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Abstract. Optimization problems are a type of problem in which mul-
tiple solutions satisfy the problem’s constraints, so not only must a good
solution be found, but the objective is to find the best solution among
all those considered valid. Optimization problems can be solved by using
deterministic and stochastic algorithms. Those categories can be divided
into different kinds of problems. One of the categories inside stochas-
tic algorithms is metaheuristics. This work implements three well-known
meta-heuristics –Grey Wolf Optimizer, Whale Optimization Algorithm,
and Moth Flame Optimizer–, and compares them using ten mathematical
optimization problems that combine non-constrained from other studies
and constrained problems from CEC2017 competition. Results show the
Grey Wolf Optimizer as the method with faster convergence and best
fitness for almost all the problems. This work aims to implement and
compare various metaheuristics to carry out future work on solving var-
ious real-world problems.
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1 Introduction

Optimization problems are a type of problem in which multiple solutions sat-
isfy the problem’s constraints, so not only must a valid solution be found, but
the objective is to find the best solution among all those considered valid. The
algorithms that propose to solve this optimization problem are usually grouped
into two main categories: i) deterministic and ii) stochastic. On deterministic
algorithms, the results are only determined by the input data. So, if the algo-
rithm is run twice with the same input data, it will return the same results. An
example of this deterministic algorithm could be the graph search[18]. Stochas-
tic algorithms incorporate an element of randomness, meaning that two runs
with the same program and input data do not produce the same execution. In
stochastic algorithms, this touch of randomness is used to limit the solutions or
guide the search for solutions to where the best solution is believed to be instead
of traversing the entire space of valid solutions.

Stochastic algorithms can be divided into two categories: heuristic and meta-
heuristic. Heuristic algorithms are given additional information about the prob-
lem to guide their search or learn during the search by trial and error. An
example of a heuristic algorithm can be A*[6]. In the case of meta-heuristics,
a more general strategy is chosen: they try to learn the search space to make
the search for the optimal solution more efficient, which means that they can
be applied to different types of problems in a more straightforward way. To
learn from the problem, meta-heuristics often imitate existing behaviors: mu-
sic[5], sports[4], mathematics[12], physics[9, 7], chemistry[8], biology[3, 10, 14, 13,
11], societies[15].

This work aims to implement and compare the performance of some meta-
heuristics. Different works can be found in the literature doing this kind of
comparison in two ways: using a benchmark with generic mathematical prob-
lems[16, 2] or applying the meta-heuristic against concrete problems[1, 17]. This
paper will compare the different meta-heuristics using a benchmark of mathe-
matical problems.

The organization of this paper is as follows. Firstly, a description of the meta-
heuristics implemented and the problems used for optimization is in section 2.
Then, the experimental results are discussed in section 3. Finally, the conclusions
of this paper are in section 4.

2 Materials and Methods

This section outlines each of the three metaheuristic-based optimization meth-
ods –Sections 2.1, 2.2 and 2.3 for the Grey Wolf Optimizer (GWO), the Whale
Optimization Algorithm (WOA) and Moth Flame Optimization (MFO), corre-
spondingly. Furthermore, the section ends with the description of the standard-
ized problems for this comparison (see Sect. 2.4) followed by the experimental
setup (see Sect. 2.5).
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2.1 Grey Wolf Optimizer (GWO)

The GWO meta-heuristic was proposed in [14]; it mimics the hunting behavior
of grey wolves. This meta-heuristic employs a series of agents that search for
solutions for its operation. These agents in charge of searching for the best solu-
tion are the wolves. As in a wolf pack, the solution-seeking agents have different
social statuses. The best wolves in the pack are the alpha wolves, followed by
the beta, delta, and omega wolves.

Within the pack, the wolves with the highest status –the alpha role–, are
in charge of leading the pack and making decisions: when to hunt, when to
sleep, where the pack migrates to, and others. The beta role –the second-highest
status–, help the alphas in their decision-making and lead the lower-level wolves.
The delta role represents the third and lowest social level. The deltas function
as a scapegoat within the social structure. They are the last echelon that can
give orders. They are in charge of transmitting the orders and directives of the
higher echelons to the next level. The lowest echelon is occupied by the omega,
who is in charge of carrying out the work within the herd: hunting, fighting and
exploring.

