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ABSTRACT

Context. Component separation is the process with which emission sources in astrophysical maps are generally extracted by taking
multi-frequency information into account. It is crucial to develop more reliable methods for component separation for future cosmic
microwave background (CMB) experiments such as the Simons Observatory, the CMB-S4, or the LiteBIRD satellite.
Aims. We aim to develop a machine learning method based on fully convolutional neural networks called the CMB extraction neural
network (CENN) in order to extract the CMB signal in total intensity by training the network with realistic simulations. The frequencies
we used are the Planck channels 143, 217, and 353 GHz, and we validated the neural network throughout the sky and at three latitude
intervals: 0◦ < |b| < 5◦, 5◦ < |b| < 30◦, and 30◦ < |b| < 90◦. Moreover, we used neither Galactic nor point-source (PS) masks.
Methods. To train the neural network, we produced multi-frequency realistic simulations in the form of patches of 256×256 pixels that
contained the CMB signal, the Galactic thermal dust, cosmic infrared background, and PS emissions, the thermal Sunyaev–Zel’dovich
effect from galaxy clusters, and instrumental noise. After validating the network, we compared the power spectra from input and output
maps. We analysed the power spectrum from the residuals at each latitude interval and throughout the sky, and we studied how our
model handled high contamination at small scales.
Results. We obtained a CMB power spectrum with a mean difference between input and output of 13± 113µK2 for multipoles up to
above 4000. We computed the residuals, obtaining 700± 60µK2 for 0◦ < |b| < 5◦, 80± 30µK2 for 5◦ < |b| < 30◦, and 30± 20µK2 for
30◦ < |b| < 90◦ for multipoles up to above 4000. For the entire sky, we obtained 30± 10µK2 for l ≤ 1000 and 20± 10µK2 for l ≤ 4000.
We validated the neural network in a single patch with strong contamination at small scales, obtaining a difference between input and
output of 50± 120µK2 and residuals of 40± 10µK2 up to l ∼ 2500. In all cases, the uncertainty of each measure was taken as the
standard deviation.
Conclusions. The results show that fully convolutional neural networks are promising methods for performing component separation
in future CMB experiments. Moreover, we show that CENN is reliable against different levels of contamination from Galactic and PS
foregrounds at both large and small scales.

Key words. techniques: image processing – cosmic background radiation – submillimeter: general

1. Introduction

The cosmic microwave background (CMB) is the relic emission
from the primordial Universe at an age of about 380 000 yr, an
epoch called recombination (Schneider 2006). At first aproxi-
mation, it is homogeneus and isotropic. However, it has small
deviations in intensity (temperature) and polarisation from point
to point in the sky. These are called anisotropies. They were
firstly detected by the Cosmic Background Explorer satellite
(COBE; Smoot et al. 1992), and the detection allow fitting the
cosmological parameters and cemented the gravitational insta-
bility paradigm within a cold dark matter model. After this,
the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett
et al. 2003) showed that the fluctuations are predominantly adi-
abatic. Finally, Planck (Planck Collaboration I 2020) obtained
a more precise CMB signal for both intensity and polarisation
with its angular resolution, which is higher than that the previous
instruments.

The CMB anisotropies are one of the most important fields of
research in modern cosmology. They are divided into two types:
primary anisotropies, which are temperature fluctuations that
originated in the recombination era, and secondary anisotropies,
which are due to distortions of photons through their propaga-
tion along the Universe. These anisotropies can be studied by
estimating the CMB power spectra, which describes the ampli-
tude of the fluctuations l (l + 1)Cl on an angular scale θ ∼ π/l =
180◦/l.

Before recombination, photons and baryons are a tightly
coupled photon-baryon fluid (Peebles & Yu 1970) that oscillates
relativistically, causing a first peak at l1 ∼ 200 and additional
maxima at approximately integer multiples of l1, called acoustic
peaks. These peaks provide fundamental information about
cosmology and, in particular, about the initial conditions and the
energy contents of the Universe. Therefore, it is very important
to measure them with the highest precision, implying a very pre-
cise recovery of the CMB signal. However, CMB measurements
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are contaminated by other signals called foregrounds
(Krachmalnicoff et al. 2016, 2018).

The process of cleaning the microwave maps in order
to recover the CMB signal is called component separation
(Baccigalupi 2003). It usually exploits multi-frequency sky maps
to extract cosmological information. Our work focuses on Planck
central wavelengths, where the foregrounds are divided into two
categories: firstly, diffuse emission from our Galaxy, which is
mostly dominated by thermal dust emission (Hensley & Draine
2021). This is the main contaminant at large angular scales.
Secondly, extragalactic foregrounds such as proto-spheroidal
galaxies forming the cosmic infrared background (CIB; Dole
et al. 2006), radio galaxies (de Zotti et al. 2010), infrared (IR)
dusty galaxies in the process of forming their stellar masses
(Toffolatti et al. 1998), and also both thermal and kinetic
Sunyaev-Zeldovich effects from galaxy clusters (Carlstrom et al.
2002).

