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Abstract

Deep learning has provided promising results in various applications; how-

ever, algorithms tend to be overconfident in their predictions, even though they

may be entirely wrong. Particularly for critical applications, the model should

provide answers only when it is very sure of them. This article presents a

Bayesian version of two different state-of-the-art semantic segmentation meth-

ods to perform multi-class segmentation of foods and estimate the uncertainty

about the given predictions. The proposed methods were evaluated on three

public pixel-annotated food datasets. As a result, we can conclude that Bayesian

methods improve the performance achieved by the baseline architectures and, in

addition, provide information to improve decision-making. Furthermore, based

on the extracted uncertainty map, we proposed three measures to rank the im-

ages according to the degree of noisy annotations they contained. Note that the

top 135 images ranked by one of these measures include more than half of the

worst-labeled food images.
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1. Introduction

Administrative policies around the globe, ranging from local counties to the

World Health Organization, have been centered around better health care for

everyone. Health is one of the core targets in the 2030 Agenda for Sustainable

Development and is identified to impact each of the other goals in one way

or another [1]. As outlined by the new Industry 5.0 paradigm, human-centric

solutions are the future of things to come [2]. Industry 5.0, formally charted on

January 2021, focuses on providing resilient, sustainable solutions that can be

integrated into the existing social and environmental priorities [3]. Digitization

of healthcare goes hand-in-hand with Industrial progress. Artificial Intelligence

(AI) and Big Data have enabled the creation of better healthcare solutions

that are cost-effective and efficient. Global healthcare has moved from being a

centralized organization to a more personalized service. Recent decision-making

in many of these customized approaches involves assistive technologies such as

computer vision and machine learning solutions. Technologies are closer to

the common person as never before, and have helped in improving the living

conditions.

Expeditious growth in deep learning and computer vision algorithms, along

with the availability of large-scale food datasets, serve as pillars in the devel-

opment of food systems. Paying attention to the multi-class food segmentation

problem, we can find some interesting works in the literature. Aslan et al. [4]

proposed a method for dietary monitoring that solves the semantic food segmen-

tation task employing a DeepLabv2 pre-trained on the MSCOCO dataset and

fine-tuned on the UNIMIB2016 dataset. They also explored the binary food

segmentation problem by applying Dense Conditional Random Fields (Dense

CRF), obtaining more refined boundaries and fewer false positives. Chiang et

al. [5] developed a system to analyze the composition of food images, in terms

of calories and nutrients, which uses a Mask Region-based Convolutional Net-

work method (mask R-CNN) with ad-hoc post-processing. Additionally, they

introduced their dataset for food recognition, known as Ville Cafe. Also in the
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context of monitoring diet and nutritional intake, Freitas et al. [6] built a dataset

with Brazilian food and presented a comparative study with five segmentation

models, including the aforementioned DeepLabv3+ and mask R-CNN. Another

architecture used for semantic food segmentation is GourmetNet [7], which in-

corporates both channel and spatial attention through a multi-scale feature rep-

resentation. The method achieved state-of-the-art performance on two datasets,

UNIMIB2016 and UECFOODPIX. Wu et al. [8] provided FoodSeg103, a new

dataset with 9,490 images annotated with 154 ingredient classes and pixel-wise

masks. They also proposed ReLeM, a multi-modality learning approach that

was evaluated on their dataset and compared with three well-known semantic

segmentation methods.

Semantic segmentation encounters various challenges with respect to data

collection [9]. The quantity of data needed to train any deep learning algorithm

is typically huge. This is even more important for segmentation algorithms,

which need information about each and every pixel. Collecting ground truth

pixel labels for such volumes of data is expensive. For instance, in the Cityscapes

dataset [10], widely used in training self-driving cars, it took close to 90 minutes

to annotate a single image. With less accurate labels, the performance of the

models deteriorates. Recent advances in active learning frameworks [11] have

helped to some extent, whilst self-supervised learning algorithms have resulted

in more confident predictions by using better label-error maps [12]. However,

both active learning and self-learning approaches require high-quality labels to

learn the unlabeled data. The problem is that annotation efforts, both manual

and automated, lead to noisy labels due to the complexity of the task [13]. The

most important aspect of learning from noisy labels is to accurately characterize

the uncertainty of the label noise [14]. Confident Learning (CL) algorithms work

on the assumption that label noise is often class-conditional and it can be learned

directly from the class labels [15]. MultiNET [16], an improved version of the

original CL algorithm, uses aggregated outputs from multiple deep networks

followed by a detection threshold to improve the noise detection rate. Using

the CL algorithm in a teacher network allowed the teacher model to identify
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potential label noise and subsequently, by assigning soft-corrected masks, better

students were created achieving more confident models [17].

