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a b s t r a c t 

Background and objectives: The detection and delineation of atherosclerotic plaque are usually manually 

performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject 

to errors and has a large variability between experts, equipment, and datasets. This paper proposes a 

robust end-to-end framework for automatic atherosclerotic plaque detection. 

Methods: The proposed framework is composed of: (1) a semantic segmentation model based on U-Net, 

with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media re- 

gion; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously 

performs a regression to get the average and maximum carotid intima media thickness, and a classifica- 

tion to determine the presence of plaque. 

Results: Our approach improves the state-of-the-art in both co and bulb territories in the REGICOR 

database, with more than 80 0 0 images, while providing predictions in real-time. The correlation coeffi- 

cient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic 

plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison 

with other fully automatic methods for carotid intima media thickness estimation found in the literature. 

Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as 

well as its suitability and efficiency compared to different versions of the framework. 

Conclusions: The proposed end-to-end framework significantly improves the automatic characterization 

of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it 

allows them to evaluate and interpret the model’s results by visual inspection. Furthermore, the proposed 

framework overcomes the limitations of previous research based on ad-hoc post-processing, which could 

lead to overestimations in the case of oblique forms of the carotid artery. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The term atherosclerosis refers to a progressive disease char- 

cterized by the accumulation of lipids and fibrous substances in 

he large arteries [1] . Data from several studies suggest that this 

rocess can begin in early childhood [2] and worsens with age, 
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hile it can eventually lead to reduced blood flow through the 

ffected vessel [3] . On top of that, atherosclerosis affecting the 

arotid artery (CA) is considered to be the main clinical manifesta- 

ion of cardiovascular disease. 

Cardiovascular disease (CVD) is the main cause of death in de- 

eloped countries, and one of the leading causes of disease bur- 

en [4] . For these reasons, it is clinically essential to be able to 

ccurately detect and mark plaque formation, thus allowing the 

rogress of atherosclerosis to be controlled and monitored. Carotid 

ntima-media thickness (CIMT), which estimates the width of the 

wo deepest layers of arterial walls, is the most common sign of 
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therosclerosis development. CIMT and atherosclerotic plaque for- 

ation have also been shown to be a risk factor for stroke [5] ,

oronary artery disease [6] , and myocardial infarction [7] . Mean 

IMT and maximum CIMT are both included in this study for their 

linical interest. Firstly, according to previous studies, mean CIMT 

s associated with CVD risk factors [8] . Secondly, maximum CIMT is 

sed to detect atherosclerotic plaque, which is the common basis 

f CVDs [9] . 

The procedure of detecting early atherosclerotic vascular dis- 

ases —CIMT estimation— through ultrasound imaging is a safe, 

on-invasive, and cost-effective method [9] . Carotid arterial wall 

ssessment may include the common (CCA), internal, or bulb terri- 

ories of the carotid artery. Measurements and monitoring of CIMT, 

therosclerotic carotid plaque, and CA diameter are crucial and 

re regularly evaluated with high-resolution ultrasound images and 

ideos. For the most part, CA delineations are manually performed 

y medical experts, but evidence suggests that they are subject to 

rrors and have significant variability between different experts, 

quipment, and datasets [10] . Consequently, the availability of au- 

omatic methods for a robust and rigorous CIMT measurement and 

laque delineation is highly desirable [11] . 

There is a growing interest in developing and implementing 

omputer vision systems that can be integrated into real clinical 

ractice. The most successful type of model used for computer vi- 

ion tasks to date is convolutional neural networks (CNNs), which 

re made up of multiple layers of convolutional filters that progres- 

ively transform the input to extract some relevant features that 

re ultimately used to solve a learning task. 

In this context, fully convolutional networks (FCNs) have proven 

ffective in semantically segmenting different regions of the CA in 

ltrasound images [12] . More specifically, del Mar et al. [12] pro- 

osed a fully automatic method based on semantic segmentation 

or CIMT estimation and plaque detection. The main drawback of 

his method is that it applies an ad-hoc post-processing procedure 

fter the semantic segmentation step, which needs domain knowl- 

dge and thus limits its generalization ability. 

Our study aims to contribute to this growing area of research 

y exploring fully automatic methods based on semantic segmen- 

ation and CNNs. The objective is to define a robust end-to-end 

ramework, without any prior knowledge and handcrafted algo- 

ithms, to assist medical practitioners in accurately determining 

IMT and detecting plaque through ultrasound imaging. 

.1. Related work 

Among the primary techniques for CIM region delineation we 

an find edge detection [13] , active contours [14] , and snakes [15] .

ore recently, machine learning [16] and deep learning approaches 

12,17–19] have been proposed. 

The interested reader is referred to [20] for an updated review 

tudy in which the methods are classified into three. The first- 

eneration technologies were low-level segmentation approaches 

hat employed traditional image processing techniques based on 

hresholding to get the lumen-intima and media-adventitia bound- 

ries and then measured the mean distance using a caliper-based 

olution. The second generation used contour-based procedures 

hat utilized parametric or geometric curves. Some of them were 

emi-automatic, requiring user interaction for initialization and/or 

orrection of the results. In contrast, fully automatic methods do 

ot require any user interaction, therefore being more scalable and 

eproducible. The third-generation models use artificial intelligence 

echnologies such as machine learning and deep learning. 

Table 1 presents a comparison of different fully automatic 

ethods for CIMT estimation found in recent literature and in- 

ludes some useful information such as the artery territories con- 
2 
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idered, the number of images used for evaluation purposes, and 

he mean CIMT error. 

