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We propose a new technique for classifying 5d Superconformal Field Theories arising from brane webs in 
Type IIB String Theory, using technology from Machine Learning to identify different webs giving rise to 
the same theory. We concentrate on webs with three external legs, for which the problem is analogous to 
that of classifying sets of 7-branes. Training a Siamese Neural Network to determine equivalence between 
any two brane webs shows an improved performance when webs are considered equivalent under a 
weaker set of conditions. This therefore suggests that the conjectured classification of 7-brane sets is not 
complete.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction & summary

Interacting UV complete Quantum Field Theories (QFTs) in d > 4
are notoriously hard to construct, yet very interesting for a num-
ber of reasons, ranging from those more theoretical –the study of 
the structure of QFT across dimensions, which has proven to be 
a vantage perspective on strong coupling physics and dualities– 
to those more applied –such as extra-dimensional models for our 
world, in many occasions string-inspired. Concentrating on the 5d 
case, one may try to construct 5d fixed point theories through an 
ε-expansion of asymptotically free gauge theories in 4 + ε dimen-
sions. Unfortunately, it is unclear whether this approach can be 
extended all the way to d = 5 by setting ε = 1.

The situation is, however, very different for supersymmetric 5d 
QFTs. In [1], using String Theory, Seiberg argued that SU (2) gauge 
theories with N f < 8 flavor hypermultiplets can be regarded as 
a certain mass-deformation of strongly coupled non-lagrangian UV 
Super-Conformal Field Theories (SCFTs) with E N f +1 global symme-
try, thus paving the road to the study of 5d QFTs by String Theory 
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methods. Now, 5d SCFTs appear in different guises in String/M the-
ory. One avatar is through compactifications on Calabi-Yau spaces 
[2]. Another is as low energy descriptions of systems of 5-branes 
in IIB String Theory [3,4], a scenario on which we shall focus here. 
However, it is not known whether these approaches allow the con-
struction of all possible 5d SCFTs, nor whether a given SCFT admits 
a description in both languages.

Systems of 5-branes overlapping in 4+1 dimensions are com-
pletely described by their arrangement on a transverse 2d plane 
where each 5-brane looks like a segment. As these segments can 
meet and recombine, they form a “web” in the plane. Moreover, 
we will assume that the external 5-brane legs of the web end on a 
suitable 7-brane –which in the plane of the web looks like a point–
, so that the web “hangs” from a 7-brane set. In this language a 5d 
SCFT is simply a 5-brane web such that all external legs meet at a 
point. This immediately suggests that it must be possible to con-
struct and classify 5d SCFTs –or at least ones arising from branes– 
in a very simple way by simply listing all possible consistent brane 
webs. This classification program is of obvious interest, and would 
complement the work initiated in [5–10].

Nevertheless, one quickly realizes that, at least stated as above, 
the set of all consistent brane webs is hugely redundant, coming 
from two sources. First, the S L(2, Z) duality of Type IIB String The-
ory translates into a global equivalence. Second, since the length 
of the external legs is not a parameter in the 5d QFT, one may 
imagine reducing this size (i.e., moving the external 7-brane along 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2022.137376
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137376&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:guillermo.arias.tam@gmail.com
mailto:hey@maths.ox.ac.uk
mailto:elli.heyes@city.ac.uk
mailto:edward.hirst@city.ac.uk
mailto:d.rodriguez.gomez@uniovi.es
https://doi.org/10.1016/j.physletb.2022.137376
http://creativecommons.org/licenses/by/4.0/


G. Arias-Tamargo, Y.-H. He, E. Heyes et al. Physics Letters B 833 (2022) 137376
the corresponding leg) and eventually crossing it to the other side. 
Since 7-branes come with a branch cut for the axiodilaton, rotating 
it so that it does not cross the web induces an S L(2, Z) transfor-
mation of part of the web as well as the creation/annihilation of 
the appropriate number of 5-branes. This whole process –to which 
we will refer as a Hanany-Witten (HW) move– results in the equiv-
alence of otherwise seemingly different webs [11].

Thus, coming back to our classification problem, the set of 
all possible 5d SCFTs arising from brane webs is the set of all 
consistent branewebs modulo the equivalence relation set by (a) 
S L(2, Z) duality and (b) HW moves. In principle, implementing 
this program is straightforward. For instance, one could imagine 
charting the space of 5d SCFTs by first fixing the number of exter-
nal legs, then drawing all possible webs and lastly keeping only 
one representative of each equivalence class under (a) and (b). 
However, in practice this is very hard, mostly due to the difficulty 
in implementing the equivalence relations. Thus, our classification 
problem seems insurmountable, as equivalent pairs need to be 
identified largely through trial and error. It is at this point where 
new Machine-Learning (ML) techniques, which came into String 
Theory in [12–16], may come to the rescue and provide an in-
valuable tool to accomplish this classification of webs.

Interestingly, since brane webs end on 7-branes, our problem is 
closely related to that of classifying sets of 7-branes (in fact, for 
the case of webs with three legs studied in this paper, both prob-
lems are equivalent). In turn, this problem, affected by the same 
ambiguities due to S L(2, Z) and HW moves, was studied long ago 
in [17]. In that reference it is conjectured that sets of 7-branes 
are indeed fully characterized by a certain set of quantities (re-
viewed in Section 2). However, it turns out that this conjecture is 
not quite correct, as it is possible to construct sets of 7-branes 
with the same classifiers which are nevertheless not equivalent 
(we present explicit examples in Section 2). Our novel approach 
through ML may therefore shed further light on the classification 
of 7-branes as well.

