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Abstract Questionnaires are widely used in many different fields, especially
in connection with human rating. Different rating scales are considered in
questionnaires to base the response to their items on. The most popular scales
of measurement are Likert-type ones. Other well-known rating scales to be
involved in the items in a questionnaire are visual analogue, interval-valued,
fuzzy linguistic and fuzzy rating scales. This paper aims to compare these five
scales by means of a simulation study. The statistical tool for the comparison
(actually, for the ranking) of the scales is the Cronbach index of internal
consistency or reliability of a construct from a questionnaire. Percentages of
advantages of the fuzzy rating scale vs the other ones, as well as values of
the Cronbach index for some samples, are obtained and discussed.

1 Usual imprecise-valued rating scales involved in the
items of a questionnaire

Questionnaires are often considered to conduct research about attitudes and
human behaviour. Measurement of attitudinal and behavioural variables, es-
pecially latent variables, is facing a great challenge nowadays. Current com-
puting developments permit advances in the measurement of the richness of
human characteristics, so rating scales and tools are improving day by day
bringing new and refreshing ideas to the field which attempt to improve the
accuracy for making better decisions in the applied context.
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In this paper, through a vast simulation study, we compare and analyze
different scales of measurement by means of one of the most well-known
indicators for internal consistency or reliability of the constructs: Cronbach’s
alpha [8].

In the context of survey research, a construct is understood to be “the ab-
stract idea, underlying theme, or subject matter that one wishes to measure
using survey questions” (see [15]). Some constructs are very simple and can
be measured using only one or a few questions for which responses are numer-
ical or dichotomous. Other constructs are more complex and may require a
rather large set of questions for which responses cannot be precisely/perfectly
measured/expressed.

In designing a questionnaire with such complex constructs, most of items
can be formalized in terms of imprecise-valued random magnitudes and the
involved rating scales for the response to such items are usually either Likert,
visual analogue, interval-valued, fuzzy linguistic-valued and fuzzy-valued.

Likert Scales (LSs) [22] format consists of some scores indicating the
strength of the agreement with several assertions, the Likert type items.
Sometimes, these numbers are combined with or replaced by semantic ex-
pressions in terms of quantity which are, for instance, adverbs of frequency.
Despite Likert Scales have been adopted for the vast majority of the social
science research communities, they present some controversy and debate by
social science researchers concerning several issues, among them, the nature
of the response categories and the uses of the scores. Questionnaires where
items comprise Likert type-items can be easily conducted. Furthermore, the
options to respond to each of the questions involve some imprecision, which
seems quite coherent in the context of imprecise-valued magnitudes. How-
ever, since the choice is made within a list of a few possible, anchored for the
Likert options, individual differences are almost systematically overlooked.
Consequently, the number of applicable techniques to statistically analyze
Likert data is quite limited, and they are mostly based either on the fre-
quencies of different ’values’ or on their position in accordance with either a
certain ranking or a posterior numerical encoding, so that relevant statistical
information along with the inherent imprecision can be usually lost in the
analysis.

On the other hand, Visual Analogue Scales (VASs) were mostly con-
sidered to overcome the limitations with ordinal discrete Likert-type scales
(see [29]). VAS are not so easy-to-use, and questionnaires involving them are
usually conducted by filling out either a paper-and-pencil or a computerized
form, after a small training explanation showing how to proceed (since prob-
lems with subject’s ability to conceptually understand the rating method
itself have been reported in the literature, see [31]). VAS has a long tradition
in psychological measurement. Respondents to a VAS item/scale, mark their
level of agreement to a statement by indicating a position along a continuous
line between two end-points, permitting an infinite number of gradations.
This analogue/continuous/graphic rating aspect of the scale differentiates
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from others similar measures as previous mentioned Likert scale (semantic
and/or numerically pointed out). VAS properly captures individual differ-
ences because the choice is made within a continuum of possible options
(actually, a bounded interval). However, the choice of the single point that
best represents rater’s score in visual analogue scales is usually neither easy
nor natural. To require a full accuracy seems rather unrealistic in connec-
tion with intrinsically imprecise variables. This statement is in line with the
quote from Popper [25], in accordance with which “... Both, precision and
certainty, are false ideals. They are impossible to attain, ..., it is always un-
desirable to make an effort to increase precision for its own sake -especially
linguistic precision- since this usually leads to lack of clarity, ...: one should
never try to be more precise than the problem situation demands”, as it
usually happens in measuring attitudes.