Component separation was one of the central objectives of
the Planck mission (Leach et al. 2008, 2016, 2016). The mission
used four different methods. They were chosen because each of
the selected method relies on a different class of algorithms (i.e.
blind and non-blind methods, pixel-based, and harmonic-based
methods). The first algorithm was NILC (Delabrouille et al.
2009), which makes minimum assumptions for the foregrounds
in order to minimise the variance of the CMB using a wavelet
on the sphere on the internal linear combination (ILC) algo-
rithm. The second algorithm was SEVEM (Martínez-González
et al. 2003), which is a template-based method that removes
foreground contamination from the CMB-dominant bands from
the lowest and highest frequency channels. The third algorithm
was based on a Bayesian parameter estimation technique called
Commander (Eriksen et al. 2006), and the fourth method was
SMICA (Delabrouille et al. 2003), a parametric approach that
allows fitting the amplitude and spectral parameters of the CMB
and foregrounds. The main issue of the four methods is that
they perform by masking both the Galactic plane and the point
sources in order to avoid their contamination. Their final confi-
dence mask in total intensity keeps 78% of the sky. Moreover, the
implementation of these methods required years of research and
developing in order to reach the current precise CMB measure-
ment, with the introduction of notable improvements from the
early to latest releases. It is the not always straightforward appli-
cation of traditional methods that drives our interest in trying a
different approach to component separation.

The amount of data in the past years has been produced
a high impact in fields such as astrophysics and cosmology.
It is necessary to develop automatic and reliable methods that
can perform on the new data. The most promising methods are
those based on machine learning (ML) because once they are
trained, they can be validated on new data, providing results in
a much shorter period of computational time with respect to the
whole process of the traditional approaches. Some of the most
important ML methods are artificial neural networks, mathe-
matical approaches inspired by neuroscience. They can optimise
models with non-linear behaviours. Some recent applications
in cosmology were in the PS detection field, both in single-
frequency (Bonavera et al. 2021) and in multi-frequency (Casas
et al. 2022) approaches. Moreover, they have been used in the
statistical study of the CMB for extending foreground models to
sub-degree angular scales (Krachmalnicoff & Puglisi 2021) and
to perform a foreground model-recognition for B-mode observa-
tions (Farsian et al. 2020). They have also been used in works
similar to ours for CMB recovery and thermal dust cleaning
(Petroff et al. 2020; Wang et al. 2022; an all sky approximation

for multipoles up to l∼ 900 in the first case, and in 2D patches for
multipoles up to l∼ 1500 in the second). Another timely applica-
tion is the model by Jeffrey et al. (2022), a moment network for
polarised foreground removal using a single training image.

The aim of this work is to train a fully convolutional neu-
ral network, called the CMB extraction neural network (CENN),
for the recovery of the CMB signal with realistic microwave sky
simulations in total intensity to determine the potential of the
method. We study polarisation data in an upcoming work. The
typical application of fully convolutional networks (FCN) is in
the Euclidean space, that is, to flat images. This clearly allows
a CMB power spectrum estimation only down to angular scales
allowed by the patch dimension. This approach might be directly
applied to ground-based experiments that will observe limited
regions of the sky (e.g. the Simons Observatory and CMB-S4;
Ade et al. 2019; Abazajian et al. 2019). In the future, for full-
sky coverage experiments (e.g. the LiteBIRD satellite; Sugai
et al. 2020), it would be useful to apply FCN to the Hierarchi-
cal Equal Area Latitude Pixelization scheme (HEALPix; Górski
et al. 2005) using for example the approach by Krachmalnicoff
& Tomasi (2019).

The outline of this paper is the following. Section 2 covers
the generation of the simulated maps. Section 3 describes our
method. The results are explained in Sect. 4, and our conclusions
are discussed in Sect. 5.

2. Simulations

To train CENN, we used realistic simulations of the microwave
sky. Each simulation was formed by sky patches at the central
channels of the Planck mission: 143, 217, and 353 GHz. Each
patch has an area of 256×256 pixels in order to have good
statistics with the shortest possible computation time. The pixel
size was 90 arcsec, a number close to the 1.72 arcmin used in
the Planck mission, which correspond to Nside = 2048 in the
HEALPix all-sky pixelisation schema. The maps were randomly
simulated at any position in the sky, without the use of PS or
Galactic masks, and they were selected in such a way that the
probability of having two exact sky maps was negligible. We
simulated different datasets: one formed by 60 000 simulations
used for training, another one with 6000 simulations to evaluate
the model during that training, and validation datasets with simu-
lations apart from the train one in order to determine how CENN
performs on new data. The first dataset consisted of 6000 simula-
tions of patches centred at any position in the sky (all-sky case).
Other three datasets of 2000 simulations each were built with
patches centred at three different latitude intervals: 0◦ < |b| < 5◦
(inner Galactic region), 5◦ < |b| < 30◦ (intermediate Galactic
region), and 30◦ < |b| < 90◦ (extragalactic region).

First, the CMB signal was projected from all-sky simulations
available in the Planck Legacy Archive (PLA1), which were pro-
duced using the Planck Sky Model software (PSM; Delabrouille
et al. 2013). The CMB signal used in the train and test datasets
was taken from a different PLA simulation than we used in the
validation dataset.

As Galactic foregrounds, we assumed that only thermal dust
emission contaminate the CMB, and we considered it by adding
FFP10 PLA simulations from the third Planck release. Although
it is a good modelling at first approximation, some studies predict
significant variations of the two modified blackbody model of
the simulations used in this work (Boudet et al. 2005; Meny et al.
2007; Paradis et al. 2011), which directly affect the behaviour of

1 http://pla.esac.esa.int/pla/#home
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Fig. 1. Patches at 0◦ < |b| < 5◦ (top row), 5◦ < |b| < 30◦ (middle row), and 30◦ < |b| < 90◦ (bottom row) latitude intervals. They represent the maps
with all the emissions, the CMB label, the neural network output, and the residual map computed as the difference between the second and the
third column patches from left to right. The frequency is 217 GHz, and their temperature (in µKCMB) is shown in the right vertical bars. The x and
y labels are the pixel coordinates for each 256×256 patch.

dust at small scales, neglecting the real non-Gaussian structures
of this foreground.

