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Abstract: Tree growth models describe the growth and development of forest ecosystems by consid-
ering how the dimensions of each simulated tree change within a certain time. These models have
commonly used three growth parameters that describe various biological processes and behaviours,
considering a sigmoid growth function: (i) the upper asymptote (θ1), which is the maximal yield
indicated by a final dimension (such as the maximal stem diameter); (ii) the maximum specific growth
rate (θ2), defined as the slope of the tangent at the inflexion point; and (iii) the time elapsed (θ3),
defined by the intercept of this tangent with the abscissas. To the best of our knowledge, however,
associations between the three parameters have not been documented for tree species. Using diameter
growth data from pine trees located in typical mixed and uneven-aged pine-oak forests in the Sierra
Madre Occidental, Mexico, our study aims were: (i) to quantify the putative associations between
the three growth parameters and (ii) to test the accuracy of a proposed Hybrid Chapman-Richards
growth model based on associations between the three growth parameters, but including only one
single parameter, relative to the widely used Generalized Algebraic Difference Approach (GADA)
based on the Chapman-Richards, Lundqvist and Hossfeld models and the Hybrid Weibull Model.
For statistical comparison of the quality of the models, we used the mean relative percentage error,
root mean square error, coefficient of determination and Akaike information criterion to assess the
quality of the fit. Although the quality of the five growth models studied was similar, from a practical
point of view, the proposed Hybrid Chapman-Richards Model (CR-H) is easier to apply than the
other models and has a lower data collection and computational cost. The parameter of CR-H can be
easily obtained, by measuring just the dominant trees, especially in coniferous forests with irregular
ages. Moreover, in contrast to the Chapman-Richards-GADA factor χ0, when θ2 is assumed to be
site-specific, the CR-H has always a closed-form solution.

Keywords: forest simulation; growth models; ADA models; GADA models

1. Introduction

Tree growth models describe the growth and development of forest ecosystems by
considering how the dimensions of each simulated tree change through time, i.e., periodic
increment of a tree in response to life processes [1,2] and can be divided into single-tree
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models (dendrometric variables) and whole stand models that include stand characteristics
such as age, size, density, site index and species affiliation and composition [3,4]. These
models are used to answer ecological questions, for example, determining the impact of
the interdependence between tree species and, their environment on forest development
and assessing the forest yields under certain prescribed conditions [1]. Tree growth models
are therefore important tools for understanding the dynamics of forest ecosystems and for
effective and sustainable forest management [5].

Among others, the Hossfeld [6], Weibull [7], Korf [8] and Richards [9] models are well-
known flexible sigmoid growth functions [10,11]. These models have commonly used three
growth parameters that describe various biological processes and behaviours: (i) the upper
asymptote (θ1), which is the maximal yield indicated by a final dimension, as the diameter
at breast height (dbh) at the end of the growth stage, (ii) the maximum specific growth rate
(θ2), which is defined as the slope of the tangent at the inflexion point and (iii) the time
elapsed (θ3), which is defined by the intercept of this tangent with the t-axis [12]. To the
best of our knowledge, however, associations between the three parameters have not been
documented for tree species.

Tree growth models are based on height-age or diameter-age relationships for evaluat-
ing tree growth, yield potential and site productivity [13]. To avoid the problems inherent
to base-age-specific (BAS) site models, Bailey and Clutter [14] simultaneously estimated
the site-specific or site-index parameters and the common or global model parameters,
using Algebraic Difference Approach (ADA) models. Later, Cieszewski [15,16] proposed
the Generalized Algebraic Difference Approach (GADA) models, which allow (and need)
more than one parameter to be site specific using at least three growth parameters. GADA
produces dynamic site curves with “concurrent” variable asymptotes and polymorphism,
and it uses a variety of growth characteristics found across different site qualities. This
is why GADA has been widely used for modelling tree growth and site quality in forest
yield science [17]. However, GADA also has some weak points, e.g. there is no closed-form
solution for the growth intensity factor χ0, when θ2 is assumed to be site-specific in a
three-parameter Chapman–Richards model, and therefore neither θ1 nor θ3 can be site
specific along with θ2 [15,16,18].

