
UNIVERSITY OF OVIEDO

DOCTORAL THESIS

Extraction of structured semantic
knowledge through data mining over

social media
Extracción de conocimiento semántico estructurado mediante minería de

medios sociales

Author/Autor:
Daniel Fernández-Álvarez

Supervisors/Directores:
Jose Emilio Labra Gayo

Daniel Gayo-Avello

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

Ph.D. Program/Programa de Doctorado: Informática, RD 99/2011

WESO Research Group
Department of Computer Science

May 23, 2022

http://www.uniovi.com
http://danifdez.weso.es
http://www.weso.es
http://www.weso.es
https://www.weso.es/
https://www.di.uniovi.es/

F
O

R
-M

A
T

-V
O

A
-0

1
0
 (

R
eg

.2
0
1
8
)

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Título de la Tesis

Español/Otro Idioma:
Extracción de conocimiento semántico
estructurado mediante minería de medios
sociales

Inglés:
Extraction of structured semantic knowledge
through data mining over social media

2.- Autor

Nombre:

Daniel Fernández Álvarez
DNI/Pasaporte/NIE:
71677368F

Programa de Doctorado: Informática

Órgano responsable: Centro Internacional de Postgrado

RESUMEN (en español)

Esta tesis se plantea inicialmente como una búsqueda de sistemas capaces de extraer RDF
shapes a partir de minería de contenido textual expresados en medios sociales. Las shapes
obtenidas con este sistema son una expresión formal y estructurada de conocimiento
conceptual asociadas a un contexto de extracción concreto. Además de para tareas de
descripción y validación de documentos, dicho conocimiento puede ser utilizado para realizar
nuevas acciones que reviertan positivamente en la fuente minada, tales como clasificación
automática de contenidos, sugerencia de contenidos o generación automática de plantillas y
formularios.

 La búsqueda de este sistema nos lleva a producir tres principales contribuciones: la
arquitectura SEITMA, el sistema sheXer y el algoritmo ClassRank.

 SEITMA es una arquitectura diseñada para extraer shapes a partir de lenguaje natural
que combina dos procesos principales: la extracción de RDF a partir de lenguaje natural y la
extracción de shapes a partir de minería de tripletas RDF. SEITMA se basa en la
generalización de ejemplos: transforma textos con conocimiento a nivel de instancia en RDF
shapes. Hemos implementado dos prototipos de SEITMA que se diferencian en su estrategia
para extraer RDF de lenguaje natural. Hemos usado ambos prototipos para extraer shapes de
resúmenes en páginas de Wikipedia. Las páginas escogidas se corresponden con instancias
de clases importantes de DBpedia y cada shape representa conocimiento en Wikipedia
asociado a estas clases. Si bien la naturaleza de las shapes producidas por cada uno de estos
sistemas varía, ambos son capaces de obtener resultados prometedores, demostrando así la
viabilidad de SEITMA.

 sheXer es un sistema para la extracción automática de shapes a través del minado de
grafos RDF. En el contexto de nuestra tesis, este sistema es usado por ambos prototipos de
SEITMA. No obstante, la problemática resuelta por sheXer es de interés general para la
comunidad de web semántica. Si bien existen varias alternativas para extraer RDF de lenguaje
natural, sheXer es una propuesta competitiva, pues presenta un conjunto único de
características entre los sistemas disponibles: 1) capacidad de generar contenido ShEx y
SHACL, 2) capacidad para para procesar grandes volúmenes de datos, 3) capacidad de
generar shapes con rutas inversas y 4) capacidad para producir shapes que hacen referencia
interna a otras shapes. sheXer usa una estrategia iterativa para procesar la información que
permite manejar grandes grafos RDF. En este documento evaluamos el tiempo de ejecución y
consumo de memoria de sheXer en experimentos en los que extraemos shapes de DBpedia,
YAGO y Wikidata. Detectamos que el número de instancias relevantes para el proceso es el
parámetro que más influye en el rendimiento, pero demostramos que una muestra
representativa de instancias es suficiente para obtener resultados precisos.

usuario
Lápiz

 ClassRank es un algoritmo que permite detectar las clases más importantes en un
grafo RDF. ClassRank asocia a cada clase de un grafo una puntuación relacionada con la
importancia acumulada de sus instancias. La importancia a nivel de instancia se calcula con
PageRank. ClassRank es necesario para priorizar clases en distintas fases de los
experimentos con prototipos SEITMA. No obstante, la detección de clases importantes en
grafos RDF es un problema relevante más allá del contexto de nuestra tesis. Evaluamos la
calidad de los rankings producidos por ClassRank midiendo su semejanza con rankings
basados en frecuencia de uso de clases en logs de SPARQL. Las fuentes elegidas para la
evaluación son Wikidata y DBpedia. Comparamos ClassRank con muchas otras alternativas
existentes para medir importancia de clases y nuestra propuesta demuestra ser la que mejor se
alinea con los rankings de frecuencia de uso.

 El código fuente de ClassRank, sheXer y los prototipos SEITMA son públicos y todos
los experimentos llevados a cabo en esta tesis pueden ser replicados.

RESUMEN (en Inglés)

The first motivation of this thesis is providing a system able to extract RDF shapes by mining
text content expressed in social media.

Shapes obtained with such a system are a formal and structured expression of conceptual
knowledge associated with a certain context. Besides being helpful for text validation and
description, those shapes can be used to perform further actions that can be beneficial for the
mined source, such as automatic content classification, content suggestion, or automatic
generation of forms and templates.

While developing such a system, we produced three main contributions: the SEITMA
architecture, the sheXer system, and the ClassRank algorithm.

SEITMA is an architecture designed for extracting shapes from natural language that combines
two main processes: the extraction of RDF from natural language, and the extraction of shapes
by mining RDF triples. SEITMA is based on example generalization: it uses examples of texts
with instance-level knowledge to produce RDF shapes. We have implemented two prototypes of
SEITMA that use different strategies for producing RDF from natural language. We used both
prototypes to extract shapes from Wikipedia abstracts. Such abstracts are related to instances
of important classes in DBpedia, and each shape generated contains Wikipedia knowledge
associated with one of those classes. Our prototypes generate different types of shapes, but
they both produce promising results that prove the feasibility of our proposal.

sheXer is a system for the automatic extraction of shapes by mining RDF graphs. In our thesis
context, sheXer is used by both SEITMA prototypes. However, the specific problems tackled by
sheXer are relevant for the Semantic Web community. Even if there are some other approaches
for the automatic extraction of shapes from RDF content, sheXer is a competitive alternative, as
it has a unique combination of features among existing alternatives: 1) generation of both ShEx
and SHACL content, 2) capacity to process large graphs, 3) production of shapes with inverse
paths, and 4) shape-interlinkage, i.e., production of shapes which can reference other shapes.
sheXer uses an iterative strategy that avoids loading the whole target graph in main memory.
We evaluated sheXer's performance w.r.t. execution time and memory usage. We detected that
the number of instances relevant for the process is the parameter that affects the performance
the most. However, we proved that sheXer produces precise results by using only
representative instance samples.

ClassRank allows for detecting important classes in RDF graphs. ClassRank assigs each class
an importance score w.r.t. the accumulated importance of its instances. The importance at
instance-level is calculated using PageRank. We used ClassRank for class prioritization in
several stages of the experiments with SEITMA prototypes. However, discovering the most

important classes in RDF graphs is a problem relevant out of the context of our thesis. We have
evaluated ClassRank by comparing the importance rankings that it produces with rankings
based on class-usage in SPARQL logs. This evaluation was performed using Wikidata and
DBpedia. We compared ClassRank with many other state-of-the-art approaches and
demonstrated that our proposal is the one which produces the most similar results to the class-
usage rankings.

The source code of ClassRank, sheXer, and the SEITMA prototypes has been publicly
released, and every experiment described in this document can be replicated.

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO
EN INFORMÁTICA

Abstract

The first motivation of this thesis is providing a system able to extract RDF
shapes by mining text content expressed in social media.

Shapes obtained with such a system are a formal and structured expression of
conceptual knowledge associated with a certain context. Besides being helpful for
text validation and description, those shapes can be used to perform further actions
that can be beneficial for the mined source, such as automatic content classification,
content suggestion, or automatic generation of forms and templates.

While developing such a system, we produced three main contributions: the
SEITMA architecture, the sheXer system, and the ClassRank algorithm.

SEITMA is an architecture designed for extracting shapes from natural language
that combines two main processes: the extraction of RDF from natural language,
and the extraction of shapes by mining RDF triples. SEITMA is based on example
generalization: it uses examples of texts with instance-level knowledge to produce
RDF shapes. We have implemented two prototypes of SEITMA that use different
strategies for producing RDF from natural language. We used both prototypes to
extract shapes from Wikipedia abstracts. Such abstracts are related to instances of
important classes in DBpedia, and each shape generated contains Wikipedia knowl-
edge associated with one of those classes. Our prototypes generate different types
of shapes, but they both produce promising results that prove the feasibility of our
proposal.

sheXer is a system for the automatic extraction of shapes by mining RDF graphs.
In our thesis context, sheXer is used by both SEITMA prototypes. However, the spe-
cific problems tackled by sheXer are relevant for the Semantic Web community. Even
if there are some other approaches for the automatic extraction of shapes from RDF
content, sheXer is a competitive alternative, as it has a unique combination of fea-
tures among existing alternatives: 1) generation of both ShEx and SHACL content,
2) capacity to process large graphs, 3) production of shapes with inverse paths, and
4) shape-interlinkage, i.e., production of shapes which can reference other shapes.
sheXer uses an iterative strategy that avoids loading the whole target graph in main
memory. We evaluated sheXer’s performance w.r.t. execution time and memory
usage. We detected that the number of instances relevant for the process is the pa-
rameter that affects the performance the most. However, we proved that sheXer
produces precise results by using only representative instance samples.

ClassRank allows for detecting important classes in RDF graphs. ClassRank
assigs each class an importance score w.r.t. the accumulated importance of its in-
stances. The importance at instance-level is calculated using PageRank. We used
ClassRank for class prioritization in several stages of the experiments with SEITMA
prototypes. However, discovering the most important classes in RDF graphs is a
problem relevant out of the context of our thesis. We have evaluated ClassRank by
comparing the importance rankings that it produces with rankings based on class-
usage in SPARQL logs. This evaluation was performed using Wikidata and DB-
pedia. We compared ClassRank with many other state-of-the-art approaches and
demonstrated that our proposal is the one which produces the most similar results
to the class-usage rankings.

The source code of ClassRank, sheXer, and the SEITMA prototypes has been pub-
licly released, and every experiment described in this document can be replicated.

v

Resumen
Esta tesis se plantea inicialmente como una búsqueda de sistemas capaces de ex-

traer RDF shapes a partir de minería de contenido textual expresados en medios
sociales. Las shapes obtenidas con este sistema son una expresión formal y es-
tructurada de conocimiento conceptual asociadas a un contexto de extracción con-
creto. Además de para tareas de descripción y validación de documentos, dicho
conocimiento puede ser utilizado para realizar nuevas acciones que reviertan pos-
itivamente en la fuente minada, tales como clasificación automática de contenidos,
sugerencia de contenidos o generación automática de plantillas y formularios.

La búsqueda de este sistema nos lleva a producir tres principales contribuciones:
la arquitectura SEITMA, el sistema sheXer y el algoritmo ClassRank.