Single-point rating scales, like LSs and VASs, supply valuable information
regarding respondents’ opinion/score on a given question. However, they are
limited in capturing imprecision and uncertainty of respondent answers. In
case of LSs they are also limited in capturing individual differences. As it
has been pointed out by Wagner et al. [33], “the capturing of respondents’
uncertainty requires the development of more suitable scales...”.

Aiming to capture imprecision/uncertainty in responding to questions
related to intrinsically imprecise magnitudes, Themistocleous et al. [30]
highlighted that Interval-Valued Scales (IVSs) allow the respondent the
“choice of an interval when providing a response by positioning an ellipse
on a straight line with polar adjectives on its two ends” (see also Wagner
et al. [33]). Consequently, items with interval-valued responses offer richer
and more complex information compared with single-point rating scales and
provide researchers with more insights regarding respondent perceptions as
well as the imprecision/uncertainty of their responses which is expected to
increase the reliability of constructs in the questionnaire. Furthermore, as
IVSs do not prefix the intervals to be chosen, respondents are completely free
in expressing their answers, so they can capture individual differences. In ad-
dition to reflect inherent imprecision associated with most of latent variables
and constructs in questionnaires, IVSs are fully suitable either to model mag-
nitudes related to ranges or, more generally, interval-valued symbolic data.

On the other hand, fuzzy scales were introduced to establishing a bridge
between strongly defined measurements, as the VASs or the numerically en-
coded LSs, and weakly defined measurements used in behavioral sciences as
the Likert or the semantic differential.

Fuzzy Linguistic Scales (FLSs), associated with the so-called fuzzy
linguistic variables, were stated by Zadeh [35] as a flexible alternative to
the numerical encoding of Likert and semantic differential scales. In fact,
the numerical encoding does not take into account the essential imprecision
accompanying ‘values’ of most of the variables in attitudinal studies, whereas
the fuzzy linguistic encoding (partially) does, although individual differences
cannot be grasped either by LSs or by FLSs.
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Aiming to overcome the last drawback, Hesketh et al. [20] and [21], intro-
duced Fuzzy Rating Scales (FRSs) as an extension of the other mentioned
scales. To motivate, justify and support introducing FRS’s, they argued that
“A perennial issue in psychological assessment has been the extent to which
differences in psychological test scores are a function of genuine individual
differences rather than differences imposed as it happens with visual analogue
scales, or obscured as it happens with Likert or semantic differential scales
by the constraints of the measurement procedures.” FRS’s adapt the seman-
tic differential so that a preferred point on a given interval (with anchored
end points), along with latitudes of acceptance on either side should be indi-
cated by the respondent. [19] allowed the preferred ‘point’ to be a subinterval
within the original given interval. The preferred point/subinterval determines
the ‘core’ (1-level) of the fuzzy assessment (i.e., the value or interval of values
that are fully compatible with respondent’s rating). When the core is enlarged
with the latitudes of acceptance, one gets the ‘support’ (topological closure
of the 0-level) of the fuzzy assessment (i.e., the interval of values that are
compatible to some extent with respondent’s rating). And the choice of core
and support is completely free, so no list of possible responses is prefixed.

2 Comparing rating scales through Cronbach alpha

The use of scales like IVSs, FLSs and FRSs in connection with questionnaires
is relatively new in contrast to that of either discrete or continuous single-
point scales like LSs and VASs, respectively. As noticed by Ellerby et al. [14]
and Lubiano et al. [23], the incorporation of these scales suggests to apply
and mainly to develop methodologies for the statistical analysis of interval-
and fuzzy-valued responses, as well as to compare the new scales with the
single-point ones.

Regarding the approaches to the statistical analysis of interval- and fuzzy-
valued data, several studies about can be found in the literature of the last
two decades. Although, at present not all the problems and methods to sta-
tistically analyze real-valued data have been extended to deal either with
interval-valued or with fuzzy-valued data, some interesting ones do (see, for
instance, [2, 3, 4, 5, 6, 11, 12, 13, 16, 17, 18, 23, 24, 26, 28]).

This paper focuses on the comparison between the above mentioned rating
scales. The comparison is to be based on examining the behavior of the well-
known Cronbach coefficient of internal consistency/reliability of constructs in
a questionnaire by means of simulation developments. Along this simulation
study, LS will be identified with the numerically encoding of the Likert type
scale and the Cronbach α will be given as follows:

Definition 1. Given a construct involving K items and the response of
the ith respondent (i = 1, . . . , n) to the jth item (j = 1, . . . ,K) being
denoted by
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− xij if a single-point-valued scale is considered,
− xij if an interval-valued scale is considered
− x̃ij if a fuzzy-valued scale is considered,

the Cronbach α is given by

α =
K

K − 1

(
1−

∑K
j=1 s

2
j

s2total

)
,

where s2j is the sample variance of the responses to item j, and s2total is
the variance of all the responses to the items involved in the construct, the
variances being defined as the Fréchet ones w.r.t. the Euclidean distance in
R for the single-point scales, the Vitale δ2-metric [32] for the interval-valued
scale and the Diamond and Kloeden ρ2-metric [10] for the fuzzy-valued scales,
that is,

s2j =



n∑
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[
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]2
n
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[
inf xij − inf xj

]2
+
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]2

2n
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∫
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[
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]2
+
[

sup(x̃ij)υ − sup(x̃υ)j
]2

2n
dυ for FLS/FRS

s2total =



K∑
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[
xij − x

]2
nK

for LS/VAS

K∑
j=1

n∑
i=1

[
inf xij − inf x

]2 +
[
sup xij − sup x

]2
2nK

for IVS

K∑
j=1

n∑
i=1

∫
[0,1]

[
inf(x̃ij)υ − inf(x̃υ)

]2 +
[
sup(x̃ij)υ − sup(x̃υ)

]2
2nK

dυ for FLS/FRS

where x̃υ = {t ∈ R : x̃(t) ≥ υ}.
It should be remarked in connection with the value of α for fuzzy-valued

data, that they are scarcely influenced by the shape chosen for such data (see
Lubiano et al. [23]), so to assume this shape is trapezoidal does not mean a
real constraint.

In comparing different rating scales through α general conclusions cannot
be drawn, but one can get majority trends by means of simulations.

2.1 Simulation of FRS-based responses and suggested
links with responses to other rating scales

Since there are not yet suitable realistic models for the distribution of the
random mechanisms generating fuzzy responses/data, the simulation process
is not an immediate and standard one. However, in previous papers dealing
with the statistical analysis of fuzzy data simulation procedures have been
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introduced (see, for instance, [9, 27]). For purposes of analyzing reliability of
constructs some relationships between responses to items should be added
(see Lubiano et al. [23]).

By combining the previous procedures we will alternatively denote

Tra(a, b, c, d) = Tra〈x1, x2, x3, x4〉,

where
x1 = (b+ c)/2, x2 = (c− b)/2, x3 = b− a, x4 = d− c,

(see Figure 1 to illustrate the double notation). The simulation process will
generate the 4-tuple (x1, x2, x3, x4) in accordance with some guideliness to
be now explained.

Fig. 1 A 4-tuple (x1, x2, x3, x4) generated from the simulation process, and the associated

trapezoidal fuzzy datum

To each generated 4-tuple (x1, x2, x3, x4) we associate the trapezoidal
fuzzy datum Tra〈x1, x2, x3, x4〉 = Tra(x1 − x2 − x3, x1 − x2, x1 + x2,
x1 + x2 + x4).

By inspiring the simulation process in most of the already known real-life
examples, fuzzy data will be generated as follows:

− 5% (or, more generally, 100 ·ω1%) of the data have been obtained by first
considering a simulation from a simple random sample of size 4 from a
beta β(p, q) distribution, the ordered 4-tuple, and finally computing the
values of the xi. The values of p and q have been assumed to be p = q = 1.
The values from the beta distribution should be re-scaled and translated
to the reference interval [l0, u0] for the considered FRS.

− 35% (or, more generally, 100 · ω2%) of the data have been obtained con-
sidering a simulation of four random variables Xi = (u0 − l0) · Yi + l0 as
follows:
Y1 ∼ β(p, q),
Y2 ∼ Uniform

[
0,min{1/10, Y1, 1− Y1}

]
,

Y3 ∼ Uniform
[
0,min{1/5, Y1 − Y2}

]
,

Y4 ∼ Uniform
[
0,min{1/5, 1− Y1 − Y2}

]
.
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− 60% (or, more generally, 100 · ω3%) of the data have been obtained con-
sidering a simulation of four random variables Xi = (u0 − l0) · Yi + l0 as
follows:
Y1 ∼ β(p, q),

Y2 ∼

Exp(200) if Y1 ∈ [0.25, 0.75]
Exp(100 + 4Y1) if Y1 < 0.25
Exp(500− 4Y1) otherwise

Y3 ∼
{
γ(4, 100) if Y1 − Y2 ≥ 0.25
γ(4, 100 + 4Y1) otherwise

Y4 ∼
{
γ(4, 100) if Y1 + Y2 ≥ 0.25
γ(4, 500− 4Y1) otherwise.