Molinari et al. [13] proposed an automatic procedure that uses 

dge detection and statistical classification for CA recognition and 

egmentation for IMT measurement. The experimentation, carried 

ut on 365 CCA images, showed that their method underesti- 

ated the IMT values, despite outperforming previous approaches. 

lso focused on CCA territory, Menchón-Lara and Sancho-Gómez 

17] presented a deep learning method based on artificial neural 

etworks and autoencoders to identify CIMT boundaries. The pro- 

osed method was tested on a set of 55 longitudinal ultrasound 

mages of CCA. 

More recently, Ikeda et al. [21] proposed an automatic method 

ased on carotid geometry and pixel classification to locate the 

ulb edges and used them for IMT measurement. The method was 

valuated on 649 images with different types of plaque and image 

esolutions, achieving a coefficient of correlation of 0.998. 

On the other hand, Qian and Yang [16] proposed a model that 

ntegrates random forest and an auto-context model for pixel-wise 

lassification, reporting a dice similarity coefficient of 0.81 in only 

9 ultrasound images. 

Biswas et al. [18] presented a two-stage deep learning system 

omposed of a convolution layer-based encoder for feature extrac- 

ion and a fully convolutional network-based decoder for image 

egmentation. Further work by Biswas et al. [19] includes a seg- 

entation procedure on image patches previously classified. 

For their part, del Mar et al. [12] proposed a single-step ap- 

roach for automatic CA image interpretation, able to be trained 

n both CCA and bulb territories. This method was composed of 

 semantic segmentation model and an ad-hoc post-processing 

odule for CIMT estimation. It was tested on REGICOR database 

8] , which is composed of more than 80 0 0 images. Their results

each a correlation coefficient of 0.81 in CIMT estimation, and 

 CIMT mean error of 0.02 and 0.06mm in CCA and bulb im- 

ges, respectively. Performing a segmentation of the ultrasound 

mage before CIMT estimation showed promising results. However, 

he ad-hoc post-processing applied to the segmentation mask, 

hich includes predefined morphological operations and crop- 

ing off part of the image, may limit the robustness of the 

roposal. 

Focusing on automatic estimation but with less amount of data, 

ian et al. [22] used a deep Q-network to adjust 15 points to 

he near-wall, far-wall, and intima-lumen interface, to later adjust 

oly-lines. In addition, in the reward calculation step, they incor- 

orated anatomical priors related to straightness and parallelism, 

ncreasing the performance but limiting the model’s ability to de- 

ect clinically significant outliers. 

Finally, it is worth noting that some of these studies 

12,13] compute CIMT by dividing the CIM segmentation mask into 

ertical regions, which could lead to over-estimations in case of 

blique forms of the CA [23] . 

.2. Contributions 

In this paper, we present an end-to-end framework for CIMT es- 

imation and atherosclerotic plaque detection. The proposed frame- 

ork is, in fact, a fully automatic system comprised of two mod- 

les: (1) a FCN for semantic segmentation and (2) a CNN for classi- 

cation and regression. The segmentation model is composed of a 

ight architecture with a pre-trained feature extractor as its back- 

one and aggressive data augmentation. The CNN takes as input 

oth the original image and the mask provided by the segmenta- 

ion module and generates a prediction of the average CIMT, the 

aximum CIMT, and the presence of atherosclerotic plaque. 

The main contributions of this research are the following: 
3 
1. An end-to-end framework composed of two modules: (1) a se- 

mantic segmentation model, based on U-Net with EfficientNet 

as the backbone, achieving state-of-the-art results in CCA and 

bulb territories; and (2) a regression and classification model, 

based on a CNN designed using Bayesian optimization, capa- 

ble of making real-time predictions of the maximum and aver- 

age CIMT and the presence of atherosclerotic plaque in CCA and 

bulb territories. 

2. An evaluation of the robustness of the proposed framework 

as well as its suitability and efficiency compared to different 

versions of it. In particular, a comparative study showing that 

training a model with a joint feature extractor for CIMT and 

plaque values can lead to better results than using three inde- 

pendent models. 

3. A comparison with other fully automatic methods for CIMT es- 

timation found in the literature, including a detailed compar- 

ison with a previous state-of-the-art approach using REGICOR 

database, with more than 80 0 0 images corresponding to CCA 

and bulb territories. 

The rest of the paper is structured as follows. Section 2 de- 

ails the proposed end-to-end framework for CIMT estimation and 

laque detection. Section 3 introduces the datasets used for evalu- 

tion purposes and the design of the experiments performed, fol- 

owed by the results achieved. Finally, Section 4 closes the paper 

ith the conclusions and future challenges. 

. Methodology 

We propose a fully automatic framework that predicts both 

aximum and average CIMT, and the presence of atherosclerotic 

laque without any domain knowledge or metadata from the im- 

ge. Fig. 1 depicts the architecture of the proposed framework, 

hich is comprised of a semantic segmentation network followed 

y a CNN that performs classification and regression tasks. A sin- 

le CNN is used to simultaneously predict three target values, as- 

uming this could lead to a better feature extractor and better per- 

ormance on the plaque detection problem (see Section 3.4.3 for 

he validation of this assumption). The input size is 445x470 pix- 

ls, which corresponds to the original resolution of the REGICOR 

atabase. The two modules of the framework are subsequently de- 

cribed in depth. 

