
OR I G I N A L A R T I C L E

CA-MLBS: content-aware machine learning based load
balancing scheduler in the cloud environment

Muhammad Adil1 | Said Nabi1 | Muhammad Aleem2 | Vicente Garcia Diaz3 |

Jerry Chun-Wei Lin4

1Department of Computer Science and

Informamtion Technology, Virtual University

of Pakistan, Lahore, Pakistan

2Department of Computer Science National

University of Computer & Emerging Sciences,

Islamabad, Pakistan

3University of Oviedo, Oviedo, Spain

4Western Norway University of Applied

Sciences, Bergen, Norway

Correspondence

Jerry Chun-Wei Lin, Western Norway

University of Applied Sciences, Bergen,

Norway.

Email: jerrylin@ieee.org

Abstract

Cloud computing is the on-demand provision of computing resources over the Inter-

net, such as cloud storage, computing power, network, and so on. Cloud computing

has several advantages, including high speed, cost reduction, data security, and scal-

ability. The main challenge in cloud environment is to balance the workloads and net-

work traffic among the available resources to achieve maximum performance.

Several methods have been proposed in the literature for effective load balancing,

including heuristic, meta-heuristic, and hybrid algorithms. The performance of these

techniques has been improved by combining machine learning based Artificial Intelli-

gence (AI) techniques and meta-heuristic algorithms. Most of the existing load

balancing techniques are not aware of the content type of user tasks. However, from

the literature, the content type of the tasks can be very effective to design a bal-

anced workload distribution system in the cloud. In this work, a novel AI-assisted

hybrid approach called Content-aware Machine Learning based Load Balancing Sched-

uler (CA-MLBS) is proposed. The scheduling system CA-MLBS combines machine

learning and meta-heuristic algorithms to perform classification based on file type. To

achieve this, a Support Vector Machine (SVM) based classifier is used to classify user

tasks into different content types such as video, audio, image, and text. A meta-

heuristic algorithm based on Particle Swarm Optimization (PSO) is used to map users'

tasks in the cloud. The proposed approach was implemented and evaluated using a

renowned Cloudsim simulation kit and compared with Ant Colony Optimization File

Type Format (ACOFTF) and Data Files Type Formatting (DFTF) heuristics. The results

of the proposed study show that the proposed CA-MLBS technique achieved

improvements of up to 29%, 29%, and 44% in terms of makespan, response time,

and throughput, respectively.

K E YWORD S

cloud, content-aware, machine learning, PSO scheduler, task scheduling

Received: 13 May 2022 Revised: 1 September 2022 Accepted: 9 September 2022

DOI: 10.1111/exsy.13150

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Expert Systems. 2022;e13150. wileyonlinelibrary.com/journal/exsy 1 of 21

https://doi.org/10.1111/exsy.13150

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-8342-5757
https://orcid.org/0000-0003-2037-8548
https://orcid.org/0000-0001-8768-9709
mailto:jerrylin@ieee.org
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/exsy
https://doi.org/10.1111/exsy.13150
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexsy.13150&domain=pdf&date_stamp=2022-09-23

1 | INTRODUCTION

Cloud computing is the provision of computing resources over the Internet. These resources include data storage, databases, software, networks,

and servers. There are three types of cloud computing services: Software-as-a-Service (SaaS) (Cusumano, 2010), Infrastructure-as-a-Service (IaaS)

(Serrano et al., 2015), and Platform-as-a-Service (PaaS) (Boniface et al., 2010). Software as a service is a way of delivering applications as service

over the internet. Where you can access an application on the internet without any installation, maintenance, and infrastructure cost.

Infrastructure-as-a-Service (IaaS) is way to delivering infrastructure such as dedicated severs, network, storage, and virtual machines over the

internet. In IaaS, application, operating system and other application runtime requirements are managed by user. Platform-as-a-Service model pro-

vides infrastructure, runtime, middleware, and OS. However, applications and data are managed by user.

The most popular public cloud providers are Amazon Web Services (Amazon EC, 2015), Microsoft Azure (Chappell, 2010), Google Cloud Plat-

form (Krishnan & Gonzalez, 2015), and IBM Cloud (Boniface et al., 2010). Cloud computing offers several benefits, such as more reliable infra-

structure, agility in business processes, ease of collaboration between teams, and cost savings. In addition, the cloud makes data available from

anywhere and on any device on a scalable and secure platform (Sunyaev, 2020).

Cloud computing includes hosts (i.e., off-site physical servers) and virtual machines (virtual environment of computing resources such as CPU,

RAM, storage, etc). Usually, a host computer contains multiple virtual machines (VM). In the cloud computing environment, the process of effec-

tively distributing the workload across multiple VMs is referred to as load balancing. The load balancing aspect is important to achieve scalable

performance (Mishra et al., 2020). The benefits of cloud load balancing is twofold. On one side, the cloud user wants to execute their tasks in

lesser time with minimized overall cost which lead to higher user satisfaction. On the other side, the cloud service provider needs minimized exe-

cution cost and high utilization of cloud resource which lead to high Return on Investment (ROI). To attain higher user's satisfaction and improved

resource utilization, the workload need to distributed in balanced way (Nabi, Ahmad, et al., 2022; Nabi & Ahmed, 2021a; Nabi, Aleem,

et al., 2022). Efficient utilization of cloud resource maximize the profit of cloud service providers and reduce energy consumption. As a system's

computing needs increase, you can scale your infrastructure by adding more hosts and VMs. However, it is difficult to estimate the size and

nature of the workload and determine the exact number of resources required (with their computing power) to be created at runtime. In this

regard, AI-powered algorithms are more helpful to predict the workload, the type of workload, and the resource requirements with their comput-

ing capability.

To achieve maximum load balancing, task scheduling algorithms play an important role. Cloud task scheduling can be classified into two broad

categories, that is, heuristic and metaheuristic algorithms. The heuristics-based algorithms such as round-robin, max-min (Ibrahim, Nabi, Baz,

Alhakami, et al., 2020), and min-min (Ibrahim, Nabi, Baz, Naveed, & Alhakami, 2020) are mostly problem-dependent. The Round-robin is the sim-

plest model of load balancing. It forwards a client request to each VM in turn and is easy to implement and has low scheduling overhead. The

Max-min load balancing model allocates larger tasks with the highest priority and smaller tasks with the lowest priority. This algorithm favours

larger tasks and penalizes smaller tasks. Whereas the Min-Min algorithm calculates the completion time of the tasks and allocates tasks based on

their minimum execution time. These algorithms are fast and suitable for short-term solutions related to scheduling. Several heuristic approaches

have been presented in the literature, such as the Zero Imbalance Mechanism (Kong et al., 2020), which is based on using the transfer time of

tasks to the network. Dynamic Resource Aware Load Balancing Approach (DRALBA) (Nabi et al., 2021), that allocates a group of independent and

compute intensive tasks to available virtual machines in a balanced way. DRALBA map tasks on VMs based on computation share of VMs and

dynamically updates the VM computing share. Another heuristic-based load balancing method (Adhikari & Amgoth, 2018), which uses task size as

one of the main considerations. Although the algorithms based on heuristics optimize the makespan and the quality of service (QOS) metric, how-

ever, the heuristics-based algorithms have limitations, such as the inability to find an optimal solution (Kaur & Kaur, 2022) for load balancing prob-

lems with conflicting parameters such as execution time and execution cost.

Methods based on meta-heuristics do not depend on a particular problem. They are generic algorithms that can be applied to a large number

of related problems. Meta-heuristic algorithms address the limitations of heuristic algorithms and provide optimal results for scheduling problems.

Several meta-heuristic algorithms have been presented in the literature, such as. the deadline and resource constrained particle swarm optimiza-

tion algorithm (PSORDAL) (Nabi & Ahmed, 2021a), Simulated Annealing (Hanine & Benlahmar, 2020), the ant colony optimization based dynamic

and elastic algorithm (D-ACOELB) (Naik, 2020), and another swarm based meta-heuristic technique (Megharaj & Kabadi, 2019). Each meta-

heuristic algorithm has its strengths and limitations. Therefore, combining two or more algorithms could complement the advantages and lead to

more suitable solutions.

The concept of combining multiple algorithms to solve certain problems, such as scheduling, is called a hybrid scheduling algorithm. These

algorithms can be a combination of (1) heuristic and meta-heuristic algorithms, (2) two meta-heuristic algorithms, and (3) AI-powered machine

learning and meta-heuristic algorithms. As compared to meta-heuristic algorithms, the hybrid meta-heuristic algorithms use strengths of multiple

algorithms to solve a problem. Several hybrid algorithms for load balancing optimization in the cloud environment are presented in the literature,

such as a combination of Firefly and genetic algorithms (Rajagopalan et al., 2020) and a hybrid of Cuckoo and Firefly (Kumar et al., 2020). In addi-

tion, several literature reviews (Abrol et al., 2020; Pradhan et al., 2021) show the use of various meta-heuristic based algorithms to optimize load

balancing in the cloud computing environment.

