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Abstract

We show that the modified Regula Falsi methods based on a scaling factor (Scaling Factor Regula Falsi, SFRF) have a
ommon framework, and that the scaling factor depends only on two dimensionless parameters. This common framework
llows for the comparison of different methods and their possible combination, without hybridization for treating some difficult
ases, such as multiple roots. With this framework we prove, for all SFRF methods, the global convergence of the successive
pproximations to the root, and also the convergence of the bracketing interval radius to zero, for both simple and multiple
oots. We show that SFRF methods only occasionally need a small scaling factor to make the radius of the interval go to
ero. This way, the accumulation of the approximations to the root near an interval limit that some improvements of Regula
alsi methods suffer from is cured. As an example, new SFRF methods are exposed. One is specific for multiple roots of
nown multiplicity, and greatly outperforms pure bisection. Another, developed for simple roots, compares well with other
ethods belonging to numerical libraries that are widely used by the scientific community, and for multiple roots the new
ethod outperforms them. The new framework could also allow the development of other SFRF methods overperforming the

reviously known ones.
2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Real function zeros; Modified Regula Falsi; Bracketing; Global convergence

1. Introduction

The resolution of equations of the form f (x) = 0 is a fundamental task in many branches of science and
engineering. Despite this subject’s age, it has never ceased to be of interest for numerical practitioners, because no
method is perfect in all cases. Very recent examples of new developments are, for example, [8,17,18].

A set of very important methods for this problem guarantees the solution is within a certain interval [a, b] of R,
called methods of global convergence. In this case it must be true that f ∈ C0([a, b]), f (a) f (b) < 0 (it is said the
initial conditions are “bracketing”).

Another important aspect is whether or not the calculation of f ′(x) (and possibly other higher order derivatives)
is needed. The use of the derivative increases the order of convergence only near the root, so they are interesting,
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although you have to code the calculation of the derivative in the user’s program. Obviously, for complicated
functions methods without derivatives are preferred, even though they have a lower order of convergence.

A wide literature of methods with high convergence orders (for simple roots, usually) has been developed,
sometimes needing derivatives of first order and higher, and also multipoint. As noted by Petković [25] in his
onclusions, if the initial approximation to the root is bad, it is not possible to reach the theoretical convergence
f the method used. Practical experiments show that multipoint methods can converge very slowly at the beginning
f the process. Therefore, it is possible that methods with lower convergence order, such as bisection, will work
ventually better than more advanced ones (this is typical for multiple roots).

Actually, for a generic f (x) = 0, the most popular numerical packages do not include any method of higher
rder than Muller’s one [20], for cases without derivatives, and Newton–Raphson one for cases with derivatives.
lso, they do not include any method suited for multiple roots (except bisection, as a slow robust solution).
Among the methods without derivatives, Regula Falsi (RF) is perhaps the oldest known, with convergence order

f 1 (see, [26, pp. 339–340]). Therefore, it often performs slowly, and it is not used in practice, tough it is globally
onvergent because the root is always inside the current interval.

To improve convergence bracket-maintaining variants have been developed, broadly named modified Regula Falsi
MRF). Initially a “scaling factor” for some ordinates was employed as in the Illinois method [11,28], the Pegasus
ethod [12], the method of Anderson and Björck [3], and several methods of Ford [13]. More recently, in [14]

ome scaling factor formulas based on a heuristic are shown.
Other MRF methods with the words “Regula Falsi” in their name (or in their development) intend to improve the

low convergence of RF by adding some calculations derived from Newton–Raphson or Steffensen’s methods. We
ention AC [33], STFA [31], RFNL [23], EXRF [6], CIRF [7], RB and RBP [29] (the meaning of the acronyms

re exposed in the citations).
Really, the methods in the latter group are a hybrid, using the RF part to keep bracketing, necessary for global

onvergence. The method developed by King [16] is also a hybrid: it replaces Muller’s iteration formula with
nother, based on the Anderson and Björck’s method, with the additional control of bracketing. Of this kind is also
he IRF method by Naghipoor et al. [21], that hybridizes RF with a heuristically scaled RF.

Two typical methods in many numerical packages are Van Wijngaarden–Dekker–Brent’s method [5, pp. 47–60],
nd Alefeld–Potra–Shi’s [2] one. These have been developed for high convergence rates in the simple root case,
nd they use bisection when convergence is not rapid enough, and always in the multiple root case.

In any case, the MRF methods have not been successful in the development of computational routines (with the
xception of the Illinois and Pegasus methods at the beginning of the computer era). They have been surpassed
y Van Wijngaarden–Dekker–Brent and Alefeld–Potra–Shi methods. However, as we will see, it is possible to
evelop new MRF methods, pairing them approximately with the hybrid ones, maintaining the advantages of global
onvergence and bracketing.

In this work we will propose a framework to compare and combine scaling factor MRF methods. For sake of
larity we name these methods Scaling Factor Regula Falsi (SFRF), since “modified” is a very general term, shared
y a lot of methods.

We will demonstrate that scaling factors depend only on two dimensionless parameters. We will also show their
orms for some of the methods cited above. Additionally, we present the conditions the scale factor must fulfil for
oth global convergence of the approximations to the root, and the sequence of bracketing radii.

Our pure SFRF (non-hybrid) methodology allows us to change the scaling factor as desired at every step of
he iteration, if needed. For example, if in the iteration we detect that there is a multiple root, we can change the
unction that calculates this scaling factor to another one more suitable for multiple root cases.

As an example of the new framework application, we propose three new SFRF formulas. The first one is not
pecifically developed for multiple roots, but its behaviour in this case is acceptable. The second one is good for
ingle roots and it is combined with the previous one after detecting that the multiplicity is greater than one. The
hird is a specific development for multiple roots of known multiplicity. In an appendix we show the pseudocode
f the three new methods developed here.

Finally, as a sample, we will show a comparison against several SFRF and other methods, for a set of functions,
nd show that our methods perform well compared with others fully established in the numerical codes currently

n use.
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Fig. 1. Geometric description of the SFRF method. Left, for a modified step when f (c) f̃ (xn) > 0. By construction A, H and B are collinear.
bscissa c∗ is the one obtained by SFRF method in the next step. Points C, J and A∗ are also collinear. Right, for a secant step, when a

ign inversion, f (c) f̃ (xn) < 0, is produced.

. Developing the common framework

The SFRF method can be used to calculate a root α of function f ∈ C0([a, b]) starting with [a, b] under the
onditions of Bolzano’s theorem, f (a) f (b) < 0. It generates two sequences: one, {xn}, with the approximations to
he root; another with the enclosing intervals {[an, bn]}, such that:

xn ∈ [an, bn] ⊂ [an−1, bn−1] ⊂ . . . ⊂ [a1, b1] ⊂ [a, b], f (ai ) f (bi ) < 0, i = 1, 2, . . . , n.