As extragalactic foregrounds, firstly, the thermal Sunyaev–
Zel’dovich effect produced by galaxy clusters was also taken
into account using FFP10 PLA simulations as well. Furthermore,
point sources (PS) were added as two different populations: the
first population consisted of radio galaxies, mainly radio quasars
and BL Lacertae objects, commonly known as blazars. These
were simulated in the central channel (i.e. 217 GHz) following
the model by Tucci et al. (2011) with the software CORRSKY
(González-Nuevo et al. 2005). The second population contained
IR late-type galaxies, mainly starburst and local spiral galaxies
(IRLT), which were simulated with CORRSKY in the central chan-
nel using the model by Cai et al. (2013) and normalised following
the update by Negrello et al. (2013). Their spectral behaviour was
considered following Casas et al. (2022) by assuming that their
emission at 143 and 353 GHz varied as

S = S 0

(
ν

ν0

)α
, (1)

where S is the flux density of the sources at each frequency ν, S 0
is the flux density in the central channel with frequency ν0, and
α is the spectral index, which was randomly selected for each
population using the distributions given in Planck Collaboration
XXVI (2016).

Proto-spheroidal galaxies were also considered as the ele-
ments forming the cosmic IR background (CIB; Hauser & Dwek
2001), a main contaminant at high frequencies. They were simu-
lated using the source number counts given by Cai et al. (2013),

the angular power spectrum obtained by Lapi et al. (2011), and
the software CORRSKY. Their spectral behaviour was also consid-
ered following Eq. (1), assuming that they have the same spectral
index distribution as the IRLT population.

Finally, instrumental noise was added to the total input maps
in order to simulate the Planck HFI instrument. To do this, we
used 0.55, 0.78, and 2.56µKCMB deg values for 143, 217, and
353 GHz, respectively (Planck Collaboration IV 2020).

Each simulation was formed by two different sets of
maps called the input total images and the labels. The input
total images are multi-frequency realistic simulations of the
microwave sky at 143, 217, and 353 GHz formed by the CMB
added to other signals acting as contaminants. The labels are
maps with only the CMB signal at 217 GHz. To project the maps
into flat patches, the gnomview function of HEALPix framework
was used. An example of simulations at different latitudes is
shown in the first two columns of Fig. 1 for 217 GHz. The first
column represents the total input images with both the CMB sig-
nal and the other contaminants, and the second column shows the
CMB label maps.

3. Method

ML is the ability of a computer program to learn some class
of tasks and performance measures from experience. Neural
networks are one of the most popular ML methods. They are
inspired by neuroscience and are generally used to learn non-
linear parameters in a model. They are usually composed of
connected layers with basic computing units called neurons,
which adjust their weights and bias values in each training step.
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One of the most popular applications of neural networks is
to learn patterns in images to perform a detection using a spe-
cial type of architecture called convolutional neural networks
(LeCun et al. 1989). Image segmentation is an evolution of this
task because it consists of classifying each pixel instead of the
whole image. This allows separating one class from the others.
Fully convolutional neural networks (FCN; Long et al. 2015) are
used to perform image segmentation. They learn parameters by
extracting the main features of an image through a set of con-
volutional blocks, while they make predictions through a set of
deconvolutional blocks. Each convolutional block is formed by a
layer that reads information from a matrix of input data, and after
this, it performs convolutions in parallel. A set of activation func-
tions linearize the convolutions, and a pooling layer aggregates
information by grouping neighbouring pixels using their local
statistics. Deconvolutional blocks have a similar architecture as
convolutional blocks, but in this case, the linearized information
is deconvolved, resulting in a segmentation of the class that we
wish the neural network to learn.

Like other neural networks, FCN learn by performing opti-
misation through minimising a loss function located at the end
of their architecture, a process called forward propagation. To
drive the loss function to a minimum, a gradient-based optimiser
is used on a small set of samples from the training dataset. This
is called a minibatch. When the gradient is updated, the model
parameters, which adjust some components of the architecture
known as the filters, the weights, or the bias, are also updated.
This process is called back propagation (Rumelhart et al. 1986).
It results in a theoretically better knowledge of the information
read in each epoch, which is the interval within which the entire
train dataset flows forward and backward in the neural network.

3.1. Model

On the one hand, our model is based on the physical assumptions
explained in Eriksen et al. (2006, 2008). On the other hand, it fol-
lows the mathematical behaviours of CNN and FCN, which are
extensively revised in Rumelhart et al. (1986); Lecun et al. (1998)
and Goodfellow et al. (2016). In this subsection, we explain the
physical concepts of our model. The mathematical concepts are
summarised in Appendix A.