Using diameter growth data from pine trees located in typical mixed and uneven-aged
pine-oak forests in the Sierra Madre Occidental, Mexico [19,20], our study aims were: [21]
to quantify the putative associations between the growth model parameters and, to test the
accuracy of a novel Chapman-Richards growth model, in relation to Hossfeld, Lundqvist
and Chapman-Richards GADA models, all with three parameters [22]. Our research results
are important for forestry practice, as the new model can be used to predict future yields in
a simpler way and with the same accuracy.

2. Materials and Methods
2.1. Sampling Area

The study was conducted between September and November 2017 in a southwest-
northeast gradient between the city of Durango, Dgo. and the border of the state o Sinaloa,
México, at an elevation range of between 2021 and 2704 m, in different mixed and uneven-
aged forests of the Sierra Madre Occidental. Six 50 × 50 m plots were established (0.25 ha),
each separated by a distance of 17,000 m in the transect (Figure 1). The diameter at breast
height (dbh in cm) at 1.30 m of each tree larger than 7 cm of Pinus arizonica, Pinus engelmannii,
Pinus strobiformis and Pinus teocote identified in each plot was measured (Table 1). A Pressler
borer was used to extract cores (from every tree) at the height of 1.30 m from ground level,
and the growth rings were counted (n) and measured to estimate age and increment in
diameter [10].
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Table 1. Mean diameter at 1.30 m height (dbh, cm) and respective standard deviation (σdbh), mean age
(age, years) and respective standard deviation (σage) and number of trees (n) of the four pine species
in the study.

Species n age ± σage dbh ± σdbh

Pinus arizonica 16 42.75± 7.43 22.20± 6.60
Pinus engelmannii 97 36.60± 14.58 18.26± 8.00
Pinus strobiformis 50 31.56± 10.82 13.72± 5.13
Pinus teocote 15 39.73± 11.79 29.95± 6.81

Figure 1. Study site including the six 50 × 50 m plots, each separated by a distance of 17,000 m in the
transect (taken from [23]).

2.2. Generalized Algebraic Difference Approach (GADA) Model

The Algebraic Difference Approach (ADA), introduced by Bailey and Clutter [14],
consists of replacing a parameter of the base model with its initial condition solution.
The method enables the derivation of dynamic or non-static functions that are capable
of producing anamorphic or polymorphic curves, from a Chapman-Richards BAS model
chosen a priori.

The GADA methodology [15,16] emerged when it was assumed that two or more pa-
rameters of the BAS model are simultaneously site-specific. The Chapman-Richards Hybrid
Algebraic Difference Approach (hereinafter CR-H) proposed in this article will be com-
pared with three GADA models widely disseminated in the literature: Chapman-Richards
GADA (hereinafter CR-GADA), Hossfeld GADA (hereinafter H-GADA), Lundqvist GADA
(hereinafter L-GADA) and one Hybrid Weibull model (hereinafter W-H), presented in the
Table 2 [15,16,20,23].
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Table 2. GADA and hybrid equations, where d0 is the diameter (cm) at site-index age t0 (years); dr is
the recruitment diameter at the time t = 0, which has been considered the same for all individuals;
χ0 is a site-specific parameter and θi is the parameter associated for each model.

Model d(t)

CR-GADA d(t) = d0

(
1−e−θ1t

1−e−θ1t0

)(θ2+θ3/χ0)
with χ0 = 0.5(ln d0 − θ2l0 ± ((ln d0 − θ2l0)2 − 4θ3l0)0.5 and l0 = ln(1− e−θ1t0)

H-GADA d(t) = θ1+χ0
1+(θ2/χ0)t−θ3

with χ0 = 0.5(d0 − θ1 + ((d0 − θ1)
2 + 4θ2d0t−θ3

0 ))0.5

L-GADA d(t) = eχ0−(θ1+1/χ0)tθ3 with χ0 = 0.5(θ1tθ2
0 + ln d0 + l0) and l0 = ((θ1tθ2