Before describing the algorithm we need some notation.

efinition. The factor γ ∈ R is a scaling factor for the ordinates that fulfils 0 < γ < 1, and it is in general a
unction of the data known at current iteration. Different SFRF methods have different ways to calculate γ .

efinition. We call an “ordinate associated to x” some value f̃ (x) that verifies:

0 < | f̃ (x)| = γ | f (x)| ≤ | f (x)|, sign( f̃ (x)) = sign( f (x)). (1)

efinition. After iteration n, we call radius of the interval Rn = |bn − an| where f (an) f (bn) < 0.

Fig. 1 shows the geometrical construction of the method. Initially x1 = a, f̃ (x1) = f (a), x2 = b, f̃ (x2) = f (b)
re taken. Two controlling parameters are used to limit the iterations: one is the maximum acceptable radius, xtol,
nd the other is the maximum acceptable absolute value of the function, ftol.

In this method we iterate the Scaling Factor Regula Falsi (SFRF) algorithm. At each step xn−1 and xn are the
xtremes of the bracketing interval.

lgorithm 1. SFRF at step n > 1.
nput: (xn−1, f̃ (xn−1)), (xn, f̃ (xn))

i) Let put

c = xn − f̃ (xn)
xn−1 − xn

f̃ (xn−1)− f̃ (xn)
. (2)

ii) (Radius control) If |xn − xn−1| < xtol then c is the solution; stop.

iii) (Function control) If | f (c)| < ftol then c is the solution; stop.

iv) (secant step) If f̃ (xn) f (c) < 0 (sign inversion) then output

(xn+1, f̃ (xn+1)) ← (c, f (c)),
(x , f̃ (x )) ← (x , f̃ (x )).
n n n n
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(v) (modified step) If f̃ (xn) f (c) > 0, where γ satisfies 0 < γ < 1, then output

(xn+1, f̃ (xn+1)) ← (c, f (c)),
(xn, f̃ (xn)) ← (xn−1, γ f̃ (xn−1)).

vi) After every step n:

(an+1, bn+1)← (min(xn, xn+1), max(xn, xn+1)).

End of algorithm SFRF at step n > 1.

By putting γ = 1 we recover the classic RF, and γ = 1
2 is another used value [28]. The way in which we

calculate γ from the data known at every algorithm step defines the specific SFRF method (see below).
Because the SFRF method does not require any memory apart from the extremes of the current interval and the

corresponding associated ordinates, the calculation of an adequate value for γ must be obtained from the knowledge
of only xn−1, xn , c, f̃ (xn−1), f̃ (xn), and f (c), apparently six parameters. We will demonstrate that any SFRF
method depends only on two parameters. This fact creates a common framework that allows us to compare
different SFRF methods.

Theorem 1. Let (xn−1, f̃ (xn−1)), (xn, f̃ (xn)) the current data in step n, f̃ (xn) ̸= 0, f̃ (xn−1) ̸= 0, f̃ (xn−1) f̃ (xn) < 0,
nd c ∈ (xn−1, xn) obtained by (2) and known f (c), with f̃ (xn) f (c) > 0, which implies a modified step of
lgorithm 1, then the value of γ is only function of two dimensionless parameters, independent quotients among

f̃ (xn−1), f̃ (xn) and f (c).

roof. By the Bolzano’s theorem a root α must exist in the open interval (xn−1, xn). Let us consider the
ransformation:

(x, y)→ (z, w),

ith:

z =
x − xn

xn−1 − xn
, w =

y

f̃ (xn−1)− f̃ (xn)
. (3)

This converts x ∈ [xn, xn−1] in z ∈ [0, 1].
Then

g(z) =
f̃ (x(z))

f̃ (xn−1)− f̃ (xn)
, (4)

s the function transformed of f̃ . If a root of f (x) is in the interval, α ∈ (xn−1, xn), then by (3) we have 0 < α∗ < 1,
∗
= (α − xn)/(xn−1 − xn), being in this case g(α∗) = f (α) = 0, so that the new function g(z) also has a root

z ∈ (0, 1).
With transformations (3) and (4), the function values at the extremes of the current interval are:

g0 = g(0) =
f̃ (xn)

f̃ (xn−1)− f̃ (xn)
=

1
f̃ (xn−1)

f̃ (xn )
− 1

, (5)

nd:

g1 = g(1) =
f̃ (xn−1)

f̃ (xn−1)− f̃ (xn)
= 1+ g0. (6)

ecause f̃ (xn−1)/ f̃ (xn) < 0, we have −1 < g0 < 0, 0 < g1 < 1. The transformed value of f (c) is:

gc = g(c) =
f (c)

f̃ (xn−1)− f̃ (xn)
=

f (c)
f̃ (xn−1)

1− f̃ (xn )
f̃ (xn−1)

, (7)

hich has the same sign of g .
0
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Besides, with (2) and (3):

zc = z(c) =
c − xn

xn−1 − xn
= −

f̃ (xn)

f̃ (xn−1)− f̃ (xn)
= −g0. (8)

At the current iteration, in transformed coordinates the data we have are g0, g1, gc and zc, and, by construction,
has to be only function of these parameters, which in (5), (6), (7) and (8) are only function of the quotients

f (c)/ f̃ (xn−1) and f̃ (xn)/ f̃ (xn−1). Obviously, any other quotients including the values f̃ (xn−1), f̃ (xn) and f (c) are
alid.

Without loss of generality, due to the freedom in the choice of these quotients, in the following we use:

ξ =
f (c)

f̃ (xn)
, ζ = −

f (c)

f̃ (xn−1)
, (9)

hat are always positive. Then we put in a general way:

γ = F(ξ, ζ ). □ (10)

A main fact of the SFRF methods is the collinearity of B, H and A in Fig. 1. Actually, this is the property that
llows the necessity of only two control parameters. Other methods that do not satisfy this collinearity would have
similar behaviour but also the abscissae xn−1, xn and c would appear in controlling them.
F is a function that defines the specific SFRF method. The most common functions are:

1. Classic Regula Falsi: F(ξ, ζ ) = 1.
2. Illinois method [11,28]: F(ξ, ζ ) = 1

2 .
3. Pegasus method [12]: F(ξ, ζ ) = 1/(1+ ξ ).
4. Anderson and Björck (A&B) method [3]:

F(ξ, ζ ) =
{

1− ξ, ξ < 1,
1
2 , ξ ≥ 1.