Modern deep learning methods have reached real-world applications and,

therefore, it is important for them to be certain about the predictions. In sev-

eral critical applications, incorrect segmentation often has catastrophic results,

such as cases involving self-driving cars [18]. Softmax probabilities were used

as a measure of confidence. However, this is not always reliable [19] as seen

in cases of adversarial examples. The Bayesian formulation is a popular way

to estimate the model confidence in terms of uncertainty, which is treated as a

measure of the trustworthiness of any deep learning algorithm. In fact, most

of the semantic segmentation algorithms that implement uncertainty modeling

are based on the Bayesian inference approach. Kendall et al. [20] presented

Bayesian SegNet, the first probabilistic semantic segmentation approach using

deep learning. The proposed method is an extension of SegNet, an encoder-

decoder Neural Network (NN) architecture, to a Bayesian Convolutional Neural

Network (CNN) that produces a probabilistic segmentation as output using

MC-dropout [19]. Recently, Dechesne et al. [21] presented Bayesian U-Net,

also based on MC-dropout [19] for uncertainty estimation but with the pop-

ular U-Net [22] for semantic segmentation. For their part, Mukhoti and Gal

[23] proposed three metrics to evaluate Bayesian models designed for semantic

segmentation, using also MC-dropout for experimentation purposes. All these

works highlight the effectiveness of the Bayesian methods that provide accurate

semantic segmentation and a reliable uncertainty map.

Food applications require a high level of certainty in their predictions since

they are often used to make critical decisions such as what should constitute

the next meal, what should be the quantity of certain food components, identify

allergens of prepared foods, etc. However, to the best of our knowledge, there is

no previous research work focused on uncertainty modeling applied to semantic

food segmentation. Inspired by the good results obtained with the Bayesian

methods described above, in this article we will extend the state-of-the-art se-

mantic segmentation food models with a Bayesian approach. In addition, we
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Figure 1: Noisy label present in a sample image from the UECFOODPIX dataset. From left

to right: original image, ground-truth (GT) labels, predicted segmentation mask, and the

uncertainty map. The patches in the original image (blue boxes) and the uncertainty map

(red boxes) represent the noisy label where uncertainty in the prediction is present. Best

viewed in color.

delve into the analysis of quantified uncertainty to assess the benefit of the

uncertainty map in identifying noisy labels present in the data. The experi-

mentation carried out shows how error predictions can be identified with these

algorithms and how we take advantage of uncertainty map information to iden-

tify images with noisy labels (see Fig 1). There are two key contributions of

this work. (1) We present the Bayesian version of two benchmark food seg-

mentation methods: DeepLabv3+ and GourmetNet using MC-Dropout. Our

proposal provides both segmentation results and uncertainty measures related

to each prediction. (2) We analyzed the uncertainty maps to identify possible

wrong or mislabeled data. The proposed methods were validated on several

public food datasets, where superior performance was observed in all of them

compared to the baseline architectures.

The rest of the paper is organized as follows. We explain the proposed

method in Section 2. We detail the experimental setup in Section 3. We discuss

the results in Section 4, followed by the conclusions in Section 5.

2. Bayesian Semantic Segmentation

In Bayesian learning, the posterior predictive distribution that we want to

compute is given by:
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p(y|x,D) =
∫

p(y|x,w)p(w|D)dw,

where D denotes the training set, x the input image, y the output class label,

w the weights of the neural network, p(y|x,w) the likelihood (e.g., the softmax

output of the CNN), and p(w|D) the posterior distribution.

In particular, for deep learning methods, a full Bayesian inference is in-

tractable. However, instead of calculating the exact posterior distribution, it

can be approximated. Different methods have been proposed to approximate a

Bayesian inference, including MC-dropout [19] that is the most popular strat-

egy used in semantic segmentation [20, 21, 23]. MC-dropout can be interpreted

as a variational inference technique where a Bernoulli distribution is placed on

the weights (w) of the neural network. In variational inference, the real pos-

terior distribution is approximated by minimizing its Kullback–Leibler (KL)

divergence with respect to a variational distribution q(w).

Interestingly, Gal and Ghahramani [19] showed that using a dropout layer

with a dropout rate of p on a hidden layer has the same effect as placing a

Bernoulli distribution with parameter p on the weights of that layer. In addition,

they also found that minimizing the negative logarithm of the likelihood with the

standard optimization algorithm provides an effect equivalent to minimizing the

KL divergence. Thus, with MC-dropout (see Algorithm 1), Bayesian inference

can be performed using the traditional training procedure by simply putting a

dropout layer after each training layer (e.g., convolutional layer). Then, one can

sample the results provided by the posterior distribution during the prediction

phase by performing T forward passes for the same input data while keeping

the dropout layer active. Finally, with the mean of the sampled results, the

final prediction is calculated and the uncertainty is estimated with entropy and

mutual information.