The model consists of patches xν of the microwave sky at
frequency ν (143, 217, and 353 GHz in this work), each one com-
posed of a linear combination of c astrophysical components
with eν emission maps convolved with the instrumental beam
of the experiment iν plus instrumental noise nν, that is,

xν = iν ∗ eν + nν, (2)

where the asterisk denotes convolution. Moreover, the emission
maps are a superposition of different astrophysical components,
each one with a particular non-linear spectral behaviour. Their
superposition can be written as a linear combination of each
foreground,

eν =
∑

c

Ac, ν sc, (3)

where A is called the mixing matrix, and s is the vector of
components. Therefore, Eq. (2) becomes

xν = iν ∗

∑
c

Ac, ν sc

 + nν. (4)

In the first epoch, the parameters of the model are randomly ini-
tialised, and the neural network reads a tensor formed by a matrix
of Npix ×Npix ×Nν in its first block, where Npix = 256 is the num-
ber of pixels, and Nν is the number of frequency channels. Then,
the spectral dimension of the input data is considered by estimat-
ing a multidimensional stride convolution (Goodfellow 2010),

Hν, i, j =
∑
k,m

Wk,m, i Vs◦ ν+ k,m, j , (5)

where H are the hidden units (i.e. related to the resulting out-
puts in the first convolutional block), which index each spectral
dimension ν within the feature map i for sample j. W is the ker-
nel, which connects the weights between i and j for each spectral
channel. V are the visible units (i.e. related to the input images),
which have the same format as H. The subindex s represents
a vector of strides2. The open circle represents the elementwise
product. The next convolutional blocks have similar operations,
but they consider the information computed in their previous
convolutional block as inputs.

In the deconvolutional blocks, the spectral dimensions of the
data are considered by computing a multidimensional transpose
of strided convolution

Rq,m, j =
∑

ν, k | s◦ ν+ k = q

∑
i

Wk,m, i Hν, i, j , (6)

where R are the hidden units in the deconvolutional block, and
H are the visible units (i.e. the information from the previous
block), which index each spectral dimension q within the feature
map m for the sample j. The vertical line denotes the modulus
operator3. The other terms are those defined in Eq. (5). The ker-
nel values W in all convolutional and deconvolutional blocks are
updated on each epoch after minimising the mean-squared error
loss function,

MSE =
1
2
|y − y ′ |2, (7)

where y is the value predicted by the model, and y ′ is the true
value, which in our case is the map with the true CMB emis-
sion. This function is located at the end of the architecture, and
after computing it, a gradient is then estimated. When the gradi-
ent is computed, the parameters for each layer become updated
as explained in Appendix A. In the last deconvolutional block,
all the spectral information of its previous block is deconvolved
into a single channel in order to predict the CMB signal at ν0 =
217 GHz, that is, the network computes the quantity Rq = ν0,m, j
by indexing Hν, i, j in Eq. (6) over all the filters on the previous
deconvolutional block, producing the quantity

x̃ν0 = iν0 ∗ eCMB, ν0 + ñ, (8)

that is, we obtain a map x̃ν0 at ν0 frequency composed of the
eCMB, ν0 CMB emission convolved with iν0 (i.e. the instrumental
beam of the experiment) plus ñ, which is generalised noise due
to deconvolution.

2 They are the number of pixels shifts over the input matrix. Because in
our case, s = 2 in every layer, the network move the filters to two pixels
at a time in each layer.
3 It is used to sum over the correct set of values for ν and k.
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Fig. 2. Architecture of CENN. It has a convolutional block that produces 8 feature maps. After this, the space dimensionality increases to 512
feature maps through five more convolutional blocks. These layers are connected to deconvolutional blocks that decrease the space dimensionality
to one feature map in the last deconvolutional block. Fine-grained features are added from each convolution to its corresponding deconvolution.

3.2. Architecture

Our topology is an FCN based on the U-Net architecture
(Ronneberger et al. 2015). The inputs of the network are three
patches (256× 256 pixels) with the total sky emission, one for
each frequency at the same position. The output is a single patch,
with the same size as the input patches, containing the recov-
ered CMB signal. The label for minimising the loss function
is the true CMB signal on each simulation. The network was
trained during 500 epochs with 60 000 simulations divided into
minibatches of 32.

The architecture of CENN is shown in Fig. 2 and is detailed
as follows: firstly, it has a set of six convolutional blocks, all of
them formed by convolutional and pooling layers with 8, 2, 4, 2,
2, and 2 kernels of sizes of 9, 9, 7, 7, 5, and 3, respectively. The
number of filters is 8, 16, 64, 128, 256, and 512, respectively.
They have a subsampling factor of 2. The padding type “Same”
is added in all the layers in order to add some space around the
input data or the feature map, to deal with possible loss in width
and/or height dimension in the feature maps after having applied
the filters. The activation function is leaky ReLU in all the layers.
Secondly, the FCN has a set of six deconvolutional blocks that
are formed by deconvolutional and pooling layers with 2, 2, 2, 4,
2, and 8 kernels of sizes of 3, 5, 7, 7, 9, and 9, respectively. The
number of filters is 256, 128, 64, 16, 8, and 1. Their subsampling
factor is 2. The padding type “Same” is also added in all the
layers, and the activation function is the leaky ReLU.

In order to take fine-grained features in the image into
account (Wei et al. 2021), we have added layers to the architec-
ture that connect the convolutional and deconvolutional blocks.
This addition doubles the space of the feature maps before each
deconvolutional block. The main goal for these layers is to help
the network to predict low-level features with the deconvolu-
tional blocks by taking high-level features into account that are
inferred by the convolutional blocks. After each fine-grained
layer, a deconvolutional block is connected in order to predict
patterns that are dependent on the high and low-level features.
In our model, the addition of these layers is related to the task

of predicting small-scale regions of the CMB signal by taking
already inferred large-scale structures into account. An example
of CENN output patches is shown in the third column of Fig. 1.