2 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1.1 | Motivation

The load balancing in the cloud environment makes the system scale-able, improves reliability, increases performance, and boosts cost-effective-

ness. The literature survey shows that most modern approaches to task scheduling consider parameters such as task length, task priority, and task

file size to evaluate their proposed task scheduling schemes. However, most of these scheduling schemes do not consider the content type of the

input workload. Moreover, the literature study shows that the content type of the workload can play a crucial role in balancing the workload

(Cervantes et al., 2020).

The adaptation of cloud computing has grown rapidly along with other core services such as cloud storage. Various studies presented in

the literature have applied machine learning algorithms (ML) to address the growing data challenges. There are three common types of ML

techniques: Unsupervised Learning (Celebi & Aydin, 2016), Supervised learning (Liu, 2011), and Reinforcement Learning (Mirjalili et al., 2020).

Supervised learning is a methodology of machine learning where a machine learning algorithm builds its intelligence based on input data and

classified for a specific kind of output. Whereas, unsupervised learning is another methodology of machine learning where an algorithm

identify patterns in data points of dataset that not classified. Reinforcement learning is a methodology of machine learning that takes suit-

able actions to maximize output in a specific scenario. To classify data based on certain features: ML provides classification algorithms,

which are mostly part of supervised learning (Reddy & Varma, 2020) techniques. The classification algorithms analyse the available data to

extract features and build the corresponding training model. Then, the training model is used with a test dataset to classify the data

(Sahli, 2020; Sen et al., 2020).

Some hybrid techniques of AI-based machine learning algorithms and meta-heuristics are discussed. These hybrid algorithms show significant

improvements (Pinho et al., 2020; Rabbani et al., 2020) and demonstrate that machine learning with meta-heuristic algorithms can significantly

improve the solutions to various problems. Existing classification methods (Liu, 2011; Mirjalili et al., 2020; Pinho et al., 2020; Rabbani et al., 2020)

also use PostgreSQL and Amazon Web Services (AWS) (AWSACC Services, n.d.) to develop techniques to solve the content classification prob-

lem. PostgreSQL is an open source and highly expandable database management system that supports both relational and non-relational queries.

As compared to other database management systems, PostgreSQL supports wide range of data types such as geometric, network address, JSON,

XML, HSTORE, arrays, ranges, and composite. However, these platforms themselves do not provide content classification mechanisms such as

text-, image-, audio-, and video-based resource management.

Support Vector Machine (SVM) is considered a preferred choice for input workload classification based on its content (Cervantes

et al., 2020). The existing content-based workload distribution optimization studies in the cloud environment such as Ant Colony Optimization

File Type Format (ACOFTF) (Junaid, Sohail, Ahmed, et al., 2020) and Data Files Type Formatting (DFTF) (Junaid, Sohail, Rais, et al., 2020) can be

improved by a refined dataset, improved kernel method, and simpler hybrid meta-heuristic algorithms.

The SVM classification algorithm as compared to other ML algorithms such as Artificial Neural Network (ANN) has the following advantages:

(1) shorter training time, (2) better capacity to converge, and (3) better interpret-ability. Based on all the above, there is a need for a content-aware

load balancing model using machine learning classification. That can classify the cloud data into appropriate categories and the classified tasks can

be scheduled to the best-suited type of VMs using the load balancing schedular. In the next section, we present a Content-Aware Load Balancing

model to overcome the limitations of existing approaches.

1.2 | Major contributions

This paper presents an AI-enabled meta-heuristic based hybrid and content-based method that uses a combination of machine learning and parti-

cle swarm optimization techniques to improve load balancing in cloud computing. The proposed Content-Aware Machine-Learning Based Load Bal-

ancer (CA-MLBS) classifies users' tasks based on content type. For task classification, CA-MLBS uses SVM classification algorithm. SVM is one of

the most popular classification methods for cloud tasks (Cervantes et al., 2020). Moreover, SVM is a robust supervised learning algorithm that can

be used to classify data and regression assignments. The proposed CA-MLBS technique uses the particle swarm optimization (PSO) algorithm to

assign the classified tasks to the appropriate group of VMs. The reason for using the PSO algorithm for load balancing is that PSO-based algo-

rithms can improve load balancing with optimal memory utilization and in a fast manner. The literature study shows that PSO based tasks schedul-

ing and optimization algorithms have better performance and have simple implementation as compared to other optimization algorithms like

Genetic Algorithm(GA), Ant Colony Optimization (ACO) among other (Fadlallah et al., 2021; Nabi & Ahmed, 2021a; Nabi, Aleem, et al., 2022). The

proposed scheduling scheme performs user cloud task classification based on the type of user tasks (video, audio, image, and text). Moreover, CA-

MLBS uses file fragments to build its training model and assign classification labels. For each file type, there is a corresponding set of VMs with

their respective configurations. The classified tasks were distributed to appropriate VMs using PSO to effectively distribute the workload. The

multi-objective model can be used for load balancing, however, multi-objective model is more useful for optimizing multiple objectives with con-

flicting parameters where attaining one objective (i.e., performance improvement of a certain parameter) may result in degraded performance of

the other aspect, for example, time, cost, and so on. Moreover, the proposed research evaluates multiple non-conflicting parameters like

ADIL ET AL. 3 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

makespan, throughput, and response time (Nabi & Ahmed, 2021a; Nabi, Aleem, et al., 2022). In future, multi-objective model will be used for opti-

mizing conflicting parameters like time and cost. The main contributions of this work are summarized below:

• This research proposes a content-aware, machine learning-based load balancer (CA-MLBS) scheme based on a hybrid load balancing model.

The CA-MLBS uses File Fragment Type (FFT) (Mittal et al., 2019) dataset based on file fragments of different content types to improve classifi-

cation results and workload distribution;

• The proposed algorithm is an easily applicable and simplified approach compared to the existing content-type algorithms;

• The proposed scheme classifies users' cloud tasks based on content types such as video, audio, image, and text;

• The proposed algorithm uses a PSO-based scheduling mechanism to optimize workload distribution;

• Extensive analysis and comparison of response time, throughput and makespan have been performed.

The remainder of the article is organized as follows: Section 2 presents the literature review. Section 3 contains the system architecture, sys-

tem model, RADL algorithm, complexity analysis, and scheduling overhead. Section 4 presents the experimental setup, dataset configurations, per-

formance comparison, and evaluation results. Section 5 provides the conclusion and a roadmap for the future.

2 | RELATED WORK

This section discusses the relevant literature by highlighting pros and cons of state-of-the-art and has been summarized in the Table 1. Resource-

Aware Load-Balancing Algorithm (RALBA) (Hussain et al., 2018) is a heuristic load-balancing algorithm that performs workload distribution

according to the processing capacity of VMs. It applies the load balancing algorithm in the following two phases: (1) identifying the processing

requirements of the task and (2) identifying the processing capacity of the available VMs. Based on the task's requirements, RALBA allocates to

TABLE 1 Summary of load balancing models in cloud computing

References Approach Pros Cons CA

Nabi et al. (2021) Heuristic Reduced response time and resource

utilization

No makespan and classification O

(Nabi and Ahmed

(2021b)

Heuristic Improved resource utilization and

makespan

lacks tasks' classification, sequence-based

support and response time

O

Muthusamy and

Chandran (2021)

Heuristic Reduced makespan and better

execution time

Lacks degree of Imbalance O

Nabi and Ahmed

(2021a)

Meta-heuristic Improves makespan, resource

consumption, and execution cost

Lacks response time and tasks classification O

Semmoud et al.