.1. Semantic segmentation 

Carotid artery semantic segmentation consists of classifying 

ach pixel of the input ultrasound image as one of lumen, far wall, 

ear wall, CIM, bulb, and CIM-bulb region. Fig. 2 shows an ex- 

mple for each territory, with a legend that details the segmen- 

ation labels. The semantic segmentation changes the representa- 

ion of the image into something more meaningful and easy to 

nalyze. 

A U-Net [24] was used to perform the carotid artery se- 

antic segmentation. U-Net is an asymmetrical segmentation 

etwork that presents skip connections between down-sampling 

nd up-sampling paths to improve the quality of the segmenta- 

ion mask by providing local information to the encoded global 

nformation in the up-sampling process. The network is com- 

osed of three parts: the down-sampling, bottleneck, and up- 

ampling. Down-sampling is consists of four blocks containing 

 × 3 convolutional layers with batch normalization [25] fol- 

owed by 2 × 2 max-pooling layers. At the end of each block, 

 skip connection is sent to the symmetric up-sampling mod- 

le. The bottleneck is built from two convolutional layers with 

atch normalization and dropout [26] to reduce the overfit- 

ing. The up-sampling path also consists of four blocks, made 
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Fig. 1. (a) The proposed end-to-end framework composed of two modules: (b) the semantic segmentation model, and (c) the classification and regression CNN model 

architecture defined by Bayesian optimization. 
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fi

p of transposed convolutions with stride 2, a concatena- 

ion with the corresponding feature map from down-sampling 

skip connection), and 3 × 3 convolutional layers with batch 

ormalization. 

In our proposed architecture, we use EfficientNet B0 [27] as a 

ightweight feature extractor, pre-trained on ImageNet [28] . In par- 

icular, we replaced the down-sampling component of the U-Net 

ith a pre-trained EfficientNet B0, while the bottleneck and up- 

ampling maintain the original U-Net architecture. Skip connec- 

ions are sent from the first, second, third, and fifth blocks of Effi- 
4 
ientNet B0, while the output is connected to the bottleneck part 

f U-Net. 

The EfficientNet family of networks was generated using neu- 

al architecture search and has been proven capable of achieving 

igh accuracy despite being much smaller and faster than previous 

odels. EfficientNet B0 is the smallest architecture of the ones pro- 

osed, achieving 93.5% top-5 accuracy on the ImageNet validation 

et with only 5.3 million parameters. The EfficientNet networks are 

omposed of different combinations of the sub-blocks from one to 

ve, defined in Fig. 1 (a). 
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Fig. 2. (a) Two ultrasound images, and (b) their corresponding segmentation masks 

from the ground truth. The top row corresponds to the CCA territory (six labels), 

whilst the bottom one corresponds to the bulb (four labels). 
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Light architectures such as EfficientNet B0 helps to avoid over- 

tting and reduce training times. Moreover, data augmentation 

echniques are useful to prevent the overfitting caused by training 

odels with a low number of samples. For this reason, we applied 

everal data augmentation techniques, including scale transforma- 

ions, elastic transformations, perspective transformations, affine 

ransformations, JPEG compression, speckle noise, motion blur, 

ariation of hue and saturation, histogram equalization, cropping, 

nd padding. The motivation behind the design of the data aug- 

entation pipeline was to improve the generalization capacity of 

he system and make it more robust to ultrasound imaging arti- 

acts like speckle [29] . 

Regarding the loss function of the semantic segmentation net- 

ork, we defined a custom loss (Loss) composed of the Dice coef- 

cient (DC) and the focal loss (FL) [30] , defined as follows: 

oss = DC + FL (1) 

C = 

2 TP 

2 TP + FP + FN 

(2) 

L ( p t ) = −αt ( 1 − p t ) 
γ log ( p t ) (3) 

p t = 

{
p if y = 1 

1 − p otherwise 
(4) 

here TP, FP, and FN stand for true positives, false positives, and 

alse negatives, respectively; p ∈ [0 , 1] is the models estimated 

robability for the class with label y , p t is defined for notational 

onvenience, α is a weighting factor, and γ is the focusing param- 

ter Notice that the focal loss component has been proven useful 

n segmentation problems with under-represented classes [30] , as 

s our case with the CIM region class significantly less represented 

han the other classes. 

.2. CIMT estimation and plaque detection 

We propose a regression and classification CNN model to pre- 

ict average and maximum CIMT values as well as the presence 

f plaque in ultrasound images. Previous research relies on ad-hoc 
5 
ost-processing of the segmentation results [12] , limiting the abil- 

ty of the system to generalize. Keeping that in mind, our moti- 

ation is to eliminate any prior knowledge and handcrafted algo- 

ithms from the pipeline, making it fully automatic and able to 

erform well without depending on the origin, scale, or quality of 

he input data. The combination between the semantic segmenta- 

ion model and CNN for CIMT estimation and plaque detection (see 

ig. 1 ) allows us to have an end-to-end fully automatic framework 

hat can be trained without any domain-specific knowledge given 

agged examples. 

The CNN input is the concatenation of the original image and 

he segmentation mask provided by the segmentation model pre- 

iously applied, with the idea of maximizing the information avail- 

ble to the model when predicting the presence of atheroscle- 

otic plaque. Regarding the CNN architecture, it was tuned using a 

ayesian optimization [31] given some design constraints. The sys- 

em selects a variable number of convolutional layers followed by 

 max-pooling operation. Then, the last layer is flattened and the 

ptimization selects a series of configurable dense layers followed 

y batch normalization and dropout, with a rate of 25%. At this 

oint, the network is divided into three branches to predict one 

arget value per branch (average CIMT, maximum CIMT, plaque de- 

ection), made up of a variable number of blocks of dense layers 

ollowed by dropout (see Fig. 1 c). 

