into the La2CuO4−δ structure,
and the resulting materials achieved different superconducting properties [38,39]. For
example, Adachi et al. investigated superconductivity in La2CuO4−xFx samples, which
were synthesized by heating La2CuO4−δ with NH4F as a fluorinating reagent at 240 ◦C
under O2 flow [38].

The aim of this work is to synthesize new alkaline-earth-free cathode materials based
on La2CuO4−δ by employing an anion doping strategy with different halogen elements to
improve their electrochemical properties for ORRs. La2CuO4−0.5xAx (A = F, Cl, Br; x = 0–0.3)
compounds are prepared by using a freeze-drying precursor method. This is a dehydration
process at low temperature widely used in the pharmaceutical and food industry, which has
proved to be a versatile route for obtaining stoichiometrically controlled precursors. This is
a simple and economic procedure to obtain large amounts of powders without a rigorous
control of the cation concentration, chelating agent and temperature during the water
evaporation, compared to other alternative routes, such as sol–gel or combustion [40,41].
The structure, composition, morphology and electrochemical properties of these electrodes
are studied by using different techniques to evaluate their potential use in SOFCs.

2. Materials and Methods
2.1. Synthesis of Materials

La2CuO4−δ polycrystalline powders were synthesized using a freeze-drying precur-
sor method, following the procedure described previously [42]. Briefly, aqueous cation
solutions were prepared separately by dissolving stoichiometric amounts of La2O3 (99.9%,
Sigma-Aldrich, St. Louis, MO, USA) in diluted nitric acid and Cu(NO3)2·3H2O (99.5%,
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Sigma-Aldrich) in distilled water. Both solutions were mixed with ethylenediaminete-
traacetic acid (99.9%, Sigma-Aldrich) in a ligand:metal molar ratio = 1:1. This solution was
frozen in liquid N2 and freeze-dried for 48 h [42]. The dried precursors were calcined at
800 ◦C for 2 h to obtain the polycrystalline compound.

The intercalation of the halogens F, Cl and Br was carried out by mixing, in an agate
mortar, stoichiometric amounts of La2CuO4−δ with the different halogenating reagents for
15 min: polytetrafluoroethylene (PTFE) (99.9%, Sigma-Aldrich), polyvinyl chloride (PVC)
(99.9%, Sigma-Aldrich) and 4-Bromophenyl ether (99%, Sigma-Aldrich). After that, the
mixtures were heated at 360 ◦C for 12 h with a heating and cooling rate of 1 and 5 ◦C min−1,
respectively. Finally, the powders were pressed into disks of 13 and 1 mm of diameter
and thickness, respectively, and heated between 1000 and 1100 ◦C for 1 h. Hereafter, the
La2CuO4−0.5xAx (A = F, Cl, Br; x = 0–0.3) series will be denoted as Ax, where A and x
indicate the type and content of the halogen element employed, respectively, and the
pristine sample (La2CuO4−δ) will be labeled as LCO.

2.2. Structural, Morphological and Electrochemical Characterization

The structure and composition of the samples were analyzed with X-ray powder
diffraction (XRPD) by using a PANalytical X’Pert PRO diffractometer with monochromatic
CuKα,1 radiation. GSAS and X’Pert HighScore Plus software were employed to carry out
the structural analysis and the phase identification, respectively [43,44].

The morphology was studied with field emission scanning electron microscopy (FE-
SEM) by using an FEI Helios Nanolab 650 and energy-dispersive X-ray spectrometer (EDS,
X-Max, Oxford Instruments, Oxford, UK).

The conductivity was determined by using the four-probe Van der Pauw method.
Four platinum small contacts and wires were attached symmetrically on the pellet surface
for the electrical connections. The conductivity was determined from the average values
of two different pellets. The measurements were conducted in static air between room
temperature and 800 ◦C.