(2020)

Meta-heuristic Reduced makespan and better response

time

throughput of imbalance can be improved O

Agarwal et al. (2020) Meta-heuristic Reduced Makespan Lacks response time, no pseudo implementation O

Muthsamy and Ravi

(2020)

Meta-heuristic Reduced makespan and better

execution time

Experiments results may vary with state of the arts

dataset

O

Lilhore et al. (2020) Hybrid Improved Resource utilization and

Makespan

Limited Test Environment, Lacks proper dataset, No

task classification

O

Mishra and Majhi

(2021)

Hybrid Improved response time and Makespan lacks sophisticated testing environment, state of the

arts dataset, and categorization

O

Neelima and Reddy

(2020)

Hybrid Reduced Execution time and cost larger dataset and testing environment O

Junaid, Sohail, Rais,

et al. (2020)

Hybrid Better throughput, overhead Time, and

energy consumption

Lack unified dataset, painless classification, and Kernel

method needs optimization

✓

Rafieyan et al. (2020) Hybrid Reduced makespan, Less waiting time Results can be improved refined test and dataset O

Attiya et al. (2020) Hybrid Reduced makespan No state of the arts dataset O

Sharma and Garg,

(2020)

Hybrid Reduced Makespan, Better energy

consumption

More QoS Metrics, Smaller dataset O

Jena et al. (2022) Hybrid Reduced makespan and better

Throughput

lacks state of the art dataset and adequate environment O

4 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the appropriate VM. The RALBA algorithm is based on two sub-schedulers (fill and split schedulers). RALBA provides improvements in makespan,

resource utilization, and execution time. However, RALBA does not support task response time and content type classification based on the

cloud's task type.

The Dynamic and Resource Aware Loading Balancing Algorithm (DRALBA) is a heuristic load balancing algorithm that balances loads based

on processing performance and maintains VMs' workload. It assigns a set of independent tasks to a preconfigured group of VMs. It calculates the

processing capacity of a group of VMs for a set of independent tasks. Based on these calculations, DRALBA selects the most appropriate VM with

the highest processing capacity. DRALBA provides improvements in resource allocation and response time. However, it lacks a mechanism for dis-

tributing the workload based on content type classification. Overall Gain-based Resource-aware Dynamic Load-balancer (OG-RADL) (Nabi &

Ahmed, 2021b) is a heuristic algorithm for dynamic load balancing. The OG-RADL algorithm improves workload distribution with enhanced

resource utilization, better task deadline management, and delivers improved load to enhance overall cloud performance. OG-RADL presents a

novel technique to normalize the values of evaluation parameters such as average resource utilization ratio, response time, makespan, and task

deadline. Moreover, the OG-RADL load balancing technique provides improvements in the overall gain of the cloud. However, the proposed algo-

rithm requires further improvements for task sequence and content-based workload distribution.

Muthusamy and Chandran (2021) have proposed a cluster-based task scheduling framework (CBTS) that uses K-Means clustering and con-

siders task length and VM limit. In CBTS, tasks are distributed based on task length and VMs are clustered based on computational power. The

single task in each cluster is assigned to the appropriate VM in the VM group of that cluster. This technique has shown improvements in execu-

tion time and makespan. However, the CBTS technique does not support classification of tasks based on their content.

Particle swarm optimization based resource and deadline aware dynamic load balancers (PSO-RDAL) (Nabi & Ahmed, 2021a) have been

proposed. The PSO-RDAL is a meta-heuristic load balancing algorithm that delivers lower processing cost and time for large-scale independent

cloud tasks. This research work evaluates the PSO-RDAL mechanism using multiple performance aspects such as resource consumption,

makespan, task deadline compliance, response-time, penalty-cost, and execution-cost. The PSO-RDAL does not perform classification by task

content type.

Semmoud et al. (2020) propose a Starvation Threshold-based algorithm for scheduling problems. Each VM maintains its workload state and

performs load balancing without considering the state of the other VMs. Experiments are conducted to evaluate the timeout and response time

based on quality of service (QoS) metrics. The performance evaluation of the proposed method was performed with up to 800 tasks on 100 VMs.

The proposed study showed improvements in response time and makespan. However, the proposed technique was tested with a smaller dataset.

Moreover, this technique does not show content-based classification support for cloud tasks. The mutation-based PSO (Agarwal et al., 2020)

updates the fitness function of each particle until the maximum iteration is reached. The makespan QoS performance metric is used to analyse

the experiment results. For the proposed method, 20 data centers and up to 200 tasks were used for simulation. The proposed method achieves

an improvement in the makespan. However, the pseudo-algorithm was not properly explained. Moreover, this technique does not support the

classification of tasks based on the content type. Muthsamy and Ravi (2020) have presented a load-balancing technique based on an Artificial Bee

Algorithm (ABC). The ABC-based scheduling algorithm performs optimal search based on the honey bee's approach to find the best from the

available sources. The presented study has shown improvements in makespan and execution time. However, the dataset used for the evaluation

is primitive and the technique is not capable to deal with the content-aware Cloud tasks scheduling. A hybrid approach of PSO and Firefly Algo-

rithm (FA) optimization was proposed (Lilhore et al., 2020), which assigns the shortest job to the fastest processor-based machine and applies the

shortest job next approach to PSO. The proposed technique considers the makespan and task migration as core scheduling objectives. However,

the experiments were conducted in a limited environment and lack a comprehensive evaluation with state-of-the-art datasets. It also does not

support classification of tasks by task type.

Another load balancing approach is proposed (Mishra & Majhi, 2021) and is inspired by the improved PSO and Honey-Bee Optimization

(HBO) algorithms. The proposed technique distributes the workload among the VMs while the birds search for the food sources. The proposed

method showed improvements in makespan, response time, and throughput. However, the experiments were conducted in a limited setting with

fewer orders. The results could vary drastically if the experiments are conducted with large datasets. In addition, the proposed method lacks clas-

sification of tasks based on task types. An adaptive dragonfly algorithm (ADA) based on the dragonfly algorithm (DA) and the firefly algorithm

(FA) was presented (Neelima & Reddy, 2020). The main goal of the proposed approach is to allocate the workload to the VM using the ADA. This

limits the absolute execution time and cost. The proposed method shows improvements in execution time. However, the task dataset is smaller

for the configured number of VMs. Moreover, this approach is not content-aware model.

Rafieyan et al. (2020) presented a ranking model alled VIKOR, which is based on the best-worst method (BWM). The VIKOR algorithm acts as

a manager to specify the task requirements. The identification of important decision criteria is intended to reflect the importance of cloud tasks in

scheduling by specialists. The proposed approach shows improvements in makespan, throughput, and VM utilization. However, the experiments

were conducted in a limited environment and lack content-based task classification. The Harris Hawks optimization algorithm (HHO) combined

with a Simulated Annealing (SA) based model has been proposed (Attiya et al., 2020) for a balanced distribution of cloud tasks. The proposed

method uses SA for local search with an improved HHO algorithm. The proposed method shows an improvement in the makespan. However, the

experiments are conducted with a relatively small dataset. Moreover, the classification of tasks by task type is missing.

ADIL ET AL. 5 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Sharma and Garg (2020) presented a hybrid meta-heuristic approach, which is called Harmony-Inspired Genetic Algorithm (HIGA). The HIGA

technique uses the exploration and exploitation features of genetic and harmony search algorithms, respectively. The HIGA identifies the local

and global optimum and provides a fast combination. The proposed technique has shown improvement in makespan and energy consumption.

However, the experiments were conducted in a limited environment with a limited dataset. Moreover, the tasks in the proposed study are not

classified by task types. Data Files Type Formatting (DFTF), which is based on Cat Swarm Optimization (CSO) and SVM (Junaid, Sohail, Rais,

et al., 2020). The DFTF classifies the cloud tasks into different types, that is, text, images, video, and audio with SVM using a polynomial kernel.

The classified tasks are input to CSO to perform load balancing. However, DFTF does not use a state-of-the-art dataset. In addition, DFTF clas-

sifies videos and audio into subcategories. The Radial Basis Function (RBF) kernel provides higher accuracy for the fine-tuned dataset compared

to the polynomial kernel.

The QMPSO is a hybrid approach of modified Q-learning and particle swarm optimization (Jena et al., 2022). Three objective functions were

formulated, which include (1) the workload difference between hosts and the average load on the cloud network, (2) the total energy consump-

tion, and (3) the number of submitted tasks. The proposed technique considers the evaluation parameters such as throughput, energy usage, and

makespan. However, it lacks state-of-the-art, refined experimental environment, and content-based classification. The proposed task scheduling

technique is a mixture of Firefly and PSO techniques (FIMPSO) (Devaraj et al., 2020). The FIMPSO algorithm improves load balancing based on

the resource utilization of the cloud tasks. The proposed model showed improvements in makespan and throughput. However, the experiments

were not performed with the state-of-the-art simulation environment. The analysis of the results may be different with a proper test environment.

The proposed model categorizes tasks based on their size, but it lacks classification of tasks based on task types.

The study proposes the Honey Bee behaviour-based load balancing method, which attempts to minimize load redundancy by assigning tasks

to matching or suitable VMs. After task assignment, it computes the state of VMs. The proposed method showed improvements in the following

QoS performance matrices: makespan and degree of load balancing. However, the proposed technique does not show such improvements in

response time. Moreover, the proposed study lacks the classification approach to categorize the tasks by content type. The summary of the litera-

ture review can be found in Table 1.

