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Abstract
We analyze the concept of uniformly accelerated observer in Galilean spacetimes in
the context of Newton–Cartan theory and find natural geometric assumptions to ensure
that an inextensible uniformly accelerated observer in a Galilean spacetime does not
disappear in a finite proper time.
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Geodesic completeness
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1 Introduction

Uniformly accelerated motion is known since the fourteenth century, when Nicole
Oresme stated the mean speed theorem (also known as Merton rule of uniform accel-
eration) [12]. Later, the works of Galileo and Newton in the seventeenth century
contributed to the development of this notion and settled it as a crucial one in clas-
sical mechanics and gravitation theory. In the twentieth century, Cartan began the
geometrization of Newton’s theory of gravity [3, 4], which continued to be devel-
oped throughout the whole century and enabled us to express these classical concepts
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(observer, velocity, acceleration …) in the language of differential geometry (see for
instance [8–10, 13, 14, 19, 20]).

Currently, Newton–Cartan theory continues to arouse the interest of physicists and
mathematicians despite the fact that the general theory of relativity constitutes the best
framework to describe the universe thus far. Among other reasons, this is due to the
similarities between both theories. Indeed, Newtonian gravitational theory can also
be formulated as a covariant theory where gravity emerges as a manifestation of the
spacetime’s curvature. Thus, the structure of the spacetime is dynamical in the sense
that instead of being a fixed background, it participates in the unfolding of physics. In
addition, this geometric approach also enables us to clarify the vision of this theory
as a limit of general relativity [15]. Moreover, the introduction of Newtonian models
satisfying the cosmological principle [16] or certain symmetry properties [5, 7] can
be useful to deal with similar stationary Newtonian spacetimes that appear in simple
models of quantum collapse [18] and fractional quantum Hall effect [11].

The aim of this paper is to study uniformly accelerated motion in the Newton–
Cartan framework (see [19] for a previous definition of uniformly accelerated motion
in aNewtonian spacetime). In particular, ourmain goalwill be to analyze the conditions
that guarantee the completeness of inextensible trajectories of uniformly accelerated
observers. Physically, this completenessmeans that inextensible uniformly accelerated
observers live forever. Let us recall that in the relativistic setting, uniformly acceler-
ated observers have been defined via the Fermi-Walker connection in [6], where the
authors also study the completeness of their trajectories. Therefore, our results for the
Newtonian case can be compared with the relativistic ones in order to better under-
stand the analogies and differences between both theories. Also, note that our results
can be particularized for the case where the acceleration is equal to zero, obtaining
conditions that guarantee the completeness of free falling observers in these ambient
spacetimes.

This article is organized as follows. In Sect. 2 we briefly describe the elements in
Newton–Cartan theory that will be used in the rest of the article to obtain our main
results.Concretely, inSect. 2.1wedefine the concept of uniformly accelerated observer
in the language of our geometric theory of Galilean spacetimes as well as characterize
them via a Cauchy problem in Proposition 3. Moreover, we also recall the concept
of spatially conformally Leibnizian spacetime in Sect. 2.2, which will be the ambient
spacetime where our main result is obtained. To conclude, we devote Sect. 3 to obtain
our main result on the completeness of inextensible uniformly accelerated observers
(Theorem 6), which is particularized for different models of Galilean spacetimes in
Corollaries 7 and 8.

2 Preliminaries

A Leibnizian spacetime is defined as the triad (M,�, g), being M is a C∞-
differentiable connected manifold of arbitrary dimension n + 1 ≥ 2 endowed with
a Leibnizian structure (�, g), where � ∈ �1(M) is a differential 1-form such that
�p �= 0, ∀p ∈ M and g is an Euclidean metric on the kernel of �. Indeed, if we
denote by An(�) = {v ∈ T M , �(v) = 0} the smooth n-distribution induced on M
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by �, and by �(T M) the set of smooth vector fields on M , we have the subset of
section �(An(�)) = {V ∈ �(T M) / Vq ∈ An(�), ∀p ∈ M} that allows us to define
the smooth, bilinear, symmetric and positive definite map (see [1] and [2])

g : �(An(�)) × �(And(�)) −→ C∞(M), (V ,W ) �→ g(V ,W ).

