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A B S T R A C T

Electrooculogram (EOG) is the measurement of the biopotential generated by eye movement. These signals
are crucial for people with severe motor disabilities because they rarely suffer alterations in eye movement.
Therefore, the correct classification of these signals could find application in the design of simple user interfaces
that allow independence and communication skills. This paper presents a comparison of the main classification
techniques in the literature for the control of EOG-based human–computer interfaces (HCIs). Static threshold,
K-nearest neighbor (KNN), artificial neural network (ANN), and support vector machine (SVM) techniques,
together with two new ensembles of classifiers. One is based on a voting scheme while the other employs two
stages to encode the outcomes from the KNN, SVM, and ANN classifiers. All classifiers were compared based
on four parameters – precision, specificity, sensitivity, and accuracy – to select the most appropriate approach
in real-time. This work also provides a novel data set consisting of signals from nine healthy participants
and compares the above methods also on another public data set. Machine learning-based models proved to
be more robust for continuous use of an EOG-based HCI, while static thresholds are better for specific and
repetitive actions.
1. Introduction

The Electrooculogram (EOG) is a measurement of the electrical
activity of the ocular globule. In 1848 the German physicist Emil du
Bois-Reymond observed that the eye behaved like a dipole, where
the cornea could be modeled as the positive pole and the retina as
the negative pole, so that eye movement gave rise to variations in
the potential of said dipole [1]. This record of ocular activity is used
as a diagnostic tool for pathologies in the oculomotor system [2]
such as sleep disturbances [3], neurodegenerative diseases [4], or in
the equilibrium sense test known as the Hallpike caloric test [5]. In
addition, it can be a reliable source of commands, since, through proper
treatment, it is possible to achieve a unique relationship between the
direction of the gaze and an action to be performed. In this sense,
several systems have been developed in which the control is carried
out according to the direction of the gaze. Based on this idea, systems
have been developed that favor personal autonomy [6], such as control
of robot arms [7], prostheses [8], and electric wheelchairs [9].

Fig. 1 shows a typical EOG signal by recording the potential dif-
ference between the eyes in two separate channels: horizontal and
vertical. Saccadic eye movements can be distinguished with a typical
amplitude of 7 μV for each degree of rotation of the eyeball. As the
greatest angle of rotation is around 100◦, signals up to approximately
700 μV of amplitude can be identified according to du Bois Reymond
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studies [10]. The EOG bandwidth is between continuous and 50 Hz
[11]. The straight-ahead look is shown as a flat signal, while the
up/right looks are shown as positive potential and the down/left as
negative potential. These identified patterns within the signal constitute
the motif to classify. Note that eye blinks can also be labeled; these eye
blinks are those that are consciously performed and not those caused by
reflex movements. However, when the eye is centered, both channels
are within the vicinity of a certain threshold. This threshold varies from
one user to another or even for the same user according to his/her
current activity, level of stress, or tiredness [12].

An EOG-based system includes at least four stages: signal acquisi-
tion, a preprocessing stage that comprises signal denoising and feature
extraction, signal classification, and decision-making or application.
The signal is acquired by surface electrodes and once the EOG signal
has been denoised it is processed to extract and classify the information
it contains. Last, a decision is made based on the classification and the
target application.

The most significant works in the field of EOG signal classifica-
tion are presented in Table 1. On the one hand, there are those
that have addressed the problem themselves by proposing classical
machine learning (ML) methods: K-Nearest Neighbor (KNN), Support
Vector Machines (SVM), Artificial Neural Networks (ANN), and Deci-
sion Trees (DT) without being oriented to any application. On the other
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Fig. 1. Typical EOG labeled with the corresponding position the eyes are focusing on.

Table 1
Most significant works in the field of EOG signal classification by employing thresholds
and classical ML methods.