3 | PROPOSED CA-MLBS FRAMEWORK

In the cloud computing environment, balancing the workload across VMs is a challenging task. Balanced workload distribution helps to achieve

optimal utilization of cloud computing resources. Optimal load balancing also improves cloud task execution and response time. Load balancing

methods use various task scheduling algorithms based on cloud task characteristics such as task length, file size, and task content type to calculate

the available workload of cloud resources. An optimal load balancing method receives incoming cloud task requests, intercepts their processing

needs, estimates the existing workload, and selects the best VM to process the request based on this information.

Our proposed cloud load balancing model called CA-MLBS is based on a hybrid technique that combines PSO and SVM machine learning

algorithms. The detailed system-architecture of our proposed hybrid load balancing model is shown in Figure 1. As shown in Figure 1, the cloud

computing infrastructure has a lowest layer, the physical layer (Kaur, 2020), which includes hosts (a host is a physical dedicated server with

processing, memory, data storage, and data transfer resources). The physical layer of cloud computing also includes cloud data storage resources.

The virtualization layer of cloud computing infrastructure is on the top of the physical layer that includes Virtual Machines (VMs). A VM uses

the resources of a host machine and acts as a separate computer with all the essential software including the operating system, web server, and

database applications, and so on. A host machine can have multiple virtual machines, and a virtual machine receives incoming cloud task requests,

processes these tasks, and sends the execution responses back to the user.

The topmost layer is the load balancing layer that receives the user's cloud task, parses the cloud task parameters, and sends tasks to VMs.

The load balancing layer is responsible for effective workload distribution among VMs. This is the layer where we introduce our proposed sched-

uling algorithm. Our proposed load balancing model classifies user tasks based on content type and selects the best VM to map a specific

cloud task.

The working semantics of the proposed load balancing model is presented in Figure 2. The proposed model comprises two phases: (1) content

classification phase, and (2) the load balancing phase as shown in Figure 2. The content classification phase performs the classification of user

tasks into four categories based on their content type. These categories include video, audio, image, and text type. The task classification is per-

formed using the Support Vector Machine (SVM) based machine learning technique. Before task classification, training of the SVM model is per-

formed using the training dataset. For the training of the SVM model, Radial Basis Function (RBF) kernel method has been used.

SVM Kernel functions are a set of mathematical functions, that take input data and transform it into a specific form. SVM kernel functions

are categorized as a linear, nonlinear, polynomial, radial basis function, and sigmoid. The radial basis function is the most adopted kernel function

as it has a finite and localized response with the entire x-axis. The classified tasks have been stored in four different collections (video, audio,

image, and text-based) and forwarded to the Load-balancing phase. The load balancing process begins with receiving incoming collections of clas-

sified cloud tasks and the classified tasks are distributed among the VMs in a balanced way.

6 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The Particle Swarm-based Optimization (PSO) technique was used for load balancing. The reason is that PSO performs better than its coun-

terparts (Nabi, Ahmad, et al., 2022; Nabi & Ahmed, 2021a). The PSO-based load balancing phase includes steps such as initializing the PSO sched-

uler along with its parameters, computing the particle position and velocity, evaluating the fitness function, updating all the particles,

completeness criteria, and final mapping of the optimal solution. After receiving the final mapping from PSO, the tasks are executed according to

the optimal mapping plan. When the execution of the tasks is completed, the value of the makespan, throughput, and response time of the tasks

are calculated.

3.1 | CA-MLBS algorithm

The CA-MLBS for task scheduling 1 starts by receiving incoming cloud task requests based on file fragments containing various file fragments of

the task content, for example, text, image, audio, and video. The first phase is content type classification, which is performed using an SVM

machine learning algorithm and prepares collections of classified tasks. The Key benefits of using SVM in the proposed model are that SVM is rel-

atively memory efficient, more effective with high dimensional spaces, works well when there is a clear margin of separation between classes and

is effective in cases where the number of dimensions is greater than the number of samples.

F IGURE 1 System architecture of CA-MLBS

ADIL ET AL. 7 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The content type classification process is based on the Radial Basis Function (RBF) kernel method using high-dimensional data (Algorithm 1,

lines 1–8). Once the algorithm has collections of classified tasks, it proceeds with load balancing. The load balancing process takes two parame-

ters: (1) first, the collections of classified tasks, and (2) the groups of VMs, where each group of VMs is dedicated to a particular content type. The

load balancing process is based on the PSO scheduling algorithm explained earlier (Algorithm 1, lines 9–35).

The PSO-based scheduling algorithm specifies its parameters such as the number of iterations and the population size (Algorithm 1, lines 11–

12). The PSO mechanism is used, which first initiates the particles with random velocity and position (Algorithm 1, lines 13–18). After initializing

the PSO parameters with defined configurations, the fitness function evaluation is updated at each iteration to estimate the global and local best

values (Algorithm 1, lines 19–32). The objective of fitness function is to find best VM for appropriate task in appropriate set of VM(s). Further, the

PSO-based scheduling algorithm determines the best VM for each task and returns the scheduled tasks data. The evaluation process is repeated

until the exit criterion is met. Moreover, the PSO-based scheduling algorithm determines the best VM for each task and returns the data of the

scheduled tasks (Algorithm 1, line 33). The main elements of the proposed model were presented in the previous section.

F IGURE 2 Working semantics of CA-MLBS

8 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3.1.1 | Content-based classification step

CA-MLBS begins with a collection of file fragments of various content types such as videos, images, audios, and texts. The training dataset con-

tains feature sets, class labels, and values. We used the training datasets and the SVM classification algorithm to build the training model. In

machine learning based classification, the training model is a training source for the classification algorithms. It analyses and understands the train-

ing model to build its intelligence.

We build the training model using the features of kernel function of the SVM. The kernel function is a set of mathematical functions that pro-

cess the input data and convert it into the required form. It converts the low-dimensional data format into a high-dimensional data format that

can be further used for classification. There are various SVM kernel functions such as linear, non-linear, polynomial, radial basis function (RBF)

and sigmoid. We used RBF (Majdisova & Skala, 2017) kernel function in our model because there are less constraints in terms of data formats,

versatile applicability, high accuracy and fast convergence. The RBF kernel model is shown in Equation (1):

Algorithm 1 Ca-MLBS

1: procedure CA-MLBS(tasks,vms)

2: procedure ClassifyTasks(tasks)

3: classifedTasks: empty;

4: for i 1… size(tasks) do

5: classifiedTask perdict(tasks[i]);

6: classifedTasks.add(classifiedTask);

7: end for

8: return classifedTasks ⊳ return classified tasks;

9: end procedure

10: procedure PSOScheduler(classifedTasks,vms)

11: iterations 900;

12: population 80;

13: for p 1… population do ⊳ Initialize particles

14: for t 1… size(classifiedTasks) do

15: positionpt random(Pmin,Pmax);

16: velocitypt random(V min,V max);

17: end for

18: end for

19: while k ≤ iterations do

20: for each particle p do

21: f Calculate fitness based on task type and task length;

22: if f is better than pbestpt from history then

23: pbestpt f;

24: end if

25: gbestt best particle's fitness value;

26: end for

27: for each particle p do

28: for each task t do

29: vpt W * vpt + C * r() * (pbestpt � ppt) + C * r() * (gbestpt � ppt);

30: end for

31: end for

32: end while

33: return Best VMs for tasks;

34: end procedure

35: return Scheduled Tasks

36: end procedure

ADIL ET AL. 9 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

f x1, x2ð Þ¼ exp �γ�ð Þ kX1�X2k2: ð1Þ

In the above equation, gamma (γ) represents the points around a single training point. X1 � X2 is the product of the features used. We use a

testing dataset (as shown in Table 9), which is also a collection of file fragments associated with different content types, as the input source. The

content-based classification phase receives incoming queries and uses the training model to perform analysis and predict the class of the cloud

user's tasks.

The File Fragment Type (FFT)—75 DATASET (Mittal et al., 2019) contains random samples of file fragments from 75 of the most com-

monly used content types. It is one of the most distinct and most harmonious datasets according to our research. The FFT dataset consists

of 512 and 4096 byte file fragment blocks and is labelled with classification IDs. This is a well-organized dataset for machine learning clas-

sification. The FFT dataset is in NumPy (Harris et al., 2020) format, an important machine learning library in Python. It supports a robust

and powerful multidimensional array. The dataset is further processed using Scikit-learn, an open source machine learning library for

Python. It supports major machine learning algorithms such as SVM, k-means, and random forests. Using Scikit-learn, the dataset was first

filtered for text, image, audio and video content (as shown in Figure 8). It is also converted into the desired dataset format (Chang &

Lin, 2011).