To add the possible relationship between responses to items in analyzing
reliability, a large sample of n = 500 FRS-type data for each of a large
number of items, K = 100, is to be simulated in accordance with the above
described generation procedure. This process will provide with an ‘auxiliary
sample’ from which we will later select data for other choices of n and K
and transform them to mimic a certain (linear) dependence. To generate the
500× 100 data we proceed as follows:

S1. A sample of 500 FRS-type data (x̃∗1, . . . , x̃
∗
500), the reference interval of

the FRS being [l0, u0], are first simulated as the ‘auxiliary sample’.
S2. To mimic the desirable high correlation between the responses from a

respondent to different 100 items, for any item j (j = 1, . . . , 100)

– a pair (γj , δj) is considered so that γj is generated at random from
a uniform distribution in [0, 1] and δj is generated from a standard
normal distribution;

– the response of the i-th respondent (i = 1, . . . , 500) to the j-th item
is assumed to be given by x̃ij = γj · x̃∗i + δj + εij , with εij being
generated at random from a standard normal distribution;

– in case any x̃ij is not fully included within interval [l0, u0], the re-
sponse is appropriately truncated.

Once we get the simulated largest data set including 500×100 fuzzy data,
we choose at random and stepwise n = 450 from the former 500 respondents,
n = 400 from the preceding selected 450 respondents, and so on. Analogously,
we choose at random and stepwise K = 50 from the former 100 items, K = 40
from the preceding selected 50 items, and so on. To be realistic, in the studies
in the paper we will constrain K to take on values up to 50.

In what concerns the links between the FRS-based responses and the ones
based on the other rating scales, we will consider some reasonable and real-
istic ones as follows:



8 Lubiano, Montenegro, Pérez-Fernández, Gil

• The numerically encoded r-point Likert scale usually considered is 1,
2, . . ., r, but to compare it with the FRS the values 1 to r should be
rescaled in accordance with the reference interval [l0, u0], so that Li = l0 +
(u0 − l0) · (i − 1)/(r − 1), for i ∈ {1, . . . , r}. The link between FRS and
the numerically encoded LS will be the one associated with the minimum
ρ2-distance criterion, i.e., if x̃ = Tra(a, b, c, d) is the available FRS-valued
response

x̃ ↔ L(x̃) = arg min
Li, i∈{1,...,r}

[
2 · L2

i − (a+ b+ c+ d) · Li
]
,

corresponding to the Li being closer to the ‘central point’ (a+b+c+d)/4.
• In mimicking the connection between FRS and VAS responses for the

same respondent, a reasonable link is the one associated with a suitable
‘defuzzification’ process like the one introduced in [34], which for a trape-
zoidal response x̃ = Tra(a, b, c, d) is such that

x̃ ↔ VA(x̃) =
a+ b+ c+ d

4
.

• In mimicking the connection between FRS and IVS responses for the same
respondent, a possible link is the one associated with the .5-level of the
fuzzy response, which for a trapezoidal response x̃ = Tra(a, b, c, d) is such
that

x̃ ↔ IV(x̃) = (x̃).5 =

[
a+ b

2
,
c+ d

2

]
.

• Finally, the connection between FRS and FLS responses for the same re-
spondent, a possible link is to consider the numerical ‘Likertization’ in
the first stated connection and to consider later, for instance, the linguis-
tic hierarchy of r labels (see, for instance, Cordón et al. [7]). Figure 2
graphically displays the one associated with a 5-point Likert scale when
[l0, u0] = [0, 100]. At this point, it should be emphasized that the choice
of the linguistic fuzzification scarcely affects the value of the Cronbach α.

0 20  40 60 80 100      
0

1

FLS      

Fig. 2 Frequently used fuzzy linguistic encoding of 5-point Likert scales



Comparing rating scales through Cronbach index 9

2.2 Comparison of rating scales through percentages of
greater values of α

The comparative studies in this paper consider the reference interval to be
[l0, u0] = [0, 1] and the involved Likert scale to be the 5-point one in Figure 2.

For different choices of n (number of respondents) and K (number of
items), 1000 samples of n × K FRS-based data have been generated, and
later linked, by means of the process described in Section 2.1. Later, per-
centages of samples for which Cronbach’s α of the FRS-based data is
greater than that of the other rating scales are computed and collected.
Table 1 shows a few choices of K up to 50, albeit outputs for larger val-
ues are rather similar.