(11)

5. Ford methods [13], with several formulas similar to the A&B method. For example, his fourth method has
F(ξ, ζ ) = 1− ξ + ζ .

. General convergence properties

The order of convergence, r ≥ 1, of a succession of approximations, xn , to the root α is defined from:

lim
n→∞

|xn+1 − α|

|xn − α|r
= C > 0. (12)

n the other hand, every method of root calculation needs in each iteration step a given number of function calls,
fc, which usually is the most expensive part computationally. Therefore, to compare the different methods we need
oth the knowledge of r and nfc. In this respect, Traub [30, pp. 260–264] defines a computational efficiency as:

p = r1/nfc.

or simple roots, the cited methods have these approximate computational efficiencies:

1. Classic Regula Falsi: p = 1 (linear).
2. Illinois method: p = 1.442.
3. Pegasus method: p = 1.642.
4. A&B method: 1.681 < p < 1.710.
5. Ford fourth method: p = 1.681.

or multiple roots all have p = 1.
These values are obtained in the corresponding citations. In any case, in them, only demonstrations for

onvergence of xn towards α have been provided for the simple roots case, but no demonstration about the
onvergence of the radii, Rn , have been shown. Also, no analysis has been performed in these citations for the

ultiple roots case.
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We will prove the global convergence of the successive approximations, xn , to the root, and also of the radius
of the interval, Rn , to zero for all SFRF methods. Our demonstrations are valid for both simple and multiple roots.
We will pose some conditions to be fulfilled by scaling factors for the convergence of all SFRF methods.

The standard notation of Taylor series around the root α is:

f (xn) =
∞∑

k=1

ckek
n, (13)

he error being

en = xn − α, (14)

nd ck =
f (k)(α)

k! . The sum begins at k = 1 because f (α) = 0. We will use fn ≡ f (xn) for simplifying the notation.
Our algorithm is composed of sequences of modified and secant steps. When the previous n steps are of modified

kind we define a composed scaling factor:

γ̄n =

n∏
k=1

γk . (15)

Because a secant step is really a modified one with γ = 1 after a sign inversion of f (c) with respect to f (xn)
we can use a more general nomenclature.

Definition. We call “Composed sequence”, T j , j ∈ N, some finite set of modified steps preceded and followed by
sign inversions (indicated by //):

T j ≡ M1 M2 . . . MN j−1 MN j , N j ∈ N, N j ≥ 1,

with γ1 = 1 (M1 is actually a secant step).
The whole iteration process is formed by several composed sequences, in the form:

T1 // T2 // . . . // T j // . . . // TP ,

with computational convergence (via radius or function control) reached in the last composed sequence, TP , which
is not exhausted.

For any error, en , in the sequence we call:

εn =

⏐⏐⏐⏐en

e0

⏐⏐⏐⏐ .
emma 1. For a composed sequence of length N, which verifies e0e1 < 0, enen−1 > 0 for 1 < n < N, it is:

εn+1

εn
=

γ̄n − Γ̄n

γ̄n + εnΓ̄n
, (16)

¯n being a positive value.

roof. For a composed sequence the successive points with abscissae xn , n > 0, are at the same side of the root,
while x0 is at the other side, that is, (xn −α)(x0−α) < 0, n > 0. This happens when initially a secant step is done
for the next iteration, providing us f2, such that f1 f0 < 0, f2 f1 > 0.

In this case, the successive iterations, by applying (2), satisfy:

xn+1 =
γ̄n f0xn − fn x0

γ̄n f0 − fn
. (17)

y using (14) after dividing by en ̸= 0 (otherwise xn = α):

εn+1

εn
=

en+1

en
=

γ̄n −
fne0
f0en

γ̄ + ε
fne0

. (18)

n n f0en
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Γ̄n =
fne0

f0en
, (19)

s positive because f0 fn < 0, e0en < 0, due to bracketing. □

From (16) it is obvious that, for a composed sequence of only modified steps, Γ̄n < γ̄n (otherwise a sign inversion
would have been produced), then 0 < Γ̄n < 1. Therefore we can put:

Γ̄n = Γn γ̄n−1, Γn < 1. (20)

We need to study the successive errors generated by a composed sequence. Initially we analyse the steps before
ign inversion.

emma 2. Under the conditions of Lemma 1 the successive errors generated by the modified steps of a composed
equence of length N satisfy:

|eN−1| < |eN−2| < · · · < |e2| < |e1|.

Proof. By using Lemma 1:

γ̄n = LΓ̄n, 0 < n < N , (21)

here L > 1 (otherwise the sequence of modified steps is broken), then

en+1

en
=

LΓ̄n − Γ̄n

LΓ̄n + εnΓ̄n
=

L − 1
L + εn

.

Because εn is positive, we obtain:

en+1

en
< 1−

1
L

,

and

0 <
en+1

en
= β ′ < 1, 0 < n < N ,

ith β ′ < 1− 1/L , which is equivalent to the emma statement, since the errors have the same sign. □

Now we must take the next modified step MN that causes a sign inversion.

emma 3. After the final modified step, N , of a composed sequence it is sufficient that γ > Γmin, for some
min > 0, for reducing the error of the last step approximation.

roof. For the last step we have:

eN+1

eN
=

γ̄N − Γ̄N

γ̄N + εN Γ̄N
< 0, (22)

hen γ̄N < Γ̄N (sign inversion), that is:

γ̄N =
Γ̄N

L∗
, L∗ > 1.

hen from (22) we get:

eN+1

eN
=

1− L∗

1+ εN L∗
,

nd, because eN+1e0 > 0, eN+1eN < 0, equivalently

eN+1
=

L∗ − 1
. (23)
e0 L∗ + 1/εN
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On the other hand:

L∗ =
Γ̄N

γ̄N
=

ΓN γ̄N−1

γN γ̄N−1
=

ΓN

γN
.

If γN > Γmin > 0, ΓN ≤ 1 being finite:

L∗ <
ΓN

Γmin
= L∗max.