SEITMA es una arquitectura diseñada para extraer shapes a partir de lenguaje
natural que combina dos procesos principales: la extracción de RDF a partir de
lenguaje natural y la extracción de shapes a partir de minería de tripletas RDF.
SEITMA se basa en la generalización de ejemplos: transforma textos con conocimiento
a nivel de instancia en RDF shapes. Hemos implementado dos prototipos de SEITMA
que se diferencian en su estrategia para extraer RDF de lenguaje natural. Hemos us-
ado ambos prototipos para extraer shapes de resúmenes en páginas de Wikipedia.
Las páginas escogidas se corresponden con instancias de clases importantes de DB-
pedia y cada shape representa conocimiento en Wikipedia asociado a estas clases. Si
bien la naturaleza de las shapes producidas por cada uno de estos sistemas varía,
ambos son capaces de obtener resultados prometedores, demostrando así la viabili-
dad de SEITMA.

sheXer es un sistema para la extracción automática de shapes a través del mi-
nado de grafos RDF. En el contexto de nuestra tesis, este sistema es usado por am-
bos prototipos de SEITMA. No obstante, la problemática resuelta por sheXer es de
interés general para la comunidad de web semántica. Si bien existen varias alter-
nativas para extraer RDF de lenguaje natural, sheXer es una propuesta competitiva,
pues presenta un conjunto único de características entre los sistemas disponibles:
1) capacidad de generar contenido ShEx y SHACL, 2) capacidad para para proce-
sar grandes volúmenes de datos, 3) capacidad de generar shapes con rutas inversas
y 4) capacidad para producir shapes que hacen referencia interna a otras shapes.
sheXer usa una estrategia iterativa para procesar la información que permite mane-
jar grandes grafos RDF. En este documento evaluamos el tiempo de ejecución y con-
sumo de memoria de sheXer en experimentos en los que extraemos shapes de DB-
pedia, YAGO y Wikidata. Detectamos que el número de instancias relevantes para
el proceso es el parámetro que más influye en el rendimiento, pero demostramos
que una muestra representativa de instancias es suficiente para obtener resultados
precisos.

ClassRank es un algoritmo que permite detectar las clases más importantes en un
grafo RDF. ClassRank asocia a cada clase de un grafo una puntuación relacionada
con la importancia acumulada de sus instancias. La importancia a nivel de instan-
cia se calcula con PageRank. ClassRank es necesario para priorizar clases en dis-
tintas fases de los experimentos con prototipos SEITMA. No obstante, la detección
de clases importantes en grafos RDF es un problema relevante más allá del con-
texto de nuestra tesis. Evaluamos la calidad de los rankings producidos por Class-
Rank midiendo su semejanza con rankings basados en frecuencia de uso de clases
en logs de SPARQL. Las fuentes elegidas para la evaluación son Wikidata y DBpe-
dia. Comparamos ClassRank con muchas otras alternativas existentes para medir

vi

importancia de clases y nuestra propuesta demuestra ser la que mejor se alinea con
los rankings de frecuencia de uso.

El código fuente de ClassRank, sheXer y los prototipos SEITMA son públicos y
todos los experimentos llevados a cabo en esta tesis pueden ser replicados.

vii

Acknowledgements
Doing a PhD is not easy. I think that the most difficult part of it is not performing

the actual work, but being able to handle the huge amount of things that are not un-
der your control. At least, when it is possible. I have met so many people that started
this journey but, for different reasons, had to leave the boat before landing. And I
have also met so many others that succeeded, but all of them, with no exception,
had to fight their battles.

It took me seven years to finish this PhD. But, at least, I am lucky enough to be
able to say that I made it. However, if I made it, it was thanks to the help and support
of so many people that I would like to remember in this section of my work.

First of all, I want to thank Labra and Dani, my two PhD supervisors. With-
out their advice and technical orientation, especially during this intense last year, it
would not have been possible to do this PhD.

I also want to mention all the people I knew during my research stay at the Uni-
versity of Leipzig. There, I learned a lot about research and Semantic Web. But, also,
I lived three of the most exciting months of my life.

I want to thank my lab mates. Especially those that walked with me most of this
way, Herminio, Óscar, and Cristian. But also those that were there before me, such
as Javi, Manu, Jose, or Miguel, and the ones who come after, such as Willy and Pablo.
And so many other people that I spent time with at the OOT-Lab. Their invaluable
company and help have been essential in this process.

Without any doubt, the greatest support that I received came from my family.
My parents, my sister, and, in their own way, my little nephews. Also all my family
in Carcedo. Those of us who are here and those that are gone. I owe them absolutely
EVERYTHING.

These years of thesis coincided with the advent of so many hardly avoidable
responsibilities. Life goes on. But, despite all those changes, some friends keep
being an anchor to reality, a table in the water, or a return home, as the times require.
There are many people that I would like to mention here, but I must write at least
the names of Carlos, Aida, and Maru.

And Alba. She was close to me just for the last part of this stage. But she became
a fundamental pillar in my life. Someone who I hope to keep having by my side for
the rest of my stages.

Finally, I would like to thank many students who I have already had the honor
of teaching. In my case, the incredibly rewarding experiences lived in the classroom
have been the beacon that I have needed in this path. One of the main reasons to
keep thinking that doing a PhD is, indeed, worthy.

ix

Agradecimientos
Hacer una tesis doctoral no es sencillo. Creo que la mayor dificultad de este

proceso no reside en el esfuerzo neto necesario para llevar a cabo el trabajo, sino
en ser capaz de reaccionar adecuadamente ante la ingente cantidad de cosas que no
están bajo tu control. Si es que hay reacción posible. He podido a conocer a muchas
personas tratando de seguir este camino que, por distintas razones, han tenido que
bajarse del carro antes de llegar a destino. Y también he podido conocer a muchas
otras que han conseguido llegar a meta y continuar con su carrera investigadora.
Pero todas ellas, sin excepción, han tenido que librar sus batallas particulares.

A mi me ha llevado siete años llevar esta tesis a buen puerto, pero tengo la for-
tuna de poder decir que lo he logrado. Lo he logrado, eso sí, con la ayuda y el apoyo
de muchas personas a las que les quiero dar las gracias en esta sección de mi trabajo.

En primer lugar, quiero agradecérselo a Labra y Dani, mis dos directores. Sin sus
consejos y orientación técnica, especialmente durante este último año tan intenso,
no habría sido posible finalizar esta tesis.

Quiero mencionar también a las personas que conocí durante mi estancia en la
Universidad de Leipzig. Allí no solo aprendí mucho sobre investigación y Web
Semántica, sino que además pude vivir tres de los meses más emocionantes de mi
vida.

Quiero dar las gracias a mis compañeros de laboratorio. Muy especialmente a
aquellos con los que he recorrido casi todo este camino, Herminio, Óscar y Cristian.
Pero también a los que estaban antes que yo, como Javi, Manu, Jose o Miguel, y a
los que vienen, como Willy y Pablo. Y muchas otras personas con las que he coinci-
dido en el OOT-Lab. Su inestimable compañía y ayuda han sido esenciales en este
proceso.

En cuanto a apoyo, el mayor de todos ha venido, sin lugar a dudas, de mi familia.
Mis padres, mi hermana y, a su manera, mis sobrinos pequeños. Toda mi familia en
Carcedo. Los que estamos y los que nos han faltado. A ellos les debo absolutamente
TODO.

Estos años de tesis han coincidido con un avance en etapas vitales que conlleva
una inevitable escalada de responsabilidades. A pesar de tantos cambios, hay ami-
gos que permanecen como un ancla a la realidad, una tabla en el agua o una vuelta
a casa, según la situación lo requiera. Hay muchas personas que querría mencionar
aquí, pero no puedo dejar de acordarme de Carlos, Goti y Maru.

Y Alba. Alba solo me ha acompañado de cerca al final de esta etapa. Pero se
ha convertido en un pilar fundamental de mi vida. Uno de cuya compañía espero
poder seguir presumiendo en las etapas que me queden.

Por último, quiero dar las gracias a muchos estudiantes a los que ya he tenido el
placer de dar clase. En mi caso, las increíblemente gratificantes experiencias dentro
del aula han sido el faro que he necesitado en este camino. Una de las razones con
más peso para seguir creyendo que terminar una tesis doctoral, de hecho, merece la
pena.

xi

Contents

Abstract iii

Resumen v

Acknowledgements vii

Agradecimientos ix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 7
1.3 Summary of contributions . 9
1.4 Document structure . 10

2 Theoretical Framework 11
2.1 Semantic Web and Linked Data . 11

2.1.1 Linked Open Data . 16
2.2 RDF . 18

2.2.1 Different syntaxes . 21
2.2.2 Extending the expressiveness of basic triples 24
2.2.3 ‘Schemaless’ character . 25

2.3 Knowledge Graphs . 26
2.4 SPARQL . 28
2.5 Ontology . 30

2.5.1 Assertion Box and Terminological Box 33
2.6 RDF Shapes . 33

2.6.1 Shape Expressions . 35
2.6.2 Shape Constraint Language . 39
2.6.3 Brief comparison between SHACL and ShEx 44

2.7 Social Media . 46
2.7.1 Wikipedia . 48

2.8 Natural Language Processing . 50
2.8.1 NLP on social media . 55

2.9 Data mining . 56
2.9.1 Data mining in social media . 59

3 Importance metrics in RDF graphs 61
3.1 Introduction . 61
3.2 Metrics . 64

3.2.1 Importance metrics applied over schema structures 65
3.2.1.1 Degree . 65
3.2.1.2 Betweenness . 65
3.2.1.3 Bridging Centrality . 65

xii

3.2.1.4 Closeness and Harmonic Centrality 65
3.2.1.5 Radiality . 66

3.2.2 Importance metrics applied over the whole graph structure . . 66
3.2.2.1 Instance counting . 66
3.2.2.2 PageRank . 67
3.2.2.3 HITS . 67
3.2.2.4 ClassRank . 67

3.2.3 Adapted importance metrics . 72
3.3 Experiments . 72

3.3.1 Methodology . 73
3.3.1.1 Reference rankings: human-generated traffic vs machine-

generated traffic . 73
3.3.1.2 How to compare the rankings 74

3.3.2 Sources . 75
3.3.2.1 DBpedia . 75
3.3.2.2 Wikidata . 78

3.3.3 Results . 82
3.4 Discussion . 87

3.4.1 Best performing techniques . 87
3.4.2 General performing of techniques in different sources 89
3.4.3 EH vs HH results . 90
3.4.4 OTT, AAT and adapted metrics 90
3.4.5 Configuration of class-pointers 90
3.4.6 Computational cost vs performance 91

3.5 Related work . 93
3.5.1 Scoring entities or classes in graphs 93
3.5.2 Alternative centrality measures based in PageRank 95

3.6 Conclusions . 97
3.6.1 Future Work . 98

4 Mining triples to extract shapes 99
4.1 Introduction . 99
4.2 System description . 103

4.2.1 Graph Iterator . 105
4.2.2 Instance tracker . 105
4.2.3 Feature Tracker . 106
4.2.4 Shape Adapter . 107

4.2.4.1 Extending cardinalities 109
4.2.4.2 Sorting triple constraints 109
4.2.4.3 Removing empty shapes 110

4.2.5 Shape Serializer . 110
4.2.6 Computational complexity analysis 110

4.3 Experiments . 111
4.3.1 Limiting the number of instances used 113
4.3.2 Limiting the number of target shapes 113
4.3.3 Limiting the amount of triples 114
4.3.4 Convergence w.r.t. number of instances used 115

4.3.4.1 Discussion on execution times 117
4.4 sheXer working modes . 119

4.4.1 Input types . 119
4.4.1.1 Formats . 119

xiii

4.4.1.2 Input types . 120
4.4.1.3 Independent class-instance file 121
4.4.1.4 Working with endpoints 121

4.4.2 Target entities and shapes . 123
4.4.2.1 Finding target entities in endpoints 124
4.4.2.2 Compatibility between modes 125

4.4.3 Management of instantiation property 126
4.4.4 Namespaces management . 126
4.4.5 Configuring output . 127
4.4.6 Acceptance threshold . 127
4.4.7 Inverse paths . 128
4.4.8 All-compliant mode . 129
4.4.9 Removing empty shapes . 129
4.4.10 Cardinality prioritization . 130
4.4.11 Adaptation to Wikidata model 130

4.4.11.1 Readable results . 130
4.4.11.2 Handling qualifiers . 130

4.5 Related work . 134
4.6 Conclusions . 135

4.6.1 Future work . 137

5 Mining shapes from social media 139
5.1 Introduction . 139
5.2 Architecture description . 141
5.3 Prototypes . 143

5.3.1 Prototype 1: SEITMA-L . 143
5.3.1.1 LAREWA . 143
5.3.1.2 SEITMA-L implementation 146

5.3.2 Prototype 2: SEITMA-F . 148
5.3.2.1 FRED . 148
5.3.2.2 SEITMA-F implementation 151

5.4 Experiments . 153
5.4.1 Experiments with SEITMA-L . 155

5.4.1.1 Inputs and settings . 155
5.4.1.2 Outputs . 157
5.4.1.3 Discussion about SEITMA-L features 165

5.4.2 Experiments with SEITMA-F . 168
5.4.2.1 Inputs and settings . 168
5.4.2.2 Outputs . 169
5.4.2.3 Discussion about SEITMA-F features 179