Following the relativistic terminology, a point p ∈ M is called an event, the lin-
ear form �p is known as the absolute clock at p and the Euclidean vector space
(An(�p) , gp) is called the absolute space at p ∈ M . Furthermore, we will say that
a tangent vector v ∈ TpM is spacelike if �p(v) = 0 and timelike otherwise. For
the timelike case, v is said to be future pointing if �p(v) > 0 and past pointing if
�p(v) < 0.

In this article, one of the key notions will be the concept of observer in a Leibnizian
spacetime, which is a smooth curve γ : I ⊆ R −→ M whose velocity γ ′ is a unitary
future pointing timelike vector field (i.e., �(γ ′(t)) = 1 for all t ∈ I ). The proper
time of the observer γ is given by the parameter t . In addition, a field of observers
or reference frame is a vector field Z ∈ �(T M) with �(Z) = 1, that is, its integral
curves are observers.

It is well known that the smooth distribution An(�) is integrable if and only if
the absolute clock � satisfies � ∧ d� = 0 (see [21, Chap. 2.73]). In this case,
the Leibnizian spacetime (M,�, g) is called locally synchronizable. In this case,
Frobenius theorem (see [21]) ensures that the spacetime can be foliated by a family
of hypersurfaces {Fλ} whose tangent space at each point is the absolute space.

If � ∧ d� = 0, it is not difficult to see that each p ∈ M has a neighborhood
where � = β dT , for certain smooth functions β > 0, T , such that any hypersurface
{T = constant} locally coincides with a leaf of the foliation F . As a consequence,
the observers can rescale their proper time to be synchronized with the “compromise
time” T . In addition, if d� = 0 the Leibnizian spacetime is called proper time locally
synchronizable since observers are synchronized directly by their proper time (up to
a constant) and, locally, � = dT . When this smooth function T ∈ C∞(M) such that
� = dT is globally defined, any observer can be assumed to be parameterized by this
absolute time function T .

In this setup, a vector field K ∈ X(M) that maintains the Leibnizian structure of
the spacetime is called a Leibnizian vector field [2]. Specifically, the stages �s of the
local flows of a Leibnizian vector field are Leibnizian diffeomorphisms, that is,

�∗
s� = �, and �∗

s g = g.

These two conditions are equivalent to the following ones,

(i) �([K , X ]) = K (�(X)), ∀X ∈ �(T M).
(ii) K (g(V ,W )) = g([K , V ],W ) + g(V , [K ,W ]), ∀V ,W ∈ �(An(�)).

Observe that (ii) is well defined, since [K , V ], [K ,W ] ∈ �
(
An(�)

)
by (i).

In a Leibnizian spacetime the inertia principle must be codified via an affine con-
nection. Nevertheless, the nonexistence of a canonical affine connection associated
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with a Leibnizian structure makes it necessary to introduce a compatible connection
with the absolute clock � and the space metric g, i.e., a connection ∇ satisfying

(a) ∇� = 0 (equivalently, �(∇XY ) = X(�(Y )) for any X ,Y ∈ �(T M)).
(b) ∇g = 0 (i.e., Z(g(V ,W )) = g(∇Z V ,W ) + g(∇ZW , V ) for any Z ∈ �(T M)

and V ,W spacelike vector fields).

Such a connection is calledGalilean and a Leibnizian spacetime endowedwith such
a connection is known as aGalilean spacetime (M,�, g,∇). When the torsion tensor
of the connection vanishes identically (Tor∇(X ,Y ) = ∇XY − ∇Y X − [X ,Y ] ≡ 0),
∇ is said to be symmetric.

On the other hand, the existence of a symmetricGalilean connection for aLeibnizian
spacetime ensures its proper time local synchronizability [2, Lemma 13]. In this case,
it is clear that the restriction of the Galilean connection to the spacelike leaves of the
foliation {Fλ} coincides with the Levi-Civita connection associated with the metric g.

For any field of observers Z on a Galilean spacetime (M,�, g,∇), we can also
define the gravitational field induced by∇ in Z as the spacelike vector fieldG = ∇Z Z .
Moreover, the vorticity or Coriolis field of Z is the 2−form ω(Z) = 1

2Rot(Z), given
by

ω(Z)(V ,W ) = 1

2

(
g(∇V Z ,W ) − g(∇W Z , V )

)
∀V ,W ∈ �(An(�)).