The electrode polarization resistance (Rp) was determined using impedance spec-
troscopy (Solartron 1260 FRA) in symmetrical cells and two electrode configurations. The
spectra were collected at frequencies ranging from 0.01 to 106 Hz in air and as a function
of the oxygen partial pressure by using an electrochemical cell equipped with an oxygen
pump and sensor [45,46]. The AC amplitude was set to 25 mV between 400 and 800 ◦C to
study the electrode polarization response and set to 100 mV below that temperature range
to study the electrolyte response and possible chemical reactions at the electrode/electrolyte
interface. Dense pellets of Ce0.9Gd0.1O1.95 (CGO) electrolyte were prepared by pressing
the commercial powders (Rhodia) into pellets of 10 and 1 mm of diameter and thickness,
respectively, and then sintered at 1400 ◦C for 4 h. The Ax powders were mixed with De-
coflux™ binder (Zschimmer & Schwarz, Lahnstein, Germany) until a homogeneous slurry
was obtained. Symmetrical cells were constructed by painting the ink onto CGO pellets
and then sintering them at 800 ◦C for 1 h to ensure adequate adherence to the electrolyte.
Different current collectors made of Pt, Au and Pt paste (Metalor, Marin, Switzerland) were
used and reproducible results were obtained, which suggested the negligible influence
of the current collector on the electrode polarization response. The overall polarization
resistance was determined from the interception of the impedance spectra at high and low
frequency with the Z’-axis. Furthermore, the data were analyzed by the distribution of
relaxation times to identify the different electrochemical processes involved in the ORR [47].

3. Results
3.1. Structural Properties of La2CuO4−0.5xAx (A = F, Cl, Br; x = 0–0.3) Series

Figure 1 shows the evolution of the XRPD patterns of undoped LCO with increasing
sintering temperature. The main phase formed at 600 ◦C corresponds to LCO, but some
additional peaks assigned to the secondary phases, such as CuO, La2O3 and La2O2(CO3),
are also observed due to the incomplete reaction of the precursors at this low temperature.
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LCO becomes a single phase after heating at 800 ◦C, and no evidence of additional phases
is detected up to 1000 ◦C.

Figure 1. XRPD patterns of La2CuO4−δ sintered at 600, 800 and 1000 ◦C for 1 h.

Figure 2 displays the XRPD patterns of the La2CuO4−0.5xAx (A = F, Cl, Br; x = 0.1–0.3)
series sintered at 1000 and 1100 ◦C for 1 h. All compounds crystallize with orthorhombic
symmetry. In the F-doped series, it is observed that F0.1 is in a single phase at 1000 ◦C
(Figure 2a). However, extra diffraction peaks assigned to LaOF (PDF number: 00-006-0281)
are observed when the fluorine content increases above x = 0.1. In this case, it is necessary to
increase the temperature to 1100 ◦C to completely incorporate the F− into the La2CuO4−δ

structure. LaOF is also detected for the F0.3 sample sintered at 1100 ◦C, suggesting that the
solubility limit of F− in La2CuO4−δ, under the experimental conditions used in this work,
is close to x = 0.2.
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Figure 2. XRPD patterns of (a) La2CuO4−0.5xFx (x = 0–0.3), (b) La2CuO4−0.5xClx (x = 0–0.3) and
(c) La2CuO4−0.5xBrx (x = 0–0.3), sintered at 1000 and 1100 ◦C for 1 h.
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The Cl0.1 and Cl0.2 compositions are pure compounds at 1000 ◦C without the presence
of extra diffraction peaks; however, a secondary phase of LaOCl (PDF number: 00-008-0477)
is detected in samples with a higher Cl content (Figure 2b). Thus, the solubility limit of
Cl− into the La2CuO4−δ structure is also close to x = 0.2. In the case of Br-containing
samples, diffraction peaks ascribed to the secondary phases are not detected at 1000 ◦C for
the compositions until x = 0.3, which may be related to the high volatility of Br at sintering
temperatures, and also the formation of non-stable secondary phases (Figure 2c).

A detailed inspection of the XRPD patterns reveals that the halogen intercalation
produces a slight shift in the diffraction peaks to lower angles due to an increase in the
lattice cell volume. These results are in accordance with those previously reported in the
literature for F- and Cl-doped La2CuO4−δ [38,39]. In general, it is expected that the lattice
expansion could facilitate oxygen ion migration and improve the ORR catalytic activity [38].

The XRPD data were analyzed using the Rietveld method by using the different struc-
tural models reported previously in the Inorganic Crystal Structure Database (ICSD) [27,48].
Figure 3 shows the XRPD Rietveld plots of LCO, F0.2, Cl0.2 and Br0.2 as representative
examples of the series. The best fits for all compositions are achieved with orthorhombic
symmetry (Fmmm, space group), with good agreement factors (Table 1). The typical pa-
rameters were refined, including scale factor, background, peak shape and lattice constant.
The atomic occupations were fixed to the stoichiometry of each sample. The evolution
of the unit cell parameters with their halogen content is summarized in Table 1. The cell
volume for F-doped samples slightly increases upon F doping from 380.64 Å3 for x = 0 to
380.76 Å3 for x = 0.2, despite the ionic radii of F− (1.33 Å) being slightly lower than that of
O2− (1.4 Å). This may be explained by the change in the oxidation state of copper, as well
as variation in the oxygen concentration vacancies in the structure to compensate for the
deficiency in terms of the negative electrical charge. In the case of the Clx series, the unit
cell volume also increases upon Cl doping, varying from 380.64 Å3 for LCO to 381.46 Å3