4. Results

After CENN was trained, we validated it using a dataset of 6 000
simulations of random patches in the whole sky and using three
different validation datasets of 2000 simulations each in differ-
ent latitude ranges: the first dataset at 0◦ < |b| < 5◦, the second
dataset at 5◦ < |b| < 30◦, and the third dataset at 30◦ < |b| < 90◦.
All the validation datasets consisted of simulations that were
different from the training dataset and, in particular, the CMB
signal was from another PLA simulation. The analysis of the
results is split into three parts: firstly, we study the CMB power
spectrum in the whole sky in Sect. 4.1. Secondly, we analyse
both the mean residuals and the residuals of the mean patch in
the all sky case and in the three latitude intervals in Sect. 4.2.
Thirdly, we estimate the levels of contamination at small scales
in Sect. 4.3.

4.1. Power spectra

We compare in the top panel of Fig. 3 the power spectrum of the
true CMB maps with the power spectrum from the outputs of
CENN, validated over the whole sky. More precisely, we com-
pare the average of the power spectra computed on the input
(blue line) and output (red line) sky patches. The power spec-
trum was rebinned using a step of 50 up to l = 1000 and a step
of 200 above l > 1000. The standard deviation of each bin for
the input and output patches is also shown (blue and red areas,
respectively), which is considered the uncertainty of each quan-
tity. Furthermore, the bottom panel shows the difference between
the input and the output average power spectra (black line) and
its uncertainty (grey area).

We recover the CMB power spectrum with a mean differ-
ence between input and output of 13± 113µK2 for all multipoles
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Fig. 3. Mean CMB power spectrum comparison computed over the entire validation dataset. The true CMB is represented as a blue line, and the
output from CENN is shown as a red line. The corresponding uncertainties, computed as the standard deviation of each bin, are the blue and red
areas, respectively. The difference between input and output is plotted in the bottom panel as a black line, and its uncertainty is the grey area.

and –18± 150µK2 for multipoles up to l ∼ 1000. Petroff et al.
(2020) recovered the CMB with a difference of 3.8µK2 up to
the same multipoles after masking map pixels with a predicted
standard deviation of >50µK2. This was a per-pixel error com-
prising both statistical and model uncertainties. This was not the
case in this work. However, in our model, we tested CENN with-
out the use of any pixel mask. At the first multipoles, the CMB
cannot be properly recovered because we work with patches of
the sky. We therefore have poor statistics at the largest angular
scales. Moreover, between l ∼ 1000 and l ∼ 2500, we obtain a
CMB power spectrum with a difference of 20 ± 100µK2 with
respect to the input data, while Petroff et al. (2020) obtained
a mean value above 100µK2. This result is interesting mostly
because the traditional component separation methods applied to
Planck data (Planck Collaboration IV 2020) also failed at these
multipoles, and they needed to mask the Galactic region and the
brightest PS to avoid this contamination. Our method can be used
to recover the CMB in the entire sky, without applying any sky
mask at all. This means that on the one hand, we successfully
recover the CMB signal even in the region that is mostly affected
by galactic emission and generally avoided by traditional compo-
nent separation methods. On the other hand, because we do not
need to mask the PS, we successfully recover the signal also at
large angular scales. Therefore, it is quite likely that our network
will recover the CMB signal with satisfying accuracy and relia-
bility in future CMB experiments with better angular resolution
than Planck.

4.2. Residuals

In this section, we study the mean power spectrum of the residual
maps (i.e. the difference between input CMB and CENN out-
put patches) and the power spectrum of the mean residual patch.

Firstly, we computed the mean and the root mean-squared (RMS)
of the residual patch for the whole sky and for the three differ-
ent latitude intervals. Table 1 lists the mean value (top row) and
the RMS value (bottom row) for 0◦ < |b| < 5◦ (second column),
5◦ < |b| < 30◦ (third column), 30◦ < |b| < 90◦ (fourth column),
and the whole sky (fifth column).

The mean value is 5.072µK for the inner Galactic region.
This is close to the value for the extragalactic region, 5.238µK.
At intermediate latitudes, the mean value is –0.026µK. Finally,
when the whole sky is taken into account, we obtain a mean
value of –0.83µK. For the RMS, we obtain 7.732µK for the
Galactic region and 7.536µK for the intermediate region, which
is a lower number than was reported in Leach et al. (2008) for
some of the component separation methods used in Planck. More
precisely, they presented an RMS value of about 15 and 13µK
for SMICA and 18 and 16µK for SEVEM for the latitude intervals,
both obtained using realistic simulations.

In Fig. 4, we compare the power spectrum of the mean resid-
ual patch, that is, firstly we computed the mean residual patch
for each validation dataset, and after this, we estimated its power
spectrum. This type of study is not only useful for a comparison
against other segmentation methods, but also allow us to improve
our statistical knowledge of the method, for example by identify-
ing possible systematic biases such as artefacts near the borders,
which are common for methods working with patches.

The residuals are lower than 15µK2 for multipoles up to
l ∼ 4000. In the inner Galactic region, the strong contamina-
tion implies 7± 25µK2, that is, only a higher residual for all
multipoles with respect to the other cases. This is an important
achievement because this region is usually avoided when more
traditional component separation methods are used.