For proper time locally synchronizable spacetimes, the gravitational field and the
vorticity of a field of observers become of great importance, since they determine a
unique symmetric Galilean connection [2, Cor. 28]. In fact, that symmetric Galilean
connection admits a formula ‘à la Koszul’ for the field of observers Z given by

∇XY = PZ (∇XY ) + X(�(Y ))Z , ∀X ,Y ∈ �(T M), (1)

where PZ (X) = X − �(X)Z is the natural spacelike projection for Z and, for each
V ∈ �(An(�)),

2g(PZ (∇XY ), V )

= X(g(PZ (Y ), V )) + Y (g(PZ (X), V )) − V (g(PZ (X), PZ (Y ))

+2�(X)�(Y )g(G, V ) + 2�(X)ω(Z)(PZ (Y ), V )

+2�(Y )ω(Z)(PZ (X), V ) + �(X)
(
g([Z , PZ (Y )], V )

− g([Z , V ], PZ (Y ))
)

− �(Y )
(
g([Z , PZ (X)], V ) + g([Z , V ], PZ (X))

)

+g([PZ (X), PZ (Y )], V ) − g([PZ (Y ), V ], PZ (X))

−g([PZ (X), V ], PZ (Y )). (2)

2.1 Uniformly accelerated observers

Let us now introduce the notion of accelerated observer in the language of our geo-
metric theory of Galilean spacetimes as well as describe their properties.
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Given an observer γ in a Galilean spacetime (M,�, g,∇), the covariant derivative
Dγ ′
dt is called the (proper) acceleration of γ . This vector field along γ is always a
spacelike vector field, indeed:

�
(Dγ ′

dt

)
= γ ′(�(γ ′)

)
= 0. (3)

Definition 1 An observer γ : I ⊂ R −→ M in a Galilean spacetime (M,�, g,∇) is
called uniformly accelerated if its acceleration is ∇-parallel, i.e.,

D2γ ′

dt2
= 0, ∀t ∈ I . (4)

Remark 2 (i) Each free falling (geodesic) observer is, in particular, a uniformly accel-
erated observer.

(ii) The modulus of the acceleration of a uniformly accelerated observer is constant.
Indeed,

d

dt

(
g
(Dγ ′

dt
,
Dγ ′

dt

))
= 2 g

(
D2γ ′

dt2
,
Dγ ′

dt

)
= 0.

Taking into account the Galilean character of the connection∇ as well as the spatial
character along γ of observer’s acceleration (3), it is easy to see how the next result
characterizes uniformly accelerated observers by means of a Cauchy problem.

Proposition 3 Let (M,�, g,∇) be a Galilean spacetime and γ : I −→ M, 0 ∈ I , a
curve satisfying equation (4) such that

γ ′(0) = v and
Dγ ′

dt
(0) = a, with �(v) = 1, �(a) = 0. (5)

Then, γ is a uniformly accelerated observer.

2.2 Spatially conformally Leibnizian spacetimes

Let us recall the concept of spatially conformallyLeibnizianvector field,which appears
in several class of cosmologicalmodels in the in the context of the generalizedNewton–
Cartan theory (see [7]) and will be key to obtain our main result.

Definition 4 Let (M,�, g) be a Leibnizian spacetime and K a vector field satisfying

�([K , V ]) = 0 for all V ∈ �(An(�)). (6)

The vector field K is called spatially conformally Leibnizian vector field if the Lie
derivative of the absolute space metric satisfies

LK g = 2ρ g, (7)
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for some smooth function ρ ∈ C∞(M). The function ρ is called conformal factor of
K .

Observe that condition (6) ensures that the previous notion is well defined. As a
direct consequence we have,

K (g(V ,W ))

= 2ρ g(V ,W ) + g([K , V ],W ) + g([K ,W ], V ), ∀V ,W ∈ �(An(�)) (8)

In fact, the next result provides another condition to guarantee that (6) holds for a
vector field.

Proposition 5 Let (M,�, g,∇) be a Galilean spacetime with symmetric connection
∇. Then, a vector field K satisfies equation (6) if and only if the function �(K ) is
spatially invariant, i.e., V (�(K )) = 0, ∀V ∈ �

(
An(�)

)
.