Authors Methods Accuracy (%)

Güven and Kara [16] ANN 94.1
Bulling et al. [17] SVM 76.1
Mala et al. [18] SVM 83.3
Dong et al. [19] SVM 96.1
Qi et al. [20] ANN, SVM 69.8
Rakshit et al. [21] KNN, SVM, Ensemble 90.0
O’Bard and George [22] KNN, SVM, DT 96.9
Park et al. [23] Static threshold 94.0
Aungsakun et al. [24] Static threshold 100
Wu et al. [25] Dynamic threshold 88.6
Soltani et al. [26] Dynamic threshold 93.0
Saravanakumar et al. [27] Dynamic threshold 98.0

hand, there are those that have addressed it from the perspective of
controlling human-computer interfaces (HCIs) using thresholds as the
classification method. As the EOG signals are slightly different for each
subject, dynamic threshold algorithms have started to be considered
in recent works. The corneal–retinal dipole potential also depends on
the illumination of the environment in which the recording is made.
The amplitude of the potential increases in the dark while it decreases
in bright light [13–15]. In both cases, good performance has been
obtained without offering a thought comparative study like the one
carried out in this work for the control of EOG-based HCIs.

In this research, the analysis of EOG systems in two different
scenarios are analyzed in the experimentation: on the one hand, the
short-term actions, where repetitive simple tasks are performed; on the
other hand, the long-term actions as a sequence of simple movements
one after the other. Furthermore, a two-stages classifier that includes
an ensemble of well-known methods and the posterior classification
is proposed. This method is compared with state-of-the-art published
solutions. The differences in the performance of the methods for the
two scenarios provide an idea of how the research would lead to
improving this type of sensory system. Some main findings of this
research are that it tests and provides insights into the performance of
different classification approaches, including ensemble voting methods
for the most common EOG device usage patterns: short-term repetitive
and long-term complex. This research also found that there is no such
winning classification method when considering mixed usage patterns,
typical in the everyday use of EOG devices.

This study is structured as follows. Next section deals with the
description of the EOG two-stages classifier. Section 3 includes the
experimental setup, data sets, and cross-validation scheme. Afterwards,
Section 4 copes with the results and the discussion on them. The study
ends by concluding this research.
2

2. An ensemble for EOG signal classification

EOG classification is defined as the task of classifying the EOG
signal of each channel into one of the possible classes. Considering 𝐿𝐻
labels for the horizontal channel and 𝐿𝑉 labels for the vertical one, the
domain can be divided into 𝐿𝐻 ×𝐿𝑉 mutually exclusive areas. For this
study, each channel is analyzed independently.

Experimenting with the different published proposals for EOG signal
classification leads to wonder how the long-term evaluations can be
faced using the available alternatives. As shown later in the experimen-
tation, long-term evaluations of the models show worse performance
than when considering short-term ones. This research proposes a new
classifier that considers classical ML methods as label suggestions for
the current signal under evaluation; in a second stage, all these inputs
are labeled using a KNN classifier, alleviating the problem of worsening
the performance with the length of the experiment. Fig. 2 shows the
block diagram of the proposal.

As mentioned before, the idea is to create an ensemble of clas-
sifiers that assist the final classification stage in the decision-making
process. Instead of using a classical voting scheme for the ensemble,
the classifier outcomes are considered as new inputs for the second
stage. The first classification stage includes three different classifiers
trained for the same task: assigning a label to each EOG channel
input. The difference between the three classifiers meets the ensemble’s
requirement so the aggregation does not introduce bias.

The three selected ML models for the first classification stage are
KNN, SVM, and feed-forward Neural Network. The main reason for
choosing these ML models is that they have been reported in the liter-
ature to successfully cope with the EOG channel signal labeling. Also,
these models can be easily deployed on embedded devices provided the
models are carefully trained and pruned when necessary. This might be
important for the KNN model, where selecting the most representative
samples severely reduces the retained training instances, thus, reducing
both the needed storage and the processing time.