In expression (23) L∗ > 1 and εN < 1. We want to limit the possible values of L∗ because if L∗ → ∞ then
eN+1 = e0, which is not of interest for us (there is no radius reduction). Since L∗ < L∗max <∞, independently of
εN < 1:

eN+1

e0
<

L∗max − 1
L∗max + 1

= β ′′ < 1. □

The main theorem for the evolution of the interval radius throughout the calculation is:

heorem 2. Provided 0 < Γmin < γ < 1, Γmin being a small positive value, the sequence {Rn} of the radius of
he intervals {[an, bn]} with f (an) f (bn) < 0, is convergent and:

lim
n→∞

Rn = 0.

ince Algorithm 1 is made by composing sequences (each with possible different N j values), we can express this
heorem in a new form:

In these conditions, being R(T j ) the radius of the interval after the composed sequence j , then:

lim
j→∞

R(T j ) = 0.

roof. Without loss of generality, we assume that in the previous modified steps a1 = x1, a2 = x2, . . . , aN = xN ,
nd b1 = b2 = · · · = bN (that is, limit b remains the same point from the first iteration of the composed sequence).
he case with interchanged roles for a and b is demonstrated in a similar way.

By Lemma 3, the right side of the interval verifies
eN+1

e0
=

bN+1 − α

b1 − α
< 1,

hen bN+1 − α < b1 − α or

b1 > bN+1 (24)

or the left side of the interval, by Lemma 2, we have:

eN > eN−1 > eN−2 > · · · > e2 > e1,

ince all these errors are negative. Because aN+1 = aN as this limit is not modified, then aN+1 − α = aN − α =

N > e1 = a1 − α or:

−a1 > −aN+1. (25)

ow adding (24) and (25) b1 − a1 > bN+1 − aN+1, b1 − a1 > 0 since a1 is the inferior limit and b1 the superior
ne:

bN+1 − aN+1

b1 − a1
< 1.

This fact, in notation relative to composed sequences, can be expressed as:
R(T j )

R(T j−1)
< 1.

ow taking the limit for the application of successive composed sequences:

lim
j→∞

R(T j ) = 0,
hat is, a sequence of SFRF composed sequences generates a sequence of radii convergent to 0. □

685
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Theorem 3. In SFRF methods, the approximation c to the root belongs to (xn−1, xn).

Proof. From (2), with our new control parameters:

c = βxn + (1− β)xn−1, β =
ξ

ξ + ζ
, (26)

< β < 1 being, as ξ > 0 and ζ > 0, then c ∈ (xn−1, xn). □

heorem 4. The sequence {xn} generated by Algorithm 1 is convergent to a root, i.e.:

lim
n→∞

xn = α. (27)

roof. In the application of (26), xn+1 = c. Two possibilities exist: (a) xn−1 < xn , (b) xn < xn−1. For (a), since
xn−1 < α, β ∈ (0, 1), we have:

|en+1| = |xn+1 − α| = |βxn − α + (1− β)xn−1| < |βxn − xn−1 + (1− β)xn−1|

= β|xn − xn−1| < |xn − xn−1|.

or (b), because xn < α, 1− β ∈ (0, 1), we have:

|en+1| = |xn+1 − α| = |βxn − α + (1− β)xn−1| < |βxn − xn + (1− β)xn−1|

= (1− β)|xn−1 − xn| < |xn − xn−1|.

ence, in both cases:

|en+1| < |xn − xn−1| = |bn − an| = Rn.

ince Rn → 0 by Theorem 2 then en+1 → 0, xn+1 → α, and (27) is accomplished. □

We have analysed the convergence to zero of en and Rn , but also a stopping condition related to | f (xn)| exists
n the algorithm SFRF. In order to address it we need the following

heorem 5. Let U (α, δ) = {x | |x − α| < δ} be an open domain around the root α, and a monotone function
f ∈ C0(U ) (the monotonicity is sufficient for bracketing). Then, the function values fn = f (xn), satisfy

| fn+1| < | fn|. (28)

roof. There are four cases to be proven: (a) en > 0 and f increasing, (b) en < 0 and f increasing, (c) en > 0
nd f decreasing, and (d) en < 0 and f decreasing. We prove the first one, because the rest are proven similarly.

(a) en > 0 and f increasing. For x ∈ U , y ∈ U :
f (y)− f (x)

y − x
> 0. (29)

y Lemma 2 |en+1| < |en|, then en+1 < en and xn+1 < xn , therefore f (xn) − f (xn+1) > 0. Since the root α is at
eft of xn and xn+1, fn > 0, fn+1 > 0, then (28) is satisfied. □

Theorems 3–5 ensure that near the root the algorithm stops after a finite number of iterations because a c exists
such that | f (c)| < ftol, and for all x such that |x − α| < |c − α|, then | f (x)| < | f (c)|. Also Theorem 2 ensures
hat after a finite number n of iterations |Rn| < xtol. Therefore SFRF methods are interesting, because by using
dequate values 0 < γ < 1 the iteration effectively converges to the desired solution, keeping bracketing. These
ethods do not need to hybridize.

. Some interesting consequences of the convergence properties

We base our arguments on a sequence of modified steps. Expression (19) leads us to propose for γn an
pproximation to:

γ ∗n =
fnen−1

. (30)

fn−1en
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Because γ ∗1 = 1, then:

Γ̄n =

n∏
k=1

γ ∗k =
fnen−1

fn−1en

fn−1en−2

fn−2en−1
· · ·

f1e0

f0e1
=

fne0

f0en
,

nd (19) is fulfilled.
For simple roots, when f ∈ Ck :

fn = f (en) = c1en + ckek
n + O(ek+1

n ), k > 1, (31)

1 ̸= 0, ck ̸= 0, k being the order of the derivative above the first one giving non-zero value at the root. By
sing (31) in (30), in the conditions of Theorem 5, we define:

γn =
1+ K ek−1

n

1+ K ek−1
n−1

, K =
ck

c1
. (32)

For example, for simple roots with no inflection point at the root (k = 2):

γn =
1+ K en

1+ K en−1
. (33)

Except the Illinois and classical RF methods, the ones set out before are adapted to treat the simple root case,
hat is, they use some particular approximation compatible with (33). The formulas described for the specific cases
t the end of Section 2, are developed to have a computational superlinear efficiency. Since en → 0 in the limit

n→∞, then by using (33):

lim
n→∞

γn = 1. (34)

This limit has another value for multiple roots, because the formula for an adequate γn is not the same. In order
to show this, we use a fact: according to Traub [30, p. 152], the iterations based on polynomial interpolation have
linear convergence for multiple roots (except some specific methods for low m; for example, Muller’s method has
convergence order 1.2337 for m = 2, but it is linear for m > 2). Therefore, as all cited SFRF methods for modified
steps are based on polynomial interpolation and the secant method is based on a linear one, we normally have, for
iteration n in case of linear convergence:

en+1 = Cen + O(e2
n), (35)

being a constant (|C | < 1) that depends on the method. Obviously, in this case, the smaller C , the better the
specific method is.