Proof The symmetry of the connection ensures d� = 0. Thus,

LK�(Y ) = K (�(Y )) − �([K ,Y ]) = Y (�(K )), ∀Y ∈ X(M).

Moreover, if �([K , V ]) = 0, ∀V ∈ �
(
An(�)

)
, then

LK�(V ) = 0 and V (�(K )) = 0, ∀V ∈ �
(
An(�)

)
.

Conversely, if V (�(K )) = 0, then LK�(V ) = 0 and, as direct consequence,
�([K , V ]) = 0. ��

3 Main result

In this section we will analyze certain natural geometric conditions under which the
inextensible trajectories of uniformly accelerated observers in aGalilean spacetime are
complete. From a physical viewpoint, we are studying the hypotheses on the spacetime
that ensure that uniformly accelerated observers live forever.

Consider aGalilean spacetime (M,�, g,∇)with∇ symmetric admitting a timelike
vector field K ∈ �(T M) and let us introduce the following auxiliary Riemannian
metric on M :

gR = � ⊗ � + g(PK ·, PK ·), (9)

where PK (X) := X − �(X)
�(K )

K , ∀X ∈ X(M). Notice that, with respect to gR , An(�p)

is the orthogonal subspace to Kp for each p ∈ M . This metric will allow us to prove
our main result for uniformly accelerated observers.

Theorem 6 Let (M,�, g,∇) be a Galilean spacetime with symmetric connection ∇,
and a timelike spatially conformally Leibnizian vector field K with conformal factor
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ρ. Suppose that ρ
�(K )

is bounded from below. If the auxiliary metric gR is complete
and the gravitational field G associated with K/�(K ) is bounded, i.e.,

supM (g(G,G)) ≤ L2 L > 0,

then each inextensible solution of equation (4) with initial conditions (5) is complete.

Proof Let γ : [0, 1) −→ M be a solution of equation (4) satisfying γ ′(0) = v, and
Dγ ′
dt (0) = a, with �(v) = 1 and �(a) = 0. From [17, Lemma 1.56], it is enough to
prove that the gR-length of γ is bounded. FromProposition 3, we know that�(γ ′) = 1
along γ . Therefore,

‖γ ′‖2R = gR(γ ′, γ ′) = 1 + g(PK γ ′, PK γ ′). (10)

On the other hand,

d

dt
g(PK γ ′, PK γ ′) = 2 g

( D

dt
PK γ ′, PK γ ′) = 2 g

(Dγ ′

dt
− D

dt

(K

α

)
, PK γ ′),

(11)

where α := �(K ).
If we consider Y ∈ �(T M) such that Y ◦ γ = γ ′, for each V ∈ �(An(�)),

making use of “Koszul” formula (2) of the Galilean connection∇ and the conformally
Leibnizian character of K , we compute

2 g

(
∇Y

(K

α

)
, V

)
= 1

α
K

(
g(PKY , V )

)
+ 2�(Y ) g(G, V )

+2ω(PKY , V ) −
(
g

([
K

α
, PKY

]
, V

)
+ g

([
K

α
, V

]
, PKY

))

= 1

α
K

(
g(PKY , V )

)
+ 2�(Y ) g(G, V ) + 2ω(PKY , V )

+g

(
PKY

(
1

α

)
K − 1

α
[K , PKY ], V

)
+ g

(
V

(
1

α

)
K − 1

α
[K , V ], PKY

)
,

where ω is the vorticity of the vector field of observers 1
α
K . Taking into account that

the function �(K ) must be spatially invariant we obtain

g

(
∇Y

(K

α

)
, V

)
= �(Y ) g(G, V ) + ω(PKY , V ) + ρ

α
g(PKY , V ), (12)

where ρ is the conformal factor associated with K . Inserting this in (11) we obtain the
following linear ordinary differential equation,

d

dt

(
g(PK γ ′, PK γ ′)

)
+ 2

ρ

α
g(PK γ ′, PK γ ′) + 2 g

(
G − Dγ ′

dt
, PK γ ′

)
= 0, (13)
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If we consider the initial value γ ′(0) = v, the general solution may be represented
as

g(PK γ ′, PK γ ′) = g(PK v, PK v) exp
(

− 2
∫ t

0

(ρ

α
◦ γ

)
(s) ds

)