KNN is an algorithm that searches the closest observations to the
one it is trying to predict and classifies the point of interest based on
most of the surrounding data. In this case, the number of neighbors is
the main parameter to set. SVM constructs a set of hyper-planes divid-
ing the domain space to keep the instances from each class in totally
separated spaces. In this implementation the problem is subdivided
into M sub-problems, with M the number of labels, in a one-versus-one
coding; the coefficients for mixing the one-to-one models are obtained
using an optimization algorithm as explained in [28].

Finally, ANN is an interconnected group of nodes, inspired by a
simplification of neurons in the brain. Each node receives input from
other nodes or an external data source. Each input has an associated
weight that is modified in the learning process. Each node applies a
function of the sum of the inputs weighted by the weights. The only
parameter set here is the number of nodes to consider in the neural
network trying different values and looking for the one that returns
the best performance.

The outcomes from these three classifiers are codified using one-
hot-encoder. That is, the outcome from classifier 𝑖 at stage 1 is 𝑜1𝑖
∀𝑖 ∈ {1,… , 𝐶} with the probability of labeling the instance with class
𝑖. As long as we have 𝐶 classes, the outcome is transformed into 𝐶
variables 𝐶1𝑗 -∀𝑗 ∈ {1,… , 𝐶}-, where 𝐶1𝑗 is 𝑜1𝑖.

The second stage includes a single classifier that assigns the final
labels to the incoming instances. For this case, a KNN classifier has
been chosen because its simplicity; however, any other classifier would
be valid provided the available data is large enough for its training.
The inputs to this classifier are: (i) the EOG channel signal, (ii) the C
outcomes from each of the first stage classifiers.

The classifying ensemble scheme is replicated -and trained- for
each EOG channel. Only three classes are considered in each channel:
DOWN, CENTER, or UP for the vertical channel, and LEFT, CENTER,
or RIGHT for the horizontal one. For the training and testing of this
proposal, we assume that each instance (a filtered EOG signal sample)
is labeled with one of these classes. All the signal pre-processing is done
before the classification stage.
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Fig. 2. Block diagram of the ensemble proposed in this research. The EOG signal is pre-processed and labeled with three different ML models. Their outcomes, together with the
pre-processed variables, represent the inputs to the second stage classifier. This last model assigns the final label to the signal.
3. Experimental set up

This section deals with the description of the experiments to eval-
uate the performance of the ensemble from the previous section, here-
after referred as EOG2SC, acronym of EOG two stages classifier. First,
the description of the data sets used in this study and their main
characteristics are detailed. Afterwards, the battery of methods to
compare our solution with will be described. Finally, the performance
measurements will be explained.

3.1. Experimental set up and data

In this work, two data sets for the evaluation of the proposals are
proposed: one focused on long-term actions and a second one including
short-term actions.

• Long-term actions data set: the UNIOVI-EOG data set. This data
set is completely defined in Appendix A. The UNIOVI-EOG data
set has been specially designed and gathered for this experi-
mentation in our laboratory at the University of Oviedo using
the BlueGain EOG device [29]. This bioamplifier provides a test
software application for signal display, filtering, digitization, and
wireless transmission to the computer. The signals of nine healthy
participants (seven males and two females) with a mean age of
28.3±5.4 years were recorded using this device and following the
well-defined protocol exposed in Appendix A.1. This study was
approved by the department’s ethics board, and all participants
signed the consent form in advance.
The EOG signals go through high-pass and low-pass filters −30 Hz
and 0.1 Hz, respectively- to eliminate noise from the power line
and unnoticed reflexive blink artifacts. Next, a smoothing of the
signal is performed using a sliding window of size 10∕𝐹 , where F
is the sampling frequency to reduce the fluctuation of the signal.
The pre-processing also includes the data scaling to unify all the
measurements of the subjects’ behavior. To do so, a calibration
stage is needed at the beginning of the use of the device to
determine the mean, median, and standard deviation of the eye
in a normal position (supposedly when the eye is centered). The
output of the pre-processing is expressed by an instance of two
variables (𝐻𝑖, 𝑉𝑖), filtered and scaled within the interval [–0.8;
0.8] mV.
A time series (TS) is composed of eye-tracking sequences for
which the horizontal and vertical potential difference is recorded.
For each participant, data from one of the ten TS they generated
are used to train the models, while the rest TS are used to test
them.