The mathematical behavior of meta-heuristics will mimic the hunting process
of wolves. The best agent searching for prey will be the alpha, the second the
beta, the third the delta, and the rest will be considered omegas. The position
and the information of the superior individuals –alpha, beta, and delta roles–,
determine the movements that the omegas have to do. The omegas move through
the solution space to find new prey or solutions. The meta-heuristic process is
iterative. In each iteration, the position of the hunters will be modified to find
better prey.

Algorithm 1 Algorithm of the Grey Wolf Optimizer (GWO) metaheuristic
Initialize the grey wolf population Xi(i = 1, 2, ...n))
Initialize iteration parameters
Calculate the fitness of each search agent
Xα = the best search agent
Xβ =the second best search agent
Xδ =the third best search agents
while t < Max number of iterations do

for each search agent do
Update the position of the current search agent

end for
Update iteration parameters
Calculate the fitness of each search agent
Update Xα, Xβ and Xδ

t← t+ 1
end while
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2.2 Whale Optimization Algorithm (WOA)

Whale Optimization Algorithm (WOA) is a meta-heuristic proposed in [13] that
mimics the behavior of whales in their search for food. It is based on a series of
agents–whales–which move through the solution space searching for food.

The metaheuristic proposes three behaviors for the whale: i) search for prey,
ii) envelop the prey, and iii) attack. At all times, a random value determines the
behavior of the whales. With a probability of 50%, the method will be considered
to be in the phase of attacking the prey. The remaining 50% will determine that
we are in one of the other states. Another value will be used to determine whether
the prey is searched for or encircled. This second value will be calculated based
on our iteration and a random value. Thus, at the beginning of the execution, it
is more likely to select the state of searching for a dam, while as the iterations
evolve, it will be more likely to go around the dam. These two phases correspond
to the exploration and exploitation of the solution space.

Algorithm 2 Algorithm of the Whale Optimization Algorithm (WOA) meta-
heuristic

Initialize the whales population Xi(i = 1, 2, ..., n)
Calculate the fitness of each search agent
X∗ = the best search agent
while t < Max number of iterations do

for each search agent do
Update iteration parameters
p← random ∈ [0, 1]
r ← random ∈ [0, 1]
A← 2 ∗ (2− t ∗ 2/Max_iter) ∗ r − (2− t ∗ 2/Max_iter)
if p<0.5 then

if |A| < 1 then
Update the position of the current search agent by an spiral movement

with a radius depending on the current iteration (Attacking)
else

Select a random search agent (Xrand)
Update the position of the current search agent by moving him on the

direction of Xrand (Searching for a prey)
end if

else
Update the position of the current search agent by moving him using a

small movement (Encircling the prey)
end if

end for
Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Update X∗ if there is a better solution
t← t+ 1

end while
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2.3 Moth Flame Optimizer (MFO)

Moth Flame Optimizer (MFO)[11] is a meta-heuristic that mimics the natural
behavior of moths when they fly towards the light of a flame. In this meta-
heuristic, the moths are the agents that search for the best solutions, which are
candle flames. By observing the behavior of the moths, it is observed how they
fly towards the flames in a spiral shape.

To implement this metaheuristic, we will start with a random population of
moths evenly distributed in space. It is assumed that there is a flame at the
position of the moths, i.e., a solution. The metaheuristic consists of an iterative
process. A list of the best flames - best solutions - is used in each iteration.
Each moth will select a flame and perform a spiral movement towards it in each
iteration. During the spiral movement, it is possible to find other better flames,
in which case, the list of best flames will change, and the moth will select a new
flame.

Algorithm 3 Algorithm of the Moth Flame Optimizer (MFO) metaheuristic
Initialize the moth population Xi(i = 1, 2, ..., n)
Calculate the fitness of each search agent
Initialize the best flames population. Initially same as moth population
while t < Max number of iterations do

Update iteration parameters
for each moth on the population do

Assign a flame
Update position of the moth moving to the assigned flame

end for
t← t+ 1

end while

2.4 Standardized problems

The experimentation phase uses two different types of problems: unconstrained
and constrained. Non-Constrained Optimization problems only use a function
f(x) ∈ R; the goal is to search the value of x ∈ R that minimizes the value of
f(x). Up to 5 non-constrained problems -extracted from [14]- are used in the
comparison; these functions are listed in Table 1.

Besides, a unconstrained function f(x) ∈ R, x ∈ R, includes one or more
restrictions and conditions the either the function, the x value or a third function
g(x) ∈ R must satisfy. For this study, the functions included in Table 2, extracted
from the CEC2017 competition [19], are used in this comparison.