5.5 Discussion on use cases . 181
5.5.1 Use cases for Wikipedia . 182

5.5.1.1 Automatic generation of templates 182
5.5.1.2 Content suggestion . 183
5.5.1.3 Vandalism detection . 183

5.5.2 Use cases out of Wikipedia . 184
5.5.2.1 Text validation and class summarization in formal

environments . 184
5.5.2.2 Automatic types or tags 184
5.5.2.3 Application in text streams 185

5.6 Related work . 186

xiv

5.7 Conclusions . 188
5.7.1 Future work . 189

6 Conclusions 191
6.1 Conclusions (English version) . 191
6.2 Conclusiones (Versión en castellano) . 193

A Prefix definitions 197

Bibliography 199

xv

List of Figures

1.1 Web layers . 2
1.2 Interpretations of a piece of data contained in a document by humans

and machines. 3
1.3 Relations between Oviedo, Spain, and city. 3
1.4 Nodes Jimbo and Sarah . 5
1.5 Example of a shape <Person> written in ShEx. 5

2.1 Content served by a web browser when asking for the URI http://
dbpedia.org/resource/Tim_Berners-Lee 13

2.2 Content served by the command curl using content negotiation with
the URI http://dbpedia.org/resource/Tim_Berners-Lee 13

2.3 Several URIs equivalent to http://dbpedia.org/resource/Tim_Berners-Lee

. 15
2.4 Several types of the URI http://dbpedia.org/resource/Tim_Berners-Lee

. 15
2.5 LOD Cloud, May 2007. Image credits to lod-cloud.net 17
2.6 LOD Cloud, March 2009. Image credits to lod-cloud.net 18
2.7 LOD Cloud, May 2021. Image credits to lod-cloud.net 19
2.8 Example of RDF/XML syntax . 21
2.9 Basic example of turtle syntax . 22
2.10 Reification example: expressing the notion “A is 20 km far from B” . . . 25
2.11 Basic example of SPARQL . 29
2.12 ShEx example: a person should have a foaf:name. 36
2.13 Turtle example: a person with a foaf:name. 36
2.14 Shape map example . 37
2.15 ShExC example content . 37
2.16 SHACL example in turtle syntax . 41
2.17 Partial example vectors for the words driver, pilot, and cactus. 54

3.1 Comparison of techniques against EH log in DBpedia. 83
3.2 Comparison of techniques against HH log in DBpedia. 84
3.3 Comparison of techniques against EH log in Wikidata. 85
3.4 Comparison of techniques against HH log in Wikidata. 86
3.5 Performance comparison of ClassRank against any other non-ClassRank

metric at every source and prefix depth. 87
3.6 Performance comparison of Adapted ClassRank against any other non-

ClassRank metric at every source and prefix depth. 88
3.7 Performance comparison of Adapted ClassRank against any other non-

ClassRank metric at every source and prefix depth. 89

4.1 Example shape of Country in ShExC . 99
4.2 Content about some countries in turtle. 100
4.3 sheXer base architecture. 104

http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
lod-cloud.net
lod-cloud.net
lod-cloud.net

xvi

4.4 Example of constraints that could get positive votes from a certain triple.106
4.5 Fragment of the DBpedia’s shape :TelevisionShow in ShExC 113
4.6 Performance of sheXer with different amounts of instances used. . . . 114
4.7 sheXer’s with different number of target shapes. 115
4.8 Performance of sheXer with different dataset sizes. 116
4.9 Shape convergence using different amounts of instances per shape. . . 117
4.10 Python code - Basic example of sheXer usage 119
4.11 Python code - Change input format . 120
4.12 Python code - Standalone file for instance-class relations 122
4.13 Subgraphs reachable according to different endpoint configurations . 123
4.14 Python code - Consuming and endpoint with depth=1 + extra classes 124
4.15 Python code - Shape maps and all classes mode together 126
4.16 Python code - Feeding sheXer with namespace-prefix pairs 127
4.17 Python code - Generation of SHACL content 127
4.18 Python code - Setting an acceptance threshold 128
4.19 Python code - Enabling inverse paths 128
4.20 Python code - Disabling all-compliant mode 129
4.21 Python code - Keeping empty shapes 129
4.22 Python code - Disabling exact cardinality 130
4.23 (‘Q30 - United states’, ‘P6 - head of government’, ‘Q6279 - Joe Biden’)

using both direct and non-direct Wikidata properties 131
4.24 Python code - Extracting Wikidata shapes with direct properties . . . 132
4.25 Python code - Extracting shapes for Wikidata qualifiers 133

5.1 SEITMA core . 141
5.2 SEITMA’s C1. General solution for an ML approach 142
5.3 SEITMA-L: implementation based on a language-agnostic ML approach

. 146
5.4 DRS representation of “Larry likes coffee. If someone likes it, he drinks it.” 149
5.5 SEITMA-F: implementation based on FRED 151
5.6 :Band. A shortened example of a shape produced by SEITMA-L 158
5.7 Part of Metallica’s Wikipedia page. 161
5.8 Cardinality, node constraint, and constraint direction w.r.t. focus node

of TCs in SEITMA-L results. 162
5.9 Cardinality and node constraint of comments in SEITMA-L results. . . 163
5.10 Distribution of trustworthy scores among TCs in SEITMA-L results. . 164
5.11 Distribution of trustworthy scores among comments in SEITMA-L re-

sults. 165
5.12 :Band. A shortened example of a shape produced by SEITMA-F 170
5.13 Cardinality, node constraint, and constraint direction w.r.t. focus node

of TCs in SEITMA-F target shapes. 174
5.14 Cardinality and node constraint of comments in SEITMA-F target shapes.

. 175
5.15 Distribution of trustworthy scores among TCs in SEITMA-F target

shapes. 175
5.16 Distribution of trustworthy scores among comments in SEITMA-F tar-

get shapes. 176
5.17 Cardinality, node constraint, and constraint direction w.r.t. focus node

of TCs in shapes produced by SEITMA-F. 177
5.18 Cardinality and node constraint of comments in shapes produced by

SEITMA-F. 177

xvii

5.19 Distribution of trustworthy scores among TCs in shapes produced by
SEITMA-F. 177

5.20 Distribution of trustworthy scores among comments in shapes pro-
duced by SEITMA-F. 178

5.21 Section of the shape :Artists produced by SEITMA-F 180
5.22 Partial example of FRED’s output. 180
5.23 Possible mapping for the content shown in Figure 5.22. 181

xix

List of Tables

3.1 Statistics about the DBpedia SPARQL logs used 76
3.2 Top20 elements for HH and EH entries in DBpedia 79
3.3 Statistics about the Wikidata SPARQL logs used 80
3.4 Properties with a class ratio ≥ 0.99 . 81
3.5 Top20 elements for HH and EH entries in Wikidata 82
3.6 Computational cost of the techniques evaluated 91
3.7 Top 20 of ClassRank and Instance Counting 92

4.1 Basic information about the YAGO, Wikidata and DBpedia computa-
tions. 112

4.2 Shape convergence with different instance limits per class. 118

5.1 Summary data about automatic classifiers in SEITMA-L experiments. . 157
5.2 Statistics about shapes in SEITMA-L results 162
5.3 Statistics about shapes in SEITMA-F results 172

xxi

List of Abbreviations

AAT Also Assertion Techniques
AI Artificial Intelligence
API Application Programming Interface
A-BOX Assertion Box
BNode Blank Node
CIP Constraint-Instance Performance
CNN Convolutional Neural Network
COCA Corpus of Contemporary American English
CRF Conditional Random Fields
CSV Comma Separated Values
CWA Closed World Assumption
DHCP Dynamic Host Configuration Protocol
DC Dublin Core
DL Description Logics
DoS Denial-of-Service
DRS Discourse Representation Structure
DUL DOLCE+DnS Ultra Lite
EH Every Host
EL Entity Linking
ER Entity-Relationship
FAIR Findability Accessibility Interoperability Reusability
FL Figurative Language
FOAF Friend of a Friend
FT Feature Tracker
GA Genetic Algorithms
GB Giga Bytes
GI Graph Iterator
HH Human Hosts
HMM Hidden Markov Models
HTTP HyperText Markup Language
HTTP HyperText Transfer Protocol
IC Instance Counting
ICV Integrity Constraint Validation
IOP Inverse Open Path
IP Internet Protocol
IR Information Retrieval
IT Instance Tracker
IRI Internationalized Resource Identifier
I/O Input/Output
JSON JavaScript Onject Notation
JSON-LD JavaScript Onject Notation for Linked Data
KB Knowledge Base

xxii

KBP Knowledge Base Population
KG Knowledge Graph
LAREWA Language-Agnostic Relation Extraction from Wikipedia Abstracts
LD Linked Data
LLM Large Language Models
LM Language Model
LOD Linked Oamed Data
MB Mega Bytes
MH Machine Hosts
ML Machine Learning
MO Music Ontology
NE Named Entity
NEC Named Entity Classification
NEL Named Entity Linking
NER Named Entity Recognition
NIF NLP Interchange Format
NN Neural Network
NLP Natural Language Processing
NT N-triples
N3 Notation 3
ODP Ontology Design Patterns
OPRL OpenPath Rule Learner
OTT Only Terminological Techniques
OWA Open World Assumption
OWL Web Ontology Language
POS Part of Speech
PPR Personalized PageRank
PR Property-Role
RAM Random-Access Memory
RBO Rank-Biased Overalp
RDF Resource Description Framework
RDFS RDF Vocabulary Description Language
RE Relation Extraction
REST Representational State Transfer
RML RDF Mapping Language
RNN Recurrent Neural Network
RQ Reseacrh Question
SA Shape Adapter
SEITMA Shape Extraction from Instance Text Mining Architecture
SHACL Shapes Constraint Language
ShEx Shape Expressions
SIP Sshape-Instance Performance
SNS Social Network Site
SPARQL SPARQL Protocol and RDF Query Language
SPIN SPARQL Inferencing Notation
SRL Semantic Role Labeling
SS Shape Serializer
SVM Support Vector Machines
SWD Semantic Web Documents
TC Triple Constraint
T-BOX Terminological Box

xxiii

UNA Unique Name Assumption
UML Unified Modeling Language
URI Uniform Resource Identifier
URN Uniform Resource Name
URL Uniform Resource Locator
WESO Web Semantics Oviedo
WSD Word Sense Disambiguation
W3C World Wide Web Consortium
XML eXtended Markup Language
XSLT eXtensible Stylesheet Language Transformations

1

Chapter 1

Introduction

1.1 Motivation

Since the proposal of the World Wide Web in 1989 [1] and its advent in the early 1990s,
many milestones had a great impact on the way in which the Web was used. For
example, the appearance in the late 1990s of Google’s search engine, built on top
of the PageRank algorithm [2], was a remarkable event, as the web content become
much easier to find for the users. However, it was not until 2004 that the term Web
2.0 was coined.

This “2.0” label, which suggests a determinant evolution of the notion of Web,
was first used in a conference brainstorming session between O’Reilly and Medi-
aLive International [3]. The key event that motivated the label Web 2.0 was the
proliferation of web sites such as blogs, forums, and social network sites. Those
platforms have a common feature: they are built around user-generated content.
The Web before those systems consisted mostly of static pages whose content was
written by their owners or maintainers. In contrast, Web 2.0 platforms allow for cre-
ating web content via user actions and interactions. This type of systems are known
as social media.

Many authors have provided definitions, sometimes contradictory, of what ex-
actly social media is [4–7]. However, nowadays, the great importance of social me-
dia is widely acknowledged, as “a large proportion of contemporary communication takes
place through it”[4].

There is a huge volume of data being posted on social media. For example, a
report on Facebook statistics at the time of this writing (January 2022)1 shows that
that platform has 2.912 billion monthly active users, representing 36.8% of the global
population. Also, 1.929 billion of them have daily activity on the platform. A similar
analysis on Twitter (February 2022)2 indicates that 500 million tweets are posted
every day.