• Short-term actions data set: the UMALTA-EOG data set, in-
cluding extremely short and repetitive tasks. This public data
set comprises EOG data recorded from six healthy subjects (two
males and four females; mean age 24.7±3.1 years) with normal
vision. A total of 300 trials were recorded for each subject in
three separate sessions with 100 trials recorded in each session. It
3

is necessary to compensate for the drift present in these signals.
A high pass filter with a cutoff frequency of 0.001 Hz has been
applied to avoid signal distortions instead of the 0.3–0.4 Hz
recommended by the paper [30]. Pre-processing also includes
the data scaling in the interval [–0.8; 0.8] mV to unify all the
measurements.

3.2. Comparison set up

The two completely different above-described scenarios serve to
evaluate the performance of the EOG2SC. However, to include a com-
plete comparison, three independent classifiers will be used as well for
labeling the EOG channel instances. The selected models are the KNN,
the SVM, and the ANN obtained from the training of the EOG2SC. As
already mentioned, these classifiers represent state-of-the-art methods
in the EOG literature, so analyzing how well these methods perform and
comparing them with the EOG2SC would allow extracting conclusions.

As exposed in Table 1, the method that reports the best performance
in the literature is based on a static threshold. This method establishes
a static threshold of 50 μV for both channels, reporting accuracy of
100% [24]. This threshold-based method is included in this comparison
as long as this is one of the most used methods in the literature;
this method is referred to as THRD. Finally, a simple voting ensemble
scheme is also considered. In this case, the majority class from the three
classifiers is assumed as the final class. In case of a draw, a CENTER
class is proposed. From now on, we will refer to this ensemble as
VOTING.

Leave-one-participant-out cross-validation scheme is proposed for
this comparison. In this scheme, the TS from one participant is kept
for validation, while the TS from the remaining participants is used for
training the models. Repeating for each different participant we obtain
a measurement of the robustness and generalization capabilities of the
different solutions compared.

3.3. Performance measurements

The well-known measurements of accuracy, precision, sensitivity,
and specificity are used to evaluate the performance of the different
modeling techniques; these measurements are calculated using Eqs. (1)
to (4), correspondingly. In these equations:

• TP𝐿 (True Positive) counts the instances correctly classified with
label L.

• TN𝐿 (True Negative), counts the instances correctly classified as
¬𝐿.

• FP𝐿 (False Positive) counts the instances wrongly classified as L.
• FN𝐿 (False Negative) counts the instances wrongly classified as
¬𝐿.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿 =
𝑇𝑃𝐿 + 𝑇𝑁𝐿

𝑇𝑃𝐿 + 𝐹𝑁𝐿 + 𝑇𝑁𝐿 + 𝐹𝑃𝐿
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿 =
𝑇𝑃𝐿 (2)
𝑇𝑃𝐿 + 𝐹𝑃𝐿
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Table 2
UMALTA-EOG data set test results, including the precision, specificity, sensitivity, and
accuracy for all the methods. The static threshold is set to 50 μV. The geometric mean
of the measurements from both channels is also included as an overall performance
metric.