The content-based classification process performs classification of tasks into four classes: video, audio, image, and text. Content-based classi-

fication reduces the processing overhead for the load balancer by preprocessing learning, feature extraction, and classification. After classification,

the classified tasks are converted to the Comma-Separated Values (CSV) format. CSV format is one of the most commonly used formats. The CSV

format is in CloudSim ready format that can easily used as input for CloudSim modelling and it can easily be read in any programming language.

Each line in the CSV file describes the content type (i.e., text, image, audio or picture), the length of the task in millions of instructions (MIs) and

the file size in MIs. Table 2 shows the sample dataset.

3.1.2 | Load balancing step

The classified tasks in CSV format are then the input to the load balancing process. For each task category, there are four different groups of VMs

with corresponding resource configurations (i.e., processing power, memory, and storage capacity). For example, a video content type task typi-

cally requires more processing, memory, and storage resources. We configured video-type VMs with 1000 MIPS (million instructions per second),

16 GB of memory, and 360 GB of data storage. Audio-type VMs were configured with 900 MIPS operations, 12 GB of memory, and 250 GB of

storage; image-type VMs were configured with 700 MIPS and 200 GB of storage and 8 GB of memory; text-type VMs were configured with

500 MIPS, 4 GB of memory, and 120 GB of storage.

TABLE 2 Sample dataset

Task type Task length File size

AUDIO 3010 903

TEXT 750 225

IMAGE 1620 486

TEXT 810 243

VIDEO 4560 1368

AUDIO 3110 933

TEXT 990 297

VIDEO 7240 2172

VIDEO 7110 2133

IMAGE 1290 387

IMAGE 1460 438

VIDEO 7980 2394

IMAGE 1070 321

AUDIO 3020 906

VIDEO 7720 2316

10 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The load balancing step has groups of VMs and classified tasks as input. Each group of VMs is responsible for processing a specific type of

task. We used a PSO-based scheduling algorithm, which is one of the most popular population-based optimization algorithms. The PSO concept is

derived from social interaction to solve a problem. It has multiple agents (particles) that perform swarm movement around the search space and

search for the best solution. After each iteration, the position and velocity of the particles are updated until the best solution is reached. PSO is

one of the most robust, coherent, and manageable algorithms compared to other population-based algorithms. We used the CloudSim (Calheiros

et al., 2011) simulation environment to evaluate our proposed model. Our implementation is based on JSwarm-PSO (Cingolani, 2011), a Java-

based PSO framework (Cingolani, 2011).

The technologies used in the proposed models are followings. For Content Classification LibSVM (Chang & Lin, 2011), JSwarm-PSO

(Cingolani, 2011) for PSO based load scheduling, and CloudSim (Calheiros et al., 2011) for the load balancer modelling and simulation.

Fitness evaluation

The fitness evaluation function is a special type of function that calculates the fitness value and indicates how close it is to achieving the specified

goals. The fitness evaluation function serves as a guide to find the optimal solution. It is an important part of meta-heuristic algorithms. It facili-

tates the application of the required optimization to find the best solution. In load balancing models, it helps to find the best VM for a given task

to achieve effective workload distribution. Our proposed model performs fitness evaluation at each iteration. It also performs the exit criteria to

complete the processing of the algorithm. Our proposed model optimizes the response time, throughput, and makespan to improve the load

balancing among VMs.

Makespan: To get the best performance from cloud computing resources, the makespan should be minimized. The term makespan is used for the

finish time of all cloud tasks using the available cloud resources such as computing power, memory, and storage (Zheng et al., 2017). Makespan is

represented in Equation (2).

Makespan¼ FTMax t,v½ � t ϵT, t¼1,…, n l ϵVM, v¼1,…,m: ð2Þ

In Equation (2), Tt represents number of tasks, VMl represents number of VMs, and FTtv represents finish time of t tasks with v VMs.

The processing time of a given type of task for a given type of VM needs to be estimated so that the load balancer can select the best VM

from the group. We have presented the calculation for makespan in Equation (3).

ETmax ¼
Xm

t¼1
Xn

v¼1 ttv :Xtvð Þ: ð3Þ

FTmax is the maximum finish time for the tth task on the vth VM. The n is task count and m is VM count.

The total finish time of all the cloud tasks with the support of the objective function (Khorsand et al., 2019; Saeedi et al., 2020) have been

computed using Equation (4).

F2 tð Þ¼ min Makespan tð Þf g: ð4Þ

Response time: The response time in cloud computing is the total time it takes to respond to a cloud task request (Phi et al., 2018). The response

time of tasks has been computed using Equation (5).

RT ¼
Xm

t¼1PTt� STt�ETtð Þ
h i

: ð5Þ

In Equation (5), RT represents the response time, PTt represents the t task's processing time, STt presents tth task's start time, and ETt presents

tth task's end time.

Throughput: Load balancing throughput in the cloud is the number of tasks processed in a given period of time (Ahmad & Khan, 2018). An effi-

cient load balancing algorithm should maximize the completion of the number of tasks in a unit of time. We have represented the throughput in

Equation (6).

JTP¼
Xm

h¼1:
Jh
Jth

: ð6Þ

In Equation (6), JTP represents the job throughput time, Jh represents hth job, and Jth the h-job's completion time.

ADIL ET AL. 11 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 | PERFORMANCE EVALUATION

4.1 | Experimental setup

The CloudSim (Calheiros et al., 2011) is used for verification and evaluation of proposed model. CloudSim is the most commonly used Java-based

cloud computing simulation framework that supports the setup could computing resources such as hosts, VMs, Network pools, and storage capac-

ities. It also helps to set up cloudlets (a cloudlet is a cloud task in the CloudSim environment), datacenter brokers, VM allocation policies, band-

width, and RAM provisioning. It facilitates verifying and evaluating load balancing models cost-effectively. It allows users to concentrate on

system modelling without gaining low-level details of cloud infrastructure and services. The advantages of CloudSim are it delivers an open-

source, free, and customizable cloud simulation environment to assess the performance of the cloud computing models.

Further, it is an easy-to-use and robust cloud simulation software that allows testing a wide range of cloud applications in heterogeneous

environments. Our proposed model has four groups of VM: Text-type VMs, Image-type VMs, Audio-type VMs, and Video-type VMs. Each group

of VMs has distinct configurations of computing, memory, storage, and network resources. That is presented host configurations in Table 3. And,

VM configurations for each group of VMs for the simulation environment presented in Table 7.

The state-of-art load balancing strategies that are used for comparative evaluation have evaluated for different parameter settings and

parameters having the best results selected for comparison. Parameter settings used for proposed approach CA-MLBS, DFTF, and ACOFTF are

presented in Tables 4–6, respectively.

TABLE 3 Host parameters

Hosts PEs Ram(GB) Storage(TB) Speed Bandwidth

1–100 2 64 3 10,000 10,240

1–100 4 64 6 10,000 10,240

1–100 8 128 8 10,000 10,240

TABLE 4 Parameter configurations for CA-MLBS

Parameter Value

Number of iterations 900

Population Size 80

Update particle's velocity 0.5

Particle's inertia 1

Acceleration coefficient 0.9

TABLE 5 Parameter configurations for DFTF

Parameter Value

Cat size 100

Population size 500

SMP 5

CDC 80%

SRD 20%

TABLE 6 Parameter configurations for ACOFTF

Parameter Value

Initial Pheromone 0.1

Alpha 3

Beta 1

RHO 12

12 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

We adapted the FFT dataset (Mittal et al., 2019) from IEEE Dataport (which is a refined dataset of file fragments of different content types)

and produced classified tasks in CSV format. The format used includes the content type, file size, and length of the task. The customized dataset

can be easily used in any simulation environment. Table 8 shows the refined FFT dataset containing 64,000 records. Moreover, statistics of train-

ing and testing datasets presented in Table 9.

We thoroughly tested our proposed model with 1500 different configurations of iterations (from 10 to 1500) and populations (from 1 to

100) to obtain the best configurations. We calculated the average statistics for each of the 100 configurations and selected the best configuration

among these total configurations. The statistics of the best configurations are shown in Table 10. Using the best selected configurations, we pres-

ented statistics on the makespan in Figure 3, response time in Figure 4, throughput in Figure 5, and fitness value in Figure 6. So, based on these

statistics, we selected the best configuration with 900 iterations and a population of 80. The selected configuration gives the best results in terms

of makespan, response time and throughput. These statistics are shown in Table 10.