In order to perform Bayesian inference with MC-dropout, some adjustments

to the architecture of the models are required; in particular, the incorporation of

dropout layers after trainable layers. For the latter, previous Bayesian semantic
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(a)

(b)

Figure 2: BayesianDeepLabv3+ (a) and BayesianGourmetNet (b) with ResNet101 as back-

bone. Dropout (do) layers added to both networks are marked by dashed lines.

segmentation deep learning approaches differ in criteria regarding the numbers

of dropout layers and where these layers are placed. For encoder-decoder based

segmentation methods, the dropout layer has been placed after all [20, 21] or

some [20] convolutions and deconvolution blocks, or only in the middle flow of

the network [23]. In [20], the authors noted in practice that using a dropout layer

after each trainable layer was representing a too strong regularization, causing

the network to learn very slowly. Alternatively, they explored a number of

variants and found a good trade-off between accuracy and uncertainty quantifi-

cation by placing dropout layers after four central encoders and decoders. More

closely related to our work is the Bayesian semantic segmentation proposed in

[23]. Here, the authors also used DeepLabv3+ as the base architecture, but

with a different backbone, in this case the Xception network. They proposed to
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Algorithm 1: Bayesian approximation using MC-dropout for image

segmentation

input: Target image I, Trained model with dropout layers M , T

forward passes;

output: Semantic segmentation SS, Entropy map E, Mutual

information map MI;

acc prob← 0;

acc prob log prob← 0;

t← 0;

while t is less than T do

// Model prediction for input image using active dropout layers;

logits←M.pred(I);

prob← softmax(logits);

prob log prob← prob× log(prob);

acc prob← acc prob+ prob;

acc prob log prob← acc prob log prob+ prob log prob;

t← t+ 1;

end

mean prob← 1
T × acc prob ;

// mean prob and acc prob log pro ∈ Rwidth×height×nclasses;

E ← −sum(mean prob× log(mean prob), axis = −1);

MI ← E + 1
T × sum(acc prob log prob, axis = −1);

SS ← argmax(mean prob, axis = −1);

return SS, E, MI;

add the dropout layer only in the backbone, after every four Xception modules

in the middle of the network, arguing that higher level features in the deeper

layer are better modeled using probabilistic weights.

As we mentioned before, the best results in semantic segmentation of food

images have been obtained with the DeepLabv3+ and GourmetNet architec-
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tures, both of them using ResNet101 [24] as the backbone. Inspired by the

works discussed above, we propose to approximate a Bayesian inference in both

networks by means of MC-dropout incorporating a total of four extra dropout

layers placed after each residual block belonging to the backbone network (see

Fig. 2). In this manner, it will be possible to obtain both the prediction and its

corresponding uncertainty. A brief description of DeepLabv3+ and GourmetNet

can be seen in the following subsections.

2.1. DeepLabv3+

DeepLabv3+ [25] is based on an encoder-decoder structure to perform the

semantic image segmentation task (see Fig. 2(a)). On the encoder side, this

architecture uses the original DeepLabv3 [26], which is composed of a back-

bone (e.g., Xception or ResNet101) for feature extraction and an Atrous Spatial

Pyramid Pooling (ASPP) for capturing multi-scale information. Specifically,

the encoding results correspond to the last feature map before the DeepLabv3

logits layer. On the decoder side, there is a simple, but effective approach to

refine the segmentation mask by retrieving object segmentation details. First,

the low-level features extracted from the backbone are convolved using a 1× 1

convolution to reduce the number of channels, and then concatenated with the

bilinear upsampled encoder output by a factor of 4. After that, some 3×3 convo-

lutional layers are applied to the concatenation in order to refine the extracted

features. Next, 1 × 1 convolutions are applied on top of the network where

the number of convolutions equals the number of classes. Finally, a bilinear

upsampling by a factor of 4 is used to provide the segmentation result.

2.2. GourmetNet

GourmetNet [7] is a segmentation architecture designed for food segmenta-

tion that incorporates a Waterfall Atrous Spatial Pooling (WASPv2) module

to capture multi-scale features, coupled with dual attention modules to capture

the context (see Fig. 2(b)). GourmetNet uses the ResNet101 as a backbone
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Figure 3: Image samples with their respective annotations for the UECFOODPIX (left group),

UNIMIB2016 (middle group), and Food201 (right group) datasets. Notice that in UECFOOD-

PIX there are two annotations that correspond to the GrabCut version (first) and the manual

annotation version (second) of this dataset.

architecture and modifies the last block to learn multi-scale features. The au-

thors employed atrous convolutions instead of regular convolutions. On the

other hand, GourmetNet uses spatial attention to capture the low-level fea-

tures and channel attention to capture high-level features. Both the low-level

and high-level features are refined in the attention modules and fed into the

WASPv2 module. The WASPv2 module uses a waterfall-like configuration of

atrous convolutional layers to increase the field of view. Utilizing the multi-scale

representations from both the attention modules and increasing the field of view

led to better features. The final layer of the module is similar to an in-built

decoder, which produces the segmentation results.

3. Experiments

This section describes the datasets used for experimental purposes. After

that, the experimental setup is explained in detail. Finally, the measures used

to evaluate the performance are shown.