Needless to say, the amount of data generated in a single day would be impossi-
ble to read by a human in a lifetime. Besides, it is also difficult to obtain actionable
knowledge from this data using automatic processes. Most content is published in
unstructured formats, usually as plain text pieces of natural language. Converting
those pieces of natural language into actionable information so it can be used by
automatic agents implies dealing with issues such as:

• Computing large corpora usually requires special hardware and software so-
lutions.

• Not all the information is relevant.
1https://datareportal.com/essential-facebook-stats Accessed in 2022/05/03.
2https://www.omnicoreagency.com/twitter-statistics/ Accessed in 2022/05/03.

https://datareportal.com/essential-facebook-stats
https://www.omnicoreagency.com/twitter-statistics/

2 Chapter 1. Introduction

FIGURE 1.1: Web layers

Physical

network

Document

network

Data

network

W
E

B
 O

F
 D

O
C

U
M

E
N

T
S

W
E

B
 O

F
 D

A
TA

• Some pieces of information can be contradictory.

• Some pieces of information can be wrong.

The goal of Natural Language Processing (NLP) techniques is to process human
languages so they can be “understood” by machines. Additionally, data mining tech-
niques aim to extract relevant notions from large volumes of data. Frequently, being
able to obtain valuable knowledge from a large text corpus requires approaches that
make use of both NLP and data mining techniques.

Social media content has been mined for a wide variety of purposes [8–18]. The
results of those mining processes can be conveyed in several ways: different types
of structured data, charts, text summaries, lists information snippets, etc. Deciding
an adequate representation format for some information is especially relevant when
one wants to publicly share the data obtained, so it can be consumed by other users.
This decision is even more important when one wants this data to be reusable by
automatic processes too. For such a case, Resource Description Framework (RDF)
can be used as a de facto standard to represent and share structured information.

RDF is a technology for data representation associated to the so-called Semantic
Web. Essentially, this term refers to an evolution from a web of documents to a web
of data. In figure 1.1, we show a graphical representation of this evolution. The Web
is hosted by an actual physical network of interconnected hardware devices. Each
device can host different documents (or, in general, resources). One of the funda-
mental ideas of the Web since its creation is to identify each resource with a unique
Universal Resource Locator (URL). Using HyperText Transfer Protocol (HTTP) [19]
and some associated technologies, web browsers can retrieve the appropriate con-
tent for a certain URL. Web pages link to each other using their respective URLs, so
the Web can be seen as a directed graph of resources.

Such documents can be retrieved by machines, but they cannot be understood by
them. This idea is illustrated in Figure 1.2. One of the core proposals of the Semantic
Web consists in assigning unique identifiers to actual entities and concepts, such as
the country Spain, the city Oviedo, or the abstract idea of city. Relations between
those entities and concepts can be expressed using named links between them. For
example, one could link the nodes Spain and Oviedo with a relation such as located at,
or the nodes Oviedo and city with a relation such as is a, as it is shown in Figure 1.3.

1.1. Motivation 3

FIGURE 1.2: Interpretations of a piece of data contained in a docu-
ment by humans and machines.

[…] Venice is full

beau ful of canals. […]

VENICE

FIGURE 1.3: Relations between Oviedo, Spain, and city.

Oviedo

Spain

city

locat
ed at

Is a

4 Chapter 1. Introduction

The properties used to link elements are also associated to unique identifiers.
Such entities and properties can be declared within actual RDF documents or ex-
posed in SPARQL endpoints3.

With this, we evolve from a directed graph of documents to a concept of Web
consisting of a directed graph of entities linked with named relations. While docu-
ments cannot be understood by machines, web sites built on top of Semantic Web
ideas can generate views than can be both readable by humans and consumed by
automatic agents. The potential of this idea is that it allows for using the Web as a
kind of huge database where every piece of data could be interconnected.

RDF is the standard language to express entity graphs in web environments. A
key feature of RDF that makes it suitable for being a lingua franca for sharing many
different types of data is its schemaless profile. In RDF graphs, unlike in traditional
databases, the entities are not required to adapt a strict schema, i.e., they can be
potentially linked with any other piece of data.

However, it is important to remark that, even if RDF graphs are not necessarily
enforced to have strict schemata, they should have schemata. How the information
is connected must be predictable. For example, let us say that there is a property
p which is used in a graph to express a relation is a between two nodes a and A.
Then, one may be able to assume that any other is a relation between a different
pair of entities b and B will be expressed using p. Also, if there is a widely accepted
property p′ used in many other RDF graphs to express the relation is a, then one
should use p′ instead of p or, at least, express that p = p′ using RDF. For example,
let us say that we have an RDF graph describing cities. Then, one should be able to
assume things such as:

• Nodes which are cities will be linked with an is a relation with the node city.

• Nodes that are cities are expected to be linked with other nodes using some set
of known relations, such as population, surface, or nearest city.

• If a node c1 which is a city is linked with another node c2 using the relation
nearest city, then c2 should be a city too.

Without those kinds of agreements and assumptions, the Semantic Web would be
just a bunch of interconnected data whose inconsistent structure would not allow for
obtaining valuable knowledge from it. RDF is called schemaless because it works with
flexible schemata, not because it lacks of them. RDF data can be easily adapted by
adding new relations to an existing graph. Also, different RDF sources can be easily
integrated by merely establishing links between entities from separated graphs. This
simple action allows for merging the data and the latent schemata of both graphs.

Shape languages, such as Shapes Constraint Language (SHACL) [20] and Shape
Expressions (ShEx) [21], have emerged during the last years to fulfill needs w.r.t.
schemata in RDF content. These languages are based on the concept of shape. Essen-
tially, shapes are formal expressions of expected features for a certain type of node
in the context of an RDF graph. For example, one could use a shape to indicate that
those nodes that represent a Person must be associated with exactly one string us-
ing the relation named name. The shape could also indicate that Person nodes may
be connected with other nodes using the relation knows, as long as those nodes are
Person nodes too. In Figure 1.4, we show a couple of nodes Jimbo and Sarah that
meet such criteria. Then, in Figure 1.5, we show a shape <Person> that can be used

3SPARQL and SPARQL endpoint will be described in section 2.4.

1.1. Motivation 5

FIGURE 1.4: Nodes Jimbo and Sarah

Jimbo Sarah

<knows>

<knows>

“Jimbo” “Sarah”
<name> <name>

FIGURE 1.5: Example of a shape <Person> written in ShEx.

1

2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

3 BASE <http :// www.example.org/>

4

5 <Person > {

6 <name > xsd:string ;

7 <knows > @<Person >

8 }

9

to describe the mentioned features and to validate that Jimbo and Sarah have their
expected topology. This example is written using ShEx4.

Currently, there are two main use cases in which shape languages are being used:
validation and description of RDF sources. On the one hand, for a certain graph,
one could use shape languages to check whether the expectations described for the
nodes are actually met. For that task, it is necessary to use a shape validator, i.e., a
software which interprets a shape language, receives and input graph, and is able to
discover and report constraint violations in this graph. Such reports help to discover
unexpected features in RDF graphs that may need to be addressed. For example,
constraint violations affecting a node n could be attended by modifying the links of
n or by adapting applications which are supposed to consume content related to n.

On the other hand, shape languages can have an eminently documentation pur-
pose. RDF graphs are often queried using SPARQL Protocol and RDF Query Language
(SPARQL, recursive acronym). Essentially, this query language is based on defini-
tions of graph patterns where some of the elements (nodes, properties) are unknown
variables. When new users of a given SPARQL endpoint write their first queries, it
usually takes some time until they realize which is the actual structure of the ex-
plored data. One needs to know this structure, i.e., which type of nodes are sup-
posed to connect to other nodes using which properties, to write effective queries.
Instead of trying exploratory SPARQL queries, or reading textual documentation,
shape languages can be used as excellent communication tools to describe the ex-
pected neighborhood for the different types of entities available at any endpoint.

Even though the current usage of shape languages is confined to RDF environ-
ments, we think shapes can be beneficial in other contexts apart from RDF validation
and description. In the same way that RDF can be used to formalize and share con-
tent which was originally unstructured, shape languages can be used as a formal

4In section 2.6, we will describe how to use and interpret shape languages.

6 Chapter 1. Introduction

expression of conceptual knowledge in sources of unstructured information. More-
over, our hypothesis is that shapes obtained by mining sources of unstructured con-
tent can be used as a base to perform further actions with automatic processes. We
think that this is especially interesting when applied to large sources where too many
individual agents are producing content, such as in social media. Some examples of
potential uses of shapes in such contexts are:

• Generating forms or templates. Let us suppose that the expected minimal
information provided for one or more classes in Wikipedia is known and ex-
pressed with shapes. For example, let us suppose that there is a shape asso-
ciated to the concept athlete indicating that pages of athletes should include
information such as specialty, citizenship, championships, and world ranking.
That shape could be used to produce text templates or forms allowing for the
creation of a first version of the Wikipedia page of a new athlete.

• Automatic classification. Let us say there is a discussion in a forum about a
public person, and many statements about that person are written by different
users. Let us also say there are several shapes describing different occupations,
such as politician, drummer, or journalist. The knowledge associated with that
person could be gathered and compared with the existing shapes. With that,
we would be able to 1) know the main occupation of that person, and 2) know
how to represent in RDF their associated information in a way that is homoge-
neous with that from other people with the same occupation.

• Content suggestion. Let us suppose there is a consistent post structure in a
blogging platform, which is known and expressed using a shape. Then, that
shape could be used to suggest adding some parts which a new post is missing.
Moreover, if that post is about an entity that can be associated with an identifier
used in a given RDF graph, those suggestions may not be merely structural,
but they could also provide actual values associated to the post’s topic.

However, the automatic generation of shapes out of social media content, or, in
general, any kind of natural language, has not received much attention from the
research community yet. To the best of our knowledge, only a system to produce di-
rect mappings between shapes and text content has been proposed [22], and the text
pieces that can be processed are actual descriptions of shapes expressed in natural
language. That system is expected to be fed with sentences such as “Every user has
exactly one username” or “Each student has at least one subject enrolled”. Such approach
allows for quickly writing shapes using natural language rather than formal syn-
taxes. However, that type of sentences may be hard to be found in user-generated
content whose primary intent is not describing a shape.

Our premise is that, in social media, partial descriptions of actual entities are
more frequent than descriptions of abstract contents. For example, one could hardly
expect to find a Twitter user explaining how soccer players should be in terms like
“Soccer players are born in a country. They can play for a single soccer team at a time. They
are usually specialized in a position”. In contrast, messages such as “The Argentinian
forward Lionel Messi has just signed with Paris Saint-Germain!”, which conveys exactly
the information related to country, team, and position in an actual entity, are more
likely to be found. If we are able to mine enough examples of features associated to
soccer players, then we would be able to extract a shape containing the most frequent
features associated to those athletes.

Our thesis begun with this seed idea. We wanted to develop systems able to au-
tomatically extract RDF shapes from social media content by generalizing features

1.2. Research Questions 7

observed at instance level. As already stated, such shapes could improve the infor-
mation or user experience in the platforms where the input data was mined. They
could also be used as a standard formal tool to describe and share sets of expected
features and structures. As so, they can help to make maintenance decisions w.r.t.
data quality.

1.2 Research Questions

The work developed in this thesis is motivated by the following Research Question
(RQ):

• RQ1: How can we automatically extract shapes from social media content?

As already stated in section 1.1, the existing methods to transform text into RDF
shapes are not well suited the type of texts usually found in social media. The pos-
sible courses of action to tackle the problem formulated in RQ1 can be roughly clas-
sified in two types of strategies. On the one hand, as suggested in [22], we can try
to create direct mappings between natural language and RDF shapes. On the other
hand, we could first convert natural language into some intermediary representa-
tion, and then transform that representation into RDF shapes. Our initial intuition
on this matter is that using the later approach is more promising, especially if we
use RDF as intermediary format. This is justified as follows:

• A machine reader is a tool that transform natural language into some sort of
structured knowledge. Machine reading is a very active research field [23].
Particularly, several solutions have been proposed to transform text into con-
tent expressed using Semantic Web technologies [24]. If we can use or adapt
existing machine readers to map natural language to RDF, then we could sim-
plify the problem of RQ1.

• The intermediate RDF content used to extract shapes would not be an expend-
able product, but reused as a structured representation of the target text.