Although it is still a region with high Galactic contamination,
our method performs well in the intermediate case, obtaining
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Table 1. Mean value of the residual patch (top row) and its root mean-squared value (bottom row) for each sky latitude and for the whole sky.

0◦ < b < 5◦ 5◦ < b < 30◦ 30◦ < b < 90◦ All sky

Mean residual patch (µK) 5.072 –0.026 5.238 –0.83
RMS residual patch (µK) 7.732 7.536 6.85 7.372

102 103

10 2

10 1

100

101

TT
[

K2 ]
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5 <|b|<30
30 <|b|<90
All Sky

Fig. 4. Power spectrum of the mean residual patches for the whole sky
(green continuous line) and for 0◦ < |b| < 5◦ (continuous black line),
5◦ < |b| < 30◦ (continuous blue line), 30◦ < |b| < 90◦ (continuous red
line). The corresponding coloured areas are the standard deviation of
each bin.

residuals of about 2± 10µK2 for multipoles up to l ∼ 4000. As in
the inner Galactic case, this region was usually partially masked
by the component separation methods used in Planck. Finally, in
the extragalactic region, the power spectrum of the mean residual
patch shows the expected behaviour: it has lower values overall
because in this region, the Galactic contamination is significantly
lower than in the other cases.

The residual behaviour remains almost constant even at high
multipoles. More precisely, for l > 1000, we obtain values of
about 3± 11µK2 for 0◦ < |b| < 5◦, 1± 2µK2 for 5◦ < |b| < 30◦,
0.5± 0.6µK2 for 30◦ < |b| < 90◦, and 0.8± 1.5µK2 for the
whole sky, which are still a low values for the residuals. This
suggests that in principle, masking might not be needed with our
network. This gives us the advantage that we do not have to deal
with the holes left by PS masks in CMB reconstructed maps.
The performance at these multipoles is probably due to the fact
that the network is trained to segmentate diffuse signals, which
have completely different characteristics than the point-like sig-
nals. Then, the PS contamination is relatively irrelevant while
reconstructing the CMB signal with CENN.

In Fig. 5, we compare the mean power spectrum (black
line) of each residual patch in the validation datasets with the
input and recovered CMB signal and the level of contamination
of each foreground in the simulations (the thermal Sunyaev–
Zel’dovich effect appears in the 143 and 353 GHz input simula-
tions during validation, but because the output is at 217 GHz, the
contribution is neglected). The corresponding uncertainties for
each quantity (i.e. the standard deviation, as in the above subsec-
tion) are represented as coloured areas.

The residuals depend strongly on contamination levels.
In the Galactic plane region, we obtain residuals of about
700± 60µK2. In the other Galactic region, the residuals
decrease to 80± 30µK2. However, the contamination levels in
these regions are about three and two orders of magnitude higher,

respectively. In the extragalactic region, the impact of contami-
nants is not as high as in the other cases, and this is also true
for the residuals, which are above 30± 20µK2. Finally, with ran-
dom simulations in the whole sky, we obtain residuals of about
20± 10µK2, although the contamination levels are almost two
orders of magnitude.

At small scales, the residuals show a slight bump in all cases,
which is also visible in Fig. 4. It is due mainly to extragalac-
tic foregrounds. However, it should be noted that for multipoles
l > 2500, where the Planck beam caused the foregrounds to
decrease, the residuals remain constant and at lower levels than
at large scales. The continuous brown line in Fig. 5 shows that
the instrumental noise is strong in this region, however. This is
the first indication that these types of ML models might be able
to handle instrumental effects. This behaviour of CENN should
be studied in detail and tested in future works because it is cru-
cial to constrain both instrumental and systematics effects for
primordial B mode detection.

4.3. Contamination at small scales

In this subsection, we focus on studying the performance of the
network against contamination at small scales by analysing a
specific patch that was selected for its much higher visual con-
tamination at small scales with respect to the average case. The
patch is represented in the top panel in Fig. 6 (units in µK): from
left to right, the total patch with all the contaminants and the
CMB added together, the input CMB for the same patch, the net-
work output, and the residual (the difference between the input
CMB and the output) patches.

The small-scale structure can be seen in the pixels [237, 41],
[100, 70], [169, 148], and [80, 185], mostly in the residual patch.
Despite the high contamination, the residuals are relatively low.
The mean value is −0.72± 15.52µK. The highest and lowest val-
ues that can be also seen by eye in the residual patch correspond
to point-like objects that contaminate the network output at small
scales. In particular, the pixels at [237, 41] are the brightest in
the input total patch with a value of about 1000µK. This point-
like structure is still present in the output patch with a value
lower than 300µK and is clearly visible in the residual patch
with absolute values of about 100µK. These numbers suggests
that the network still performs well even for this problematic
patch because the contamination from small scales is notably
reduced.