0 + ln d0)
2 + 4t−θ2

0 )0.5

W-H d(t) = θ1 − (θ1 − dr)
(

dr−θ1
d0−θ1

)−t/t0
with dr = 0.05

2.3. Proposed Hybrid Model Based on a Chapman-Richards BAS Two Parameters model

In the Hybrid Chapman-Richards model proposed here, the number of parameters
was first reduced by substituting θ2 by a function, such as θ2 = f (θ1). In this case, we
rewrote the Chapman-Richards BAS model as follows:

d(t) = θ1(1− e−θ2t) =⇒ θ1(1− e− f (θ1)t), (1)

where θ1 is the maximum dbh gotten when the upper asymptote is reached in the individual.
This restructuring of the equation restricts the model to just the parameter θ1, although only
when the relationship θ2 = f (θ1) exists and can be established. Then, now considering that
we have an inverse relationship between the parameters θ1 and θ2, we can write

θ2 = a/θ1, (2)

and it was then possible to rewrite the Equation (1) as

d(t) = θ1(1− e−at/θ1), (3)

where a is a scale factor. Now, from the ADA methodology, assuming a = χ0 to be
site-specific in the Equation (3) subject to the initial conditions d(t0) = d0, we have

χ0 =
θ1

t0
ln
(

θ1

θ1 − d0

)
(4)

and replacing this result at the Equation (3), we finally have

d(t) = θ1

(
1−

(
θ1

θ1 − d0

)−t/t0
)

(5)

which now depends only on the parameter θ1 under the initial conditions t0 and d0.

2.4. Goodness of Fit of the Models

In order to quantify the error associated with each of the models implemented in the
study, we used (because of its robustness and simplicity) the mean absolute percentage
error (hereinafter MAPE), here defined as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ oi − ei
oi

∣∣∣∣, (6)

where ei and oi are respectively the estimated and the observed values and n is the number
of observations.
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The root mean square error (hereinafter RMSE) is a measure often used to mark
differences between the values predicted by a model and the observed values and is
defined as follows:

RMSE =

√
∑n

i=1(oi − ei)2

n
, (7)

where ei and oi are respectively the estimated and the observed values, and n is the number
of observations.

Finally, the coefficient of determination (hereinafter R2), here defined as follows:

R2 =
σ2

ei

σ2
oi

, (8)

where σ2
oi

and σ2
ei

are respectively the variance of the observed and the estimated values.

2.5. Kruskal-Wallis Test

The Kruskal-Wallis test is a non-parametric test used here to indicate whether there is
any significant difference between the residuals obtained for each of the models presented
in the study (Table 2) compared to the newly proposed hybrid model (CR-H). It is an
extension of the Wilcoxon-Mann-Whitney test and is used to test the null hypothesis that
all populations have identical distribution functions, against the alternative hypothesis that
at least two of them have different distribution functions [24].

2.6. Akaike Information Criterion (AIC)

Akaike information criterion (AIC) [22] is a statistical model selection technique that
can be used to compare and select the best model. AIC is based on the likelihood function
and penalizes the model with a complexity term. The AIC value for a model is calculated
as follows:

AIC = −2 log(L) + 2k (9)

where L is the likelihood function and k is the number of parameters in the model. The
model with the lowest AIC value is considered to be the best model.

2.7. Nonlinear Regression Methods

The algorithm used in the study to fit the models through nonlinear regression meth-
ods was implemented in the R language [25] together with the optimization package
optimx [26,27], an R package that provides a range of functions for numerical optimization
that includes functions for unconstrained and constrained optimization, as well as a wide
variety of optimization algorithms.

3. Results

As we can see in Figure 2, the Chapman-Richards BAS model fits very well with the
growth history of the species involved in the study. The results show a strong negative
relationship between the growth parameters θ1 and θ2 (Figure 3). The scale factor a varied
from 0.23–0.34 depending on the tree species. From the adjusted models, it was thus
possible to write θ2 as a function of θ1 of the form θ2 = f (θ1) = a/θ1.

Table 3 shows the results of fitting the parameters for the models presented in Table 2
and for the hybrid model (CR-H) proposed for each of the species included in the study.
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Figure 2. Chapman-Richards BAS model (2 parameters) model fits to the growth history of the
species: dbh (cm) vs age (years) for (a) Pinus arizonica, (b) Pinus engelmannii, (c) Pinus strobiformis and
(d) Pinus teocote.