• RDF shapes are mainly tools to validate and describe RDF content. Thus, the
shapes obtained can increase their value if they can be used for validation pur-
poses too. In this case, the validation of a text t with a shape s could be indi-
rectly produced by validating an RDF representation of t with s.

We decided to split the problem of extracting shapes from natural language in
two different subproblems: 1) getting RDF content from natural language, and 2)
getting RDF shapes from RDF content. As already stated, there are several existing
approaches to tackle the problems related to the first task [24]. Unfortunately, at the
moment of starting the work on this thesis, little had been done to extract shapes
from RDF graphs.

It is important to remark that writing and maintaining RDF shapes is a costly
process. In spite of the many –– and above described –– advantages of RDF, most of
the Web’s knowledge is still represented in unstructured or semi-structured formats.
This is because producing and maintaining RDF data is not a trivial task. The issues
related to manually create shapes are similar to the issues of manually create RDF
triples: “there is simply too much information available on the Web –– information that is
constantly changing –– for it to be feasible to apply manual annotation to even a significant
subset of what might be of relevance” [24].

8 Chapter 1. Introduction

The same problems affect the manual production of shapes: “when a KG5 con-
tains hundreds of classes, each having many attributes, manually specifying (post-hoc) the
necessary shapes becomes a tedious and unmanageable task” [25].

In this scenario, to provide a proper answer for RQ1, a new RQ appears:

• RQ2: How can we produce shapes by mining RDF triples?

RQ2 was born as a needed solution to solve problems related to RQ1. Still, we
realized that the potential applications of eventual approaches proposed to answer
RQ2 could be useful on their own and not just as a mean to solve RQ1, as the au-
tomatic generation of shapes from existing RDF content is relevant for the Semantic
Web community.

One of our initial intuitions was that using available knowledge on existing RDF
sources could be helpful to solve problems related with RQ1. Even if the volume of
data published using Semantic Web standards keeps growing6, the amount of data
available as RDF cannot be compared with the amount of content produced in social
media as free text.

We thought that the decision on what knowledge domains consider to test our
proposals should be driven by the type of data available in the RDF sources used to
support the extraction. That is, we should choose working with “important topics”
for the RDF sources. In this context, the adjective important conveys different no-
tions, such as abundant, complete, well-connected, correct, etc. Regarding the word
topic, it could be interpreted in several ways when applied to RDF graphs. For exam-
ple, each of the entities identified in a graph could be treated as an individual topic.
However, we think that such notion of topic would have been too fine-grained. In-
stead, we thought that equating the notions of topic and class could be much more
convenient in our scenario. A class (e.g., country) can be used as representative of
the knowledge accumulated by its instances (e.g., Spain, India, Japan). Also, both
RQ1 and RQ2 are oriented to produce shapes, and shapes are usually associated to
classes. Therefore, shapes associated with important classes of an RDF graph could
also be important for the consumers or maintainers of such graph.

Many existing approaches based on graph centrality have been proposed to mea-
sure node importance in different types of networks [28]. However, none of the
existing approaches was specifically designed to measure the importance of classes
in RDF graphs, so a third RQ emerges from this situation:

• RQ3: How can we identify the most important classes of an RDF graph?

To answer this question, we needed to evaluate the existing proposals according
to our needs. In case none of the approaches meet those proposals, then we should
propose new ways to measure class importance in RDF graphs.

As with RQ2, RQ3 is oriented to solve a problem related to the context of this
thesis. However, any work performed to answer RQ3 could also be useful in studies
of class importance unrelated to RQ1.

So, in short, this thesis aims to provide answers for three main research ques-
tions. RQ1 was the question initially motivating our work. However, even if RQ2
and RQ3 are originally framed within RQ1, these two questions involve interesting

5Acronym of Knowledge Graph. In this context, it refers to RDF graphs.
6Truth is there are some existing public general-purpose sources containing millions of triples about

many different topics [26, 27]. In the following portal, one can check the evolution of sites publishing
data with Semantic Web standards and a public license in different years https://lod-cloud.net/

Accessed in 2022/05/03.

https://lod-cloud.net/

1.3. Summary of contributions 9

challenges appearing in many other application contexts. Along this document, we
provide thorough studies to answer RQ2 and RQ3, and we evaluate our proposals
w.r.t. this questions in scenarios which are not dependent on RQ1.

1.3 Summary of contributions

In this section, we summarize the main contributions produced while answering the
RQs posed above. We present these contributions in the same order in which they
will be further developed along this document.

With regards to RQ3:

• We have designed a new algorithm, ClassRank, to measure class importance in
RDF graphs. ClassRank assigns importance scores to classes w.r.t. the accumu-
lated PageRank scores of their instances. This approach is able to capture the
importance of classes with few instances when those instances are important
for the graph structure as a whole.

• We have performed an experiment comparing ClassRank and several state-of-
the art approaches for measuring class importance. This experiment checks
the similarity between the ranking produced by each technique with several
model rankings of importance. As suggested in [28], those rankings are built
by measuring class usage in SPARQL logs. In our experiments, ClassRank
performed better than any other technique.

• We provide an implementation of ClassRank for the Python programming lan-
guage. This implementation has been publicly released and is free to use.

With regards to RQ2:

• We have designed a new system, sheXer, to extract shapes from RDF content,
whose core ideas are:

– Generalizing the most frequent features from a group of instances to pro-
duce a shape as specific as possible satisfying all of them.

– Using a voting system to detect frequent features. Each feature observed
for each instance is used to cast positive votes for potential constraints in
the shapes associated to that instance.

– Designed to work with large RDF graphs, such as DBpedia or Wikidata.
It uses an iterative approach that avoids allocating in main memory any
content that is not relevant for the process.

– Highly configurable. It accepts different kinds of inputs, it provides sev-
eral options to customize the extraction process, and it can produce both
ShEx and SHACL content.

• We have performed a study to evaluate the performance of sheXer w.r.t. mem-
ory usage and execution time using a number of large and well known RDF
datasets. This study shows that sheXer’s memory usage has a linear relation
with the number of relevant instances and target shapes, but it is independent
of the target graph’s size. This allows for processing big real-world datasets
using inexpensive hardware.

• Our Python implementation of sheXer is also public and free to use.

10 Chapter 1. Introduction

With regards to RQ1:

• We have proposed an architecture, SEITMA, to extract shapes from pieces of
natural language based on example generalization. SEITMA describes how
to combine methods to extract triples from natural language with methods to
extract shapes from RDF graphs.

• We have implemented two different Python prototypes following the SEITMA
architecture. Both use sheXer as shape extractor, but they rely on different
solutions to extract triples from natural language.

• We have performed some experiments with these two prototypes. We ex-
tracted shapes associated to the most important classes in DBpedia (according
to ClassRank) using Wikipedia abstracts. Both prototypes were able to extract
shapes from those abstracts.

• The source code of both prototypes has been publicly released and is free to
use.

• We have described and discussed several use cases where shapes produced
with SEITMA can be helpful. Also, we have discussed the features that a
SEITMA implementation should have to be successfully used in such scenar-
ios.

1.4 Document structure

In chapter 2, we provide a theoretical framework including definitions of concepts
that are used along this work. We also provide a literature review on those concepts.

The next three chapters further develop the three RQs posed in section 1.2. Each
chapter provides its own literature review focused on the chapter’s specific RQ. They
also include an introduction and partial conclusions related to that RQ.

Due to the dependencies among the RQs, the contents are developed in the re-
verse order in which the questions were stated. That is, chapter 3 is focused on class
importance metrics which are related to RQ3: we describe our ClassRank algorithm
and evaluate our proposal and other state-of-the-art techniques. In chapter 4, we ad-
dress problems related to RQ2: we describe and evaluate sheXer, and we also review
and discuss other approaches to perform shape extraction from RDF triples. Then, in
chapter 5, we develop the contents related to question RQ1: we describe and eval-
uate SEITMA, its implemented prototypes, the experimental results obtained, and
several use cases for the architecture.

Finally, in chapter 6, we provide a compilation of the general conclusions of our
work.

11

Chapter 2

Theoretical Framework

2.1 Semantic Web and Linked Data

The Semantic Web, also known as Web of Data, proposes a new form of Web content
in which one can refer and link specific data rather than mere documents. Such data
should be represented in a machine-readable format, so diverse applications (not
browsers) can re-use it, sometimes in unplanned ways [29].

The term Linked Data refers to a set of good practices to publish data. These
practices or principles were initially proposed by Tim Berners-Lee in order to sup-
port the implementation of the Semantic Web, and consist of the following ones:

1. Use Universal Resource Identifiers (URIs) [30] to name things.

2. Use HyperText Transfer Protocol (HTTP) [19] URIs, so people can easily look
up those things.

3. When someone looks up a URI, provide useful information about it, using
standard technologies (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

The terms Semantic Web and Linked Data are not equivalent but are strongly con-
nected. While Semantic Web refers to a global vision and philosophy of how the
Web of interconnected data should be, Linked Data describes the basic principles to
articulate this vision.

The principle number ‘1’ proposes to use URIs as a standard way to identify el-
ements. The usage of URIs makes sense in the Web context, as the Web prior to
Semantic Web widely used Uniform Resource Locator (URLs) to link documents.
URLs are a specialization of URIs that explicitly indicate how to retrieve the docu-
ment referred (they are necessarily bounded to an Internet protocol so the document
can be located and retrieved). By definition, URIs do not necessarily need to specify
a way to retrieve a document, but they can be used as mere identifiers associated
with a certain entity or concept. The specialization of URIs aiming to provide an
identifier but not a way to retrieve the data associated to the entity that they repre-
sent are called Uniform Resource Names (URNs).

The principle number ‘2’ indicates that HTTP URIs should be used, i.e., URIs
indicating that the HTTP protocol is required to retrieve the data that they identify.
Essentially, Linked Data is about “using the Web to create typed links between data from
different sources” [31]. To achieve this data integration, there should be a way to re-
trieve the data. The choice of HTTP, again, makes sense as it is the Web’s standard
de facto to exchange information. URIs and HTTP are the two basic bricks used
to build the whole Linked Data ecosystem. URIs that also allow for retrieving some

12 Chapter 2. Theoretical Framework

content using browsers are called dereferenceable. HTTP allows for using dereference-
able URIs to identify elements. That is, dereferenceable URIs are, at a time, a name
to universally identify an entity and a way to retrieve data associated to that entity.

The principle number ‘3’ describes how the information about those things iden-
tified with URIs should be provided. The W3C standard Resource Description Frame-
work (RDF) its critical for such a task. In traditional Web, HyperText Markup Lan-
guage (HTML) provides a way to format and link documents with hyperlinks. In the
Web of Data, RDF provides a way to describe entities and concepts with a generic,
graph-based data model. The minimal information unit in RDF is the triple. Triples
are associations of three elements, named subject, predicate, and object. Each triple
expresses a relation between two elements (subject and object) by means of a named
relation (predicate). For instance, a notion such as “Berners-Lee is a person” can be
represented with a triple such as:

• Subject: http://dbpedia.org/resource/Tim_Berners-Lee.

• Predicate: http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

• Object: http://dbpedia.org/ontology/Person.

RDF content can be served with dereferenceable URIs. Note that a certain HTTP
URI could serve different content depending on the headers of the performed HTTP
request. For example, if the subject URI of the previous example is written in a com-
mon web browser, an HTML document will be obtained. This HTML document is a
representation of the RDF information which lets the browser display it in a human-
friendly way, as it is shown in Figure 2.11. However, with content negotiation2, the
same server asked for the same URI can retrieve actual RDF content, as shown in
Figure 2.23.

Some other standards are used on top of RDF to describe and access the data. On
the one hand, ontologies allow to define reusable vocabularies (classes and proper-
ties) which let describe RDF nodes and even use logical inference on RDF graphs.
The base languages to write ontologies are RDF Vocabulary Description Language
(RDFS) [32], and Ontology Web Language (OWL) [33]. These languages are ex-
pressed using RDF too. Anyone can define a new vocabulary to model a certain
knowledge domain, and those new vocabularies can be connected to elements of
other existent vocabularies. The definition of reusable vocabularies follows the same
principles of Linked Data.