In the bottom panel in Fig. 6 we also compare the power
spectra of the input, output, and residual patches of this sky area.
The rebinning has a step of 50 until l < 1000, and a step of 200
above l = 1000. In the top panel, we represent the input and
output CMB power spectra as blue and red lines, respectively,
with their uncertainties, estimated as the standard deviation,
plotted as blue and red areas, respectively. In the middle panel,
we show the difference between input and output power spectra.
The grey area is the uncertainty. In the bottom panel, we plot the
power spectrum of the residual patch, and the green area is the
uncertainty.
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Fig. 5. Mean power spectrum of the residuals (black) and its uncertainty (grey area) for 0◦ < |b| < 5◦ (top left panel), 5◦ < |b| < 30◦ (top right
panel), 30◦ < |b| < 90◦ (bottom left panel) and for the whole sky (bottom right panel) against the input and output CMB (blue and red lines,
respectively) and their uncertainties (blue and red areas, respectively). In all cases, the uncertainties are the standard deviation of each bin. The
contribution of each foreground in the simulations through their power spectra is also plotted. The thermal dust is represented by the orange line,
the PS and CIB by the pink and green lines, respectively, and the instrumental noise is shown by the brown line.

CENN recovers the CMB power spectrum with a mean dif-
ference between 0 and 30µK2 (black line) for the entire range of
multipoles. In particular, between l = 1200 and l = 1800, the dif-
ference between input and output is higher, with a value of about
50µK2. The estimated power spectrum of the residuals (green
line) at the same multipoles has 40µK2, decreasing at higher
multipoles.

When our network is applied without any mask, the residual
PS slightly affects the network output, but mainly at multipoles
around 2000. The residuals at higher multipoles are negligi-
ble, and no residual contamination is related to the instrumental
noise, at least at the Planck noise level. Moreover, we tested
the performance of the network in patches with five and ten
times higher instrumental noise than the Planck noise, finding
that the performance at high multipoles is similar in the three
cases, and the error is almost negligible. This behaviour is very
different from that of the traditional component separation meth-
ods, for which above a certain multipole, l > 2500, the power
spectrum is completely dominated by the PS and instrumental
noise residuals, even after a masking procedure.

5. Conclusions

We developed a new component separation method based on
artificial neural networks for future CMB experiments. More
precisely, we trained a fully convolutional neural network called

CENN with realistic simulations of the central channels of
the Planck mission to extract the CMB signal in total inten-
sity from the other foregrounds, which are thermal dust from
our Galaxy, the CIB signal, the thermal Sunyaev–Zel’dovich
effect, the contribution from PS (radio and IR late-type galax-
ies), and instrumental noise. The frequencies are the 143, 217,
and 353 GHz channels.

To train CENN, we used 60 000 realistic simulations.
Each simulation had three image patches with an area of
256× 256 pixels containing all the emissions and an additional
map with only the CMB contribution at 217 GHz, which was
used to learn this signal by the neural network via the optimiser
and the loss function. In addition to this dataset, we used 6000
simulations to test the network during the training. After the
training, we validated the network with different simulations,
which had patches of the CMB signal extracted from a differ-
ent PLA simulation than the one used for training the network.
We developed four different validation datasets: one formed by
6000 random simulations at all sky, and another three with
2000 simulations each set at 0◦ < |b| < 5◦, 5◦ < |b| < 30◦, and
30◦ < |b| < 90◦ degrees of latitude. After validating CENN, we
analysed the results by rebining the data and computing the mean
power spectra of the input and output CMB from the neural net-
work, and the difference between them, in all cases considering
the standard deviation as the uncertainty of each bin. We obtain
a mean difference of 13± 113µK2 for multipoles up to above
4000.
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Fig. 6. Analysis of a patch highly contaminated at small scales. Top panel: sky patch selected with high contamination at small scales. The patches
represent from left to right all the emission, the CMB label, the neural network output, and the residual map computed as the difference between the
second and third columns. The frequency for all patches is 217 GHz, and their temperature (in µKCMB) is shown in the right vertical bars. Bottom
panel: CMB power spectrum comparison computed over the patch shown in the top panel. The true CMB is represented in the top panel as a blue
line, and the output from CENN is shown as a red line. The corresponding uncertainties (i.e. the standard deviation) are shown as blue and red
areas, respectively. The difference (∆DTT

l ) between input and output is plotted in the middle panel as a black line, and its uncertainty is the grey
area. The power spectrum of the residual map is represented as a green line in the bottom panel. The green area is its uncertainty (also the standard
deviation).

We computed the mean power spectrum of the residuals
(i.e. the difference between input and output CMB), obtaining
700± 60µK2 for 0◦ < |b| < 5◦, 80± 30µK2 for 5◦ < |b| < 30◦,
and 30± 20µK2 for 30◦ < |b| < 90◦. We also analysed the mean
and standard deviation patches for each latitude and for the whole
sky. We obtain a RMS value of 7.732µK for 0◦ < |b| < 5◦,
7.536µK for 5◦ < |b| < 30◦, 6.85µK for 30◦ < |b| < 90◦, and
7.372µK for all sky. Furthermore, we computed their power
spectra, obtaining 7± 25µK2 for 0◦ < |b| < 5◦, 2± 10µK2 for
5◦ < |b| < 30◦, and 2± 3µK2 for 30◦ < |b| < 90◦.

Finally, we studied the performance of CENN in recovering
the CMB signal in a patch with high contamination at small
scales. We obtain a value of 50± 250µK2 for the difference
between input and output CMB power spectra, and residuals of
about 40± 10µK2 at multipoles between l = 1200 and l = 1800.

These results show that our model is reliable not only at
the multipoles analysed in Planck (l≤ 2500), but also for higher
multipoles. Therefore, it seems to be a promising model for
extracting the CMB signal for future experiments with higher
angular resolution than Planck.