Applying the Kruskal-Wallis test to the four species studied (Pinus arizonica, Pinus
engelmannii, Pinus strobiformis and Pinus teocote), we searched for possible differences
between the CR-GADA, H-GADA, L-GADA and W-H models with respect to our proposed
model (CR-H). Our results show that there are no significant differences in any of the
parameters (MAPE, RMSE and R2) tested to compare the models, as the p-values for the
K-W test were above 0.65 in all cases. In addition, the AIC values were also similar for each
model (see Tables 4–7 and Figures 4–6).

Table 3. Parameters adjusted for the GADA and W-H models in comparison with the CR-H model
proposed in the study.

Species Pinus arizonica Pinus engelmannii Pinus strobiformis Pinus teocote

Model θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

CR-GADA 2.2 × 10−3 0.45 0.01 1.4 × 10−4 0.03 4.1 × 10−4 9.2 × 10−7 9.1 × 10−1 7.8 × 10−3 9.4 × 10−9 5.33 × 10−1 5.76 × 10−5

H-GADA 17.67 2.85 0.91 878.00 −4.71 0.84 25.5 58.5 1.12 32.54 −183.51 1.35
L-GADA 5.54 0.26 - 21.71 0.06 - 8.90 0.17 - 5.91 0.21 -

W-H θ1 = 28.03 (dr = 0.05) θ1 = 42.02 (dr = 0.05) θ1 = 57.89 (dr = 0.05) θ1 = 47.90 (dr = 0.05)

CR-H θ1 = 27.28 θ1 = 40.1 θ1 = 47.90 θ1 = 42.11
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Figure 3. Chapman-Richards BAS model parameters relationship θ2 = a/θ1 for the species: (a) Pinus
arizonica (a = 0.34, p < 0.001), (b) Pinus engelmannii (a = 0.27, p < 0.001), (c) Pinus strobiformis
(a = 0.23, p < 0.001) and (d) Pinus teocote (a = 0.30, p < 0.001).
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Figure 4. Boxplot (including the minimum score, first (lower) quartile, median, third (upper) quartile,
and maximum score) of the Mean Absolute Percentage Error (MAPE) function calculated for the
species: (a) Pinus arizonica, (b) Pinus engelmannii, (c) Pinus strobiformis and (d) Pinus teocote, for the
GADA and W-H models in comparison with the CR-H model proposed in the study.
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Figure 5. Boxplot (including the minimum score, first (lower) quartile, median, third (upper) quartile,
and maximum score) of the Root Mean Square Error (RMSE) function calculated for the species:
(a) Pinus arizonica, (b) Pinus engelmannii, (c) Pinus strobiformis and (d) Pinus teocote, for the GADA and
W-H models in comparison with the CR-H model proposed in the study.
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Figure 6. Boxplot (including the minimum score, first (lower) quartile, median, third (upper) quartile,
and maximum score) of the coefficient of determination (R2) calculated for the species: (a) Pinus
arizonica, (b) Pinus engelmannii, (c) Pinus strobiformis and (d) Pinus teocote, for the GADA and W-H
models in comparison with the CR-H model proposed in the study.
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Table 4. Mean absolute percentage error (MAPE) and respective standard deviation results for each
species and model considered.

Model Pinus arizonica Pinus engelmannii Pinus strobiformis Pinus teocote

CR-GADA 0.13± 0.06 0.18± 0.11 0.19± 0.14 0.13± 0.09
H-GADA 0.13± 0.08 0.18± 0.11 0.17± 0.12 0.11± 0.07
L-GADA 0.11± 0.08 0.17± 0.11 0.20± 0.14 0.12± 0.07

W-H 0.13± 0.07 0.17± 0.11 0.18± 0.13 0.12± 0.07

CR-H 0.13± 0.07 0.17± 0.11 0.17± 0.12 0.11± 0.06

Table 5. Root Mean Square Error (RMSE) and respective standard deviation results for each species
and model of the study.