4.2 | Experimental analysis

In this section, a simulation-based comparison is made between the proposed model and the two existing models. The existing models are the

following:

1. FTF (Junaid, Sohail, Rais, et al., 2020), which uses a modified version of Cat Swarm Optimization (CSO) along with SVM. First, the proposed

system classifies data in the cloud from different sources into different types, such as text, images, video, and audio, by using one to several

types of SVM classifiers. Then, the data is input to the modified load balancing algorithm CSO, which efficiently distributes the load among

VMs. The proposed approach is divided into two main modules: ‘Data Classification based on SVM’ and ‘Load Balancing using CSO’. The input

TABLE 7 VMs parameters

VMs PEs Ram (GB) Storage (TB) Speed Bandwidth

2–1000 1 4 128 1000 1024

2–1000 2 8 256 1000 1024

2–1000 2 16 512 1000 1024

2–1000 4 32 1024 1000 1024

TABLE 8 Dataset description

Category Size in quantity

Text Files Dataset 16,000

Image Files Dataset 16,000

Audio Files Dataset 16,000

Video Files Dataset 16,000

TABLE 9 Training and test datasets statistics (Adil et al., 2022)

Samples Size in quantity

Training Text File Fragments 15,000

Testing Text File Fragments 1000

Training Image File Fragments 15,000

Testing Image File Fragments 1000

Training Audio File Fragments 15,000

Testing Audio File Fragments 1000

Training Video File Fragments 15,000

Testing Video File Fragments 1000

ADIL ET AL. 13 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

TABLE 10 Iterations and population's best statistics (Adil et al., 2022)

Iterations Particles Makespan Response time Throughput Fitness value

100 100 22.9118 22.8118 21.82328997 10772.2

200 90 22.5813 22.4813 22.14570621 10586.6

300 90 22.4463 22.3463 22.27733907 10626.4

390 85 22.1558 22.0558 22.57119975 10444.6

510 50 22.0992 21.9992 22.62610312 10410.8

570 70 22.0624 21.9624 22.66382433 10398.8

680 60 22.0575 21.9575 22.66885002 10360.4

740 95 21.9373 21.8373 22.7923988 10348.8

900 80 21.5538 21.6538 23.17214887 10038.6

970 90 21.9371 21.8371 22.79375705 10333

1080 85 21.8988 21.7988 22.83272593 10298.2

1180 50 21.9448 21.8448 22.78506394 10311.4

1300 45 21.9357 21.8357 22.79474512 10302.6

1370 90 21.8955 21.7955 22.83684091 10282.8

1440 45 21.879 21.779 22.85469717 10,299

F IGURE 3 Makespan comparison by iterations and population

F IGURE 4 Response time comparison by iterations and population

14 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

to the data classification module is the collection of data in the form of video, text, audio, and images. The classification module takes the input

data randomly and then performs classification on this data using polynomial SVM.

2. The Ant Colony Optimization File Type Format (ACOFTF) hybrid algorithm (Junaid, Sohail, Ahmed, et al., 2020) is based on Ant Colony Optimi-

zation (ACO) and SVM. The proposed model uses the SVM classifier to classify the user's tasks into different types, such as text, images, video,

and audio. Once the user's tasks are classified into appropriate categories, these classified tasks are input to the load balancing phase, which is

based on ACO and efficiently distributes the load among VMs. The proposed approach is divided into two main modules: ‘Data Classification

based on SVM’ and ‘Load Balancing using ACO’. The input to the data classification module is the collection of data in the form of video, text,

audio, and images. The classification module takes the input data randomly and then performs the classification of this data using polyno-

mial SVM.

4.3 | Performance metric

The proposed model is evaluated and compared with the existing load balancing techniques explained in the above section. The QoS performance

metrics such as makespan, response time, and throughput are analysed here.

F IGURE 5 Throughput comparison by iterations and population

F IGURE 6 Fitness value comparison by iterations and population

ADIL ET AL. 15 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1. Makespan:Makespan is the finish time for completing all the tasks using the available resources (please see Equation (3)).

2. Response Time: Response time in cloud computing is the total time it takes to respond to a cloud task requests (see Equation (5)).

3. Throughput: Throughput in cloud load balancing is the number of tasks processed in a unit time (see Equation (6)).

4.4 | Evaluation of analysis

Evaluation of the proposed algorithm is done in two phases; (1) Classification QoS measures and (2) Load balancing QoS measures.

4.4.1 | Classification evaluation

To validate the proposed classification model, accuracy, recall, precision, and F-measure were used as evaluation parameters. The results of the

proposed approach were compared with state-of-the-art content-based planning algorithms such as DTFT (Junaid, Sohail, Rais, et al., 2020),

ACOFTF (Junaid, Sohail, Ahmed, et al., 2020), and Bayes Net (Çi�gşar & Ünal, 2019) (as shown in Table 11). The results of the comparison are

shown in Figure 7. In the result-related figures, the x-axis shows the accuracy, recognition, precision, and f-measure, while the y-axis shows the

value of each classification QoS measure. The classification evaluation shows that CA-MLBS performs better in all classification evaluations.

4.4.2 | Load balancing evaluation

1. Evaluation based on Makespan: We conducted a thorough analysis of CA-MLBS for the makespan metric and compared it to DTFT and

ACOFTF scheduling techniques. Our analysis is based on different configurations of VMs and tasks. We presented the statistics of our analysis

in Table 12. We used the abbreviations Makespan (M), Response Time (RT), and Throughput (T) to make the table more readable. We have

presented the graph of statistics in Figure 8. In the above figure, the x-axis shows the number of tasks and the y-axis shows the makespan

value. In each column, the respective algorithm is indicated. The results show that CA-MLBS optimized makespan up to 15% compared to

ACOFTF and by 29% compared to DFTF.

TABLE 11 Comparison of all classifiers

Measure
CA-
MLBS

ACOFTF (Junaid, Sohail, Ahmed,
et al., 2020)

DTFT (Junaid, Sohail, Rais,
et al., 2020)

Bayes net (Çi�gşar &
Ünal, 2019)

Accuracy 0.988 0.984 0.97 0.82

Recall 0.968 0.959 0.95 0.81

Precision 0.979 0.973 0.96 0.81

F-measure 0.98 0.966 0.97 0.82

F IGURE 7 Classification results for accuracy, recall, precision, and F-measure

16 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

2. Evaluation based on response time: We performed a thorough analysis of the CA-MLBS based on response time and compared it to DTFT

and ACOFTF. The analysis was performed based on different configurations of VMs and tasks. We have presented the statistics of these ana-

lyzes in Table 12 and a comparison graph is presented in Figure 9. In the figure, the number of tasks is shown on the x-axis and the response

time value is shown on the y-axis. In each column, the respective algorithm is indicated. The results show that CA-MLBS optimized the

response time by up to 15% compared to ACOFTF and by up to 29% compared to DFTF.

TABLE 12 Load balancing's QoS measures comparison of all algorithms

CA-MLBS ACOFTF (Junaid, Sohail, Ahmed, et al., 2020) DFTF (Junaid, Sohail, Rais, et al., 2020)

Tasks M RT T M RT T M RT T

500 21.92 21.82 23.81 28.10 28.03 16.05 32.27 32.22 14.97

1000 43.04 42.94 23.23 53.02 52.96 17.44 59.04 58.99 16.33

2000 89.57 89.47 22.33 108.23 108.17 17.12 120.85 120.78 16.13

4000 175.32 175.22 22.82 207.23 207.16 17.88 247.24 247.17 15.80

Note: M is the short-form of makespan in the table. RT is the short-form of response time in the table. T is the short-form of throughput in the table.

F IGURE 9 Response time based results comparison

F IGURE 8 Makespan based results comparison

ADIL ET AL. 17 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3. Evaluation based on throughput: We performed the in-depth analysis of CA-MLBS with a comparison of DTFT and ACOFTF approaches. The

analysis was performed based on different configurations of VMs and tasks. We have presented the statistics of these analyzes in Table 12

and Figure 10. In the aforementioned figure, the x-axis shows the number of tasks and the y-axis shows the throughput value. In each column,

the respective algorithm is shown. These results show that the CA-MLBS approach optimizes throughput by up to 21% compared to ACOFTF

and 44% compared to DFTF.