for Cl0.2. The Cl0.3 sample does not follow the same trend due to the presence of LaOCl as
a secondary phase. Finally, the Br-doped samples exhibit a small increase in the unit cell
with increasing Br content, which is in agreement with the higher ionic radii of Br− (1.96 Å)
compared to O2− (1.4 Å) (Table 1). This seems to indicate that a certain amount of bromine
is incorporated inside the La2CuO4−δ structure after sintering at 1000 ◦C. The evolution of
the conductivity with halogen doping will provide further evidence on the incorporation
of these elements in La2CuO4−δ.

Table 1. Cell parameters, cell volumes and disagreement factors for La2CuO4−0.5xAx (A = F, Cl and
Br; x = 0–0.3) samples obtained from XRPD data analysis.

a (Å) b (Å) c (Å) V (Å3) RWP (%) RF (%)

LCO (1000 ◦C) 5.3563 (1) 5.4026 (1) 13.1543 (3) 380.64 (2) 7.78 1.74

F0.1 (1000 ◦C) 5.3562 (1) 5.4038 (1) 13.1517 (3) 380.68 (2) 7.32 1.42
F0.2 (1100 ◦C) 5.3571 (1) 5.4049 (1) 13.1515 (3) 380.76 (2) 8.14 2.36

Cl0.1 (1000 ◦C) 5.3567 (1) 5.4038 (1) 13.1523 (3) 380.72 (2) 7.45 1.32
Cl0.2 (1000 ◦C) 5.3605 (2) 5.4078 (2) 13.1589 (4) 381.46 (3) 7.45 2.38
Cl0.3 (1000 ◦C) 5.3538 (4) 5.3997 (4) 13.144 (1) 380.00 (7) 12.65 3.62

Br0.1 (1000 ◦C) 5.3567 (1) 5.4044 (1) 13.1510 (3) 380.72 (2) 7.91 1.65
Br0.2 (1000 ◦C) 5.3569 (1) 5.4050 (1) 13.1511 (3) 380.76 (2) 7.51 1.84
Br0.3 (1000 ◦C) 5.3572 (2) 5.4052 (2) 13.1514 (7) 380.82 (5) 7.86 1.84
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Figure 3. Rietveld refinement plots of (a) La2CuO4−δ, (b) F0.2, (c) Cl0.2 and (d) Br0.2 sintered at 1000
or 1100 ◦C for 1 h.

3.2. Microstructural Analysis

SEM images of LCO pellets, sintered at 1000 ◦C for 1 h, are shown in Figure 4. The
pellets are fully dense with an average particle size of approximately 4 µm; however,
small grains of ~0.5 µm diameter, ascribed to phase segregation, are observed at the grain
boundary region of the pellet surface. Phase segregations were analyzed using EDS and
assigned to a Cu-rich phase. It has to be noted that this phase segregation was only detected
with SEM-EDS analysis but not with XRPD (Figure 4b–d). In previous studies, La2CuO4−δ

calcined above 1050 ◦C showed some additional diffraction peaks in the pattern, attributed
to the partial decomposition of the compound into CuO, Cu2O and Cu [49].

To further study the origin of this phase segregation, LCO pellets were sintered at 800,
900 and 1000 ◦C for 1 h. The cross-sectional SEM images and the EDS analysis of these
pellets are shown in Figure 4e,f. As it is expected, the grain size and the densification of the
samples increase along with the sintering temperature. The average grain size grows from
0.25 µm at 800 ◦C to 4 µm at 1000 ◦C, while the relative density increases from 70 to 95% in
the same temperature range. A homogeneous distribution of the elements is observed in
the cross-sectional image of the pellets without any evidence of copper segregation. This
suggests that copper segregation is a superficial phenomenon due to the high diffusion rate
of copper and its easy migration towards the surface. Thus, the sintering temperature of
these materials needs to be as low as possible to avoid this drawback.