ML, as a subfield of artificial intelligence, centres itself on the 
development of predominantly statistical tools to recognise and 
study patterns in large datasets. Neural Networks (NNs) are a pri-
mary tool within supervised ML, whose application on labelled 
data acts as a non-linear function fitting to map inputs to out-
puts, both represented as tensors over Q using decimals. In recent 
years the advancement of computational power has played per-
fectly into the hands of these many-parameter techniques, leading 
to a programme of application of these tools to datasets arising in 
theoretical physics [18–28] and the relevant mathematics [29–36]. 
Motivated by this, we initiate the program of applying ML tech-
niques to the classification of 5-brane webs and 5d SCFTs, concen-
trating on the simplest case of webs with exactly three external 
legs. The goal will be to teach a Siamese Neural Network (SNN) 
[37], an architecture designed to determine the similarity of in-
puts, to recognize webs equivalent under both S L(2, Z) and HW 
moves (the same architecture was proposed to condense the string 
landscape in [38]).

In order to teach the computer the (in)equivalence of webs, 
we constructed a controlled dataset by implementing by hand 
S L(2, Z) and HW moves on webs known to be inequivalent –as 
their classifiers following [17] are different. This problem turns out 
to be too complicated for the computer, which performs as well 
as random guessing. We obtained much better results by loosen-
ing the notion of equivalence. Indeed, by declaring that webs are 
equivalent if they share the same classifiers –which is a necessary 
but not sufficient condition for true equivalence– we constructed 
a dataset used to train and test the SSN on which it performed 
far better. We stress that the SSN did not explicitly see the clas-
sifiers used to construct the dataset. More explicitly, the SSN is 
only fed raw web data together with the information of equiv-
2

alence/non-equivalence under the loosened version for training. 
From that, the web learns from the examples to identify equiva-
lent/non-equivalent pairs in the independent test data under the 
loosened equivalence relation, and given that we know the ulti-
mate existence of the classifiers discriminating webs –which we 
actually used to construct the dataset in the first place– it is nat-
ural to conclude that the SSN is somehow reconstructing the ex-
istence of the classifiers identified in [17]. This is an encouraging 
conclusion, also supported by topological data analysis, where a 
degree of clustering in the embeddings of the webs produced by 
the SSN is observed for the case of the loosened equivalence re-
lation, as shown in Appendix A. In turn, this is to be compared 
to the failure of the SSN when faced with the problem of iden-
tifying equivalent/non-equivalent webs under the real equivalence 
relation. This lack of success can be turned around and used to in-
fer an interesting lesson about the physics of sets of 7-branes, as 
it suggests that the full set of classifiers discriminating the true 
equivalence classes –if existent at all– are much more subtle. This 
work therefore serves as a prime example of how, in addition to 
helping us perform difficult computations, ML also has the power to 
detect new patterns in mathematical data and show us that our current 
theories may be incomplete.

This work initiates the application of ML to the study of 
branewebs and 5d SCFT’s, and it leaves the door open for future 
development. In particular, it would be very interesting to improve 
the performance of ML on the full problem using the exact no-
tion of equivalence –rather than the loosened version in terms of 
equal invariants. This may be achieved through consideration of 
more complicated architectures, such as graph neural networks or 
generative adversarial networks. One could also look for more suit-
able invariants of equivalence using unsupervised learning meth-
ods. Furthermore, since this work only considers classifying brane 
webs with three external legs, which is equivalent to classifying 
sets of 7-branes, as obvious next step would be to extend this to 
look at brane webs with more than three legs. Moreover, this work 
only scratches the surface of applications, as ML may provide new 
techniques to tackle very interesting problems. Besides the classifi-
cation problem itself for webs with arbitrarily many external legs, 
it may be possible to apply ML to the characterization of the dif-
ferent phases of a given theory –such as [39]– or the construction 
of the corresponding magnetic quivers (see e.g. [40,41]).

2. Brane web data

Brane webs are configurations of linked (p, q) 5-branes in type 
IIB String Theory [3,4]. These branes are objects with p units of 
magnetic charge under the RR 2-form and q units of magnetic 
charge under the NSNS 2-form of Type IIB String Theory. Su-
persymmetry requires that all the 5-branes share the x0, . . . , x4

directions. Then, D5-branes (which correspond to (1,0) 5-branes) 
must be extended in the x5 direction and pointlike in x6, . . . , x9; 
NS5-branes (which correspond to (0,1) 5-branes) must be extended 
along x6 and pointlike in x5, x7, . . . , x9; and general (p, q) 5-branes 
must be extended along a line in the (x5, x6) plane with slope q/p
and pointlike in the remaining directions. Moreover, different types 
of 5-branes can meet and recombine as long as charge conserva-
tion is preserved at the junction. Therefore, the resulting system 
forms a web in the (x5, x6) plane. We will be working in the con-
vention where all the charges are incoming at a junction; therefore 
the condition will be 