3.1. Datasets

Three public food datasets were selected to perform semantic segmenta-

tion of food images by means of the proposed approach and baseline architec-

tures. These are: 1) UNIMIB2016 [27], an Italian food dataset composed of

1,027 food images and 73 food categories collected in a self-service canteen,
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in a semi-controlled environment and using a smartphone camera; 2) UEC-

FOODPIX [28, 29], a popular large-scale public dataset comprised primarily of

Japanese foods consisting of 10,000 images and 102 food categories with anno-

tations corresponding to plate masks automatically extracted from previously

labeled bounding boxes (UECFOODPIX) or with pixel-wise annotation (UEC-

FOODPIXComplete); and 3) Food201 [30], the first food dataset for semantic

segmentation, but not widely used because annotations were not available until

recently. The dataset is composed of a subset of images from Food101 [31],

specifically 12,093 images which include pixel-wise annotations for 201 different

foods that may be present in the images. Unlike UNIMIB2016, UECFOODPIX

and Food201 contain images with noisy labels, different resolutions and large

visual variations for the same foods.

3.2. Experimental setup

Two state-of-the-art semantic food segmentation methods were selected to

perform the experiments, these are: DeepLabv3+ [25] and GourmetNet [7]. In

both methods the ResNet101 [24] was used as the backbone. In addition, we

adapt these methods to approximate Bayesian inference with the aim to extract

and analyze the uncertainty in each given prediction in the segmentation of

food images. For the latter, the backbone is adapted by adding a dropout layer

with a probability of p = 0.1 after each residual block in order to estimate

the uncertainty by means of the MC-dropout approach [19]. We named the

Bayesian-based methods as BayesianDeepLabv3+ and BayesianGourmetNet.

For training we use the backbone pre-trained on ImageNet [32] and fine-tune

the entire network for 100 epochs with a Cross-Entropy Loss and Stochastic

Gradient Descent optimizer. For the optimization, we set a momentum of 0.9

and a weight decay of 0.0005. Regarding the learning rate (LR), it depends on

the dataset and was set at 10 times higher for the weights of the layers located

at the top of the backbone. Specifically, for UECFOODPIX and Food201 the

base LR was 0.001 and for UNIMIB2016 it was 0.01. For DeepLabv3+-based

models, the LR is decayed in a polynomial manner after each iteration with an
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exponential factor of 0.9. For GourmetNet-based models, the LR is decayed in

a multi-step manner at epochs 40 and 70 with a factor of 0.3.

For the Bayesian semantic segmentation models, MC-dropout was used with

T = 100 during the prediction phase to compute the uncertainty, where T

corresponds to the multiple forward passes through the model performed with

the dropout turned on.

With respect to the data, for comparison purposes, a 320 × 320 input size

was used for UECFOODPIX and Food201, and an input size of 480 × 360 for

UNIMIB2016. The original images were resized according to the nearest filter

and no other transformation was applied to them.

All experiments were performed on a server with a graphic card of 11 GB of

VRAM, using Pytorch as the deep learning framework.

3.3. Validation

All the experiments were evaluated quantitatively and qualitatively. In the

quantitative case, we based the evaluation in three standard semantic segmen-

tation metrics: Accuracy (Acc), mean Accuracy (mAcc) and mean Intersection

over Union (mIoU). In addition, we use two metrics proposed for uncertainty

quantification [23]: predictive entropy (Ĥ), which captures both aleatoric and

epistemic uncertainty; and mutual information (Î), which only captures the epis-

temic uncertainty. The metrics mentioned above are formally detailed below:

Ĥ(y|x,Dtrain) = −
∑
c

(
1

T

∑
t

p(y = c|x, ŵt) log(
1

T

∑
t

p(y = c|x, ŵt)))

Î(y, w|x,Dtrain) = Ĥ(y|x,Dtrain) +
1

T

∑
c,t

p(y = c|x, ŵt) log(p(y = c|x, ŵt))

where p(y = c|x, ŵt) is the softmax probability of the input x being in class c,

and ŵt are the model weights for the forward pass t.

On the other hand, for the qualitative analysis, we will interpret the uncer-

tainty estimated with the proposed approach with the intention of making a
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visual interpretation of the meaning of the epistemic and aleatoric uncertainty

present in the food images. Additionally, we will assess whether uncertainty

information is useful in automatically determining mislabeled or incorrect data.

4. Results

This section reports the results obtained in the experiments using the tradi-

tional semantic segmentation measures (Acc, mAcc, mIoU) and also the anal-

ysis of the uncertainty associated with the predictions.

4.1. Results based on standard measures for Semantic Food Segmentation

To evaluate the results of the state-of-the-art models and the proposed

methods in a comparative way, all of them were trained using the same hy-

perparameters, as explained in Section 3.2. Table 1 shows the results for the

four datasets considered: UNIMIB2016, UECFOODPIX, UECFOODPIXCom-

plete, and Food201. For all datasets, an improvement in the state-of-the-art

models performance is evident when the dropout layers are incorporated into

the backbone network (bb w/d) based on the proposed design. In particular,

GourmetNet shows a bigger increase than DeepLabv3+ and surprisingly a great

improvement is shown in UNIMIB2016, with about 4% more in terms of mIoU .