On the other hand, we have SPARQL. SPARQL is the standard query language
for RDF. SPARQL defines a framework to describe graph patterns in which some of
the nodes (or relations) are variables. A query engine supporting SPARQL should be
able to parse those patterns and retrieve the pieces of data that match the variables.
It is highly recommended to expose RDF in SPARQL endpoints, i.e., endpoints that
can solve SPARQL queries. SPARQL endpoints allow both to effectively access the
content of an RDF graph and to integrate and use together the information exposed

1Petition performed with Mozilla Firefox. Accessed in 2022/05/03
2Enabling content negotiation to serve the contents associated to an URI in different formats is not

mandatory. However, it is a common practice of portals holding Linked Data. It is up to each portal
whether it implements content negotiation, and, if so, which are the offered formats.

3The command used to retrieve this content is curl -L -H 'Accept: application/n-triples'

http://dbpedia.org/resource/Tim_Berners-Lee . The header indicated in this command asks for
n-triples content, which is one of the several syntaxes in which RDF can be serialized. Accessed in
2022/05/03

http://dbpedia.org/resource/Tim_Berners-Lee
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/Person

2.1. Semantic Web and Linked Data 13

FIGURE 2.1: Content served by a web browser when asking for the
URI http://dbpedia.org/resource/Tim_Berners-Lee

FIGURE 2.2: Content served by the command curl using con-
tent negotiation with the URI http://dbpedia.org/resource/Tim_

Berners-Lee

http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee

14 Chapter 2. Theoretical Framework

in different graphs. RDF, RDFS, OWL, and SPARQL are described in detail in sec-
tions 2.2, 2.4, and 2.5 of this chapter.

Finally, the principle number ‘4’ indicates that the content provided should in-
clude links to URIs in other sources. This is a key idea to produce Linked Data
instead of just RDF content. Representing and exposing data following the princi-
ples 1 to 3 (URIs, RDF and SPARQL) allows for exposing data in a machine-readable
way. However, if the content does not include links to URIs of external sources, this
framework is not much better than a traditional database with a flexible data model,
as it does not enable to implement an actual interconnected Web of Data.

The RDF content associated to Berners-Lee in DBpedia contains several examples
of how to link sources. On the one hand, one can say that a certain node is consid-
ered equivalent to some other node of an external source, i.e., both nodes depict
the same entity or concept. The standard way to declare that an URI is equivalent
to some other URI is using the property named owl:sameAs4, which is defined in
OWL. In Figure 2.3, we show several examples of URIs declared to be equivalent to
Berners-Lee’s URI in DBpedia5. As one can see, those URIs point to entities in di-
verse sources, such as specific language chapters of DBpedia, Freebase [34], Cyc[35]
or Viaf [36]. The projects mentioned are all LD sources. With this, one may be able
to easily merge the content about Berners-Lee available in different projects and use
it in a single SPARQL query that combines the information of such sources.

On the other hand, one can link a URI of an outer graph with an internal URI by
means of any named relation (the URI of the relation itself may belong to an external
ontology). In Figure 2.4, we show several examples of URIs declared to be the type6

of Berners-Lee’s node in DBpedia7. As one can see, there are references to class URIs
in ontologies such as FOAF [37], YAGO [38], Schema8, or Wikidata [26]. One may
want to query information relative to instances of a class such as schema:Person. The
information about these instances, and even the triple that declare that an instance’s
type is schema:Person, can be exposed in different SPARQL endpoints and yet be
used in a single query.

In order to execute a query which integrates content from different endpoints, a
SPARQL engine supporting and enabling federation [39] should be used. There are
other mechanisms to integrate different sources, including local batch processing of
RDF dumps. However, all these mechanisms are based on the existence of links
between URIs.

In summary, in Berners-Lee’s words “The Semantic Web isn’t just about putting
data on the Web. It is about making links, so that a person or machine can explore the Web
of data. With linked data, when you have some of it, you can find other, related, data” [40].
The Linked Data principles are thought to enable the implementation of this global
vision.

4owl:sameAs is equivalent to the URI http://www.w3.org/2002/07/owl#sameAs. Some RDF syn-
taxes allow for defining prefixes than can be mapped to namespaces, which makes URI’s shorter and
thus more human-readable. The prefix owl is usually paired with the namespace http://www.w3.org/
2002/07/owl#. This topic will be developed in section 2.2.

5https://dbpedia.org/page/Tim_Berners-Lee Accessed in 2022/05/03
6The standard way to declare the type of an URI in RDF is using the property http://www.w3.org/

1999/02/22-rdf-syntax-ns#type .
7https://dbpedia.org/page/Tim_Berners-Lee Accessed in 2022/05/03.
8https://schema.org/docs/about.html Accessed in 2022/05/03.

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
https://dbpedia.org/page/Tim_Berners-Lee
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://dbpedia.org/page/Tim_Berners-Lee

2.1. Semantic Web and Linked Data 15

FIGURE 2.3: Several URIs equivalent to http://dbpedia.org/

resource/Tim_Berners-Lee

FIGURE 2.4: Several types of the URI http://dbpedia.org/

resource/Tim_Berners-Lee

http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee
http://dbpedia.org/resource/Tim_Berners-Lee

16 Chapter 2. Theoretical Framework

2.1.1 Linked Open Data

Linked Open Data (LOD), in simple words, refers to Linked Data published with an
Open License. If a piece of data is published using RDF, exposed in an SPARQL end-
point, and linked with other sources, but it is private or published with a license that
restricts its usage, then the complete vision of the Web of Data cannot be achieved.
Semantic Web principles and technologies propose a way to publish data, but the
goal of the Semantic Web it is to let the Worldwide Web community to take advan-
tage of the possibilities of publishing data in such way. If the data cannot be used by
the community, then it is not relevant for the community how it is published.

In order to encourage people to publish their datasets as LOD, Tim Berners-Lee
developed a star rating model in order to evaluate the quality of the Data. The levels
of this rating star system are defined as follows [40]:

⋆ Available on the Web (whatever format) but with an open license,
to be Open Data.

⋆⋆ Available as machine-readable structured data (e.g., excel instead
of image scan of a table).

⋆⋆⋆ As level 2, plus non-proprietary format (e.g., CSV instead of excel).

⋆⋆⋆⋆All the above, plus use open standards from W3C (RDF and SPARQL)
to identify things, so that people can point at your stuff.

⋆⋆⋆⋆⋆ All the above, plus: Link your data to other people’s data to pro-
vide context.

As one can see, the rating system proposed requires that the Data should be open
to get a star. According to this system, a piece of data contained in an image could
have a higher quality than an RDF dataset exposed in a SPARQL endpoint, in case
this endpoint does not have an Open License. The levels defined after the first star
describe scenarios of increasing data quality. The last and best level refers to LOD
content.

Note that an Open License does not necessarily imply a Free License9. An exam-
ple of frequent Open License that does indicate some restriction over the published
data is CC BY10. Open licenses ensure that the published data can be reused at no
cost and without asking for permission to the authors, as long as some possible con-
ditions licenses are met. These conditions usually refer to the following questions:

• Attributions. The publishers may ask for credit when their work is used.

• Commercial use. The publishers may require that the work can be used only
for non-profit purposes.

• Derivatives. The publishers could specify that their work can be used, but not
modified.

9CC0 is the public domain License. Any artifact published with this license can be used by any-
one with absolute no restrictions. See more at https://creativecommons.org/share-your-work/
public-domain/cc0/ Accessed in 2022/05/03

10The CC BY license allows reusers to distribute, remix, adapt, and build upon the material in any
medium or format, so long as attribution is given to the creator. The license allows for commercial use.
Source: https://creativecommons.org/about/cclicenses/ Accessed in 2022/05/03

https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/about/cclicenses/

2.1. Semantic Web and Linked Data 17

FIGURE 2.5: LOD Cloud, May 2007. Image credits to lod-cloud.net

• Share alike. The publishers could specify that their work can be freely used as
a piece of some other works, as long as these works are shared with the same
license as the publishers’ one.

LOD projects are especially relevant for the Semantic Web community, as they
are the crystallization of all the principles originally suggested to create a Web of
Data. The LOD Cloud is an initiative started in 2007 aiming to represent in a map
every existing LOD source and the links between these sources. The first version of
the LOD Cloud, published in 2007 (one year after the definition of the LD principles)
is shown in Figure 2.5. Back then it consisted of 12 projects. Just two years later, the
LOD Cloud grew to the state shown in Figure 2.6. At that moment, 93 projects joined
the initiative, and it was becoming hard to depict them all in a single image.

At the time of this writing, the last version of the LOD Cloud describe the relation
between 1301 different projects. As one can see in image 2.7, the visual aspect of all
these projects together looks like an actual cloud formed by tiny drops rather than a
graph. The data volume published by these initiatives has exponentially grown too.
The following list contains some insightful projects of general interest for the LOD
community:

• DBpedia [27] is part of the LOD Cloud from its foundation and is a key project
for the LOD community. Many LOD projects link to DBpedia URIs, so DB-
pedia can be used as a bridge among those sources. DBpedia knowledge is
mainly obtained by mining Wikipedia. At the time of this writing, its core
release, which is just around 14% of the total content of DBpedia11, contains
approximately 1 billion triples. It also contains 62 million triples linking its
URIs with other elements in LOD sources.

• Wikidata is a collaborative project. Users from a worldwide community add
and maintain the knowledge of this project with manual edits or helped by
community-developed bots to build a cross-domain data source. At the time
of this writing, Wikidata contains more than 1.2 billion statements about more
than 90 million different entities12. The volume of actual RDF triples is even

11https://www.dbpedia.org/blog/snapshot-2021-12-release/#anchor1 Accessed in
2022/05/03.

12https://wikidata-todo.toolforge.org/stats.php Accessed in 2022/05/03.

lod-cloud.net
https://www.dbpedia.org/blog/snapshot-2021-12-release/#anchor1
https://wikidata-todo.toolforge.org/stats.php

18 Chapter 2. Theoretical Framework

FIGURE 2.6: LOD Cloud, March 2009. Image credits to lod-cloud.

net

As of March 2009

LinkedCT
Reactome

Taxonomy

KEGG

PubMed

GeneID

Pfam

UniProt

OMIM

PDB

Symbol
ChEBI

Daily
Med

Disea-
some

CAS

HGNC

Inter
Pro

Drug
Bank

UniParc

UniRef

ProDom

PROSITE

Gene
Ontology

Homolo
Gene

Pub
Chem

MGI

UniSTS

GEO
Species

Jamendo

BBC
Programm

es

Music-
brainz

Magna-
tune

BBC
Later +
TOTP

Surge
Radio

MySpace
Wrapper

Audio-
Scrobbler

Linked
MDB

BBC
John
Peel

BBC
Playcount

Data

Gov-
Track

US
Census
Data

riese

Geo-
names

lingvoj

World
Fact-
book

Euro-
stat

flickr
wrappr

Open
Calais

RevyuSIOC
Sites

Doap-
space

Flickr
exporter

FOAF
profiles

Crunch
Base

Sem-
Web-

Central

Open-
Guides

Wiki-
company

QDOS

Pub
Guide

RDF
ohloh

W3C
WordNet

Open
Cyc

UMBEL

Yago

DBpedia
Freebase

Virtuoso
Sponger

DBLP
Hannover

IRIT
Toulouse

SW
Conference

Corpus

RDF Book
Mashup

Project
Guten-
berg

DBLP
Berlin

LAAS-
CNRS

Buda-
pest
BME

IEEE

IBM

Resex

Pisa

New-
castle

RAE
2001

CiteSeer

ACM

DBLP
RKB

Explorer

eprints

LIBRIS

Semantic
Web.org

Eurécom

RKB
ECS

South-
ampton

CORDIS

ReSIST
Project
Wiki

National
Science

Foundation

ECS
South-
ampton

bigger, as Wikidata uses a data model that allows for describing a statement (a
relation between two elements) with some references or qualifiers. That is, a
single relation can generate several RDF triples13 in Wikidata.

The evolution of the LOD Cloud in these few years reveals the increasing interest
of the Web community on LOD data. LOD projects, and especially DBpedia and
Wikidata, will be used in several stages of this thesis.

2.2 RDF

RDF is described by the W3C as “a standard model for data interchange on the Web.
RDF has features that facilitate data merging even if the underlying schemata differ, and
it specifically supports the evolution of schemata over time without requiring all the data
consumers to be changed” [41].