2.5 Experimental setup

Each problem is solved using the three metaheuristics: GWO, WOA, and MFO.
Each optimization problem evolved during 1000 iterations. Besides, the meth-
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ID Function

f01 f(X) =
∑n

i=1 x
2
i , X ∈ [−100, 100]

f02 f(X) =
∑n

i=1 |x|+
∏n

i=1 |x|, X ∈ [−10, 10]

f03 f(X) =
∑n

i=1 (
∑i

j=1 xj)
2, X ∈ [−100, 100]

f08 f(X) =
∑n

i=1−xi sin (
√
|xi|), X ∈ [−500, 500]

f09 f(X) =
∑n

i=1 [x
2
i − 10 cos (2πxi) + 10], X ∈ [−5.12, 5.12]

Table 1: List of unconstrained functions used in this research.

ods’ parameters were chosen among the best reported in the literature. Each
method is run 100 times for each problem to obtain trustworthy metrics about
its performance. The following metrics are proposed to measure the performance
of the meta-heuristic optimization algorithms:

– Execution time
– Fitness of the best solution found
– Average fitness of the solutions present in the last population

3 Results and discussion

Results include both time consumption and fitness values. Table 3 shows the
mean and standard deviation of the execution time of each of the algorithms. As
can be seen, GWO is up to 5 times faster than the rest for all types of problems,
while WOA and MFO have very similar execution times to each other.

On the other hand, Table 4 shows the average of the best fitness found in
each algorithm run. For all of the problems, it can be observed how MFO always
offers a worse fitness than the other two meta-heuristics. Even for MFO, it is
observed that it cannot find a feasible solution in the case of problem C19.
Analyzing GWO and WOA, it is seen that both can reach the optimal solution
with unconstrained problems. Both meta-heuristics obtain a solution with very
similar fitness to the constrained problems.

Besides, Table 5 shows the average fitness of the solutions of the last popu-
lation of each run. It can be seen that these data are almost identical to those
in Table 4, i.e., all meta-heuristics have already stabilized on a solution and are
not exploring better solutions.

As seen from the tables, the general tendency is for the GWO meta-heuristic
to be the fastest in delivering results, while MFO always takes the longest to
run. As for the fitness values, GWO offers very similar values to WOA, but MFO
always has a higher value. Figure 1 shows this fact for problem f09, depicting the
comparison in times and fitness for all of the runs. There is no doubt that GWO
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ID Function & Constrains

C01 f(X) =
∑n

i=1 (
∑i

j=1 xj)
2

g(X) =
∑n

i=1 [x
2
i − 5000 cos (0.1πx)− 4000] ≤ 0

x ∈ [−100, 100]

C04 f(X) =
∑n

i=1 [x
2
i − 10 cos (2πxi) + 10]

g1(X) =
∑n

i=1 x sin (2x) ≤ 0

g2(X) =
∑n

i=1 x sin (x) ≤ 0

x ∈ [−10, 10]

C05 f(X) =
∑n−1

i=1 [100(x2
i − xi+1)

2 + (x1 − 1)2]

g1(X) =
∑n

i=1 [y
2
i − 50 cos (2πyi)− 40] ≤ 0, yi = M1 ∗X

g2(X) =
∑n

i=1 [w
2
i − 50 cos (2πwi)− 40] ≤ 0, wi = M2 ∗X

x ∈ [−10, 10]

C13 f(X) =
∑n−1

i=1 [100(x2
i − xi+1)

2 + (x1 − 1)2]

g1(X) =
∑n

i=1 [y
2
i − 10 cos (2πyi) + 10] ≤ 0

g2(X) =
∑n

i=1 (xi − 60) ≤ 0

g3(X) =
∑n

i=1 xi ≤ 0

x ∈ [−100, 100]

C19 f(X) =
∑n

i=1 (|xi|0.5 + 2 sinx3
i )

g1(X) =
∑n−1

i=1 (−10 exp (−0.2
√

x2
i + x2

i+1)) ≤ 0

g2(X) =
∑n

i=1 2xi − 0.5 ≤ 0

x ∈ [−50, 50]

Table 2: List of contrained functions used in this research.
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Method f01 f02 f03 f08 f09

GWO 44.10 44.00 74.83 48.60 51.80
(0.97) (1.02) (0.82) (1.06) (1.20)