Figure 5 shows some representative EDS analysis of the surface and cross-section of
the pellets for F0.2, Cl0.2 and Br0.2 samples sintered at different temperatures. The EDS
analysis confirms the presence of halogen elements in all the samples which is in good
agreement with the XRPD results. More interestingly, no superficial segregation is detected
for F0.2 sintered at 1100 ◦C (Figure 5a) and Cl0.2 sintered at 1000 ◦C (Figure 5c), indicating
that halogen doping prevents superficial copper segregation at high sintering temperatures.
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3.3. Electrochemical Properties
3.3.1. Conductivity

The conductivity of the La2CuO4−0.5xAx (A = F, Cl, Br; x = 0.1, 0.2) series is investigated
as a function of the temperature (Figure 6). In general, the conductivity of all samples is little
affected by the temperature, similarly to previous works for undoped and cation-doped
La2CuO4±δ cathodes [22,50]. Metallic-like behavior is observed for all the samples in the
whole temperature range studied (150–800 ◦C); however, F-doped samples experience
a more pronounced decrease in conductivity between 100 and 400 ◦C, which requires
further studies to fully explain this observation. The pristine LCO exhibits conductivity
values of about 5 S cm−1, while the incorporation of the halogen elements produces a
significant increase in the total conductivity. For instance, the conductivity of Cl-doped
samples at 800 ◦C increases to 11 and 15 S cm−1 for Cl0.1 and Cl0.2, respectively. The
introduction of Br in the structure also produces an enhancement in the conductivity of
~20 S cm−1 for Br0.2 at 800 ◦C. The highest conductivity values are found for F-doped
samples, e.g., 15 and 35 S cm−1 for F0.1 and F0.2, respectively, at 800 ◦C. By considering
that the electrical conductivity in La2CuO4±δ is attributed to a small polaron hopping
mechanism, the conductivity improvement after halogen doping is mainly associated with
a change in the fraction of Cu2+/Cu+ species to compensate for the deficiency of a negative
electrical charge, similarly to Sr doping in La2CuO4±δ [22]. These results further confirm
that these halogens are incorporated in the LCO lattice and modify the electrical properties.
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Moreover, the conductivity increases, following the trend Br < Cl < F for the same halogen
content, which is possibly explained by the lower lattice distortion produced by F (1.33 Å)
in comparison to Cl (1.8 Å) and Br (1.96 Å) which have higher ionic radii [51].

Figure 6. Variation of the conductivity with the temperature for La2CuO4−0.5xAx (A = F, Cl, Br; x =
0.1, 0.2) series and undoped electrode (LCO).

3.3.2. Electrode Polarization Resistance

The electrochemical properties of these materials for the ORR were investigated using
impedance spectroscopy in symmetric cell configurations with Ce0.9Gd0.1O1.95 (CGO)
electrolytes. The chemical compatibility between LCO and CGO was previously studied,
demonstrating good chemical stability at temperatures below 900 ◦C [27]. A cross-sectional
image of the LCO/CGO/LCO symmetrical cells sintered at 800 ◦C is shown in Figure 7.
The electrode, with a thickness of 35 ± 5 µm estimated from different SEM images, shows
good adherence to the electrolyte without cracks or delamination after the electrochemical
test. In addition, it has high porosity to facilitate the oxygen transport to the electrochemical
active sites for the electrochemical reactions.
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The representative impedance spectra for the pristine and halogenated samples are
represented in Figure 8a. Notice that the serial resistance was substrate for the better
comparison of the electrode response. Nevertheless, the serial resistance of the cells is
similar to the blank CGO electrolyte with only Pt electrodes. In addition, additional
contributions to the CGO electrolyte, i.e., bulk and grain boundary, are not observed at
low temperatures, indicating a negligible chemical reaction at the electrode/electrolyte
interface (Figure S1, Supplementary Information).
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Figure 8. (a) Impedance spectra at 600 ◦C and the corresponding (b) distribution of relaxation times
curves of La2CuO4−0.5xAx (A = F, Cl, Br; x = 0, 0.1) series.

As can be observed, a substantial decrease in the polarization resistance (Rp) is ob-
served for the halogenated samples. Such an improvement in the ORR activity is explained
by the incorporation of the halogens into the LCO structure, which improves the mobility
of the oxygen vacancies in the lattice and increases both the ionic and electronic conduc-
tivity [33]. Halogen doping above x > 0.1 leads to higher Rp values, which are possibly
associated with secondary phase segregation, as previously observed using XRPD. Notice
also that the electrochemical measurements of F0.2 were not performed due to the higher
sintering temperature necessary to achieve a single-phase compound.