RDF is the de facto standard to produce Linked Data. It provides a simple but
yet powerful mechanism to express knowledge by means of triples. Triples can be
serialized in several machine-readable syntaxes built on top of the RDF data model.
Its simplicity and lack of enforcing schemata allows for an easy evolution and inte-
gration of data sources.

As already stated, the minimal piece of information in RDF is the triple, which is
the union of a subject, a predicate, and an object. There are three types of conceptual
elements that can be used in a triple.

13Wikidata’s data model will be described in detail in section 3.3.2.2.

lod-cloud.net
lod-cloud.net

2.2. RDF 19

FIGURE 2.7: LOD Cloud, May 2021. Image credits to lod-cloud.net

lod-cloud.net

20 Chapter 2. Theoretical Framework

• IRIs. The concept of URI has already been described in section 2.1. Interna-
tionalized Resource Identifiers (IRIs) are a superset of URIs. IRIs and URIs are
conceptually identical, expect that IRIs permit a wider range of Unicode char-
acters. There are occasions in which operations that are just defined for URIs
need to be applied to IRIs. The most insightful example of such operations is
content retrieval via HTTP protocol. In such cases, IRIs should be encoded to
use only ASCII characters14. For this reason, it is common to talk about URIs
instead of IRIs when referring to the possible elements that can be used in RDF
triples.

• Literals. Literals are used to represent primitive values. Strings, numbers,
dates, or geographical coordinates are examples of literals. An RDF literal is
composed by two mandatory elements and a third one in some special cases:

1. Lexical form: It is a string representing the raw literal value.

2. Datatype IRI15: It is an IRI which specifies the type of the literal, i.e., how
the raw value should be interpreted. For example, the lexical form ‘2’
could be declared, among other options, as a string16 or as an integer17,
and thus be processed differently.

3. Language tag. If the datatype IRI is langString18, then the literal can
have a language tag19, i.e., an annotation describing the language in which
the string’s content is written.

• Blank nodes. Blank nodes (BNodes) are graph elements disjoint from Literals
and IRIs. Except for that, the set of blank nodes is arbitrary. Unlike URIs,
one cannot reference blank nodes of other RDF sources. Usually, BNodes are
instruments to link elements by means of artificial structures with no actual
identity. Some RDF syntaxes use identifiers to declare and reference BNodes
within an RDF document. However, this artificial identity has no consistency
nor meaning out of the document’s context.

An RFD graph can be formally defined as a set of triples (s, p, o) ∈ (U ∪ B) ×
(U) × (U ∪ B ∪ L), where (U) denotes all possible IRIs, (L) denotes all possible
literals, and (B) denotes all possible blank nodes.

A triple expresses that a subject (s) is related with an object (o), with the named
relation used as predicate (p). Note that this model implies that an IRI can be used
in the roles of s, p, and o. This means that URIs used as named relations can be
eventually used as subjects or objects too.

As one can see, the RDF model is quite simple. It essentially describes how to
combine in triples three basic easy to understand concepts. The simplicity and flexi-
bility of RDF’s base model makes it suitable to be managed by web developers with
lack of prior background on this topic [42].

14How to perform mapping of non-ASCII characters is explained in https://datatracker.ietf.

org/doc/html/rfc3987#section-3.1 Accessed in 2022/05/03.
15Despite literals are always compose by these elements, some RDF syntaxes have mechanism to

avoid explicit type declarations.
16IRI for string type: http://www.w3.org/2001/XMLSchema#string .
17IRI for integer type: http://www.w3.org/2001/XMLSchema#integer .
18IRI for langString type: http://www.w3.org/1999/02/22-rdf-syntax-ns#langString .
19The language tag’s syntax is described in https://www.rfc-editor.org/info/bcp47 Accessed in

2022/05/03.

https://datatracker.ietf.org/doc/html/rfc3987#section-3.1
https://datatracker.ietf.org/doc/html/rfc3987#section-3.1
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
https://www.rfc-editor.org/info/bcp47

2.2. RDF 21

FIGURE 2.8: Example of RDF/XML syntax

1

2 <?xml version ="1.0" encoding ="utf -8" ?>

3 <rdf:RDF xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns

#"

4 xmlns:ns0="http :// example.org/">

5

6 <rdf:Description rdf:about="http :// example.org/A">

7 <ns0:knows rdf:resource="http :// example.org/A"/>

8 </rdf:Description >

9

10 </rdf:RDF>

11

2.2.1 Different syntaxes

RDF proposes an abstract model that can be serialized using several different stan-
dard syntaxes. When RDF was proposed, eXtended Markup Language (XML) was a
popular structured language for data representation among web developers. Prob-
ably for this reason, the original syntax to serialize RDF is known as RDF/XML and
uses XML to represent the triples. The content in Figure 2.8, represents the triple (

<http://example.org/A>,<http://example.org/knows>,<http://example.org/B>

).
RDF/XML did not become too popular among semantic web developers though.

First, its verbose syntax makes it difficult to write RDF content by hand. Second, the
hierarchical tree model of XML differs from the graph-like RDF model, which creates
some issues to manipulate RDF content with general-purpose XML mechanisms.
The very same RDF document can be serialized using different XML trees, which
causes difficulties to process RDF with XML standard technologies such as XPath or
eXtensible Stylesheet Language Transformations (XSLT) [42].

Some other syntaxes to represent RDF content soon emerged. The main ones are
probably notation 3 (N3) [43], turtle [44], n-triples (NT) [45], and JSON-LD [46]. JSON-
LD is defined over JavaScript Object Notation (JSON), i.e., similarly to XML/RDF,
it is an approach built on top of a popular syntax among web developers which is
based in a hierarchical-tree model. The other three proposals handle the concept of
triple in a more natural way, and they are tightly related: turtle is a subset of N3 and,
N-TRIPLES is a subset of turtle.

From this point, every example of RDF content would be written using turtle.
Although this document is not meant to be a complete description of the turtle syn-
tax, we are going to make an overview of its main aspects, so a new reader to this
topic can understand the rest of the document. The complete specification of turtle
is available on-line20.

Figure 2.9 contains a sample piece of turtle content. Some of the main features of
turtle are:

• It supports some directives to allow writing shorter URIs. These directives are
the following ones:

20https://www.w3.org/TR/turtle/#BNodes Accessed in 2022/05/03.

https://www.w3.org/TR/turtle/#BNodes

22 Chapter 2. Theoretical Framework

FIGURE 2.9: Basic example of turtle syntax

1

2 @prefix : <http :// example.org > .

3 @prefix foaf: <http :// xmlns.com/foaf/0.1/> .

4 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

6 @base <http :// weso.org/example/relative/> .

7

8 #- <#Jimmy >, relative IRI

9 #- foaf:Person and rdf:type, prefixed name

10 #- a == rdf:type (special token)

11 <#Jimmy > rdf:tpe:Person .

12

13 #- a == rdf:type (special token)

14 <#Ana > a foaf:Person .

15

16 #- Predicate list

17 <#Laura > a <http :// xmlns.com/foaf/0.1/ Person > ;

18 :name "Laura" ; #- string

19 :surname "Smith"^^xsd:string ; #- same type

20 :motto "Live and let live"@en ; #- langString

21 :age 40 . #- integer

22

23 #- Object list

24 <#Ana > :likes <#Jimmy > ,

25 <#Laura > .

26

27 #- With this base, this subject == <#Jimmy >

28 <http :// weso.org/example/relative/Jimmy > :likes <#Ana > .

29

30 #- Blank node with label

31 _:1 a :Unknown ;

32 :name "Not Known" .

33

34 #- Blank node with no label.

35 [a :Unknown ;

36 :name "Not Known"

37] .

38

39 #- Nested unlabeled blank nodes

40 [a :Unknown] :likes [a :Unknown

41 :name "Not Known"] .

42

43 #- List example

44 _:2 :likes _:l1 .

45 _:l1 rdf:first <#Jimmy > ;

46 rdf:rest _:l2 .

47 _:l2 rdf:first <#Ana > ;

48 rdf:rest _:l3 .

49 _:l3 rdf:first <#Laura > ;

50 rdf:rest rdf:nil .

51

52 #- Equivalent to the previous list example

53 _:2 :likes (<#Jimmy > <#Ana > <#Laura >) .

54

2.2. RDF 23

– @prefix. It associates a prefix with a namespace. It consists of four to-
kens: 1) @prefix or PREFIX21, 2) the prefix, 3) the character ‘:’, and 4) the
namespace between ‘<’ and ‘>’ characters. The prefix can be empty.

– @base. It declares a base namespace for the document. It consist of two
tokens: 1) @base or BASE, and 2) the namespace between ‘<’ and ‘>’ char-
acters.

• There are three different ways to write an URI:

– Absolute IRIs. The whole URI is written between ‘<’ and ‘>’ characters.

– Relative IRIs. The last part of the IRI is written between ‘<#’ and ‘>’. The
IRI is interpreted as a concatenation of the document’s base namespace
and the content between ‘<#’ and ‘>’.

– Prefixed names. They consist of a prefix, the character ‘:’ and the last
part of the IRI. The IRI is interpreted as a concatenation of the namespace
associated to the prefix used and the content after the character ‘:’.

• The token a is always interpreted as the property rdf:type.

• Triples are represented as a sequence of three consecutive elements: subject,
predicate, and object. Unless predicate lists or object lists are used (these two
concepts are defined in the next two bullets), triples are separated from each
other with a ‘.’ character.

• When the token ‘;’ is used at the end of a triple t1, then it is assumed that the
subject of the next triple ti+1 is the same subject of the triple ti. The next two
tokens are expected to be the predicate and the object of ti+1. This feature is
called predicate lists.

• When the token ‘,’ is used at the end of a triple t1, then it is assumed that
the subject and the predicate of the next triple ti+1 are the same subject and
predicate of the triple ti. The next token is expected to be the object of ti+1.
This feature is called object lists.

• Literals, in general, consist of three tokens which are not separated by white
spaces and appear in the following order:

1. The lexical form between quotes.

2. The token ^^.

3. The Datatype IRI.

• There are some special types of literals whose type does not need to be de-
clared, including the following ones:

– In case there is just a lexical form quoted with no datatype declaration,
then the literal is assumed to be xsd:string type.

– Unquoted numbers are assumed to be xsd:integer or xsd:float, de-
pending on whether they have decimals.

21In the most recent version of turtle, these two tokens are equivalent. Initial versions of turtle
enforced the use of @prefix. C.f. https://www.w3.org/TR/turtle/ Accessed in 2022/05/03.

https://www.w3.org/TR/turtle/

24 Chapter 2. Theoretical Framework

– The unquoted words true and false are assumed to be xsd:boolean

type.

– A quoted string followed by the @ token and a language tag is assumed
to be rdf:langString type.

• In-line comments are supported. Everything between a ‘#’ character and a line
jump is considered a comment, except when ‘#’ is found within an URI or a
literal declaration.

• There are two ways to declare blank nodes:

– Labeled BNodes. They are similar to prefixed names, except the prefix is
always the token ‘_’. The identifier can be used to reference the defined
BNode within the document in which it is declared, but it has no effect
out of the document’s context.

– Unlabeled BNodes. Content between square brackets ‘[]’ represents triples
whose subject is the same blank node. Triples defined between square
brackets are a succession of two elements instead of three, as the subject
of them all is the BNode being defined. Predicate lists and objects lists can
be used to declare several triples within the square brackets.

• Unlabeled BNodes can be nested. An example of this is shown in lines 40 and
41 of Figure 2.9.

• RDF is a model purely based in triples, but it allows to emulate lists by using
some special properties, such as rdf:first and rdf:rest22. An example of
such a conceptual list composed by the nodes <#Jimmy>, <#Ana>, and <#Laura>

is shown in lines 44 to 50. Turtle proposes a shorter syntax to define such
lists by placing a succession of elements between squares. An example of such
syntax is shown in line 53. Lists written with this syntax can be used in the
positions of subject or object in a triple.

In general, in the interest of brevity, we will avoid making explicit prefix decla-
rations for the rest of turtle examples in this document. In Appendix A, we declare
the namespace corresponding to any prefix used in this document, both in turtle
examples and textual explanations.