The latter suggests that GourmetNet is more prone to strongly overfitting the

network than DeepLabv3+ when training on a dataset with a small amount of

data. Furthermore, it can be seen that the proposed Bayesian version of the

state-of-the-art models not only allows us to obtain more information about the

certainty of the segmented pixels, but also provides the best results regardless

of the target dataset. BayesianGourmetNet shows better behavior with clean

label datasets (UNIMIB2016 and UECFOODPIXComplete). On the contrary,

BayesianDeepLabv3+ shows comparable or even better behavior than Bayesian-

GourmetNet with more complex datasets (UECFOODPIX and Food201), which

contain images of several food classes obtained in uncontrolled environments

that are semi-automatically labeled and, therefore, may contain some degree of
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noise in the labels. On the other hand, when comparing the results in terms

of Acc and mAcc, it can be seen that the correct segmentation is mostly bal-

anced between classes in most of the datasets, with the exception of Food201,

where there is a clear bias towards the classes with the highest occurrence in

the images (e.g., background). Likewise, it is observed that GourmetNet-based

models tend to provide a better balance in performance between classes.

Table 2 shows the class-wise results provided by GourmetNet-based models

on the UECFOODPIXComplete and Food201 datasets, respectively. Specifi-

cally, it shows the three classes that obtain the best (Top 3) and worst (Bottom

3) results, the mean, standard deviation (Std Dev), and median. All these met-

rics were calculated in terms of IoU. In the UECFOODPIXComplete case, it can

be seen that there is coincidence in the classes with better (classes id 13 and 14)

and worse (class id 45) results, and in all of them our approach provides better

performance. Classes id 13 (croissant) and 14 (roll bread) can be considered

easy food classes because the color, shape and texture are almost constant in the

samples that belong to these two classes. For this reason, the model is able to

learn them very well. On the contrary, class 45 (fried fish) can be considered as

a fine-grained food class because the visual appearance is very similar to other

fried foods present in the dataset, thus increasing the complexity of its segmen-

tation. Overall, there is a noticeable improvement (more than 3% in terms of

mean IoU and about 4.5% in terms of median IoU) when BayesianGourmetNet

is compared to GourmetNet.

In the Food201 case, it is also observed that the proposed method provides

an improvement in the prediction of the best segmented classes. Again, the

best results are obtained in easy food classes, for example in edamame (class id

76) and macarons (class id 124). It is interesting to note that, in this dataset,

there are several classes that have not been learned, that is, with IoU equal to

0. Specifically, 71 classes were not learned by GourmetNet and 77 by Bayesian-

GourmetNet models. Most of these classes correspond to sauces, drinks (e.g.,

class id 208: chocolate) and ingredients (e.g., class id 68: croutons, class id 42:

onions, class id 143: orange slice) that are underrepresented, so the model does

14



Table 1: Results for semantic food segmentation on four datasets. Best performances are

shown in bold.

Dataset Model Acc mAcc mIoU

UNIMIB2016 BayesianDeepLabv3+ 0.9843 0.8271 0.7717

DeepLabv3+ (bb w/d) 0.9836 0.8243 0.7657

DeepLabv3+ 0.9822 0.8033 0.7469

BayesianGourmetNet 0.9861 0.8646 0.8076

GourmetNet (bb w/d) 0.9856 0.8606 0.8014

GourmetNet 0.9829 0.8323 0.7685

UECFOODPIX BayesianDeepLabv3+ 0.8408 0.7012 0.5907

DeepLabv3+ (bb w/d) 0.8375 0.7020 0.5810

DeepLabv3+ 0.8383 0.6961 0.5783

BayesianGourmetNet 0.8456 0.7196 0.5926

GourmetNet (bb w/d) 0.8419 0.7175 0.5867

GourmetNet 0.8419 0.6947 0.5789

UECFOODPIXComplete BayesianDeepLabv3+ 0.8729 0.7615 0.6421

DeepLabv3+ (bb w/d) 0.8664 0.7574 0.6311

DeepLabv3+ 0.8706 0.7571 0.6307

BayesianGourmetNet 0.8805 0.7817 0.6616

GourmetNet (bb w/d) 0.8767 0.7756 0.6506

GourmetNet 0.8707 0.7587 0.6288

Food201 BayesianDeepLabv3+ 0.7696 0.3296 0.2520

DeepLabv3+ (bb w/d) 0.7659 0.3341 0.2464

DeepLabv3+ 0.7674 0.3290 0.2473

BayesianGourmetNet 0.7681 0.3366 0.2510

GourmetNet (bb w/d) 0.7629 0.3327 0.2449

GourmetNet 0.7552 0.3155 0.2345

* bb w/d=backbone with dropout layer after each residual block
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Table 2: Class-wise results in terms of IoU obtained by BayesianGourmetNet (BGNet) and

GourmetNet (GNet) on the UECFOODPIXComplete (UFPC) and Food201 datasets.