For roots of multiplicity m > 1, by using (13) in (30), we have:

γn = εm−1
n + O(em

n ), (36)

therefore:

lim
n→∞

γn = Cm−1 < 1. (37)

The values given by the formulas for γ adapted to the simple root case, are greater than the ones that would give
exactly the root in the multiple case. This explains the bad behaviour of many old SFRF methods for multiple roots.

5. New SFRF methods

At present, the search for methods for multiple roots is not over since many modern ones need large precision
(over 100 decimal digits) in floating point arithmetic, so methods able to use double precision are still of interest.

In the appendix we show pseudocodes for the three new methods exposed below.

5.1. A generalized Illinois method

For multiple roots the Illinois method deserves more attention. The value of γ = 1/2 is constant but we can use
other constant values. We propose here

F(ξ, ζ ) = G, 0 < G < 1. (38)
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We call this method the “Generalized Illinois method”. With a small enough value for G from some N , γ̄N =

G N−1
≤ εm−1

N , a secant step is forced, re-starting another composed sequence from a new e0 in the multiple root
case (and diminishing the bracketing interval from both extremes). We propose the use of a small value for G, such
as:

γ = 0.1, (39)

which numerical experiments show to be effective. We name this GIll01 (Generalized Illinois method with γ = 0.1).
urther on we will present some numerical results by using this value.

.2. A method for simple roots, but with automatic detection of multiple root cases

A method, suitable for simple roots, could be obtained by derivation of some of those previously cited. For
xample, A&B is a good method, but sometimes it behaves unexpectedly badly. One way to improve this is to
heuristically) modify it using the knowledge we have now. We propose:

γ = max(1− ξ, 0.1), (40)

ith contributions from both A&B and GIll01.
For simple roots (40) behaves reasonably well, with a typical number of function calls under nbis/3, nbis being

he number of function calls bisection would employ:

nbis =
⌈

log2

(
|b − a|

xtol

)⌉
. (41)

his factor 1/3 has been obtained by analysing a lot of function cases with non-symmetrical (around the root) initial
ntervals. This behaviour is similar to those of brentq and toms748 of scipy.optimize.

A mixture of the previous (39) and (40), named ABI01, is better than both. By counting the actual number of
unction calls, nfun, we use:

γ =

{
max(1− ξ, 0.1), nfun < 1

3 nbis,
0.1, nfun ≥ 1

3 nbis.
(42)

his greatly improves the behaviour for multiple roots with respect to the original A&B method, while not damaging
uch the simple roots case.
For simple roots this method has a computational efficiency near 1.70, because it is a derivative of A&B (the

riginal authors expose ξ ≥ 1 happens rarely for simple roots; this implies that normally γ = 1− ξ ).

.3. A method for multiple roots

A specific formula for multiple roots of multiplicity m, in the form of (10) can be developed. Since the secant
ethod applied to the modified function:

h(x) = sign( f (x))| f (x)|1/m, (43)

as superlinear convergence rate for multiple roots [30], this can be used advantageously. By using (2), in
ransformed coordinates (see Theorem 1) we have:

z p = zc −
1− zc

sign(g1)|g1|
1/m
− sign(gc)|gc|

1/m sign(gc)|gc|
1/m, (44)

z p being the new tentative abscissa. g0, g1, gc and zc are given, respectively, by (5), (6), (7) and (8).
On the other hand, (v) in Algorithm 1 with expression (2), in transformed coordinates, for the next step, gives

us:

z p1 = zc −
1− zc

γ g1 − gc
gc, (45)

hich has to provide the same value z p as (44). By solving z p = z p1 we obtain:

γ = ζ 1−1/m . (46)
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By Theorem 5, near the root, 0 < ζ < 1, this expression gives 0 < γ < 1 for m > 1. However, far away the root
it could produce a value larger than one. In any case, for safety, it is best to use:

γ = min(1, ζ 1−1/m). (47)

This method has a computational efficiency between 1 and 1.681, the first one for the secant step and the last
for the modified step. If both steps alternate the efficiency would be 1.272, in any case superlinear.

6. Comparison of several SFRF with other methods

We have to remember that some methods need several calls to the function at each step and some more at
initialization. For coherence, we compare the total number of function calls. The computational efficiencies cited
by the authors of the methods are obtained under iteration conditions close to the root. In addition, each function
will have different multiplicative convergence rate coefficient C (in (12)), depending on function derivatives values
at the root. In practice, each function, with given values of initial a and b, has enough particularity to produce clear

ifferences in the actual rates of convergence with respect to the theoretical ones. Nevertheless, we do not intend
o make a deep comparison.

As a sample we present the results for sixty functions, shown in Table 1. The majority of them are taken from
he bibliography and they have been used before in many root finder tests. The last ten have multiplicity 2 ≤ m ≤ 6,
s a sample for testing m ̸= 1 cases.

All calculations have been done using extended precision (18 decimal digits, longdouble in numpy) with
python-3.6.9, numpy-1.17.4 and scipy-1.3.3 (for some routines) in an i5-7400 computer at a frequency
of 4 GHz, with 8 GB of RAM, and Linux Ubuntu 20.04 LTS as operating system.

The use of extended precision gives us the possibility of taking xtol = 10−15, a value that makes en clearly
small enough to be applicable the convergence conditions as iterations progress, but a thousand times larger than
the accuracy of double precision. In the cases labelled as Bis, Ill, GIll01, Peg, A&B, F4, IRF, ABI01 and SFRFm
in Table 2, a modified radius control tolerance is used, like in brentq method, following [5, pp. 51].

Nevertheless, starting from arbitrarily wide bracketing intervals delays the initial approach to the region close
enough to the root for fulfilling the convergence properties in each method. This leads to the fact that using a less
demanding tolerance, xtol, does not significantly diminish the number of function calls.

Our aim is not a deep comparison among different methods because our three new methods are a sample for
applying the common framework. We will briefly comment on the results of the new methods, shown in Table 2.

We start with the simple roots case. For simple roots GIll01 is, obviously, not competitive compared to brentq

and toms748: it is not designed for it. ABI01, based on A&B, which has a computational efficiency near 1.70, is a
good contender with brentq and toms748, with similar results. SFRFm in Table 2 for simple roots uses a fictitious
multiplicity m = 1.2 in expression (47). The results are worse than for ABI01, brentq and toms748, but not by
much.

For simple roots, a global comparison (for the functions presented) can be done with the average of the total
number of function calls for simple root cases. They are 12.6 for SFRFm, 11.7 for toms748, 11.3 for ABI01 and
10.7 for brentq. As we see, these new methods behave similarly to those widely used in numerical packages.