Model Precision Specificity Sensitivity Accuracy

Horizontal

KNN 85.8536 90.0532 78.0370 76.4520
ANN 85.8531 90.0529 78.0355 76.4508
SVM 85.8169 90.0148 77.9296 76.3443
VOTING 85.8520 90.0516 78.0322 76.4474
EOG2SC 85.8534 90.0530 78.0362 76.4512
THRD 88.2000 91.2900 82.5900 88.2100

Model Precision Specificity Sensitivity Accuracy

Vertical

KNN 88.0930 90.4997 81.5305 78.9381
ANN 88.0926 90.4992 81.5249 78.9369
SVM 88.0703 90.4776 81.4755 78.8743
VOTING 88.0918 90.4985 81.5233 78.9348
EOG2SC 88.0930 90.4997 81.5305 78.9381
THRD 88.3000 88.2900 80.3600 86.5600

Model Precision Specificity Sensitivity Accuracy

Geometric mean

KNN 86.9661 90.2762 79.7646 77.6851
ANN 86.9656 90.2758 79.7611 77.6839
SVM 86.9363 90.2460 79.6829 77.5990
VOTING 86.9647 90.2748 79.7587 77.6811
EOG2SC 86.9660 90.2760 79.7642 77.6847
THRD 88.2500 90.2900 81.4700 87.3900

Table 3
UNIOVI-EOG data set test results, including the precision, specificity, sensitivity, and
accuracy for all the methods. The static threshold is set to 50 μV. The geometric mean
of the measurements from both channels is also included as an overall performance
metric.

Model Precision Specificity Sensitivity Accuracy

Horizontal

KNN 99.9991 99.9996 99.9990 99.9992
ANN 99.9863 99.9934 99.9868 99.9875
SVM 99.9216 99.9620 99.9083 99.9192
VOTING 99.9937 99.9968 99.9928 99.9937
EOG2SC 99.9970 99.9985 99.9972 99.9972
THRD 89.6500 90.5600 81.1100 88.4100

Model Precision Specificity Sensitivity Accuracy

Vertical

KNN 99.9990 99.9995 99.9991 99.9991
ANN 99.9830 99.9913 99.9817 99.9834
SVM 99.9242 99.9605 99.9137 99.9209
VOTING 99.9911 99.9950 99.9892 99.9903
EOG2SC 99.9948 99.9973 99.9949 99.9949
THRD 88.3000 89.2900 80.3600 86.5600

Model Precision Specificity Sensitivity Accuracy

Geometric mean

KNN 99.9991 99.9995 99.9991 99.9992
ANN 99.9847 99.9923 99.9843 99.9854
SVM 99.9229 99.9612 99.9110 99.9201
VOTING 99.9924 99.9959 99.9910 99.9920
EOG2SC 99.9959 99.9979 99.9960 99.9961
THRD 88.9750 89.9250 80.7350 87.4850

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐿 =
𝑇𝑃𝐿

𝑇𝑃𝐿 + 𝐹𝑁𝐿
(3)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦𝐿 =
𝑇𝑁𝐿

𝑇𝑁𝐿 + 𝐹𝑃𝐿
(4)

Finally, cross-validation was also employed to obtain the best pa-
rameter subset for each of the models; as a result, the value of K was
set to 3 and 5 nodes were used for the ANN. The SVM parameters were
adjusted using the corresponding library in Matlab.
4

Fig. 3. Original signal, expected classification, and classification using KNN, ANN,
SVM, VOTING, and EOG2SC algorithms for the best obtained performance of the
horizontal channel. The models were trained with the 𝑇𝑆2

1 and the time period is
130 s.

4. Results and discussion

Results from the experimentation are shown in Tables 2 and 3 for
the short-term and long-term sequences of eye movements,
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Fig. 4. Confusion matrices using the KNN model [(a) and (b)] and static threshold of 50 μV [(c) and (d)] in horizontal and vertical channels for the UMALTA-EOG data set.
respectively. Table 2 shows the performance obtained by the six meth-
ods using the UMALTA-EOG data set. As can be seen, all methods
present very similar and consistent results. The threshold-based method
has better performance than the ML-based methods in this scenario
because simple and repetitive tasks are performed in this data set,
always starting from the center of the screen, with small resting periods.
This implies that the peaky signal is obtained, free of noise and without
fatigue signs; in this case, a threshold seems to be enough for classifying
the eye movement. Table 3 shows the performance of the methods
when trained and evaluated with the UNIOVI-EOG data set. Because
this data set is focused on long-term eye activity, the threshold-based
method fails in labeling the signals successfully. On the other hand, the
results obtained with the ML-based method are very similar; it cannot
be concluded which one method is better than the others given that
the difference between them is of the order of 10−5. Due to these small
differences, the choice of the best method will be based on the available
computational resources. These ML methods offer better performance
values than those reported in the literature. Fig. 3 shows the evolution
of the horizontal channel for the best classification of the UNIOVI-EOG
data set. The actual label and the classification made by the models are
also depicted.