∑
junction pi = ∑

junction qi = 0.
We assume that the brane webs end on 7-branes [42]. Indeed, 

7-branes can be added without breaking supersymmetry (with 
some caveats to be discussed below) provided they are pointlike in 
the plane of the web and extended in the other directions. Since 
(p, q) 5-branes can end on [p, q] 7-branes, we can always assume 
our webs with L external legs to end each on the appropriate L
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external 7-branes.1 The positions of the 7-branes naturally corre-
spond to the mass-deformations of the 5d SCFT. As the location of 
a 7-brane along the external leg is not a parameter of the low en-
ergy theory, each 7-brane provides in principle one real parameter 
associated to its position. However, charge conservation and the 
symmetries of the plane of the web fix 3 such parameters. Thus, 
for a web with L external legs –i.e., L external 7-branes– there 
are L − 3 real mass deformations. A very important feature of 7-
branes is that they act as magnetic sources for the string theory 
axiodilaton, which will be proportional to the complex logarithm 
log(x5 + ix6). The branch cut is understood as a monodromy trans-
formation: when crossing it fields undergo the appropriate action 
of type IIB S L(2, Z) duality. Since the position of the cut is imma-
terial, one can always choose to orient the monodromy cut of all 
7-branes so that it goes away from the brane web, such that none 
of the 5-branes cross it.

The presence of 7-branes places extra constraints on the web in 
order to preserve supersymmetry. Introducing the self-intersection
I defined as (we only quote the version with exclusively external 
7-branes)

I =
∣∣∣∣∣∣

∑
1≤i< j≤L

det

(
pi p j
qi q j

)∣∣∣∣∣∣ −
L∑

i=1

[gcd(pi,qi)]2 , (2.1)

the condition for supersymmetry is [39,43]

I ≥ −2 . (2.2)

Since the dimension of the Coulomb branch –i.e. the rank– of the 
5d SCFT is related to I as

dCB = I + 2

2
, (2.3)

the supersymmetry condition can be recast in a more physical way 
as demanding the dimension of the Coulomb branch to be an in-
teger greater than or equal to zero.

Given these ingredients, our goal is to find a classification of 
5-brane webs. To establish some order, we imagine fixing the num-
ber of external legs L and constructing all webs with L legs. In 
5d SCFT language, this corresponds to constructing all possible 5d 
SCFTs which admit a fixed number of L − 3 mass-deformations. Of 
course, there will be infinitely many such webs, since for a given L, 
there can be theories of arbitrary rank. However, even after fixing 
dCB, there will be infinitely many possible webs consistent with 
the specified data. The reason is that, as mentioned in the main 
text, the space of webs is hugely redundant2:

1. S-duality of type IIB string theory: We can act on the 5-branes 
and 7-branes of our setup with an S L(2, Z) transformation. 
This amounts to changing all the p and q charges by

(
pi
qi

)
�→

(
p′

i
q′

i

)
=

(
a b
c d

)(
pi
qi

)
, (2.4)

with a, b, c, d ∈Z and ad − cb = 1. Note that the charges of all 
the 7-branes are acted upon by the same S L(2, Z) matrix at 
the same time (i.e. ∀ i = 1 . . . , L).

1 When labelling 5-,7-branes we assume p, q to be coprime. Otherwise, 
(p, q) = gcd(p, q) (p′, q′), which represents gcd(p, q) 5-branes of type (p′, q′) =
(p/gcd(p, q), q/gcd(p, q)) –and the same for 7-branes. The number of branes is of-
ten called multiplicity.

2 Of course, there is a more mundane equivalence under relabelling of the legs. 
While it is not difficult to take care of this problem, we shall also use ML tools to 
account for it.
3

n1(p1,q1)

n2(p2,q2)

n3(p3,q3)

n1(p1,q1)

n′
2(−p2,−q2)

n3 M(p2,q2)(p3,q3)

Fig. 1. Two brane webs equivalent by a HW move. The 5-branes are depicted as the 
lines in the (x5, x6) plane; the dots represent the 7-branes; and the dashed lines the 
corresponding monodromy cut. In going from the web on the left to the one on the 
right, we have moved the 7-brane with label i = 2 to the bottom of the junction. 
Sweeping with the monodromy clockwise changes the charges of the [p3, q3] 7-
brane by the action of M(p2,q2) . After the transition, the new number of 5-branes 
n′

2 that hang from the [p2, q2] 7-brane is determined by charge conservation. Note 
that we have changed the signs of the charges of the second 7-brane so that all the 
charges are ingoing.

2. Hanany-Witten moves: As mentioned, the position of the 7-
brane along the external 5-brane has no effect on the low 
energy theory. This includes the possibility of moving the 7-
brane to the other side of the 5-brane junction. If this is the 
case, two things happen: first, when the 7-brane crosses the 
junction, several 5-branes are created or annihilated; this is 
the well known Hanany-Witten transition. Second, in order to 
arrive back at the situation where the monodromy cut of the 
7-brane goes away from the web without meeting any of the 
other objects, we need to sweep it 180 degrees. In doing this, 
the monodromy will act on one of the legs which we have not 
moved via an S L(2, Z) transformation (see Fig. 1). The action 
of the monodromy of a [p, q] 7-brane, if we sweep it clock-
wise, is given by

M(p,q) =
(

1 − pq p2

−q2 1 + pq

)
, (2.5)

and by M−1
(p,q) if we sweep it anti-clockwise. Note that in this 

case only one of the other external legs of the web is under-
going an S L(2, Z) transformation.