Table 1 Percentages of simulated samples for which Cronbach’s α of the FRS are greater
than that of the other rating scales for different choices of n (number of respondents) and

K (number of items)

n&K choices αFRS > αIVS αFRS > αVAS αFRS > αLS αFRS > αFLS

n=300 K=50 100 100 100 100

K=30 100 100 100 100
K=20 100 100 100 100
K=10 100 100 99.9 100

K=5 99.4 99.4 95.7 97.9

n=100 K=50 98.2 100 100 100
K=30 99.6 100 100 100
K=20 100 100 100 100

K=10 99.8 99.8 97.8 99.6
K=5 98 97.9 87.3 93.4

n=50 K=50 94.6 100 100 100

K=30 98.2 100 100 100
K=20 98.9 99.8 99.5 100
K=10 98.8 99 92.5 97.6
K=5 95.2 95.26 80.6 87.8

n=30 K=50 90.1 99.9 99.7 100
K=30 94.9 99.7 99.6 100
K=20 96.5 99.1 97.8 99.8
K=10 96.5 98.2 89.5 95.4
K=5 91.2 91.9 75.4 83.1

Consequently, in getting a larger internal consistency/reliability of a con-
struct, majority trends support the almost general superiority of the FRS
with respect to the other rating scales.
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2.3 Comparison of rating scales through values of α

In addition to the advantage of the FRS w.r.t. the other ones in terms of the
percentages of greater reliability, it would be interesting to examine whether
such advantage is also clear in terms of the values of Cronbach coefficient.
Table 2 gathers values of Cronbach’s α of the five rating scales for a sample
of size of n×K FRS-based data generated, and later linked, by means of the
process described in Section 2.1.

Table 2 Values of Cronbach’s α for the rating scales and a sample of size n × K for
different choices of n and K

n&K choices αFRS αIVS αVAS αLS αFLS

n=300 K=50 .9187 .9185 .9161 .9083 .9047

K=30 .8624 .8620 .8584 .8447 .8387
K=20 .8405 .8401 .8361 .8215 .8159

K=10 .7533 .7527 .7476 .7305 .7228
K=5 .6779 .6773 .6714 .6511 .6385

n=100 K=50 .9134 .9129 .9093 .9010 .8975
K=30 .8489 .8482 .8424 .8269 .8196

K=20 .8204 .8196 .8129 .7951 .7878
K=10 .7252 .7239 .7154 .7048 .6962
K=5 .6774 .6765 .6697 .6565 .642

n=50 K=50 .9142 .9135 .9101 .9026 .8999
K=30 .8303 .8289 .8214 .8082 .8012

K=20 .8037 .8022 .7941 .7805 .7742

K=10 .6919 .6895 .6788 .6834 .6753
K=5 .674 .6725 .6673 .6772 .6596

n=30 K=50 .9207 .9205 .9188 .9107 .9080
K=30 .8493 .8489 .8455 .8321 .8235

K=20 .8131 .8127 .8085 .7959 .7861
K=10 .7103 .7096 .7039 .7103 .6969

K=5 .7329 .7325 .7301 .7332 .7149

In a similar way, a graphical comparison is displayed in Figure 3 for a
sample in which n = 100, corroborating that the ranking with respect to the
reliability of constructs is FRS–IVS–VAS–LS–FLS, the difference between
FRS and IVS being really a minor one.

The research in this paper can be complemented with the comparisons
based on alternative tools or indicators, like those for the validation of ques-
tionnaires that are closely connected with divergences, one of the highest
research interest of our tributed colleague (see, for instance, [1]), as well
other possible links between scales. This complementary analysis will help
also in making decisions on the number of items for achieving a given relia-
bility/indicator value, on the convenient scale to choose, and so on.
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Fig. 3 Evolution of values of Cronbach’s α

Acknowledgements This research has been partially supported by the Spanish Ministry
of Science and Innovation PID2019-104486GB-I00, which is gratefully acknowledged.

References

1. Balakrishnan N (2009) Methods and Applications of Statistics in the Life and Health

Sciences. J Wiley, New York
2. Billard L, Diday E (2006) Descriptive statistics for interval-valued observations in the

presence of rules. Comp Stat 21(2):187–210
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AB, De la Rosa de Sáa S, Sinova B (2014) A distance-based statistical analysis of fuzzy

number-valued data. Int J Approx Reas 55(7):1487–1501; Rejoinder. Int J Approx
Reas 55(7):1601–1605

4. Carvalho FDAT, Lima Neto EDA, da Silva KCF (2021) A clusterwise nonlinear re-

gression algorithm for interval-valued data. Inform Sci 555:357–385
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Fuzzy rating scale-based questionnaires and their statistical analysis. IEEE Trans
Fuzzy Syst 23(1):111–126

10. Diamond P, Kloeden P (1990) Metric spaces of fuzzy sets. Fuzzy Sets Syst 35:241–249
11. D’Urso P, De Giovanni L, Massari R (2015) Trimmed fuzzy clustering for interval-

valued data. Adv Data Anal Class 8(1):21–40
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