For multiple roots GIll01 and ABI01 perform approximately like pure bisection, with a clear performance
deterioration for increasing multiplicity. GIll01 and ABI01, for 2 ≤ m ≤ 6, are better than brentq by a factor
between about 1.5 and 2.5 and between 1.3 and 2.0 than toms748. When knowing the multiplicity (either integer
or not) our SFRFm method is clearly of interest, because it outperforms bisection in all cases.

Although the use of the average is customary in comparing among numerical methods, in [19] a better
methodology is shown, by defining a benchmark in terms of a set P of problems, a set S of solvers, and a
convergence test T .

We use a performance measure nfunp,s > 0 (in our case the number of function evaluations required to satisfy
the desired convergence) obtained for each p ∈ P , s ∈ S. For any tuple (p, s) the performance ratio is defined by:

rp,s =
nfunp,s

. (48)

min{nfunp,s | s ∈ S}
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Table 1
Function definitions used in this article. The multiplicity of the function is m and i is a number for function labelling. For functions 1 and

7 we change the bracketing limits to displace the root from the centre of the interval.

i f (x) a b m Reference

1 x3
− 1 −0.40 1.50 1 [1], #1, new limits

2 11x11
− 1 0.10 1.00 1 [1], #3

3 log x 0.50 5.00 1 [33], #1
4 arctan x −1.00 5.00 1 [33], #2
5 x − exp(sin x)+ 1 1.00 4.00 1 [33], #3
6 x exp(−x)− 0.1 0.00 1.00 1 [33], #4
7 x1/3

− 1 0.00 5.00 1 [33], #5
8 x2

− sin2 x− −1.00 2.00 1 [29], #15
9 3x2

− 11.12x + 9.1389 −30.00 2.00 1 [23], #2
10 x6

− 36x5
+ 450x4

− 2400x3
+ 5400x2

− 43200x + 720 10.00 22.00 1 [23], #4
11 x2(x2/3+

√
2 sin x)−

√
3/18 0.10 1.00 1 [1], #2

12 x3
+ 1 −1.80 0.00 1 [1], #4

13 x3
− 2x − 5 0.00 3.00 1 [22], Group A 18

14 2x exp(−5)+ 1− 2 exp(−5x) 0.00 1.00 1 [3], Ex. 2 (n = 5)
15 2x exp(−10)+ 1− 2 exp(−10x) 0.00 1.00 1 [3], Ex. 2 (n=10)
16 2x exp(−20)+ 1− 2 exp(−20x) 0.00 1.00 1 [3], Ex. 2 (n=20)
17 (1+ (1− 52))x2

− (1− 5x)2 0.00 1.00 1 [3], Ex. 3 (n=5)
18 (1+ (1− 102))x2

− (1− 10x)2 0.00 1.00 1 [3], Ex. 3 (n=10)
19 (1+ (1− 202))x2

− (1− 20x)2 0.00 1.00 1 [3], Ex. 3 (n=20)
20 x2

− (1− x)5 0.00 1.00 1 [3], Ex. 4 (n=5)
21 x2

− (1− x)10 0.00 1.00 1 [3], Ex. 4 (n = 10)
22 x2

− (1− x)20 0.00 1.00 1 [3], Ex. 4 (n=20)
23 (1+ (1− 5)4)x − (1− 5x)4 0.00 1.00 1 [3], Ex. 5 (n=5)
24 (1+ (1− 10)4)x − (1− 10x)4 0.00 1.00 1 [3], Ex. 5 (n=10)
25 (1+ (1− 20)4)x − (1− 20x)4 0.00 1.00 1 [3], Ex. 5 (n=20)
26 (x − 1) exp(−5x)+ x5 0.00 1.00 1 [3], Ex. 6 (n=5)
27 (x − 1) exp(−10x)+ x10 0.00 1.00 1 [3], Ex. 6 (n=10)
28 (x − 1) exp(−20x)+ x20 0.00 1.00 1 [3], Ex. 6 (n=20)
29 x2

+ sin(x/5)− 1/4 0.00 1.00 1 [1], #10 (n=5)
30 x2

+ sin(x/10)− 1/4 0.00 1.00 1 [1], #10 (n=10)
31 x2

+ sin(x/20)− 1/4 0.00 1.00 1 [1], #10 (n=20)
32 sin x − x3

− 1 −2.00 −1.00 1 [32], p. 118, ej. 3a
33 x − log x − 3 2.00 6.00 1 [32], p. 118, ej. 3b
34 (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6) 3.10 4.50 1 [22], Group A 1d
35 sin x 1.00 6.00 1 [22], Group A 2a
36 (x2

+ 1) sin x − exp(
√
|x |)(x − 1)(x2

− 5) 0.00 1.00 1 [22], Group A 3
37 x+1

x2+2
−2.30 0.50 1 [22], Group A 4, new limits

38 x2
− 1 −1.50 0.00 1 [22], Group A 5a

39 x9
+ x −0.75 0.50 1 [22], Group B-II 1c

40 x19
+ x −0.75 0.50 1 [22], Group B-II 1d

41 x5
+ x + 0.0001 −0.75 0.50 1 [22], Group B-II 3b

42 4 cos(x)− exp(x) −1.00 3.00 1 [13], #1 range 2
43

∑10
i=1 {exp(xti )− exp(5ti )} , where ti = 0.1i 4.00 6.50 1 [13], #2 range 1

44 1010x1/x
− 1 0.08 0.50 1 [13], #6 range 3

45
√

x − 3− 1/x 5.00 30.00 1 [9], #7
46 (15x − 1)/(14x) 0.01 1.00 1 [3], Ex. 7 (n = 15)
47 (20x − 1)/(19x) 0.01 1.00 1 [3], Ex. 7 (n = 20)
48 x1/5

− 51/5 1.00 100.00 1 [2], #12 (n = 5)
49 x1/10

− 101/10 1.00 100.00 1 [2], #12 (n = 10)
50 x1/20

− 201/20 1.00 100.00 1 [2], #12 (n = 20)
51 (log x)2 sign(x − 1) 0.50 5.00 2 This work
52 (x2 exp(x)− sin(x)+ x) sign(x) −0.20 5.00 2 [15], f3 modified

(continued on next page)
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Table 1 (continued).

i f (x) a b m Reference

53 x3
−0.50 1/3 3 [29], #17

54
[

arctan
√

5
2 − arctan

√
x2 − 1+

√
6

(
arctan

√
x2−1

6 − arctan
(

1
2

√
5
6

))
−

11
63

]3

1.50 2.00 3 [27], ex. 3, modified

55 x2 sin2 x sign(x) −2.00 1.00 4 This work
56 sign(x − 2)(x − 2)4/((x − 1)2

+ 1) 1.50 2.40 4 [24], ex. 1, modified
57 x5

−0.50 1/3 5 [29], #18
58 (exp(−x)− 1+ x/5)5 4.00 5.20 5 [4], ex. 4, modified
59 x3 sin3 x sign(x) −1.00 0.50 6 This work
60 sign(x − 2)(x − 2)6/((x − 1)2

+ 1) 1.90 2.20 6 [24], ex. 1, modified

The performance profile of a solver s ∈ S is the probability distribution for the ratio rp,s . It is defined as the fraction
of problems where the performance ratio is at most ω, that is:

ρs(ω) =
size{p ∈ P | rp,s ≤ ω}

size{p ∈ P}
. (49)

n important property of performance profiles is that they are insensitive to the results on a small number of
roblems [10].