Dataset Model Top 3 (class id) Bottom 3 (class id) Mean Std Dev Median

UFPC BGNet 0.9566 (013) 0.1825 (045)

0.9381 (014) 0.2298 (089) 0.6616 0.1884 0.6794

0.9330 (028) 0.2627 (090)

GNet 0.9565 (013) 0.1796 (045)

0.9220 (000) 0.2657 (101) 0.6288 0.1762 0.6348

0.9182 (014) 0.2912 (056)

Food201 BGNet 0.8829 (076) 0.0000 (208)

0.8604 (124) 0.0000 (142) 0.2510 0.2546 0.1920

0.7997 (000) 0.0000 (143)

GNet 0.8806 (076) 0.0000 (208)

0.8318 (124) 0.0000 (068) 0.2345 0.2420 0.1677

0.8268 (111) 0.0000 (142)

not have enough information to learn them. Although BayesianGourmetNet

has more unlearned food classes than GourmetNet, this method improves the

overall results by more than 1.5% in terms of mean IoU and about 2.5% in terms

of median IoU. From these results it can be inferred that the model discards the

learning of classes with almost 0 IoU in favor of the rest of the classes.

4.2. Qualitative results based on the uncertainty map analysis

Creating pixel annotations for image segmentation is a time-consuming task.

Common approaches start annotations with a semi-automatic technique (e.g.,

GrabCut) and then manually refine the labels to reduce the numbers of misla-

beled or unlabeled data [29, 30]. Arguably, reviewing all images manually to

make corrections is also time consuming. Keeping in mind the fact that un-

certainty modeling allows us to improve our understanding of what the model

learns from the data, we propose to take advantage of uncertainty map analysis

to discover the data that should be reviewed in order to prioritize or select for
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manual refinement. We propose to perform qualitative analysis of the uncer-

tainty maps based on: (1) the segmented mask presented in the full image, (2)

only considering the background mask, and (3) only using the foreground mask

(any food).

4.2.1. Full image segmentation mask

The qualitative analysis was done using the full image segmentation mask

in order to identify images annotated with noisy labels. In this case, the uncer-

tainty present in the images was analyzed regardless of the nature of the noisy

labels; that is, whether it occurs because the food categories are mislabeled or

because the background images are labeled as some food category.

Let’s consider maxH = −ln( 1
C ) the maximum Ĥ, where C corresponds to

the number of classes. Then, the first evaluation measure (EM1) proposed to

prioritize the images in descending order is:

EM1(x) =
∑
p

ind(Ĥ(xp) > maxH ∗ λ)

where xp corresponds to the p-th pixel of the input image x, ind(∗) is an indi-

cator function that returns 1 when the condition is true and 0 otherwise, and

λ is a threshold to determine when a pixel has an uncertain prediction. In our

case, we use λ = 0.1.

The proposed metric EM1 was used in the UECFOODPIX dataset to order

the training data and then select some of the first images to visually analyze

the obtained results. In most cases, we were able to identify images with a large

number of incorrectly labeled pixels, mainly images fully labeled as a background

even though food was present there. An example of the images obtained with

our metric can be seen in the first row of Fig. 4. As can be observed, the model

is forced to learn the labels as a background. However, a high Ĥ is present

in the areas where food appears, while a low Î appears throughout the image.

Therefore, as expected, a high aleatoric uncertainty in Ĥ is obtained when noisy

labels are present.
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4.2.2. Foreground mask

In this case, instead of using the full image segmentation mask, the uncer-

tainty was calculated in those pixels that belong to the foreground mask. The

aim is to discover those images that have food pixels mislabeled with some

other food category or background. The high uncertainty present in this region

is expected to allow us to identify those pixels with noisy labels.

The second evaluation measure (EM2) proposed to prioritize the images in

descending order is:

EM2(x) = EM1(x̂),

where x̂ corresponds to a subset of the image x placed in the foreground of the

GT mask provided by UECFOODPIX.

When this measure was applied to order the images, we found that most of

the first images contain a very small food region labeled with a large uncertainty.

An example can be seen in the second row of Fig. 4. In this case, even if the

image is mislabeled, if we focus on the foreground region, the labels are correct.

The high Ĥ in this region is not caused by noisy labels, but we assume that it is

caused by epistemic uncertainty; that is, the absence of more correctly labeled

data with the same visual content.

4.2.3. Background mask

The qualitative analysis of the uncertainty map was also performed using

only the background mask. In this case, it is expected that those images whose

pixels are confused with some food category will be identified by analyzing the

high uncertainty present in the pixels that belong to the background mask.

The third evaluation measure (EM3) proposed to prioritize the images in

descending order is:

EM3(x) = EM1(x̌),

where x̌ corresponds to a subset of the image x placed in the background of the

GT mask provided by UECFOODPIX.
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Figure 4: Qualitative results obtained in the training set of UECFOODPIX. The first, second,

and third rows represent images selected using the criteria EM1, EM2, and EM3, respec-

tively. Note that Img, GT (clean), GT (GrabCut), Pred, H, and I correspond to the target

image, the clean labels provided by UECFOODPIXComplete, the GrabCut labels provided

by UECFOODPIX, the predicted mask, the uncertainty measured with the entropy, and the

uncertainty measured with the mutual information.