Thus, in order to achieve our goal of classifying 5-brane webs 
we need to further mod out the possible webs with fixed L by 
S L(2, Z) and HW moves. However, while if given a web it is easy 
to construct many equivalent webs, the reverse problem of finding 
whether or not two given webs are equivalent is in general very 
difficult.

For the purposes of this work, the data specifying a brane web 
can be encoded in a web matrix, which lists the charges of the 
external [pi, qi] seven-branes, as well as the number ni of five-
branes hanging from each of them.

W =
(

n1 p1 n2 p2 · · · nL pL

n1q1 n2q2 · · · nLqL

)
, (2.6)

where L is the number of external legs of the web, and we work 
with the convention that all the charges of the five-branes are in-
going and ordered anticlockwise around the junction.

At this point it is very interesting to note that the problem of 
classifying branewebs contains as a sub-problem that of classify-
ing sets of 7-branes, which has a long history in the String Theory 
literature (and has ramifications to the mathematics of S L(2, Z)). 
Indeed, given that a necessary condition (though not sufficient, as 
more than one web can in principle be hung from the same 7-
brane set) for two webs to be equivalent is that their respective 
sets of external 7-branes are equivalent; as a partial step, we could 
consider the external 7-branes alone, which are actually subject to 
the same S L(2, Z) and HW ambiguities. This problem was stud-
ied in [17], where it was conjectured that inequivalent sets of L
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7-branes are characterized by the total monodromy of the web, de-
fined as the product of the monodromies of all the 7-branes,

Mtot = M(p1,q1)M(p2,q2)M(p3,q3) , (2.7)

and the asymptotic charge invariant �, defined as

� = gcd

{
det

(
pi p j
qi q j

)
, ∀ i, j

}
. (2.8)

There are cases, however, where webs with the same classifiers 
give rise to different low energy theories. For instance, take the 
webs following 3-leg webs

W1 =
( −4 3 1

18 −18 0

)
,

W2 =
(

3 −4 1
18 −18 0

)
,

corresponding to rank 2 theories. Even though these webs have the 
same classifiers – that is, the same number of external 7-branes, 
the same � and the same total monodromy up to S L(2, Z) –, there 
is no combination of S L(2, Z)/HW moves transforming one web 
into the other. In this particular case, W1,2 are related by inver-
sion of the y-axis in the plane of the web corresponding to parity 
in the 5d SCFT, therefore they are physically equivalent, yet by our 
definition the webs are not strongly equivalent. We choose to de-
fine strong equivalence without parity because this then also tells 
us about the classification of sets of 7-branes, in addition to 5d 
SCFTs. However, we believe that this phenomenon of brane webs 
being inequivalent despite having equal classifiers is generic. For 
example, consider the following 4-leg webs:

W (c) =
( −3 0 2 1

1 −1 −1 1

)
,

W (e) =
( −3 1 1 1

1 −2 0 1

)
,

belonging to different theories (c) and e) in Figure 3 in [44]). Al-
though it was already known that these webs correspond to differ-
ent theories, the observation that they share the same classifiers is 
new and therefore stands as a valid counter example to the classi-
fication of equivalent brane webs via invariants. Thus, generically, 
the set of classifiers signalled in [17] form a necessary condition 
for two 7-branes to be equivalent (instead of a sufficient condi-
tion).

Since this paper serves as a proof of concept of the applicability 
of ML techniques to the classification of branewebs and 5d SCFTs, 
we restrict to the simplest case of L = 3. In this case charge conser-
vation is enough to guarantee that, given a set of three 7-branes, 
only a unique web can be hung –up to the trivial possibility of 
considering multiple copies of it. Thus, for three-leg webs, their 
classification coincides as well with that of sets of three 7-branes.3

With this in mind, we define the following two notions of 
equivalent webs:

• Strong equivalence: Two webs are strongly equivalent if they 
can be transformed into each other by means of any combina-
tion of S L(2, Z) and HW moves.

• Weak equivalence: Two webs are weakly equivalent if they 
have the same invariants (2.1), (2.7) (mod S L(2, Z)) and (2.8).

3 Restricting to webs with three legs has another technical advantage. Strictly 
speaking, the supersymmetry condition (2.2) is only valid for irreducible junctions, 
which are those which allow realisation of the full space of L − 3 a priori possible 
mass-deformations [39]. This represents an issue (whose nuances are currently not 
fully understood) which is not present for webs with L = 3.
4

Of course, if two webs are strongly equivalent they are also weakly 
equivalent.