Model Pinus arizonica Pinus engelmannii Pinus strobiformis Pinus teocote

CR-GADA 0.27± 0.18 0.19± 0.132 0.19± 0.12 0.25± 0.25
H-GADA 0.25± 0.19 0.19± 0.132 0.16± 0.13 0.19± 0.17
L-GADA 0.26± 0.19 0.19± 0.130 0.17± 0.12 0.19± 0.19

W-H 0.27± 0.20 0.21± 0.187 0.15± 0.11 0.19± 0.19

CR-H 0.27± 0.21 0.22± 0.197 0.16± 0.12 0.19± 0.19

Table 6. R2 and respective standard deviation results for each species and model in the study.

Model Pinus arizonica Pinus engelmannii Pinus strobiformis Pinus teocote

CR-GADA 0.98± 0.02 0.99± 0.02 0.99± 0.01 0.99± 0.01
H-GADA 0.98± 0.03 0.99± 0.02 0.99± 0.01 0.99± 0.01
L-GADA 0.98± 0.03 0.99± 0.02 0.99± 0.01 0.99± 0.01

W-H 0.98± 0.03 0.99± 0.02 0.99± 0.01 0.99± 0.01

CR-H 0.98± 0.03 0.99± 0.02 0.99± 0.01 0.99± 0.01

Table 7. AIC results for each species and model of the study.

Model Pinus arizonica Pinus engelmannii Pinus strobiformis Pinus teocote

CR-GADA 2559.62 15806.01 4158.34 2064.44
H-GADA 2528.21 14506.80 4159.03 1898.75
L-GADA 2526.19 14507.73 4163.67 1897.72

W-H 2525.34 14576.58 4164.76 1894.80

CR-H 2525.58 14590.79 4159.92 1895.04

4. Discussion and Conclusions

The results show a strong negative association between the maximum yield of the
growth parameters, given at the final dimension reached at the end of their respective
growth period (θ1) and the maximum specific growth rate (θ2). In other words, the less
value has the slope (current annual increment) in the inflexion point of the growth curve
of the tree, the greater the final maximum yield. Additionally, θ2 depends on the actual
environment and initial physiological state of the population/trees [28]. The accuracy of
our GADA and H models (W-H and CR-H) was similar to the GADA models of other
studies (e.g., [17,29–31]).

The main advantage of the widely used GADA site index models over ADA is that
they can be polymorphic and have multiple asymptotes caused by more than one site-
specific parameter to create functions of χ0 (i.e., one unobservable independent variable
which describes site productivity, as a summary of management regimes, soil, climatic
and ecological factors) [29,30]. This leads to more flexible dynamic models [31]. However,
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if these site-specific parameters are highly correlated to each other, as we have shown
(Figure 2), these several parameters could be replaced by the single parameter easiest to
estimate in the forest practice, making the model mathematically and economically more
attractive due to the smaller number of parameters, which makes a complex multipara-
metric χ0 function obsolete, without compromising the fitting capability of the model
Tables 4–7 [22,26]. I.e., the main advantage of this novel CR-H model over GADA is the
simplification described above by reducing the number of site-specific parameters to the
only one most easily measurable site-specific parameter, while statistically maintaining the
predictive quality of the model. Moreover, in contrast to the CR-GADA factor χ0, when θ2
is assumed to be site-specific [18], the CR-H has always a closed-form solution.

The study findings show that the model proposed in this study is accurate and feasible,
at least for the population analyzed. This model can be classified as a hybrid, as we initially
applied a variable substitution of the type θ2 = a/θ1, to then assume that the parameter a
is site-specific (ADA methodology). If the relationship shown by parameters θ1 and θ2 can
also be reproduced in data sets for other organisms, this new model will greatly reduce the
economical and computational effort invested in obtaining the model parameters.

Although the quality of the five growth models applied in the experiment was very
similar from a statistical point of view, the proposed CR-H, like the W-H, is easy to apply,
as it has only θ1 as a parameter, which is the maximum tree diameter or the final diameter
of the tree at the end of its respective growth stage. This parameter can be easily obtained,
by measuring just the dominant trees, especially in coniferous forests with irregular ages.

It would be interesting for a future study to test the same hypothesis with other species
and other growth models, in order to determine whether the CR-H model performance
is replicated. Furthermore, sufficiently high correlations of the site-specific parameters θ1,
θ2 and θ3, and therefore, the accuracy of these simplified dynamic H models should be
tested, when environmental changes and competition parameters are incorporated into the
models that effectively perturb the growth of individuals.
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