−2
∫ t

0
g

(
G − Dγ ′

dt
, PK γ ′

)
exp

(
− 2

∫ t

s

(ρ

α
◦ γ

)
(u) du

)
ds

≤ A + 2 L
∫ t

0
‖γ ′‖R exp

(
− 2

∫ t

s

(ρ

α
◦ γ

)
(u) du

)
ds

≤ A + 2 L̃
∫ t

0
‖γ ′‖R ds, (14)

where A = g(PK v, PK v) exp(−2 inf ρ
α
), L = √

L2 + g(a, a) and L̃
= L exp(−2 inf ρ

α
). From (10), it follows

‖γ ′‖2R ≤ 1 + A + 2 L̃
∫ t

0
‖γ ′‖R ds.

Integrating both sides of the inequality

‖γ ′‖R√
1 + A + 2 L̃

∫ t
0 ‖γ ′‖R ds

≤ 1,

we obtain

(
1 + A + 2L̃

∫ t

0
‖γ ′‖R ds

)1/2

≤ 2L̃ t ≤ 2L̃,

and conclude that
∫ t
0 ‖γ ′‖R ds ≤ B, for some positive constant B. ��

The previous theorem is very general and can be applied, for example, in an Irro-
tational Conformally Leibnizian spacetime [7, Def.9], which is a proper time locally
synchronizable Galilean spacetime (M,�, g,∇) that admits a timelike vector field
K ∈ �(T M) satisfying

∇X K = ρ X , ∀X ∈ �(T M). (15)

It is not difficult to see that condition (15) directly implies condition (6) and that
K is spatially conformally Leibnizian. It should be noted that there are important
families ofGalilean spacetimeswithin the class of Irrotational Conformally Leibnizian
spacetimes. For example, the relevant family of cosmologicalmodels is calledGalilean
Generalized Robertson-Walker spacetimes (GGRWs) [7, Def. 1].

Corollary 7 (i) Let (M,�, g,∇) be an Irrotational Conformally Leibnizian space-
timewith timelike (spatially) conformally Leibnizian vector field K with conformal
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factor ρ, such that ρ
�(K )

is bounded from below. If the auxiliary metric gR is
complete then each inextensible uniformly accelerated observer is complete. In
particular, each inextensible geodesic is complete.

(ii) Consider a Galilean Generalized Robertson-Walker spacetime (M = I × f

F,�, π∗
Fh,∇) such that f (t) ≥ C exp(−bt), ∀t ∈ I , for some positive con-

stants b,C > 0. Then, M is (geodesically) complete if and only if I = R and the
fiber (F, h) is complete.

Proof The first assertion follows from Theorem 6 and the fact that G = ∇ K
α

K
α

= 0,

where α = �(K ). The second one is a particular case of (i), taking into account that
in a GGRW spacetime ρ = f ′ ◦ πI and K = 1

f ∂t . ��
Finally, we can also particularize Theorem 6 to the family of stationary Galilean

spacetimes [5, Def.1]. We recall that a Galilean spacetime (M,�, g,∇) is said to be
stationary if it admits a future pointing timelike Leibnizian vector field K which is
affine for∇, that is, LK∇ = 0, where L denotes the Lie derivative. This condition can
also be characterized as follows:

[K ,∇Y X ] = ∇[K ,Y ]X + ∇Y [K , X ], ∀X ,Y ∈ �(T M).

This enables us to obtain an extension of [5, Thm. 17] to uniformly accelerated
observers using Theorem 6 and taking into account [5, Prop. 6].

Corollary 8 Let (M,�, g,∇) be a stationary Galilean spacetime with symmetric con-
nection and timelike Galilean vector field K . If the auxiliary metric gR is complete
and the gravitational field G associated with K/�(K ) is bounded on a spacelike leaf
F0 of An(�), i.e.,

supF0
(g(G,G)) ≤ L2 L > 0,

then each inextensible uniformly accelerated observer is complete.
In particular, inextensible uniformly accelerated observers in a compact stationary

Galilean spacetime with symmetric connection are complete.
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