The impedance spectra were analyzed using the distribution of relaxation times (DRT)
to distinguish the different electrochemical processes (Figure 8b) [52–54]. The undoped and
halogen-doped electrodes show three peaks at practically the same frequency, suggesting
that the same electrochemical processes are involved in the ORR. However, a slight shift in
the relaxation frequencies is observed at lower frequencies, especially for F0.1, a fact that
could be linked to better oxide ion transport or extended active sites for ORRs [55].

To obtain further information on the electrochemical processes, the impedance spectra
of F0.1 were collected at different oxygen partial pressures (pO2) (Figure 9a), and the
corresponding DRT curves are given in Figure 9b. Three different contributions are clearly
observed in the pO2 range studied. These resistances depend on the oxygen partial pressure
according to the relation R = Ro(pO2)−m, where the reaction order m provides information on
the electrochemical process involved in the ORR (Figure 9c) [45,46]. The main contribution
to the total polarization resistance at low frequency (LF) with m∼0.25 is unequivocally
assigned to a charge transfer process on the electrode surface [56,57]. The high (HF) and
intermediate (IF) processes are independent of pO2 with a reaction order m∼0, which are
attributed to oxide ion transport at the electrode/electrolyte interface and to current losses
between the current collector and the electrode, respectively [58]. Diffusion limitation
processes at very low frequency with m = 1 are not observed.
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Figure 9. (a) Impedance spectra as function of the pO2 at 600 ◦C and the corresponding (b) distribution
of relaxation times analysis of F0.1 sample. (c) Variation in the polarization resistance of the different
electrode contributions on pO2.

Figure 10 shows the variation of Rp with the temperature for LCO, F0.1, Cl0.1, Cl0.2,
Br0.1 and Br0.2. It is evident that Rp values for halogenated samples are lower than those
for the pristine LCO and this variation is more accused in the high temperature range. For
instance, Rp values for the LCO, F0.1 and Cl0.1 are 3.8, 2.29 and 2.54 Ω cm2, respectively,
at 600 ◦C. Moreover, the lowest Rp values are achieved for halogenated samples with
x = 0.1 and increases above this content. These values of Rp are significantly lower than
those obtained for a blank CGO electrolyte with only Pt electrodes ~50 Ωcm2, indicating a
negligible influence of the Pt current collector on the electrode performance [59].

Figure 10. Variation of the total polarization resistance with the temperature of La2CuO4−0.5xAx

(A = F, Cl, Br; x = 0–0.2) series.
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The values of activation energy seem to increase upon doping, especially for high
doping levels between 1.19 eV for LCO and 1.40 eV for Cl0.2 (inset of Figure 10). Such
behavior may be related to excessive oxygen lattice distortion. In this context, previous
studies have demonstrated that an optimum level of F doping enhances the crystal symme-
try and facilitates the migration of oxide ions [31]. Thus, these results indicate that only a
small quantity of the halogenated element is required for improving the electrochemical
activity of La2CuO4−δ-based electrodes, thus avoiding the use of alkaline-earth doping,
such as Sr2+ and Ba2+, which are prone to segregate on the electrode surface [11].

4. Conclusions

A series of novel cathode materials with Ruddlesden–Popper-type structures, which
are alkaline-earth-free, was investigated. The La2CuO4−0.5xAx (A = F, Cl, Br; x = 0–0.3)
compounds were prepared by using a combination of freeze-dried precursors and an
anion-doping method. The results obtained using XRPD, SEM-EDS and the electrochemical
measurements indicate the successful incorporation of the halogens into the La2CuO4−δ

structure. The pellets of undoped La2CuO4−δ that sintered at 1000 ◦C showed Cu seg-
regation on the surface; however, adequate halogen doping prevented this superficial
segregation at high sintering temperatures. Moreover, the modification of the anionic
network enhanced the bulk oxygen diffusion and surface oxygen exchange properties.
The polarization resistance values for halogenated samples were lower than those for the
pristine LCO, i.e., 0.20, 0.11 and 0.08 Ω cm2 for LCO, F0.1 and Cl0.1, respectively, at 800
◦C. These results indicate that halogen doping is an effective and promising strategy for
improving the electrochemical performance of La2CuO4−δ, as well as different electrode
materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10061206/s1, Figure S1. Impedance spectra of the Pt/LCO/CGO/
LCO/Pt symmetrical cell (black solid line) and blank Pt/CGO/Pt (red solid line) at (a) 200 ◦C and
(b) 600 ◦C.
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