WOA 258.97 247.73 365.45 261.45 270.82
(4.22) (4.93) (6.34) (4.78) (4.05)

MFO 252.71 250.16 371.17 262.84 273.34
(4.56) (4.36) (4.64) (4.54) (4.74)

Method C01 C04 C05 C13 C19

GWO 86.40 56.83 74.62 62.72 68.35
(1.71) (0.97) (1.41) (0.85) (1.40)

WOA 409.90 303.22 431.47 368.10 341.28
(6.18) (4.74) (6.36) (5.78) (9.26)

MFO 421.56 313.06 432.06 387.80 308.13
(5.92) (5.22) (5.82) (4.86) (6.69)

Table 3: Mean and standard deviation –just under the mean value and delim-
ited with parenthesis– of the execution time of each meta-heuristics solving the
different unconstrained problems. The best results are marked in bold letters.

Method f01 f02 f03 f08 f09

GWO 0.00 0.00 0.00 -743.49 0.00
(0.00) (0.00) (0.00) (129.67) (0.00)

WOA 0.00 0.00 0.00 -7313.57 0.00
(0.00) (0.00) (0.00) (2127.27) (0.00)

MFO 680.56 0.89 3.95e5 -6510.48 78.57
(758.83) (1.94) (999.61) (1899.98) (30.76)

Method C01 C04 C05 C13 C19

GWO 0.00 -43.69 27.21 70.46 -0.75
(0.00) (5.36) (0.00) (45.64) (0.34)

WOA 0.00 -235.90 26.15 90.89 -0.14
(0.00) (76.72) (0.00) (186.75) (0.32)

MFO 3.97e5 -300 3.49e5 1.13e9 inf height(8.94e4) (0.00) (5.76e5) (1.50e9)
Table 4: Mean and standard deviation –just below the mean value and delimited
with parenthesis–, of the best fitness of each meta-heuristic solving each problem.
The best values are remarked in bold letters.
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Method f01 f02 f03 f08 f09

GWO 0.00 0.00 0.00 -743.49 0.00
(0.00) (0.00) (0.00) (129.67) (0.00)

WOA 0.00 0.00 0.00 -7313.37 0.00
(0.00) (0.00) (0.00) (2127.27) (0.00)

MFO 680.56 0.89 3.95e5 -6510.48 78.57
(758.83) (1.94) (999.61) (1899.98) (30.76)

Method C01 C04 C05 C13 C19

GWO 0.00 -43.69 27.21 70.46 -0.75
(0.00) (5.36) (0.00) (45.64) (0.34)

WOA 0.00 -235.88 26.15 90.90 -0.14
(0.00) (76.71) (0.80) (186.78) (0.32)

MFO 3.97e5 -300 3.49e5 1.13e9 inf height(8.94e4) (0.00) (5.76e5) (1.50e9)
Table 5: Mean and standard deviation –just below the mean value and delim-
ited with parenthesis–, of the mean fitness of each meta-heuristic solving each
problem. The best values are remarked with bold letters

outperforms the other two methods if we consider the two criteria simultaneously.

4 Conclusion

In this study, three known meta-heuristics–Grey Wolf Optimizer, Whale Opti-
mization Algorithm, and Moth Flame Optimizer–were implemented and tested
against ten optimization problems, five of which were unconstrained and five
of which were constrained. In the analysis of the results, it was observed that
the meta-heuristic that offered the fastest results was Grey Wolf Optimizer, but
this is not the only criterion to be analyzed. In addition to the execution time,
we also examined the minimum value found for optimizing the function. In this
case, the values of the Grey Wolf Optimizer were very close to those of the
Whale Optimization Algorithm. The meta-heuristic that yielded the worst data
for the minimum value of the function was Moth Flame Optimizer, which, even
for some more complicated problems, could not find any solution that satisfies
the constraints of the function.

In this work, we have tried to collect the most common metaheuristics found
in the literature, implement them and conduct a comparative study between
them to analyze their performance. This work aims to be the starting point of
a line of research in which we will try to solve other problems with real-world
applications.

Future work in this line of research will adapt the implementations made
in this study to solve problems such as multi-robot path planning, time slot
allocation, or collision-free multi-robot trajectory determination. Future work
also aims to propose some improvements to improve the performance of these
algorithms.
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Fig. 1: Comparison box-plots for metrics for function f09. The upper part depicts
the time consumption, while the bottom part shows the fitness values.
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