The activation function used for average and maximum CIMT 

stimation is the rectified linear unit (ReLU) [32] , and the sigmoid 

or plaque detection. As for the loss functions, we used the mean 

quared error (MSE) for average and maximum CIMT and binary 

ross-entropy (BCE) for plaque detection, defined as: 

SE = 

∑ n 
i =1 

(
ˆ y i − y i 

)2 

n 

(5) 

BCE = −1 

n 

n ∑ 

i =1 

y i · log ̂  y i + ( 1 − y i ) · log 
(
1 − ˆ y i 

)
(6) 

here y i is the truth value, and ˆ y i is the predicted value. 

. Experimental study 

This section introduces datasets used for evaluation purposes 

nd implementation details of the proposed framework. Moreover, 

xperiments carried out and the results achieved are presented 

nd discussed, including a comparison with the state-of-the-art in 

EGICOR dataset. 

.1. Datasets 

The proposed framework was evaluated on the REGICOR 

atabase, one of the largest image collections available for the 

roblem at hand [12] . REGICOR consists of a sample of 2379 sub- 

ects from Girona’s Heart Registry [8] . Images were collected from 

007 to 2010, and the subjects represent general population aged 

5 to 84. Two trained sonographers performed the CA ultrasound 

US) scans with an Acuson XP128 US system equipped with an 

75-10 MHz transducer and a computer program extended fre- 

uency (Siemens-Acuson). US longitudinal images were obtained 

n B-mode with a resolution of 23.5 pixels/mm. Original images 

ere saved in DICOM format and then converted to PNG. The set 

f images collected for each patient was obtained from left and 

ight CA in two different territories (CCA and bulb), resulting in a 

otal of 8448 images (4727 CCA images, and 3721 bulb images). 

IMT reference values, given by the Amsterdam Medical Center, 

ere used as the ground-truth (GT) for CIMT estimation. Regard- 

ng the GT for plaque detection, it was obtained using the provided 

IMT reference values and applying the Mannheim consensus [9] . 
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Table 2 

Summary of the different datasets of US images used in this research. 

Dataset Territory Information available No. images Images with plaque 

REGICOR CCA-Seg CCA Manually segmented masks 159 50 (31.47%) 

REGICOR Bulb-Seg Bulb Manually segmented masks 172 68 (39.53%) 

REGICOR CCA CCA Avg. and max. CIMT and plaque 4727 50 (1.06%) 

REGICOR Bulb Bulb Avg. and max. CIMT and plaque 3721 262 (7.04%) 
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urthermore, images containing plaque were finally supervised by 

n expert. 

Besides the GT for CIMT estimation and plaque detection, a seg- 

entation GT was defined for a subset of REGICOR images [12] . In 

rder to obtain it, an expert manually delineated and labeled dif- 

erent regions of original images, using six labels for CCA and four 

or the bulb (see Fig. 2 ). Only a representative subset of REGICOR 

mages was labeled, including 159 CCA images (50 with plaque and 

09 without plaque), and 172 bulb images (68 with plaque and 

04 without). These labeled subsets will be referred to as REGICOR 

CA-Seg and REGICOR Bulb-Seg from now on, respectively. Table 2 

resents a summary of the datasets and their main characteristics. 

.2. Implementation details 

Our proposed framework is implemented on Tensorflow [33] , 

nd the code will be publicly available after paper acceptance 2 . It 

s made up of two modules, the semantic segmentation model and 

he regression and classification CNN, the implementation of which 

s given below. 

.2.1. Semantic segmentation model 

For the semantic segmentation module, we used a U-Net net- 

ork with EfficientNet pre-trained on ImageNet as the backbone 

see Section 2.1 ). The model is composed of 10.1 million parame- 

ers and was trained to segment all available classes, even though 

e are mainly interested in CIMT region. The reason is that models 

chieve better performance in CIMT class after being trained with 

ll the classes, as demonstrated in [12] . For the custom loss, the 

eighting factor α was set to 0.25 and the focusing parameter γ
o 2.0. Aggressive data augmentation was performed, ensuring that 

he image scale is not altered or no transformation is performed 

hat could lead to information loss. 

We used Adam [34] as the optimizer, a gradient descent 

ethod that is based on adaptive estimation of first-order and 

econd-order moments. The parameters β1 and β2 , representing 

he exponential decay rate for the first and second-moment esti- 

ates, were set to 0.9 and 0.999, respectively. 

Note that early stopping was used with a patience of 20, and 

he learning rate was reduced on plateau with a patience of 10 

nd a factor of 0.1. The initial learning rate was 1e −4 . The models

ere trained with full resolution images and a batch size of 4. 

.2.2. Regression and classification CNN 

The regression and classification CNN model defined in 

ection 2.2 takes the mask predicted by the segmentation network 

nd the original image as input and uses them to predict three 

utputs per image: average CIMT, maximum CIMT, and plaque. No- 

ice that the three outputs share the feature extraction part of 

he CNN, which was designed using a Bayesian optimization tuned 

ith a Gaussian process trained on REGICOR CCA dataset. The mo- 

ivation here is that adding more information could lead to an im- 

rovement in performance, offsetting the additional calculation. 