Our goal is to teach a Neural Network to distinguish webs ac-
cording to these two notions, by means of exposing it to big sets 
of webs where such equivalence is known. To begin with, note 
that webs with three external legs are described by 9 variables: 
p1, p2, p3, q1, q2, q3, n1, n2, n3, that define the web matrix W (2.6). 
These variables must satisfy the following three conditions: (1) 
(pi, qi) must be coprime; (2) 

∑
pi = ∑

qi = 0; and (3) the self-
intersection (2.1) satisfies I ≥ −2. We then define the following 
datasets:

• X: we generate all possible W , for pi, qi ∈ [−3, 3] and ni ∈
[1, 3], such that (1), (2) and (3) are satisfied. For each web, 
W , we compute M, �, and rank, and using this information 
we sort the webs into equivalence classes, of which there are 
14, under the weak equivalence defined above. We take 48 
webs4 from each class to produce a total dataset X = ∪14

I=1XI

of 672 webs.5 Members from different groups are necessarily 
inequivalent but members of the same group may also be in-
equivalent.

• Y: to create our second dataset we take one member from 
each group XI –which are surely inequivalent– and perform a 
combination of HW and S L(2, Z) moves and shuffle the order 
of the columns in the web matrices to generate sets, YI , I =
1, ..., 14, where again #(YI ) = 48, of equivalent web matrices. 
Combining these sets produces a total dataset Y = ∪14

I=1YI of 
672 webs, where webs W i, W j are equivalent (in the strong 
sense as defined above) if they belong to the same class Y I

and inequivalent otherwise.

3. Machine learning

Our goal is to see whether, given two webs W i, W j , a Siamese 
Neural Network (SNN) is able to determine whether or not they 
are equivalent. As the name suggests, SNNs consist of two or more 
identical sub-networks that share the same parameters, weights, 
and biases. These sub-networks output feature vectors (embed-
dings) of the inputs that are fed to a loss function, which cal-
culates the similarity between the inputs. Here we train an SNN 
that takes as input the 2 × 3 web matrices W i and produces 
10-dimensional embeddings, xi = (xi

1, ..., x
i
10) ∈ R10 (a heuristi-

cally optimal choice), such that if two webs W i, W j are equiv-
alent the squared Euclidean distance between their embeddings, 
d(x1, x2) = ∑10

μ=1 (xi
μ − x j

μ)2, is less than some threshold. We train 
our network to minimise the triplet loss (B.2) using the Adam 
optimisation algorithm with triplet loss parameter α = 5 and a 
learning rate of 0.0001. The triplet loss requires the input train-
ing data to be given in triplets (A, P , N), where A (anchor) is the 
reference web, P (positive) an equivalent web, and N (negative) a 
non-equivalent web. The distance between the anchor embedding 
and positive embedding is minimised while the distance between 
the anchor embedding and negative embedding is maximised. The 
network is trained on triplets generated from 80% of the data over 
5 epochs using a batch size of 256 and 1000 steps per epoch. Batch 
size, epochs and steps per epoch were chosen from running a grid 
search algorithm on these hyperparameters. After training, we gen-
erate embeddings for the webs in the remaining 20% using the 

4 We take 48 webs from each class so that each set XI is of equal size, where 48 
is chosen as it is the size of the smallest equivalence class.

5 Both the weak equivalence and strong equivalence datasets contain 672 webs 
which is small in ML terms, however, the SNN was trained on triplets taken 
from these datsets and so the size of the training data was actually much larger 
(> 100, 000).
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Table 1
Accuracy and MCC scores of SNN pairwise equivalence 
predictions on the test sets.

Accuracy MCC

X1 ∪ X2 1.0000 ± 0.0000 1.0000 ± 0.0000
Y1 ∪ Y2 0.5008 ± 0.0139 0.0025 ± 0.0324
X 0.7692 ± 0.0997 0.5523 ± 0.2079
Y 0.4864 ± 0.0637 −0.0268 ± 0.1305

Table 2
Rand index scores of k-means 
clustering of SNN web embed-
dings on the full datasets.

Rand Index

X1 ∪ X2 1.0000 ± 0.0000
Y1 ∪ Y2 0.5031 ± 0.0072
X 0.8905 ± 0.0053
Y 0.3229 ± 0.0456

trained sub-network and compute the squared distance between 
the embeddings of all pairs in this set. If the distance is less than 
1, the chosen threshold value, we determine the pair to be equiv-
alent and inequivalent otherwise. The metrics used to measure 
the performance of the network are accuracy (B.4) and Matthew’s 
Correlation Coefficient (MCC) (B.5) of the pairwise equivalence pre-
dictions. We use 5-fold cross validation, whereby the network is 
independently trained 5 times on different 80% partitions of the 
data, and tested on the remaining 20%, such that the union of the 
test sets gives the full dataset. Finally, on the full dataset of em-
beddings we applying k-means clustering to cluster the webs into 
equivalent groups, and comparing this to the true clustering we 
compute the Rand Index (RI) score. For more details on the ML 
methods used, see Appendix B.

The computations in this paper were carried out in python
with the use of Tensorflow [45] and Scikit-Learn [46]. The 
SNN was built using code from [47]. Coding scripts and data can 
be found at this work’s corresponding GitHub: https://github .com /
elliheyes /MLBraneWebs .git.