Conversely, the UNIOVI-EOG dataset is oriented to continuous tasks
without a clear pattern, being much more complicated to follow. Be-
cause of this, the threshold-based method performs worse than the
ML-based ones. An average value for precision, specificity, sensitivity,
and accuracy of 88.56%, 90.11%, 81.10%, and 87.44%, respectively,
was obtained employing the static threshold in both data sets. The
UMALTA-EOG is more representative in terms of specific actions on
5

interfaces, but for continued use, it is the UNIOVI-EOG. A person
using an EOG-based system generally does not have rest times but is
constantly viewing and generating eye movements.

Figs. 4 and 5 show the confusion matrices using the KNN model and
the static threshold in horizontal and vertical channels for the two data
sets considered. Besides, Fig. 6 shows the box plot of the performance
of the ML methods for the UMALTA-EOG data set. Considering this, the
results show that:

1. There are important differences in the performance of the EOG
classification methods according to whether repetitive or pro-
longed movements with or without resting periods are carried
out by the participant.

• The UMALTA-EOG is a data set oriented to extremely short
and repetitive tasks, this data set is more representative of
actions on small interfaces.

• Conversely, the UNIOVI-EOG data set is oriented to contin-
uous and prolonged tasks, without a clear pattern, being
much more complicated to follow. This data set might
better reflect tasks whose number of steps is bigger and
or does not accept resting in the center of the interface.

2. Changes produced in the value of the signals in long-term activi-
ties suggest that using thresholds would eventually lead to worse
results than when using any of ML methods.
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Fig. 5. Confusion matrices using the KNN model [(a) and (b)] and static threshold of 50 μV [(c) and (d)] in horizontal and vertical channels for the UNIOVI-EOG data set.

Fig. 6. Box plot of the (a) precision, (b) specificity, (c) sensitivity, and (d) accuracy of results for the six subjects of the UMALTA-EOG data set. On each graph and from left to
right: KNN, ANN, SVM, VOTING, and EOG2SC.
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3. For short-term activity the best method in terms of average is the
threshold, but all the methods are statically similar. For long-
term activity, the threshold-based method is statically worse
than the ML methods.

It is important to remark that some of the current uses of EOG
nterfaces are related to closed-eyes EOG, such as security access con-
rol [31]. However, open-eyes EOG still has a lot of applications, such
s in robotic control [32], cognitive overload detection [33] or even in
riving safety [34]. Recent research has been published suggesting that
OG still has a promising use in the industry.

Concerning the benefits of the ensemble proposal, in our opinion,
t is not the direct application of this method that can be the future
esearch line. Lessons that this paper suggests include, firstly, that there
s a major agreement between the different ML methods when it comes
o assessing an instance with a label; otherwise, the ensemble would
ossibly perform better than any of the individual ML methods. This
s an interesting outcome that leads to the second suggested lesson.
rovided the results for the KNN with the UNIOVI-EOG dataset (KNN is
lmost perfect), research must focus on the short-term actions reflected
n the UMALTA-EOG, with a rather poor performance for all the meth-
ds. In the case of short-term actions, Hidden Markov models can cope
ith the changes in the state better than any other ML method.