In this case, we also used Adam as the optimizer, with β1 = 0 . 9

nd β2 = 0 . 999 . The loss for the CNN was weighted, focusing more
2 https://github.com/gagolucasm/DL _ CIMT _ and _ plaque _ estimation 
A

6 
n the average and maximum CIMT outputs. This was motivated by 

he convergence problems for plaque prediction in REGICOR CCA 

ataset due to the class imbalance. Weights were set to 0.4 for 

verage and maximum CIMT outputs, and 0.2 for plaque. In the 

laque classification problem, classes were not weighted because, 

n our preliminary experiments, the results did not improve. 

Early stopping was used with a patience of 50, and the learning 

ate was reduced on plateau with a patience of 15 and a factor of 

.1. Initial learning rate was 1e −3 . The models were trained with 

ull resolution images and a batch size of 16. It should be noted 

hat mixed-precision was used to accelerate the training process 

nd reduce the memory footprint. 

.3. Performance measures 

For the evaluation of the semantic segmentation module, we 

omputed a standard metric in this type of problem: the intersec- 

ion over union (IoU). This metric measures the number of pixels 

n common between the target and prediction segmentation masks 

ivided by the total number of pixels present across both masks: 

oU = 

target ∩ prediction 

target ∪ prediction 

(7) 

Precision and sensitivity were also used as performance met- 

ics: 

ensitivity = 

TP 

TP + FN 

(8) 

recision = 

TP 

TP + FP 

(9) 

here TP, FP, and FN stand for true positives, false positives, and 

alse negatives, respectively. Notice that, for evaluation purposes, 

he CIM region is considered positive and the background (i.e., the 

ombination of all other classes) negative, since the CIM region is 

ur main focus. 

To evaluate the performance of the method in predicting CIMT, 

e used the Pearson correlation coefficient (CC), the mean abso- 

ute error (MAE), and the mean squared error (MSE). Pearson cor- 

elation coefficient is defined as: 

C X,Y = 

cov (X, Y ) 

σX σY 

(10) 

here X and Y are a pair of random variables, cov is the covari- 

nce, and σX and σY are standard deviations of X and Y , respec- 

ively. 

The MAE is defined as follows: 

AE = 

∑ n 
i =1 

∣∣ ˆ y i − y i 
∣∣

n 

(11) 

here y i is the truth value and ˆ y i is the prediction. See Eq. (5) for

he definition of the MSE. 

For the plaque classification task, in addition to the sensitivity 

efined in Eq. (8) , we also computed the accuracy, specificity, and 

1 Score: 

ccuracy = 

TP + TN 

TP + TN + FP + FN 

(12) 

https://github.com/gagolucasm/DL_CIMT_and_plaque_estimation
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Table 3 

Summary of the experiments designed for evaluation purposes. 

Experiments Datasets Train split Performance metrics 

1) Evaluation the of semantic segmentation module REGICOR CCA-Seg 90% train DICE, IoU, Precision, Sensitivity 

REGICOR Bulb-Seg 10% test 

REGICOR CCA 100% test Accuracy, Sensitivity, Specificity, F1 Score 

REGICOR Bulb 

2) Evaluation of the impact of input data in the regression and classification CNN REGICOR CCA 60% train MAE, MSE, CC, Accuracy, Sensitivity, 

REGICOR Bulb 20% val Specificity, F1 Score 

20% test 

3) Evaluation of one versus three CNNs for plaque detection REGICOR CCA 60% train Accuracy, Sensitivity, Specificity, F1 Score 

REGICOR Bulb 20% val 

20% test 
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pecificity = 

TN 

TN + FP 

(13) 

1 Score = 

T P 

T P + 

1 
2 
(F P + F N)) 

(14) 

ote that, for these measures, the presence of plaque is considered 

ositive and its absence, negative. 

.4. Experimental results 

Three experiments were defined to evaluate the robustness of 

he proposed end-to-end network. 

• Experiment 1: Evaluation of the semantic segmentation mod- 

ule. The objective is to measure the performance of the pro- 

posed module to segment different regions of CA and to ana- 

lyze its suitability for plaque detection in comparison with pre- 

vious research. 
• Experiment 2: Evaluation of the impact of input data in the 

regression and classification CNN. The objective is to analyze 

whether the additional information and computation of the se- 

mantic segmentation model are necessary, and the combined 

use of the predicted segmentation mask and the original image 

as input data. 
• Experiment 3: Evaluation of one versus three CNNs for plaque 

detection. The objective is to gain insight into its effect on 

the overall performance of training a single model or three in- 

dependent models to predict the three target values (average 

CIMT, maximum CIMT, and plaque). 

Table 3 summarizes the three experiments carried out, includ- 

ng datasets and performance measures used. Note that all the 

odels were trained with an NVIDIA GeForce RTX 2080ti 11GB 

PU, and the code to reproduce all the experiments will be pub- 

icly available with the implementation of the framework (see 

ection 3.2 ). 

.4.1. Experiment 1: Evaluation of the semantic segmentation module 

Experiment 1 was divided into two parts: (1) a quantitative 

nd qualitative analysis of the segmentation results on the two 

atabases considered (REGICOR CCA-Seg and Bulb-Seg), and (2) a 

omparison of results for CIMT estimation and plaque detection on 

EGICOR CCA and Bulb full datasets using the post-processing pro- 

osed in [12] . 