3.1. Weak equivalence via invariants

We begin by considering the simplest case of just two weak 
equivalence groups, X1 and X2, and train our SNN to determine 
whether a pair of webs from the set X1 ∪X2 are weakly equivalent, 
meaning they belong to the same group. We note that the choice 
of X1 and X2 is arbitrary, in that we could have chosen any two 
groups, but we note that the results are similar in all cases and so 
it suffices to use this example. The accuracy and MCC scores of the 
pairwise equivalence predictions made by the SNN from the web 
matrices in the test set are given in Table 1. Amazingly we see 
that after training on 80% of X1 ∪ X2 the network determines weak 
equivalence with 100% accuracy on the remaining 20%. The Rand 
Index (RI) score in Table 2 also shows that the k-means clusters 
agree completely with the true clusters. We visualise this result 
in Fig. 4, where the 10-dimensional output embeddings of the 
webs are reduced to 2-dimensions by t-SNE (t-distributed stochas-
tic neighbour embedding [48], for an explanation see Appendix B). 
The webs group together into two distinct weakly equivalent clus-
ters.

Motivated by this result we extend the investigation to con-
sider the full dataset X of 14 classes. We observe from the results 
in Tables 1 and 2 that the performance scores have dropped to 
more modest values but the network is still performing signifi-
cantly better than random guessing. The t-SNE plot in Fig. 6 also 
supports this result where we still see clusters for the weak equiv-
alence classes, but the clusters are less distint. The mean squared 
5

Fig. 2. Mean squared Euclidean distances between webs in X = ∪I=14
I=1 XI .

Euclidean distances between the embeddings of each pair of webs 
from the 14 classes are displayed in Fig. 2. We see that the dis-
tances along the diagonal (i.e. for webs belonging to the same 
class) are close to 0, while distances between webs from different 
classes are often much larger than 0, which is the desired result. 
This plot also helps us to identify on which classes the network 
performs best.

3.2. Strong equivalence via generation

In the previous subsection we saw that an SNN is capable of 
identifying pairs of webs that satisfy the necessary condition for 
equivalence - that rank, �, and M , up to S L(2, Z), are all equal. In 
this subsection we repeat the same procedure but consider strong 
equivalence, and hence the dataset Y. We begin as before with 
the simplest case of just two strong equivalence classes Y1 and 
Y2 from Y, and train the SNN to distinguish pairs of webs that be-
long to the same class YI . We again note that the results with any 
other two classes, Yi and Y j , are similar. As the scores in Table 1
show, the network fails to give any improvement on a random 
guess (which held for any choice of the 2 classes to compare). The 
RI score in Table 2 also supports this conclusion. It can be seen 
from the t-SNE plot in Fig. 5 that the embeddings of Y1 and Y2
are mixed together and completely indistinguishable. Despite this 
poor result, we extend the investigation, as we did in Section 3.1, 
to the full dataset Y. Mean distances between the embeddings of 
each pair of webs are displayed in Fig. 3. Comparing Figs. 2 and 3
we see that strongly equivalent webs are mapped relatively fur-
ther away by the SNN than weakly equivalent webs, shown by 
darker elements along the diagonal, and non strongly equivalent 
webs are mapped relatively closer together than non weakly equiv-
alent webs, shown by lighter elements off the diagonal. The scores 
in Tables 1 and 2 show that the SNN is no better at determining 
equivalence of web pairs from Y than Y1 ∪ Y2 and is still no bet-
ter than random guessing. This is supported by the t-SNE plot in 
Fig. 7 where we see no clusters for the classes YI .
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Appendix A. Topological data analysis

Raw web data To analyse the dataset of web information, both 
pre and post to embedding with the SNN’s base model we turn 
to a tool from Topological Data Analysis (TDA). Persistent homol-
ogy provides useful feature analysis of higher-dimensional datasets 
that cannot be feasibly plotted. The process plots the webs as 
points in their respective higher d-dimensional spaces, then cre-
ates a filtration of Vietoris-Rips complexes, where λ points are 
connected in a λ-simplex if their d-dimensional balls drawn cen-
tred on each point intersect (up to λmax = d). The filtration of 
complexes is then built during the process of the ball radii being 
continuously increased from 0 to ∞.

Throughout the filtration, H0 features are all the points, born 
at radius 0, which then die as they become part of a connected 
component; i.e. as two components combine the larger feature 
takes priority and survives whilst the smaller feature (usually just 
a point) dies. The H1 features, plotted on the same persistence 
diagrams, effectively represent 1d loop structures in the dataset. 
These are born as points connect to form a loop which is not a 
boundary of a union of 2d simplices in the complex. The feature 
then dies as the loop is filled in by the respective 2d simplices. 
Persistence diagrams plot the features as (birth, death) pairs, and 
were computed with the use of the ripser library [49] in python. 
For other uses of persistent homology in theoretical physics see 
[35,50,51].

Each web in the raw web datasets X and Y amounts to the con-
tents of the web matrix (2.6) with L = 3. These 6 integers are plot-
ted in R6 for the persistent homology analysis. Since datapoints 
are restricted to the integer lattice this translates to a grid-like dis-
tribution of features in the persistence diagrams, as only at specific 
radii can balls intersect and change the complex.
6

The analysis is performed for both datasets of 672 web data-
points, X in Fig. 8, and Y in Fig. 9. The HW moves in the generation 
process for Y lead to much larger web matrix entries, as reflected 
in the larger scales and finer grid structure in 9. For the X data 
the roughly uniform distribution of H0 features indicates points 
are uniformly distributed in the space, as expected from the ex-
haustive generation procedure over the search space. Conversely 
the Y data has a slightly larger gap in the line (~125-145, note 
the much larger scale here) indicating there are clusters of points 
further from the main cluster, likely a result of some HW moves 
jumping datapoints away from the bulk.