Similarly to the foreground mask measure, after ordering the images with

this measure, we observed that the first selected images contain a small back-

ground region with high uncertainty. An example can be seen in the third row

of Fig. 4, where it is observed that there is a high uncertainty in the region

poorly labeled as background. However, this same image does not present high

uncertainties in the regions where mislabeling between different foods occurs.

The reason could be that the difference between the background and some food

category is large. However, since the data is tagged at the dish level and not at

the ingredient level, the model expects that the ingredient may be part of dif-

ferent foods depending on the context and, therefore, it is not able to compute

correctly in some cases the certainty between different food categories.

4.3. Quantitative results based on the uncertainty map analysis

In addition to the qualitative analysis, we performed a quantitative analysis

regarding the capabilities of the proposed measures, specifically EM1, to order
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the images according to the degree of noise of the labels. For this purpose, we

first computed the numbers of labels incorrectly annotated in the UECFOOD-

PIX based on the annotations of UECFOODPIXComplete in all the training

images. Next, we sorted the images in descending order considering the worst

labeled first. Then, the intersection of the worst labeled images with respect to

the images selected with the proposed measures was computed for the first 45,

90, 135, 180, and 225 images. Also, instead of using EM1, the intersection was

evaluated using Mean Ĥ (mH) and Random Selection (RS). In the case of RS,

we report the mean intersection achieved by 1000 random subsets. The results

are reported in Table 3, where we show that our measure provides the highest

degree of intersection. Specifically, more than 50% coincidence is evident when

we analyze the first 135 images. These results support the effectiveness of our

measure in finding images with noisy labels.

Table 3: Degree of intersection between a subset of the worst labeled images belonging to

UECFOODPIX with respect to a subset of images selected by different criteria: Mean Ĥ

(mH), Mean EM1 (mEM1), and Random Selection (RS).

#Images mH mEM1 RS

45 0.2444 0.3556 0.0051

90 0.3778 0.4556 0.0100

135 0.4593 0.5111 0.0150

180 0.4278 0.4444 0.0200

225 0.3733 0.3911 0.0249

4.4. Analysis of the successful and unsuccessful segmentation

Some successful and unsuccessful segmentation results on the test set of the

three food datasets can be seen in Fig. 5 and Fig. 6, respectively. In general,

across all datasets, the best results were achieved when the images contained

few food instances and these instances correspond to food categories with few

ingredients. Furthermore, we can see from Fig. 5 that the predictions contain

a high degree of uncertainty in the contours of the food region (the boundary
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between the food and the bottom) where a small error in the segmentation is

detected. In particular, we can notice that the method loses the details in the

contour part providing a smoother prediction. In the Food201 case (third row

of Fig. 5), a high uncertainty is obtained in the region of the food produced

mainly by the shadow that is placed on it. Regarding the unsuccessful segmen-

tation results (Fig. 6), we observe in UNIMIB2016 and UECFOODPixComplete

that errors occur because the model incorrectly segments food with other food

categories and not with the background. In theses cases, high uncertainty is

captured in the wrong prediction regions. A more complex case is evidenced

in Food201, where the ingredients are mixed on the plate and do not separate

well. In addition, we can observe noisy labels in the GT. Unlike the results

of other datasets, the output is completely incorrect and highly uncertain for

the segmentation of this image. Although UECFOODPIX has nearly the same

strong imbalance of food instances contained in each image as Food201 (see

Fig. 7), the latter is a more challenging dataset due to the large number of food

categories and the complexity of the annotations themselves, where we noticed

significant differences in performance from the rest of the tested datasets. On

the contrary, UNIMIB2016 can be considered a less complex dataset due to its

acquisition in a semi-controlled environment, which allows to easily differentiate

the background with respect to different foods. However, there is still work to

be done to avoid segmentation errors between different food categories.

4.5. Comparison with the results of the state-of-the-art methods

Finally, Table 4 includes a comparison between our proposal and the state-

of-the-art models in three food datasets. We note that, despite using a standard

training procedure without data augmentation, the proposed Bayesian methods

outperform the results previously obtained on UNIMIB2016 and UECFOOD-

PIXComplete, and provide comparable performance in Food201. As for the

UECFOODPIXComplete dataset, we trained exactly the same model proposed

by Sharma et al. [7] (GourmetNet), but achieved about 2.5% less mIoU than

results reported elsewhere. We believe that the performance difference is due
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Figure 5: Images in the test set for the UNIMIB2016 (top), UECFOODPIXComplete (middle),

and Food201 (bottom) datasets with the highest performance.

Table 4: Performance of semantic segmentation methods on three food datasets. Best perfor-

mances are shown in bold.