Table 4 shows the results obtained with the two methods, the 

egmentation network used in [12] and our segmentation mod- 

le, on both datasets (REGICOR CCA-Seg and Bulb-Seg). As can be 

bserved, our model outperforms the one proposed by del Mar 

t al. [12] , regardless of the metric considered. More specifically, 

ur model performs better on the CCA-Seg dataset, but there is 

 more significant improvement over previous results on the Bulb- 

eg dataset. In this sense, it is worth mentioning that image quality 
7 
n the bulb region is lower, with poorer contrast and more affected 

y noise. 

Figure 3 depicts some representative examples of predictions 

btained with the two methods, for a qualitative comparison. As 

an be seen, our proposal shows better region connectivity and 

oes not generate erroneous isolated regions. Prediction time is 

.026 seconds, an order of magnitude faster than [12] (0.79s) due 

o the smaller network size. Note that time per frame was mea- 

ured using a GeForce Titan X (Pascal) 12GB GPU from NVIDIA in 

12] , while we used a GeForce RTX 2080ti 11GB GPU also from 

VIDIA. 

Semantic segmentation models provide a segmentation mask 

ategorizing each pixel into a class. Based on this information, del 

ar et al. [12] proposed an ad-hoc post-processing procedure for 

IMT estimation. In this experiment, we applied the same pro- 

edure to the results obtained with our semantic segmentation 

odel to measure their impact on plaque detection. The post- 

rocessing procedure is based on morphological operators and 

rior domain knowledge and is detailed in [12] . 

Table 5 shows the results for plaque detection compared with 

he most competitive ones reported so far for REGICOR datasets 

12] . Its important to mention that the class plaque is underrepre- 

ented in both datasets, with 1.06% of total images in REGICOR CCA 

nd 7.04% in REGICOR Bulb. As can be seen, the results obtained 

ith the proposed method are consistently better than those ob- 

ained in [12] regardless of the metric applied, thus confirming the 

uperior performance of our proposal not only in terms of segmen- 

ation but also in plaque detection. 

.4.2. Experiment 2: Evaluation of the impact of input data in the 

egression and classification CNN 

For the second experiment, we conducted an ablation study in 

hich we eliminate the segmentation module from our input to 

etermine the contribution of the component to the overall sys- 

em. The regression and classification CNN was fed with different 

nput data: (1) only the original image, (2) only the predicted seg- 

entation mask, or (3) the concatenation of both (our proposal). 

chieving similar results with only the original image as input data 

ould mean that we could further reduce the complexity of the 

ystem, with the disadvantage of decreasing the interpretability of 

he model. 

Table 6 shows the results obtained in this experiment for max- 

mum and average CIMT values. Here, we can appreciate a clear 

mprovement over previous work [12] in every metric and for 

oth datasets, all with a p-value of < 0 . 001 . Using both the orig-

nal image and the segmentation mask, our proposal, translates 

nto a consistent improvement of results with respect to CNN 

ersions from segmentation mask only and from original image 

nly. Table 6 contains information about the mean average error 

MAE), mean squared error (MSE), and correlation coefficient (CC) 

or the maximum and average CIMT prediction. This model per- 

orms significantly better in CCA than in bulb, where the qual- 
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Table 4 

Results for semantic segmentation on REGICOR CCA-Seg and Bulb-Seg test sets. Only the 

CIMT region and background are considered. The best results per dataset are marked in 

bold face. 

Dataset Method IoU Dice Precision Sensitivity 

REGICOR 

CCA-Seg 

del Mar et al. [12] seg. 0.7121 0.8299 0.8217 0.8530 

Our seg. proposal 0.8712 0.9959 0.9976 0.9942 

REGICOR 

Bulb-Seg 

del Mar et al. [12] seg. 0.5711 0.6945 0.6930 0.7313 

Our seg. proposal 0.9273 0.9694 0.9741 0.9721 

Fig. 3. Qualitative results: (a) Four original images, (b) the ground truth, (c) the segmentation results obtained in [12] , and (d) the segmentation results achieved with our 

proposed method. The first two rows correspond to the REGICOR CCA-Seg, whilst the last two are from REGICOR Bulb-Seg. 

Table 5 

Results for plaque detection on REGICOR CCA and Bulb full datasets using the post-processing proposed in [12] . The 

best results per dataset are marked in bold face. 

Dataset Method Plaques/total images Accuracy Sensitivity Specificity F1 Score 

REGICOR 

CCA 

del Mar et al. [12] seg. 50/4727 0.9645 0.8000 0.9663 0.3226 

Our seg. proposal 50/4727 0.9725 0.8800 0.9735 0.4037 

REGICOR 

Bulb 

del Mar et al. [12] seg. 262/3721 0.7809 0.7832 0.7500 0.3262 

Our seg. proposal 262/3721 0.8126 0.9014 0.8054 0.4197 

i

i

i

f

o

C

i

e

r

s

ty of the segmentation is lower. In CCA, it obtains best results 

n every measured metric, showing a clear use of the additional 

nformation provided in the input. In REGICOR Bulb, the CNN 

rom segmentation mask performs best at the maximum estimate 

f CIMT, while our proposal outperforms in predicting average 
IMT. p

8 
Results obtained when applying the post-processing presented 

n [12] to our segmentation masks (Experiment 1) can be consid- 

red a more demanding baseline and are still lower on each met- 

ic, indicating that the performance increase cannot be explained 

olely by new segmentations. There seems to be a positive im- 

act from using a CNN for regression and classification. It is worth 
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Table 6 

Results for maximum and average CIMT on REGICOR CCA and Bulb tests sets. The best results per dataset are marked in bold face. 