Both datasets have H1 features close to the diagonal, behaviour 
typical of noise; since there are no features far from the diagonal 
there is not a significant loop structure in the data which would 
otherwise indicate regions either omitted from the sampling or not 
physically plausible.

SNN-embedded web data To further analyse the success of the 
SNN embedding procedure, beyond the t-SNE plots, we addition-
ally use persistent homology to examine the embedded represen-
tations of the webs. This embedded web data is the result of the 
SNN’s base model mapping the 6-parameter web matrix data into 
the R10 embedding space, where the aim of the SNN is to create 
an embedding model which separates inequivalent webs into their 
respective clusters.

The H0 analysis for the embedded X data in Fig. 10 shows a 
continuous stream of features indicating points merging together 
to form independent simplices, then the gap (~1.10-1.20) followed 
by a collection of features closer together indicates the separate 
clusters for each of the web classes combining together to finish 
the filtration. Since the features are relatively close they repre-
sent more symmetrically distributed clusters, nice behaviour since 
a priori no equivalence classes should be especially more related 
than others. This behaviour supports the success of the SNN em-
bedding to separate the webs into clusters based on the equiva-
lence used for training. The H0 features for the embedded Y data, 
in Fig. 11, has similar behaviour, however the cluster separation is 
less uniform, indicated by the less consistent line where clusters 
aren’t combining smoothly and then only a couple of features are 
separated from the main line (> 8), therefore some of the class-
es’ clusters merge earlier, and are not as well separated as in the 
embedded X data, making this classification worse, and hence sup-
porting the poorer learning results observed.

For both embedded datasets the H1 features lie close to the di-
agonal, again indicating a lack of significant loop structures in the 
data clouds such that the clustering performs as expected. Rela-
tively, the embedded X data has many more higher birth features, 
likely a consequence of the better separated clusters combining 
later in the filtration.

Appendix B. Machine learning

B.1. Siamese neural networks

Siamese Neural Networks (SNNs), first introduced in 1993 [37]
to solve signature verification, are neural network architectures, 
made up of two or more identical sub-networks, that determine 
the similarity of inputs. The sub-networks f w map elements of a 
dataset D to Rd , where w denotes the weights and biases of the 
network. The goal is to train the network so that similar elements 
of D are mapped close together in Rd , and dissimilar elements 
are mapped far apart. The w are determined by extremising a loss 
function that is dependent on the squared Euclidean distance be-
tween the embeddings:

dw(W1, W2) ≡ ( f w(W1) − f w(W2))
2 (B.1)
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Fig. 4. t-SNE X1 ∪ X2. Fig. 5. t-SNE Y1 ∪ Y2.

Fig. 6. t-SNE X. Fig. 7. t-SNE Y.

t-SNE plots of the 10-dimensional web embeddings generated by the SNN of webs from the respectively labelled datasets, 
reduced to 2 dimensions.
where f w(W ) denotes the embedding of input W . In this work we 
adopt the triplet loss function described below. This loss is then 
interpreted as our desired similarity score.

Since we are using the triplet loss our network is made up 
of three identical sub-networks that produce embeddings for the 
anchor, positive and negative input. Each of these sub-networks 
consists of a 2 dimensional convolution layer, with 8 filters, a ker-
nel size of 2, and ReLU activation functions, followed by a dense 
layer, with 50 neurons and ReLU activation, and the output layer 
is a dense layer with 10 neurons. The output of these three sub-
networks is fed to an external output layer that computes the 
triplet loss. A diagram of the network is represented in Fig. 12

B.2. Triplet loss

The triplet loss takes as input a triple: anchor (A), positive (P), 
and negative (N), where the anchor and positive input are simi-
lar (i.e. equivalent webs) and the anchor and negative input are 
not. We want the distance between the anchor embedding and the 
positive embedding to be no larger than the distance between the 
anchor embedding and the negative embedding, that is:

|| f w(A) − f w(P )||2 ≤ || f w(A) − f w(N)||2 .

Equivalently, we could write

|| f w(A) − f w(P )||2 − || f w(A) − f w(N)||2 ≤ 0 .

This inequality is satisfied if the f w always outputs 0 (or another 
constant value), in other words if the embeddings are all equal. To 
prevent the network from doing this we modify the objective so 
7

that the difference needs to be strictly less than zero by introduc-
ing a hyperparameter α ∈R>0:

|| f w(A) − f w(P )||2 − || f w(A) − f w(N)||2 + α ≤ 0 .

The triplet loss function is then defined as:

L(A, P , N) = max(|| f w(A) − f w(P )||2−
|| f w(A) − f w(N)||2 + α,0) .