Besides the mentioned issues, future work includes if it is possible
o discriminate which type of activities the participant is performing
hen it could be possible to dynamically select the best model to use.
oncerning the models, it seems that Recurrent Networks and Hidden
arkov models could be a valid model candidate to cope with the

hanges due to fatigue in the signals. However, it is important to gather
ata sets with a higher number of participants and include a variety
f activities, so the changes from high-intensity eye activity sequences
o repetitive task sequences can be studied as well. Longer TS could
lso be interesting to enhance the models for coping with less restricted
ovements. Another challenge is to integrate these classifiers into other

pplications developed in our research group [35]. The ultimate goal is
o provide these EOG-based applications with a better user experience,
aking them easier and faster to use.

. Conclusions

This work presents the study carried out to compare the main
lassification techniques in the literature for the control of EOG-based
uman–computer interfaces. Static threshold, K-Nearest Neighbor, Ar-
ificial Neural Network, and Support Vector Machines techniques, to-
ether with two ensembles (one based on a voting scheme and the
ther based on a two stages classifier). They were compared based on
recision, sensitivity, specificity, and accuracy parameters.

From the results obtained using two independent data sets, three
ain aspects must be considered to select the most suitable technique:

1) the types and variety of eye activities that the EOG-based system
ust classify and the computational capabilities of the computerized
nit. (2) The more complex ML models would produce better perfor-
ance with the complexity of the movements to identify. (3) Recurrent
eural Networks and Hidden Markov models would eventually produce
ood results but only based on having enough representative data for
he training stages.
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Appendix A. The UNIOVI-EOG data set

EOG classification is defined as the task of classifying the signal in
one of the nine possible positions shown in Fig. A.7a. The aim is to
find the decision boundaries that define the labels. These boundaries
are ideally depicted in Fig. A.7a following a similar design to the one
defined for the interfaces shown in Fig. A.8. Variations in the signals
due to tiredness or stress would penalize the classification performance;
however, these disturbances are not considered.

Two channels (the horizontal -H- and the vertical -V- channels
shown in Fig. A.7b) were considered to measure the evolution of the
EOG employing the most common electrode placement. These channels
represent the difference of potential in each direction. Each channel is
labeled with three labels: LEFT, CENTER and RIGHT for the horizontal
channel, DOWN, CENTER and UP for the vertical channel.

The protocol followed (see Appendix A.1) includes (1) a resting
period, (2) the first series of eye movements tracking a square on
a screen, (3) a resting period, (4) a second set of eye movements
following a square on a screen, and (5) a final resting period. It is worth
mentioning that the two series of eye movements are different and that
they were developed in an animated Microsoft PowerPoint file designed
by us. Fig. A.9 shows the setup for signal recording. The volunteers sat
60 cm away from the screen on which the activities to be carried out
are projected; a 22" LG screen (model 22MT47D; 507 × 316 mm) was
used. The computer screen is positioned parallel to the volunteer’s face
and at a 90◦ angle to the table during data recording.

The horizontal and vertical channels were simultaneously sampled
at 1 KHz sampling frequency. Each record of the EOG signal following
the protocol lasts approximately 4.5 min, while the intermediate resting
period lasts 23 s. A time series (TS) is recorded for each of the five
repetitions of the experiment. An example of these TS is shown in
Fig. A.10, where the upper and the bottom part depict the first and
second series of eye movements, respectively, during a run. The TS
was automatically segmented with human supervision. Each participant
made five recordings; each one was anonymously stored and labeled.
The labeled TS was manually split in two TS by the resting period,
which was discarded. This separation is performed based on the start
and end signals of each TS. Therefore, the data set includes 10 TS for
each participant, 𝑝; we denote {𝑇𝑆𝑝

𝑖 } ∀𝑖 ∈ {0, 9}.