In Fig. 2 the results for some root finders for the whole set of functions included in Table 1, calculated from
ata in the last five columns of Table 2, are shown. Obviously other sets of functions, initial bracketing intervals
nd specific values of xtol would give somewhat different results.

The value of ρs(1) is the probability that the solver will win over the rest of the solvers. Thus, if we are interested
nly in the number of wins, brentq method performs equal to or better than the others 50% of the time, and is
herefore preferable. However, ABI01 is equal to or better than the others 36% of the time, usually better than and
referable to toms748 (with ρs(1) = 0.22). For simple roots the choice is in order: brentq, ABI01, toms748.

However, both brentq and toms748 are not designed for multiple roots (they lose the superlinear order and they
witch to conservative linear convergence strategies). The effect of multiple roots cases in the comparison appears
round ω = 1.35. From this values on, brentq and toms748 perform worse than SFRFm and ABI01, and our new
outines would be the normal choice.

Therefore, if we do not know if we are searching a simple root, by comparing both the average number of
unctions needed and the performance profiles, our ABI01 routine is preferable even to brentq. For simple roots,
bviously, brentq is the normal choice.

. Conclusions

We have developed a common framework for the SFRF family of methods obtained by modification of Regula
alsi, which allows a comprehensive and rigorous comparison of them all.

We have proven that SFRF methods depend only on two dimensionless parameters, and we have shown their
roperties as iterations approach the root.

We have demonstrated the global convergence properties of all SFRF methods (not done before): the approxima-
ion xn to the root α, and the radius of the bracketing interval [an, bn] to zero, both for simple and multiple roots.

e have shown that the only mechanism needed to make the radius of the interval go to zero in SFRF methods is
o use a small value for γ , the scaling factor, to force a sign change in the function for a further approximation.

The common framework allows us to develop other SFRF methods: just change the function, F(ξ, ζ ), that defines
he method. This simple methodology can be used to improve all known SFRF methods.

Besides, several SFRF methods can be directly combined in the same algorithm taking the advantages of each
omponent of the combination.

Furthermore, the values given by the formulas for γ prepared to solve simple root cases tend to unity, but they
end to another value less than unity in the multiple root case. This allows a mechanism to determine the multiplicity
f the root.

As an example, three new methods have been presented. They have been compared with other previously known,
ome devised as Regula Falsi modifications, some included in current “first class” numerical libraries. We use both

he usual nfun average and the performance profiles for comparison.
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J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 205 (2023) 678–696
Table 2
Total number of function calls by different methods. Bis: Bisection; Ill: Illinois; Peg: Pegasus; A&B: Anderson and Björck; F4: method 4 from
[13], limited to a maximum of γ = 1, and γ = 0.5 for ξ ≥ 1; IRF: from [21]; AC: from [33]; ST: STFA from [31]; EX: EXRF from [6]; NL:
RFNL from [23]; RP and RBP: from [29]; brentq: function scipy.optimize.brentq; toms748: function scipy.optimize.toms748;
GIll01: this article eq. (39); ABI01: this article eq. (42); SFRFm: this article eq. (47) —for simple root it uses a fictitious multiplicity
m = 1.2—. For all analysed cases xtol = 10−15, except xtol = 10−12 for functions 9 and 10 (with the aim to compare with RFNL method
in [23]). f tol = 10−100 for all cases, except AC, STFA, EXRF, RFNL, RB and RBP (see the original articles on this subject). Data of
columns AC, ST, EX, NL, RB and RBP are taken from the specific references. The rest are calculated by us. — indicates no data, ***
indicates nfun > 999.

i Bis Ill Peg A&B F4 IRF AC ST EX NL RP RBP brentq t748 GIll01 ABI01 SFRFm

1 53 13 11 11 11 14 — 9 — — 15 13 11 12 16 11 14
2 52 17 16 25 14 20 — 23 18 — 17 17 12 17 20 16 18
3 54 11 10 10 10 15 18 — 16 — 15 15 10 10 14 10 12
4 55 10 10 10 9 15 22 — — — — — 9 11 10 10 9
5 54 12 12 13 12 14 26 — 24 — 17 13 14 13 16 13 13
6 52 12 9 10 10 29 22 — 14 — — — 9 9 13 10 11
7 55 12 11 10 12 113 18 — — — — — 10 7 14 10 13
8 54 14 12 13 12 15 — — — — 17 13 11 13 16 13 14
9 47 16 14 16 16 14 — — — 30 — — 20 15 17 13 15