5 | CONCLUSION AND FUTURE WORK

Load balancing based on the content of cloud tasks in the cloud computing environment can significantly improve workload distribution. Several

studies have been presented that classify cloud tasks based on content types. Some of them use machine learning to improve the balanced distri-

bution of workload across VMs. We proposed a hybrid load balancing model CA-MLBS that provides improved load balancing compared to cur-

rent approaches. Our proposed model is based on two steps: (1) a content-based classification and (2) a load balancing step. The content-based

classification process performs classification of tasks into four classes: Video, Audio, Image, and Text. This reduces the processing overhead for

the load balancer through preprocessing, learning, feature extraction, and classification. After classification, we converted the classified tasks to

comma-separated value format. The classified tasks also have different task lengths and sizes depending on the task type. In the load balancing

step, we input four groups of VMs and classified task collections. Each VM group is dedicated to a specific task type and has different resource

configurations. Our model uses a PSO-based load balancing algorithm to distribute the balanced tasks to the corresponding type of VMs. We con-

ducted a thorough analysis of our model and compared the results of the analysis with state-of-the-art approaches such as DFTF and ACOFTF.

As QoS metrics, we used makespan, response time, and throughput. The results of the comparison show that CA-MLBS improved makespan,

response time, and throughput compared to DFTF and ACOFTF. Moreover, CA-MLBS is an easy-to-use and simplified approach compared to the

existing content type algorithms.

In the future, the proposed approach will be extended by using meta-heuristics such as the genetic algorithm, and QoS parameters such as

energy consumption, overhead time, migration time, and optimization time will also be considered. The proposed approach is based on the

assumption that the input tasks lie within one of the four categories like video, audio, image, or text without overlapping. Moreover, the over-

lapping collections of tasks and multi-objective methodologies will also be considered in the future.

DATA AVAILABILITY STATEMENT

The data is openly available in a public repository, which can be directly accessed by FILE FRAGMENT TYPE (FFT)-75 DATASET. (https://ieee-

dataport.org/open-access/file-fragment-type-fft-75-dataset).

ORCID

Muhammad Aleem https://orcid.org/0000-0001-8342-5757

Vicente Garcia Diaz https://orcid.org/0000-0003-2037-8548

Jerry Chun-Wei Lin https://orcid.org/0000-0001-8768-9709

F IGURE 10 Throughput based results comparison

18 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ieee-dataport.org/open-access/file-fragment-type-fft-75-dataset
https://ieee-dataport.org/open-access/file-fragment-type-fft-75-dataset
https://orcid.org/0000-0001-8342-5757
https://orcid.org/0000-0001-8342-5757
https://orcid.org/0000-0003-2037-8548
https://orcid.org/0000-0003-2037-8548
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0001-8768-9709

REFERENCES

Abrol, P., Guupta, S., & Singh, S. (2020). Nature-inspired metaheuristics in cloud: A review. ICT Systems and Sustainability, 1077, 13–34.
Adhikari, M., & Amgoth, T. (2018). Heuristic-based load-balancing algorithm for IaaS cloud. Future Generation Computer Systems, 81, 156–165.
Adil, M., Nabi, S., & MS, R. A. Z. A. (2022). PSO-CALBA: Particle swarm optimization based content-aware load balancing algorithm in cloud computing

environment. Computing and Informatics.

Agarwal, R., Baghel, N., & Khan, M. A. (2020). Load balancing in cloud computing using mutation based particle swarm optimization. In: 2020 International

Conference on Contemporary Computing and Applications (IC3A) IEEE, pp. 191–195.
Ahmad, M. O., & Khan, R. Z. (2018). Load balancing tools and techniques in cloud computing: A systematic review. Advances in Computer and Computational

Sciences, 554, 181–195.
Amazon EC. (2015). Amazon web services.

Attiya, I., Abd Elaziz, M., & Xiong, S. (2020). Job scheduling in cloud computing using a modified Harris hawks optimization and simulated annealing algo-

rithm. Computational Intelligence and Neuroscience, 2020, 1–17.
AWSACC Services. Using a PostgreSQL database as an AWS DMS source.

Boniface, M., Nasser, B., Papay J, Phillips, S. C., Servin, A., Yang, X., Zlatev, Z., Gogouvitis, S. V., Katsaros, G., Konstanteli, K., Kousiouris, G.,

Menychtas, A., & Kyriazis, D. (2010). Platform-as-a-service architecture for real-time quality of service management in clouds. In: 2010 Fifth Interna-

tional Conference on Internet and Web Applications and Services IEEE, pp. 155–160.
Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50.
Celebi, M. E., & Aydin, K. (2016). Unsupervised learning algorithms. Springer.

Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applica-

tions, challenges and trends. Neurocomputing, 408, 189–215.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.
Chappell, D. (2010). Introducing the windows azure platform. David Chappell & Associates White Paper.

Çi�gşar, B., & Ünal, D. (2019). Comparison of data mining classification algorithms determining the default risk. Scientific Programming, 2019, 1–8.
Cingolani P. (2011). Jswarm-PSO. http://jswarm-pso.sourceforge.net/

Cusumano, M. (2010). Cloud computing and SaaS as new computing platforms. Communications of the ACM, 53(4), 27–29.
Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. L., & Shankar, K. (2020). Hybridization of firefly and improved multi-objective particle swarm

optimization algorithm for energy efficient load balancing in cloud computing environments. Journal of Parallel and Distributed Computing, 142, 36–45.
Fadlallah, S. O., Anderson, T. N., & Nates, R. J. (2021). Artificial neural network–particle swarm optimization (ANN-PSO) approach for behaviour prediction

and structural optimization of lightweight sandwich composite heliostats. Arabian Journal for Science and Engineering, 46(12), 12721–12742.
Hanine, M., & Benlahmar, E. H. (2020). A load-balancing approach using an improved simulated annealing algorithm. Journal of Information Processing Sys-

tems, 16(1), 132–144.
Harris, C. R., Millman, K. J., Walt, V., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van

Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature,

585(7825), 357–362.
Hussain, A., Aleem, M., Khan, A., Iqbal, M. A., & Islam, M. A. (2018). RALBA: A computation-aware load balancing scheduler for cloud computing. Cluster

Computing, 21(3), 1667–1680.
Ibrahim, M., Nabi, S., Baz, A., Alhakami, H., Summair Raza, M., Hussain, A., Salah, K., & Djemame, K. (2020). An in-depth empirical investigation of state-of-

the-art scheduling approaches for cloud computing. IEEE Access, 8, 128282–128294.
Ibrahim, M., Nabi, S., Baz, A., Naveed, N., & Alhakami, H. (2020). Towards a task and resource aware task scheduling in cloud computing: An experimental

comparative evaluation. International Journal of Networked and Distributed Computing, 8(3), 131–138.
Jena, U., Das, P., & Kabat, M. (2022). Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. Journal of King Saud

University-Computer and Information Sciences, 34, 2332–2342.
Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I. A., & Alhakami, H. (2020). A hybrid model for load balancing in cloud using file type formatting. IEEE

Access, 8, 118135–118155.
Junaid, M., Sohail, A., Rais, R. N. B., Ahmed, A., Khalid, O., Khan, I. A., Hussain, S. S., & Ejaz, N. (2020). Modeling an optimized approach for load balancing in

cloud. IEEE Access, 8, 173208–173226.
Kaur, A., & Kaur, B. (2022). Load balancing optimization based on hybrid heuristic-metaheuristic techniques in cloud environment. Journal of King Saud

University-Computer and Information Sciences, 34, 813–824.
Kaur, G. (2020). Framework for resource Management in Cloud Computing. In International conference on information and communication Technology for

Intelligent Systems (pp. 25–32). Springer.
Khorsand, R., Ghobaei-Arani, M., & Ramezanpour, M. (2019). A self-learning fuzzy approach for proactive resource provisioning in cloud environment. Soft-

ware: Practice and Experience, 49(11), 1618–1642.
Kong, L., Mapetu, J. P. B., & Chen, Z. (2020). Heuristic load balancing based zero imbalance mechanism in cloud computing. Journal of Grid Computing,

18(1), 123–148.
Krishnan, S., & Gonzalez, J. L. U. (2015). Building your next big thing with google cloud platform: A guide for developers and enterprise architects. Springer.

Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing technique based on cuckoo search and firefly algorithm in

cloud. Algorithms, 423, 422–432.
Lilhore, U. K., Simaiya, S., Maheshwari, S., Manhar, A., & Kumar, S. (2020). Cloud performance evaluation: Hybrid load balancing model based on modified

particle swarm optimization and improved metaheuristic firefly algorithms. International Journal of Advanced Science and Technology, 29(5), 12315–
12331.