Moreover, it has other advantages: the first advantage is that
our model is evaluated in the whole sky without the use of any
confidence mask to avoid strong Galactic contamination regions.
Therefore, a more realistic CMB map might be obtained with
respect to the inpainted version at the Galactic plane used in
Planck. The second advantage is that the PS or galaxy cluster
contamination is very small and affects the output power spec-
trum only in a short multipole range around l ∼ 2000. These
results can easily be upgraded using a dedicated masking scheme
or providing information about the PS and galaxy clusters dur-
ing the training. These potential upgrades are beyond the scope
of the current paper and will be considered for the application of
the network to real data.

Both conclusions about the reliability of CENN with the
foregrounds at large and small scales might be a first indication
that the network might be able to separate the CMB from the
foregrounds by learning their non-Gaussian structures (Coulton
& Spergel 2019), which could be an advantage of this approach
with respect to the traditional approaches. Efforts to study the
network performance with these non-Gaussian structures will
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be crucial in order to detect primordial B-modes on polarisa-
tion data. However, this is beyond the scope of this work and
will be considered in future developments. Moreover, our results
suggest that CENN might be able to perform a component sepa-
ration well even in single-frequency maps, which is worth to be
tested in the future as well. Lastly, when it is trained, our model
can extract the CMB in microwave maps almost immediately,
which is fundamental for future satellites with high amounts
of data.

As we explained in Sect. 2, we have trained CENN with real-
istic simulations from the Planck Sky Model. However, these
simulations do not take the non-Gaussian behaviours of the fore-
grounds of the microwave sky properly into account, especially
at the frequencies analysed in this work, where thermal dust is
the most significant foreground and it is known to have a strong
non-Gaussian behaviour. Therefore, our results could be biased
by this approximation of the microwave sky when validating it
with real data, even if, as commented above, our network seems
to rely on such non-Gaussian structures of the different emis-
sions to recover the CMB signal. Because this issue is one of the
major limitations of this kind of ML models, the network perfor-
mance in total intensity and polarisation must be further tested
in the future by training it with more realistic simulations, for
example the outputs by ForSE (the generative adversarial neural
network developed by Krachmalnicoff & Puglisi 2021), which
can include small-scale non-Gaussian features extended to 12
arcmin.
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Appendix A: Learning process of CENN

Kernels and filters cited in section 3.1 are adjusted in each epoch
by updating non-linear parameters θt+1 as

θt+1 = θt + ∆θt, (A.1)

where θt is the parameter of the previous epoch, and

∆θt = −αgt, (A.2)

where gt is the gradient value at the epoch t. Furthermore, α
depends on the selected optimisation algorithm. Because our
training was performed using the adaptive gradient algorithm
(AdaGrad, Duchi et al. 2011), the parameter α in Eq. (A.2) varies
as
α =

η
√

Gt + ε
, (A.3)

where Gt is a diagonal matrix at epoch t, for which the diagonal
elements correspond to the sum of the squares of the past gradi-
ents, ε is a smoothing term that avoids division by zero, and η is
the learning rate, with a value of 0.05 in our model.

When all minibatches of the training dataset flow through
all the layers, the gradient in equation (A.2) is then computed
in the last deconvolutional block by taking the derivative of the
mean-squared error loss function (E) of equation (7) over the
output patch Oν0 , where the subindex ν0 represents the frequency
channel of the output patch (217 GHz in this work). Therefore,
the gradient at the last deconvolutional block is easily estimated
by using

gt =
∂E
∂Oν0

=
∂

∂Oν0

(
1
2
|Oν0 − lν0 |

2
)

= |Oν0 − lν0 |, (A.4)

where lν0 is the true value (also known as label or target), that is,
the signal we wish to extract from the maps, which in our case
is the CMB. For the previous deconvolutional block, the model
uses this value, that is, the gradient of the subsequent block, and
the chain rule to update its weights and filters. Therefore, for the
previous deconvolutional block the gradients are

gt,W =
∂Oν0, LD

∂WLD−1
=
∂Oν0, LD

∂OLD−1

∂OLD−1

∂WLD−1
=

= gt, LD
∂OLD−1

∂WLD−1
= gt, LD fLD−1

(A.5)

gt, f =
∂Oν0, LD

∂ fLD−1
=
∂Oν0, LD

∂OLD−1

∂OLD−1

∂ fLD−1
=

= gt, LD
∂OLD−1

∂ fLD−1
= gt, LD WLD−1,

(A.6)

where gt,W and gt, f are the gradients used to update the weights
and the filters, respectively. The final derivatives in equations
(A.5) and (A.6) are computed using the fact that a matrix
convolution operation is defined as

Oi, j =

M∑
m=0

N∑
n=0

f (i − m, j − n)W(m, n). (A.7)

Moreover, the achronyms LD and LD-1 correspond to the
last deconvolutional and its previous blocks, respectively. The
remaining deconvolutional blocks have similar expressions. The
convolutional blocks have the same derivation as Eqs. (A.5)
and (A.6) to update their corresponding weights and filters,
respectively. More precisely, for the last convolutional block,

gt,W = gt,FD fLC (A.8)

gt, f = gt,FD WLC , (A.9)

where the achronyms FD and LC correspond to the first decon-
volutional and the last convolutional block, respectively. For
the remaining convolutional blocks, both filters and weights are
updated following the same way as in Eqs. (A.8) and (A.9).
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