10 46 17 15 15 19 104 — — — 22 — — 13 16 20 17 15
11 52 13 14 14 14 *** — — — — — — 13 14 17 12 16
12 53 13 11 13 9 14 — — — — — — 10 11 16 12 13
13 54 14 12 12 12 14 — — — — — — 11 15 16 12 14
14 52 13 11 11 11 14 — 10 — — — — 11 14 15 11 12
15 52 13 11 13 12 16 — — — — — — 12 11 15 11 13
16 52 12 11 14 13 15 — — — — — — 13 13 15 11 14
17 52 11 10 10 10 13 — — — — — — 10 11 13 10 11
18 52 10 10 9 12 14 — — — — — — 10 11 13 12 12
19 52 10 13 12 11 12 — — — — — — 9 9 13 12 12
20 52 12 13 12 12 14 — — — — — — 9 13 15 11 11
21 52 11 12 11 13 18 — 8 — — — — 11 12 16 11 14
22 52 13 15 14 13 *** — — — — — — 13 14 16 14 15
23 52 10 9 9 8 10 — — — — — — 8 11 10 9 10
24 52 9 8 8 7 10 — — — — — — 7 11 9 8 8
25 52 9 8 8 8 8 — — — — — — 7 7 9 8 8
26 52 11 11 9 10 *** — — — — — — 9 12 13 9 12
27 52 15 18 10 12 *** — — — — — — 10 13 15 12 15
28 52 23 25 14 13 *** — — — — — — 13 15 20 15 22
29 52 12 10 10 10 14 — — — — — — 11 11 14 10 12
30 52 12 10 10 10 15 — — — — — — 11 11 14 10 12
31 52 13 10 10 10 15 — — — — — — 11 13 14 10 12
32 52 11 11 11 11 14 — — — — — — 9 10 15 11 13
33 54 9 8 8 8 21 — — — — — — 8 9 10 8 9
34 53 12 10 11 10 13 — — — — — — 10 12 11 11 12
35 55 12 12 13 12 *** — — — — — — 10 15 15 10 11
36 52 12 11 11 10 12 — — — — — — 9 11 11 10 11
37 54 12 10 11 11 56 — — — — — — 11 10 16 11 13
38 53 11 9 10 9 13 — — — — — — 10 8 14 10 12
39 53 7 9 8 9 12 — — — — — — 8 8 8 8 7
40 53 6 7 7 8 10 — — — — — — 7 7 6 7 5
41 53 7 9 8 8 12 — — — — — — 9 9 9 8 7
42 54 14 13 13 13 15 — — — — — — 12 10 16 13 15
43 54 12 10 10 10 27 — — — — — — 10 11 15 10 13
44 51 39 38 557 26 116 — — — — — — 20 18 29 26 24
45 57 12 10 9 10 51 — — — — — — 8 11 13 9 11
46 52 16 15 5 14 23 — — — — — — 14 19 19 9 21
47 52 16 13 5 14 23 — — — — — — 14 18 19 8 19

(continued on next page)
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Table 2 (continued).

i Bis Ill Peg A&B F4 IRF AC ST EX NL RP RBP brentq t748 GIll01 ABI01 SFRFm

48 59 13 11 10 12 97 — — — — — — 11 10 15 10 14
49 59 13 11 11 12 149 — — — — — — 11 11 15 11 15
50 59 12 11 10 11 205 — — — — — — 11 11 15 10 15
51 54 65 116 93 *** *** — — — — — — 75 96 42 45 17
52 55 77 126 93 *** *** — — — — — — 142 104 40 49 19
53 52 220 357 270 270 *** — — — — *** 91 129 107 54 52 8
54 51 123 194 148 145 *** — — — — — — 122 104 43 57 18
55 54 250 391 289 289 *** — — — — — — 137 126 80 68 16
56 52 186 288 216 *** *** — — — — — — 124 112 58 70 22
57 52 262 400 292 293 *** — — — — *** 101 129 127 81 91 13
58 53 249 374 274 256 *** — — — — — — 126 114 72 87 20
59 53 276 416 301 301 *** — — — — — — 154 141 85 95 19
60 51 265 399 288 289 *** — — — — — — 146 129 82 91 20

Fig. 2. Cumulative distribution for the performance profile ρs (ω) for brentq, toms748, Gill01, ABI01 and SFRFm methods.

One of the new methods (ABI01) improves the one of Anderson and Björck. For simple roots, it compares well
ith the methods previously developed. However, for multiple roots of unknown multiplicity ABI01 outperforms

he others, even some which belong to numerical libraries widely used by the scientific community. Since normally
e do not know the multiplicity of a root, ABI01 could be used, with confidence, as a commitment method for
nknown multiplicity.

For multiple roots another method (SFRFm) has been presented. Until now, for this case no specific method of
FRF kind has been proposed. When multiplicity is known this new method beats even bisection, as it is superlinear.
or example, this can be used for some polynomials.

In any case, new methods, adequate for single and multiple roots, could be obtained in the future by using the
eveloped framework.
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Appendix. Pseudocodes

function GIll01 (f, a, b, xtol, ftol, nfunmax)

EPSmachine = 2.22e-16

fa = f(a), fb = f(b), nfun = 2

if fa*fb >= 0 then

return a, nfun, "No bracketing"

endif

c = b, fc = fb

while nfun < nfunmax do

xtol1 = 2*EPSmachine*abs(c)+xtol

if |b-a| < xtol1 then

return c, nfun, "xtol reached"

endif

c = c-(b-a)/(1.0-fa/fb), fc = f(c), nfun = nfun+1

if |fc| < ftol then

return c, nfun, "ftol reached"

endif

if fc*fb < 0 then

a = b, fa = fb

gamma = 0.1, fa = fa*gamma

endif

b = c, fb = fc

enddo

return c, nfun, "maximum number of functions reached"

endfunction

function ABI01 (f, a, b, xtol, ftol, nfunmax)

EPSmachine = 2.22e-16

mulkind = "single root"

fa = f(a), fb = f(b), nfun = 2

if fa*fb >= 0 then

return a, nfun, "No bracketing", "unknown multiplicity"

endif

nbis0 = 1+floor(log2(|a-b|/xtol)/3)

c = b, fc = fb

while nfun < nfunmax do

xtol1 = 2*EPSmachine*abs(c)+xtol

if |b-a| < xtol1 then

return c, nfun, "xtol reached", mulkind

endif

c = c-(b-a)/(1.0-fa/fb), fc = f(c), nfun = nfun+1

if |fc| < ftol then

return c, nfun, "ftol reached", mulkind

endif

if fc*fb < 0 then

a = b, fa = fb

elseif nfun >= nbis0 then

gamma = 0.1, fa = fa*gamma

mulkind = "(probable) multiple root"
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else

xi = fc/fb

gamma = max(1-xi, 0.1), fa = fa*gamma

endif

b = c, fb = fc

enddo

return c, nfun, "maximum number of functions reached", mulkind

endfunction

function SFRFm (f, a, b, xtol, ftol, nfunmax, mul)

EPSmachine = 2.22e-16

if mul == 1 then

mul = 1.2

endif

fa = f(a), fb = f(b), nfun = 2

if fa*fb >= 0 then

return a, nfun, "No bracketing"

endif

c = b, fc = fb

while nfun < nfunmax do

xtol1 = 2*EPSmachine*abs(c)+xtol

if |b-a| < xtol1 then

return c, nfun, "xtol reached"

endif

c = c-(b-a)/(1.0-fa/fb), fc = f(c), nfun = nfun+1

if |fc| < ftol then

return c, nfun, "ftol reached"

endif

if fc*fb < 0 then

a = b, fa = fb

else

zz = -fc/fa

gamma = min(1, zz^(1-1/mul)), fa = fa*gamma

endif

b = c, fb = fc

enddo

return c, nfun, "maximum number of functions reached"

endfunction
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