Liu, B. (2011). Supervised learning. In Web data mining (pp. 63–132). Springer.
Majdisova, Z., & Skala, V. (2017). Radial basis function approximations: Comparison and applications. Applied Mathematical Modelling, 51, 728–743.
Megharaj, G., & Kabadi, M. G. (2019). Metaheuristic-based virtual machine task migration technique for load balancing in the cloud. In Integrated intelligent

computing Communication and Security (pp. 435–446). Springer.

ADIL ET AL. 19 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://jswarm-pso

Mirjalili, S., Faris, H., & Aljarah, I. (2020). Introduction to evolutionary machine learning techniques. In Evolutionary machine learning techniques (pp. 1–7).
Springer.

Mishra, K., & Majhi, S. K. (2021). A binary bird swarm optimization based load balancing algorithm for cloud computing environment. Open Computer Sci-

ence, 11(1), 146–160.
Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load balancing in cloud computing: A big picture. Journal of King Saud University-Computer and Information

Sciences, 32(2), 149–158.
Mittal, G., Korus, P., & Memon, N. (2019). File Fragment Type (FFT)—75 Dataset.

Muthsamy, G., & Ravi, C. S. (2020). Task scheduling using artificial bee foraging optimization for load balancing in cloud data centers. Computer Applications

in Engineering Education, 28(4), 769–778.
Muthusamy, G., & Chandran, S. R. (2021). Cluster-based task scheduling using K-means clustering for load balancing in cloud datacenters. Journal of Internet

Technology, 22(1), 121–130.
Nabi, S., Ahmad, M., Ibrahim, M., & Hamam, H. (2022). AdPSO: Adaptive PSO-based task scheduling approach for cloud computing. Sensors, 22(3), 920.

Nabi, S., & Ahmed, M. (2021a). PSO-RDAL: Particle swarm optimization-based resource- and deadline-aware dynamic load balancer for DEADLINE con-

strained cloud tasks. The Journal of Supercomputing, 77, 7476–7508. https://doi.org/10.1007/s11227-021-04062-2
Nabi, S., & Ahmed, M. (2021b). OG-RADL: Overall performance-based resource-aware dynamic load-balancer for deadline constrained cloud tasks. The

Journal of Supercomputing, 77, 1–33.
Nabi, S., Aleem, M., Ahmed, M., Islam, M. A., & Iqbal, M. A. (2022). RADL: A resource and deadline-aware dynamic load-balancer for cloud tasks. The Journal

of Supercomputing, 78, 1–35.
Nabi, S., Ibrahim, M., & Jimenez, J. M. (2021). DRALBA: Dynamic and resource aware load balanced scheduling approach for cloud computing. IEEE Access,

9, 61283–61297.
Naik, K. J. (2020). A dynamic ACO-based elastic load balancer for cloud computing (D-ACOELB). In Data engineering and communication technology (pp. 11–

20). Springer.

Neelima, P., & Reddy, A. R. M. (2020). An efficient load balancing system using adaptive dragonfly algorithm in cloud computing. Cluster Computing, 23(4),

2891–2899.
Phi, N. X., Tin, C. T., Thu, L. N. K., & Hung, T. C. (2018). Proposed load balancing algorithm to reduce response time and processing time on cloud comput-

ing. The International Journal of Computer Networks & Communications, 10(3), 87–98.
Pinho, P. d C A., Nedjah, N., & Macedo, M. d L. (2020). Detection and classification of pulmonary nodules using deep learning and swarm intelligence. Multi-

media Tools and Applications, 79(21), 15437–15465.
Pradhan, A., Bisoy, S. K., & Das, A. (2021). A survey on pso based meta-heuristic scheduling mechanism in cloud computing environment. Journal of King

Saud University-Computer and Information Sciences, 34, 4888–4901.
Rabbani, M., Wang, Y. L., Khoshkangini, R., Jelodar, H., Zhao, R., & Hu, P. (2020). A hybrid machine learning approach for malicious behaviour detection and

recognition in cloud computing. Journal of Network and Computer Applications, 151, 102507.

Rafieyan, E., Khorsand, R., & Ramezanpour, M. (2020). An adaptive scheduling approach based on integrated best-worst and VIKOR for cloud computing.

Computers & Industrial Engineering, 140, 106272.

Rajagopalan, A., Modale, D. R., & Senthilkumar, R. (2020). Optimal scheduling of tasks in cloud computing using hybrid firefly-genetic algorithm. In Advances

in decision sciences, image processing, security and computer vision (pp. 678–687). Springer.
Reddy, Y. P., & Varma, N. M. K. (2020). Review on supervised learning techniques. In Emerging research in data engineering systems and computer communi-

cations (pp. 577–587). Springer.
Saeedi, S., Khorsand, R., Bidgoli, S. G., & Ramezanpour, M. (2020). Improved many-objective particle swarm optimization algorithm for scientific workflow

scheduling in cloud computing. Computers & Industrial Engineering, 147, 106649.

Sahli, H. (2020). An introduction to machine learning. In TORUS 1–toward an open resource using Services: Cloud computing for environmental data (pp. 61–
74). Wiley Online Library.

Semmoud, A., Hakem, M., Benmammar, B., & Charr, J. C. (2020). Load balancing in cloud computing environments based on adaptive starvation threshold.

Concurrency and Computation: Practice and Experience, 32(11), e5652.

Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. In Emerging technology in modelling

and graphics (pp. 99–111). Springer.
Serrano, N., Gallardo, G., & Hernantes, J. (2015). Infrastructure as a service and cloud technologies. IEEE Software, 32(2), 30–36.
Sharma, M., & Garg, R. (2020). HIGA: Harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers. Engineering

Science and Technology, An International Journal, 23(1), 211–224.
Sunyaev, A. (2020). Cloud computing. In Internet computing (pp. 195–236). Springer.
Zheng, Z., Xie, K., He, S., & Deng, J. (2017). A multi-objective optimization scheduling method based on the improved differential evolution algorithm in

cloud computing. In International conference on cloud computing and security (pp. 226–238). Springer.

AUTHOR BIOGRAPHIES

Muhammad Adil is a student of M.S in computer sciences at Virtual University of Pakistan. Her received the Master in Computer Sciences

degree from the Virtual Unversity of Pakistan, in 2007. He currently works as Product Manager at the Aspose Pty Ltd. Aspose is a develop-

ment software company that offers numerous award-winning Cloud APIs.

Dr. Said Nabi is currently serving as an Instructor of IT and Computer Science at the Department of Computer Sciences and Information

Technology, Virtual University of Pakistan Rawalpindi Campus. He has completed his PhD in computer sciences from Capital University of

20 of 21 ADIL ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s11227-021-04062-2

Science and Technology (CUST). He served as Software Engineer and Developer at Esided Solutions (US Based Company) and also worked as

Free Lance Software Developer in PHP and MySQL.

Muhammad Aleem received a Ph.D. degree in computer science from the Leopold-Franzens-University, Innsbruck, Austria in 2012. His

research interests include parallel and distributed computing comprising programming environments, multi-/many-core computing, perfor-

mance analysis, cloud computing, and big-data processing. He is currently working as Full Professor at National University of Computer and

Emerging Sciences, Islamabad, Pakistan.

Vicente Garcia Diaz is an Associate Professor in the Department of Computer Science at the University of Oviedo (Spain). His teaching inter-

ests are primarily in the design and analysis of algorithms and the design of domain-specific languages. His current research interests include

decision support systems, health informatics and eLearning.

Jerry Chun-Wei Lin is a full professor in Western Norway University of Applied Sciences, Norway. His research intersts include big data ana-

lytics, AI/ML/DL, optimization, privacy and security preservation, IoTs and bio-informatics.

How to cite this article: Adil, M., Nabi, S., Aleem, M., Diaz, V. G., & Lin, J. C.-W. (2022). CA-MLBS: content-aware machine learning based

load balancing scheduler in the cloud environment. Expert Systems, e13150. https://doi.org/10.1111/exsy.13150

ADIL ET AL. 21 of 21

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/exsy.13150

	CA-MLBS: content-aware machine learning based load balancing scheduler in the cloud environment
	1 INTRODUCTION
	1.1 Motivation
	1.2 Major contributions

	2 RELATED WORK
	3 PROPOSED CA-MLBS FRAMEWORK
	3.1 CA-MLBS algorithm
	3.1.1 Content-based classification step
	3.1.2 Load balancing step
	Fitness evaluation

	4 PERFORMANCE EVALUATION
	4.1 Experimental setup
	4.2 Experimental analysis
	4.3 Performance metric
	4.4 Evaluation of analysis
	4.4.1 Classification evaluation
	4.4.2 Load balancing evaluation

	5 CONCLUSION AND FUTURE WORK
	DATA AVAILABILITY STATEMENT

	REFERENCES