Maximum CIMT Average CIMT 

Dataset Exp. Input data Method MAE (mm) MSE ( mm 

2 ) CC MAE (mm) MSE ( mm 

2 ) CC 

REGICOR 

CCA 

(test 

set) 

- Seg. mask [12] del Mar et al. [12] post-processing 0.1539 0.0633 0.6213 0.0906 0.0170 0.8006 

1 Our seg. mask Vila et al. [12] post-processing 0.1330 0.0477 0.6960 0.0824 0.0159 0.8312 

2 Our seg. mask One single CNN 0.0921 0.0164 0.8367 0.0665 0.0089 0.8820 

2 Original image One single CNN 0.1105 0.0266 0.6896 0.0818 0.0162 0.7519 

2 Orig. image + Our seg. mask One single CNN 

∗ 0.0896 0.0148 0.8431 0.0659 0.0082 0.8870 

REGICOR 

Bulb 

(test 

set) 

- Seg. mask [12] del Mar et al. [12] post-processing 0.4460 0.4252 0.2673 0.1936 0.0806 0.3899 

1 Our seg. mask Vila et al. [12] post-processing 0.3700 0.2833 0.5071 0.1901 0.0650 0.6111 

2 Our seg. mask One single CNN 0.1646 0.0589 0.7225 0.1328 0.0335 0.7279 

2 Original image One single CNN 0.2267 0.1038 0.4048 0.1781 0.0568 0.4056 

2 Orig. image + Our seg. mask One single CNN 

∗ 0.1669 0.0595 0.7228 0.1311 0.0321 0.7362 

∗ Our proposal 

Table 7 

Results for atherosclerotic plaque detection on REGICOR CCA and Bulb test sets. The best results per dataset are marked in bold face. 

Dataset Exp. Input data Method Accuracy Sensitivity Specificity F1 Score 

REGICOR 

CCA 

(test 

set) 

- Seg. mask [12] del Mar et al. [12] post-processing 0.9651 0.8571 0.9659 0.2667 

1 Our seg. mask Vila et al. [12] post-processing 0.9725 0.8571 0.9733 0.3158 

2 Our seg. mask One single CNN 0.9926 0.5714 0.9957 0.5333 

2 Original image One single CNN 0.9884 0.0000 0.9957 0.0000 

2 Orig. image + Our seg. mask One single CNN 

∗ 0.9915 0.8571 0.9925 0.6000 

3 Our seg. mask Three CNNs (only plaque output) 0.9947 0.5714 0.9979 0.6000 

3 Original image Three CNNs (only plaque output) 0.9926 0.0000 1.0000 0.0000 

3 Orig. image + Our seg. mask Three CNNs (only plaque output) 0.9905 0.5714 0.9936 0.4706 

REGICOR 

Bulb 

(test 

set) 

- Seg. mask [12] del Mar et al. [12] post-processing 0.7903 0.7551 0.7928 0.3217 

1 Our seg. mask Vila et al. [12] post-processing 0.8427 0.9184 0.8374 0.4348 

2 Our seg. mask One single CNN 0.9476 0.4898 0.9799 0.5517 

2 Original image One single CNN 0.9301 0.2245 0.9799 0.2973 

2 Orig. image + Our seg. mask One single CNN 

∗ 0.9516 0.5306 0.9813 0.5909 

3 Our seg. mask Three CNNs (only plaque output) 0.9422 0.3673 0.9827 0.4557 

3 Original image Three CNNs (only plaque output) 0.9368 0.0408 1.0000 0.0784 

3 Orig. image + Our seg. mask Three CNNs (only plaque output) 0.9341 0.0000 1.0000 0.0000 

∗ Our proposal 
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oting that CNN architecture was optimized for REGICOR CCA, and 

his could show penalizing results in REGICOR Bulb. 

Table 7 shows the results for plaque classification in the test 

et for all the experiments. Our proposal performs significantly 

etter on REGICOR Bulb, achieving an F1 score of 0.5909, indi- 

ating a balance between sensitivity and precision not exhibited 

y other experiments. On REGICOR CCA, it keeps the sensitivity 

evel of both the Vila et al. [12] proposal and [12] post-processing 

pplied to our segmentation masks, but with a significant in- 

rease in precision, reflected in the F1 score of 0.60 0 0, up from 

.2667 and 0.3158 from these previous experiments. Using only 

he original image as input results in a very low sensitivity in the 

laque prediction problem, meaning that the system cannot cor- 

ectly predict images with high CIMT values, underestimating the 

laque prediction. Using the segmentation mask as the only input 

chieves a lower performance than our proposal, which indicates 

hat the additional information provided by the concatenation of 

he original image and segmentation mask has a positive impact 

n the plaque detection problem. In REGICOR CCA, while the F1 

core is 0.60 0 0 using only the segmentation mask and using the 

oncatenation of the segmentation mask and the original image, 

he sensitivity of the latter is higher, which is 0.8571 compared 

o 0.5714. 

Figure 4 includes a representation of Bland-Altman and scatter 

lots for the results of our proposal on the test sets of both REGI- 

OR CCA and REGICOR Bulb. The model performs well in REGICOR 

CA, with a mean error of -0.02mm. The variability seems to be 

onsistent without any appreciable trend between CIMT values of 

.7 and 0.9mm. Predictions of average CIMT in images with values 

etween 0.45 and 0.7mm are invariably near 0.55mm, indicating 

he model has difficulties in analyzing cases in this range. As for 
a

9 
EGICOR Bulb, there is a trend towards underestimating CIMT as 

t gets higher, showing difficulties in the prediction of outliers. The 

ean error is -0.04mm, indicating a slight underestimation. 