A.1. The sequence of actions
Let us assume 𝑇1 = 1 s, 𝑇2 = 0.5 s and, 𝑇3 = 3 s.
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Fig. A.7. (a) Labels defined for the classification issue and decision boundaries; (b) Placement of electrodes to measure the EOG in two separate channels, horizontal -H- and
vertical -V-.
Fig. A.8. Some of the most significant HCIs proposed in the literature in which the interface has been divided into several regions associated with command, selectable by gaze
(a) [36]; (b) [37]; (c) [26]; (d) [27].
Labels: 𝐿1 lower left corner, 𝐿2 middle left horizontal, 𝐿3 upper
left corner, 𝐿4 vertical upper center, 𝐿5 upper right corner, 𝐿6 middle
horizontal right, 𝐿7 lower right corner, 𝐿8 vertical lower center, CEN-
TER or 𝐿9 the center position, and BLINK for when a voluntary blink
is performed.
8

Each time series is composed of the following sequences to eye
track and for which the horizontal and vertical potential difference is
recorded:

• Visit each quick tag. Starting from the center, after a 𝑇1, go to a
possible end, wait for a 𝑇 , and return to the center. The possible
1
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Fig. A.9. EOG signal registry from a volunteer sitting 60 cm away from the screen on which the activities to be carried out are projected.
Fig. A.10. Example of the TS performed by each participant. (a) First part of the TS and (b) second part of the TS after the break.
ends are each of the positions shown in Fig. A.7a. There will be

two repetitions of this procedure.
9

• Visit each slow tag. Starting from the center, after a 𝑇1, go to a

possible end, wait for a 𝑇 , and return to the center. The possible
3
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ends are each of the positions shown in Fig. A.7a. There will be
two repetitions of this procedure.

• Influence of other past actions. Starting from the center, after a 𝑇1,
go to a possible end, wait for a 𝑇1, and return to the center. The
possible ends are each of the positions shown in Fig. A.7a. The
process will be repeated but alternating the destinations follow-
ing the pattern of 𝐿𝑥-CENTER-𝐿𝑥−1- CENTER-𝐿𝑥- CENTER-𝐿𝑥−1-
CENTER-𝐿𝑥- CENTER-𝐿(𝑥+4+1)𝑚𝑜𝑑8 -CENTER and pass through all
the labels from 𝐿1 to 𝐿8 (without going through the center).

• Rest for 23 s.
• Travel the perimeter. Starting from the center, after a 𝑇1, go to

the different labels, remaining 𝑇1 in each. Sequence: CENTER-
𝐿1 −𝐿2 −𝐿3 −𝐿4 −𝐿5 −𝐿6 −𝐿7 −𝐿8-CENTER-𝐿8 −𝐿7 −𝐿6 −𝐿5 −
𝐿4 − 𝐿3 − 𝐿2 − 𝐿1-CENTER. Repeat twice.

• Main diagonals. Start from the center, and after 𝑇1, go to one
corner and from one corner to another. 𝑇1 remains in each. As-
suming 𝐿1, 𝐿3, 𝐿5, and 𝐿7 are the corner labels, we will proceed
with the following sequence: CENTER-𝐿1 − 𝐿5-CENTER-𝐿3 − 𝐿7-
CENTER-𝐿5 − 𝐿1-CENTER-𝐿7 − 𝐿3-CENTER. It will be repeated
two times.

• Main horizontals and verticals. Starts from the center, and after
𝑇1, go to the middle left horizontal (𝐿2) and from this to the
opposite end. The central vertical will also proceed. T1 remains
in each. Assuming 𝐿2 and 𝐿6 are the left and right horizontal
labels and 𝐿4 and 𝐿8 are the vertical labels above and below,
we will proceed with the following sequence: CENTER-𝐿2 − 𝐿6-
CENTER-𝐿4−𝐿8-CENTER-𝐿6−𝐿2-CENTER-𝐿8- 𝐿4-CENTER. It will
be repeated two times.

• Visit each quick tag plus blink. Starting from the center, after a 𝑇3,
go to a possible end, wait for a 𝑇3, blink, and return to the center
and blink. The possible ends are each of the positions shown in
Fig. A.7a. There will be two repetitions of this procedure.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.bspc.2022.104263.
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