(B.2)

This is the loss of a single triplet, the overall loss function of our 
network is computed as the mean of these individual losses over 
μ triplets:

J =
∑μ

i=1 L(A(i), P (i), N(i))

μ
. (B.3)

B.3. Evaluation metrics

The metrics used to evaluate the network performance, clas-
sifying equivalence of web pairs, were accuracy and Matthew’s 
Correlation Coefficient (MCC):

Accuracy = T P + T N

T P + T N + F P + F N
∈ [0,1] (B.4)

MCC = T P×T N−F P×F N√
(T P+F P )×(T P+F N)×(T N+F P )×(T N+F N)

∈ [−1,1] (B.5)

where T P , T N, F P , F N denote the number of true positive, true 
negative, false positive and false negative predictions respectively. 
Accuracy reflects the proportion of test web pairs whose equiv-
alence is correctly determined. The MCC is similar to the Pear-



G. Arias-Tamargo, Y.-H. He, E. Heyes et al. Physics Letters B 833 (2022) 137376

Fig. 8. (ni pi ,niqi) X data. Fig. 9. (ni pi ,niqi) Y data.

Fig. 10. SNN embedded X data. Fig. 11. SNN embedded Y data.

Persistence diagrams for H0 and H1 on the web (ni pi , niqi) data and SNN base model embedded data, for datasets X and Y respectively.

Fig. 12. Diagram of Siamese Neural Netowrk architecture using triplet loss.
son correlation coefficient, where a score of 1 indicates complete 
agreement between predictions and truth, 0 indicates that the pre-
dictions are no better than random guessing, and -1 indicates 
complete disagreement between the predicted and true equiva-
lence.
8

B.4. K-means clustering

k-means clustering sorts datapoints into k clusters, where each 
datapoint belongs to the cluster with the nearest centroid. The ob-
jective of the k-means algorithm is to minimise the sum of squared 
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distances between the centroid and the datapoints. Formally, given 
a set of datapoints (x1, ..., xn), k-means clustering aims to partition 
the datapoints into k sets S = (S1, ..., Sk) so as to minimise

k∑
i=1

∑
x∈Si

||x − μi||2 (B.6)

where μi is the centroid of the set Si . The first step is to choose 
the value for k, i.e. the number of clusters. Then the algorithm 
starts by randomly selecting k points from the data to be centroids 
and assigning each datapoint to the cluster with the closest cen-
troid. Then the new centroid of each cluster is computed and the 
datapoints are again assigned to the nearest cluster. This iterative 
two step process of computing the new centroid and assigning dat-
apoints to clusters is repeated until the centroids do not change 
their position.

B.5. Rand index

The Rand Index is a measure of similarity between two parti-
tions. It considers all pairs of elements, counting pairs where both 
elements are assigned to the same subset, or different subsets, 
across the partitions; used here for comparison of the predicted 
and true partitions. Let X = {x1, ..., xn} be a set of n elements and 
A = {A1, ..., Ar}, B = {B1, ..., Bs} be two partitions of X into r and 
s subsets respectively. Then the Rand index, R , is given by

R = a + b

a + b + c + d
(B.7)

where

• a is the number of pairs of elements in X that are in the same 
subset in A and the same subset in B .

• b is the number of pairs of elements in X that are in different 
subsets in A and different subsets in B .

• c is the number of pairs of elements in X that are in the same 
subset in A and different subsets in B .

• d is the number of pairs of elements in X that are in different 
subsets in A and the same subset in B .

Therefore, R exists in the range [0,1] where 1 corresponds to a 
perfect agreement between the partitions.

B.6. t-distributed stochastic neighbour embedding (t-SNE)

t-distributed stochastic neighbour embedding (t-SNE) is a pop-
ular method, introduced in [48], to reduce high-dimensional data 
by embedding it in a low-dimensional space. It calculates similar-
ities between datapoints in the high dimensional space and in the 
low dimensional space and tries to minimise the divergence be-
tween the two.

We can break t-SNE down into three steps:

1. Step 1: Given a set of N points, x1, ..., xN in high dimen-
sional space, measure the similarities between points xi . The 
similarity of datapoint xi to datapoint x j is the conditional 
probability, p j|i , that xi would pick x j as its neighbour. This 
probability is proportional to the probability density under a 
Gaussian centred at xi .

p j|i =
⎧⎨
⎩

exp(−||xi−x j ||2/2σ 2
i )∑

k �=i exp(−||xi−xk||2/2σ 2
i )

, if i �= j

0, if i = j
(B.8)
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where σi are the standard deviations. If we take two points 
xi, x j , with i �= j, then the values of pi| j and p j|i will be dif-
ferent. Therefore we define:

pij = p j|i + pi| j

2N
(B.9)

2. Step 2: In the low dimensional space compute the similarity 
measures between datapoints, but instead of using a Gaussian 
distribution use a Student’s t-distribution with one degree of 
freedom.

qij =
⎧⎨
⎩

(1+||yi−y j ||2)−1∑
k �=l (1+||yk−yl||2)−1 , if i �= j

0, if i = j
(B.10)

3. Step 3: Compute the Kullback-Liebler divergence between the 
two probability distributions pij and qij .

D K L(P ||Q ) =
∑
i �= j

pi j log
pij

qi j
(B.11)

This divergence is minimised with respect to the datapoints yi
using gradient descent.

t-SNE has a hyper-parameter called perplexity, derived from σi , 
which is roughly a guess of the number of close neighbours each 
datapoint has and can have large effects on the resulting plot. Typ-
ical values of perplexity are in the range [5, 50]. In our use of t-SNE 
we use perplexity equal to 48 which is the true number of webs 
in each class.
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