The average processing time of this CNN block is 0.014 seconds, 

dding to 0.040 seconds if the segmentation step is considered; 

hat is, the processing time is almost 20 times faster than in the 

revious work [12] . 

.4.3. Experiment 3: Evaluation of one versus three CNNs for plaque 

etection 

We conducted a final experiment to assess whether using three 

NN models, one for each target value, offers an advantage over 

 single CNN for the three target values (our proposal). CNN ar- 

hitectures used for this experiment are the same as we used in 

ur proposal, except having one output line instead of three (see 

ig. 5 ). As for the training settings, they are the same as in Exper-

ment 2. 

Table 7 reports the results obtained from plaque classification 

sing three independent CNNs, denoted as “only plaque output”. 

esults suggest that our proposal provides better results than using 

hree individual CNNs. On REGICOR CCA, the models trained only 

n plaque and only to predict the maximum CIMT cannot clas- 

ify any image in the plaque category, whereas if they are trained 

ogether, they can. The same situation occurs in REGICOR Bulb 

ataset: the results of our model with multiple outputs and one 

eature extractor are better for plaque detection than using three 

ndependent CNNs. The impossibility of detecting the presence of 

therosclerotic plaque with this architecture, as well as the need to 

rain and predict three independent models, make this solution a 

oor option for the problem at hand, thus demonstrating the suit- 

bility of our proposed end-to-end framework. 
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Fig. 4. Results of average CIMT predictions obtained with our proposal (Experiment 3). (a) Correlation between average CIMT values, and (b) BlandAltman analysis for the 

predicted average CIMT values. Note that the top row corresponds to the REGICOR CCA dataset, whilst the bottom row is for REGICOR Bulb. 
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. Conclusions and future work 

The intima-media thickness and the presence of atherosclerotic 

laque in the carotid artery are the most common signs of cardio- 

ascular disease development. In this context, we present an end- 

o-end framework to predict average CIMT, maximum CIMT, and 

resence of plaque on ultrasound images of two different carotid 

rtery territories (CCA and bulb). Our approach is composed of a 

emantic segmentation module to anatomically segment the input 

mage, followed by a CNN for regression and classification of three 

arget values (average CIMT, maximum CIMT, and plaque) fed with 

he original image and the predicted segmentation mask. This ap- 

roach can be useful for practitioners since it allows them to eval- 

ate and interpret the results of the model by visually inspecting 

he predicted segmentation masks. Moreover, the method is able to 

stimate CIMT in a fast and useful manner for large image datasets 

nd enables us to eliminate the inter-observer variability usually 

ssociated with manual CIMT estimation. The proposed framework 

chieves state-of-the-art results in REGICOR database and reduces 
10 
rediction time from 0.79 to 0.04 seconds per image, with a pro- 

essing speed of 25 frames per second. We compared the semantic 

egmentation model with previous work, qualitatively and quan- 

itatively, demonstrating more accurate results. Moreover, our ex- 

eriments also confirm the improvement in terms of CIMT predic- 

ion and atherosclerotic plaque detection on 8290 images. Further- 

ore, the proposed framework overcomes the limitations of previ- 

us research [12] , based on ad-hoc post-processing that computed 

IMT by dividing the mask into vertical regions, which could lead 

o over-estimations in case of oblique forms of the CA [23] . In- 

tead, we proposed a fully automatic method concatenating two 

N models with no need for domain knowledge, or tuning, in the 

ataset considered. 

We also performed an ablation study, eliminating the segmen- 

ation module of the proposed framework and finding the need to 

se the information provided by it to achieve accurate results. Ad- 

itionally, a study was performed in order to gain insight into the 

ffect on the overall performance of training a single CNN model 

r three independent networks to predict three target values. The 
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Fig. 5. Models tested to analyze if training a single CNN with multiple outputs 

leads to better detection of plaque than using three individual CNNs (Experiment 

3). Different input data for the CNNs: (a) the original image, (b) the segmentation 

mask obtained with our proposed model, and (c) a concatenation of the original im- 

age and the predicted segmentation mask. Note that the CNN blocks are the same 

as in our proposal, but with one single output. 
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[

esults conclusively show that the original idea of training a single 

NN with multiple outputs leads to better results for atheroscle- 

otic plaque detection. 

Regarding the limitations of this study, highly unbalanced 

atasets with a small number of plaque images can be a prob- 

em in achieving results comparable to our proposal for the single 

NN that uses only the original image as input. Additionally, in any 

edical application, explainability may be required. While the seg- 

entation module of our proposal provides relevant information to 

he user, the classification and regression module is a black-box. 

Our future research includes a study on other datasets to fur- 

her confirm our conclusions, mainly in terms of generalization 

ower. Therefore, we plan to revise this research work when more 

ata from different institutions and different acquisition systems 

ecome available. This research paves the way for a fully auto- 

ated evaluation of CIMT and plaque. We aim to make a more 

ata from different institutions and different acquisition systems 

ecome available. 

Furthermore, the method presented is a baseline framework 

o integrate information from the image and clinical data, which 

re very relevant to assess other pathologies or events related to 

therosclerosis, such as cardiovascular risk. Moreover, since the 

utput of the framework is for regression or classification targets, 
11 
t can be easily adapted for medical purposes as cardiovascular risk 

rediction or risk stratification. In our future work, we intend to 

xplore this field as another potential line of research. 
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