Dataset Method Acc mAcc mIoU

UNIMIB2016 DeepLabv2 [4] - - 0.43

SegNet [33] - - 0.44

Sharma et al. [7] - - 0.72

BayesianDeepLabv3+ 0.98 0.83 0.77

BayesianGourmetNet 0.99 0.87 0.81

UECFOODPIXComplete Okamoto et al. [29] - 0.67 0.56

Sharma et al. [7] - - 0.65

BayesianDeepLabv3+ 0.87 0.76 0.64

BayesianGourmetNet 0.88 0.78 0.66

Food201 Myers et al. [30] 0.76 0.33 0.25

BayesianDeepLabv3+ 0.77 0.33 0.25

BayesianGourmetNet 0.77 0.34 0.25
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Figure 6: Images in the test set for the UNIMIB2016 (top), UECFOODPIXComplete (middle),

and Food201 (bottom) datasets with the lowest performance.

Figure 7: Total images according to the number of pixels with different labels contained.

to some hyperparameters used for training that are not properly reported in

the article. Although the results of the base architecture were 2.5% lower than

the reported ones, the proposed Bayesian version based on it outperformed the

state-of-the-art by 1.0% in terms ofmIoU . With respect to the Food201 dataset,

Meyers et al. [30] proposed a more complex pipeline that requires training a

multi-label classifier, extracting the context, and refining the CNN output be-

fore computing CRF. Also, the input data has 512 pixels for the maximum side,
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which is higher than the one used for our experiments. Despite this, our pro-

posed end-to-end method provides results comparable to those reported in this

work.

5. Conclusions

We propose an adapted version of two state-of-the-art semantic segmentation

methods used to segment food images in order to perform Bayesian inferences.

Specifically, the backbone considered in both methods was adapted by incorpo-

rating a dropout layer after each residual block in order to approximate Bayesian

inference using the MC-dropout technique. The resulting methods were named

BayesianDeepLabv3+ and BayesianGourmetNet. Both of them outperformed

the baseline results in terms of IoU on three public food datasets. Furthermore,

these methods capture the uncertainty involved in the generated segmentation.

The latter was useful to deepen the analysis of the uncertainty map by pro-

viding new measures to discover the incorrectly labeled images. The results of

this analysis demonstrate the benefits of our approach both qualitatively and

quantitatively, with special emphasis on food categories mislabeled as back-

ground. Finally, it is worth mentioning that this research work contributes

to the generation of healthcare technologies, particularly in the improvement

of food monitoring from images, which through human-machine collaboration

facilitates the maintenance of a healthy diet and/or the prevention of health

problems in those people who must limit monitor their diet due to allergies,

intolerance or chronic diseases.

In future research, we plan to develop an algorithm that takes advantage

of the proposed measures to select data labeled with noise and manage them

during the training procedure minimizing the error incurred from this type of

data.
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[21] C. Dechesne, P. Lassalle, S. Lefèvre, Bayesian U-Net: Estimating Uncer-

tainty in Semantic Segmentation of Earth Observation Images, Remote

Sensing 13 (19) (2021) 3836.

27



[22] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for

biomedical image segmentation, in: International Conference on Medical

image Computing and Computer Assisted Intervention, 2015, pp. 234–241.

[23] J. Mukhoti, Y. Gal, Evaluating bayesian deep learning methods for seman-

tic segmentation, arXiv preprint arXiv:1811.12709 (2018).

[24] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-

tion, in: IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.

[25] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder

with atrous separable convolution for semantic image segmentation, in:

European Conference on Computer Vision, 2018, pp. 801–818.

[26] L.-C. Florian, S. H. Adam, Rethinking atrous convolution for semantic

image segmentation, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2017, pp. 1–14.

[27] G. Ciocca, P. Napoletano, R. Schettini, Food recognition: a new dataset,

experiments, and results, IEEE Journal of Biomedical and Health Infor-

matics 21 (3) (2016) 588–598.

[28] T. Ege, W. Shimoda, K. Yanai, A new large-scale food image segmenta-

tion dataset and its application to food calorie estimation based on grains

of rice, in: 5th International Workshop on Multimedia Assisted Dietary

Management, 2019, pp. 82–87.

[29] K. Okamoto, K. Yanai, UEC-FoodPIX Complete: A Large-scale Food Im-

age Segmentation Dataset, in: International Conference on Pattern Recog-

nition, 2021, pp. 647–659.

[30] A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Sil-

berman, S. Guadarrama, G. Papandreou, J. Huang, K. P. Murphy,

Im2Calories: towards an automated mobile vision food diary, in: IEEE

International Conference on Computer Vision, 2015, pp. 1233–1241.

28



[31] L. Bossard, M. Guillaumin, L. V. Gool, Food-101 -– Mining Discriminative

Components with Random Forests, in: European Conference on Computer

Vision, 2014, pp. 446–461.

[32] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep

convolutional neural networks, Advances in Neural Information Processing

Systems 25 (2012).

[33] S. Aslan, G. Ciocca, R. Schettini, Semantic segmentation of food images

for automatic dietary monitoring, in: 26th Signal Processing and Commu-

nications Applications Conference, 2018, pp. 1–4.

Eduardo Aguilar is a Doctor in Mathematics and Computer Science from the

University of Barcelona. He is currently an Assistant Professor in the Depart-

ment of Computer and Systems Engineering at Universidad Católica del Norte.
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