2.2.2 Extending the expressiveness of basic triples

The simple model of a triple allows for representing many kinds of factual knowl-
edge. Nevertheless, for some scenarios, these three elements are not enough to rep-
resent a certain notion. Let us suppose that one wants to express in RDF that the
distance between a city A ex:A and a City B ex:B is 20 km. Such piece of knowledge
could be represented by a triple such as (ex:A , ex:20KmDistnace , ex:B) .

This representation strategy is hardly scalable. Introducing the actual distance
between points in the predicate URI itself would require to define potentially infi-
nite properties to represent every possible distance between two points. It will also
prevent us from using any kind of algebra or logical operation over this quantity, as
URIs are mere identifiers. Operations such as comparison, addition, etc., are defined
over literals.

22https://www.w3.org/TR/rdf11-mt/#rdf-collections Accessed in 2022/05/03.

https://www.w3.org/TR/rdf11-mt/#rdf-collections

2.2. RDF 25

FIGURE 2.10: Reification example: expressing the notion “A is 20 km
far from B”

A

BNode

B

km

20.0
(float)

or
igi
n

d
es
�
n
a�
o
n d

istan
ce

unit

It sounds feasible to represent the actual distance using a literal, such as the float-
ing number 20.0. However, if this literal is used as object, then the city B could not
be used in that position of the triple.

RDF can solve this kind of scenarios using reification. Reification extends the ex-
pressiveness of RDF by means of BNodes. The RDF specification includes some
standard vocabulary to implement reification schemata23. Core elements of this
vocabulary are the class rdf:Statement, which can be used to indicate that a cer-
tain node represents a triple, and the properties rdf:subject, rdf:predicate and
rdf:object, which can be used to indicate which are the subject, predicate, and
object of a rdf:Statement node. Nevertheless, this section of the RDF specification
is non-normative, and different strategies and vocabularies to implement reification
can be used [47].

An example of a simple reified model to represent the relation between the cities
A and B is shown in Figure 2.10. Instead of using a direct link between A and B,
both cities are linked with a BNode. The only purpose of this node is being a nexus
between these two cities and the actual distance between them. Some other notions,
such as the unit measure expressed by the raw value ‘20’ can be linked to the BNode
too.

Reification models are not the only mechanism to increase the expressiveness of
basic triples. Named graphs [48], are a standard extension of RDF which consist of
turning triples intro quads, i.e., a relation between four elements. This new fourth
element is placed after the object and is used to associate the triple to a specific graph.
Quads do not modify the basic RDF graph model, but allow for separating triples
into different graphs within a single RDF document. Quads can be formally defined
as (s, p, o, g) ∈ (U ∪B)× (U)× (U ∪B ∪L)×UG , where UG denotes the subset of U
representing graphs.

2.2.3 ‘Schemaless’ character

RDF is often called schemaless, and this quality is often misunderstood. W3C’s defi-
nition indicates that RDF facilitates the integration of different sources even if they
have different schemata. As stated in section 2.1, this integration is articulated by
using triples stating links between different sources. The RDF core does not en-
force users to use strict schemata to represent their data, as long as it is expressed

23https://www.w3.org/TR/rdf-schema/#ch_reificationvocab Accessed in 2022/05/03.

https://www.w3.org/TR/rdf-schema/#ch_reificationvocab

26 Chapter 2. Theoretical Framework

with valid triples. This means that RDF sources have flexible and easy to integrate
schemata, but it does not imply that these sources do not have internal schemata. In
this context, the term schema is used to refer to a set of rules one may have to stick
to in order to express information in a homogeneous way. Some examples of such
rules in a hypothetical context could be the following ones:

• To indicate that a certain entity is instance of a certain class, the property
rdf:type should be used.

• Every entity which represents a Person is expected to have, as most, one bio-
logical mother.

• A Person ’s name should be specified using the property foaf:name.

Using consistent schemata allow users to make an effective use of RDF content.
For instance, when writing a SPARQL query to find every instance of a certain class,
the user hopes that every instance-class relation is expressed with the same property.
Arbitrary decision w.r.t. the instantiation property end up in pieces of knowledge
being ignored due to schema incoherence. Also, when building applications over
existent RDF data, the developers must know which are the data premises they can
rely on. A user interface could be built under the assumption that a certain person
can have a single biological mother, or that his name will be find in a triple whose
predicate is foaf:name. Inconsistencies w.r.t. those assumptions may cause unex-
pected errors or extra development costs.

More on how to define and validate schemata in RDF graphs will be explained
in section 2.6.

2.3 Knowledge Graphs

The term Knowledge Graph (KG) was early used in the literature [49]. However, this
concept becomes more popular when the announcement of Google’s Knowledge
Graph [50]. Since then, KGs are attracting many attention from both industry and
academia.

Some Linked Data sources already described or mentioned in the previous sec-
tions are KGs, including Wikidata and DBpedia. This is the case of many other well-
known Linked Data sources, such as YAGO [38], or Freebase [34]. However, there
is still no agreement on how to precisely define the concept of KG. Several authors
have provided a definition, sometimes contradictory with existing ones [51–53]. In
this document, we will use the definition of Knowledge Graph provided in a recent
book survey about this topic. A Knowledge Graph is “a graph of data intended to ac-
cumulate and convey knowledge of the real world, whose nodes represent entities of interest
and whose edges represent relations between these entities” [54].

RDF proposals fit, indeed, in this definition. RDF is a graph-based model whose
edges are named relations representing different types of relations between nodes.
However, RDF is not the only model compatible with this generic definition. Data
represented using different models of graph-based representation can be considered
a KG. In [54], several popular in practice graph models are introduced:

• Directed edge-labeled graphs. They are defined as a set of nodes connected
between them by labeled edges. RDF fits in this definition even if it introduces
extra restrictions and extra proposals. In RDF, not every node can be the be-
ginning of a directed edge, as literal nodes can be just used as objects. Also,

2.3. Knowledge Graphs 27

the fact that URIs are used to label edges allow that these labels can be used as
nodes which are source or destination of other labeled edges.

• Heterogeneous graphs. They are also defined as a set of nodes connected by
labeled directed edges, but nodes in this kind of graphs are always typed.
Unlike RDF (and, in general, directed edge-labeled graphs), this type is not
represented with an extra relation, but it is a fundamental part of the node
itself. Heterogeneous graphs usually support clustering nodes by type. The
base model of these graphs cause that each node is usually single typed. Extra
types for a node can just be defined by using relations which are external to
the node type.

For example, the DBLP project24, which gathers information about Computer
Science bibliography, is processed in [55] as an heterogeneous graph. DBLP
node are classified according to types such as author, journal, conference, or pub-
lication.

• Property graphs. Property graphs are heterogeneous graphs which let asso-
ciate key-value pairs to both nodes and edges. Property graphs are popular
in graph databases, such as Neo4j [56]. The data model of property graphs is
more flexible than directed edge-labeled graphs, while directed edge-labelled
graphs are conceptually simpler than property graphs. However, information
represented using property graphs can be mapped to directed edge-labeled
graphs[47, 57]. For example, property graphs can be converted to RDF by:

1. Turning each node key-value pairs into triples. The subject would be the
node itself. The key should be mapped to an URI and URI and as predi-
cate. The value should be mapped to a literal and used as object.

2. Representing the key-value pairs attached to edges using some reification
schema, as the one shown in Figure 2.10.

• Graph datasets. Graph Datasets are an extension of directed edge-labeled
graphs that allow to handle several graphs instead of a single monolithic source.
There could be several motivations for this idea. For example, one my want
to associate certain information with its origin, so it is possible to differenti-
ate between trustworthy and not trustworthy sources. One could also want to
maintain different versions of a domain with frequent changes in time on sep-
arate graphs, so the evolution of the information can be traced. In RDF, graph
datasets are implemented using quads.

The techniques and results described in this document are defined for RDF con-
tent. However, most of the techniques proposed or evaluated could be adapted to
work with different KG data models. Particularly:

• The metrics about class importance developed or evaluated during chapter
3 could be trivially adapted to every model graph described in this section.
Most of the techniques evaluated consist in general graph theory algorithms
that are already defined for any network structure. On the other hand, those
approaches that use RDF specific features are mainly focused on notions of
instantiation expressed by means of rdf:type or equivalent properties25. The

24https://dblp.uni-trier.de Accessed in 2022/05/03.
25Among the evaluated techniques, just ClassRank can use properties different than instantiation

ones. However, ClassRank proposals can be still extrapolated to other graph models, as long as this
model uses labeled edges.

https://dblp.uni-trier.de

28 Chapter 2. Theoretical Framework

notion of type is present in every KG base model described, so the proposals
based on this relation could be used in other type of KG by adapting the way
in which the type of a given node is found.

• The main product of chapter 4 is an automatic way to produce shapes by min-
ing RDF content. The shape languages are defined to work just with RDF.
However, the need of validating and documenting graph structures is transver-
sal to any kind of KG. In this sense, the idea of serializing graph patterns fre-
quently observed among groups of individuals by means of a reusable syntax
can be extrapolated to other KG models. This could help in every case to re-
duce the cost of producing such content in a handcrafted and domain expert-
dependent way.

• Again, the products of 5 are RDF shapes. However, in most cases, the value of
these shapes is associated with the products that can be automatically gener-
ated with them, such as forms, text summaries, classifications, and so on. Any-
how, for users interested in the shapes themselves rather than their potential
uses, the ideas exposed in this chapter could be adapted to other graph models
too, as long as there are actual implementations of software pieces that can be
assembled to produce a system with the architecture described in chapter 5.

KGs not always based on RDF are gaining momentum in the last years, both as
open-source initiatives or private data. Just to name a few examples, companies such
as eBay [58], Facebook [59], Amazon [60], Microsoft [61], and Uber [62] maintain and
use their own KGs. Although this thesis is framed in the context of RDF, adapting
our proposals to other popular models such as graph databases maintained with
Neo4J is identified as a line of future work.

2.4 SPARQL

In the early years of semantic technologies, the need of querying RDF content emerged
soon. Many languages were proposed for such a task, including RQL [63], TRIPLE
[64], Xcertp [65], or Algae [66]. SPARQL [67] became the standard language to per-
form queries on RDF content.

Essentially, SPARQL is a graph-matching query language. The evaluation com-
plexity of SPARQL is PSPACE-complete in case of using unlimited nested optional
patterns. Nevertheless, there is a set of frequent graph patterns that avoid using
certain kinds of interactions between variables in optional patterns. The graph pat-
terns fitting in this condition are called well-designed patterns. SPARQL queries using
well-designed patterns can be evaluated as a coNP-complete problem [67].

A SPARQL query consists of three fundamental parts:

1. Pattern matching. SPARQL allows for defining graph patterns. The base of
these patterns are triples written in a syntax similar to turtle, where some of the
elements in a triple are variables. SPARQL also provides several operators for
defining such schemata, including triple nesting, union of patterns, or usage
of optional patterns.

2. Solution modifiers. Once the results have been computed, i.e., once the sub-
graphs of the target RDF that match the patterns have been found, SPARQL
provides several operators to filter the results or to perform some post-computation
over them. Some of these operators allow for limiting the number of results,

2.4. SPARQL 29

FIGURE 2.11: Basic example of SPARQL

1

2 SELECT DISTINCT

3 ?person ?name

4 WHERE {

5 ?person a :Person ;

6 :occupation ?ocuppation .

7 OPTIONAL {? person foaf:name ?name}

8 }

9 LIMIT 50

10

grouping or sorting them according to some criteria, or excluding repeated
values.

3. Output. SPARQL queries can be solved in several manners. They can consist
on YES/NO questions when the keyword ASK is used, graph bindings to vari-
ables when SELECT is used, or actual RDF content when CONSTRUCT or DESCRIBE
are used.

In Figure 2.11, we show an example of SPARQL query26. Informally, this query
could be translated to the following sentence: “Find instances of the class :Person that
has at least an occupation and, in case they have a name, retrieve it. Also, avoid repeated
results and do not show more than 50 results”. The results are retrieved in a tabular
way, where the column headings are ?person and ?name.

The core part of a SPARQL query is the pattern matching, which consists of lines
4 to 8 in Figure 2.11. Lines 5 and 6 specify a couple of triples in turtle. However,
as one can see, pieces of those triples can be substituted by variables, which are
tokens starting with the ‘?’ character. These variables are the elements to match
when computing the graph pattern. The query will retrieve a set of subgraphs of the
target graph G containing URIs such that when the variables are replaced by those
URIS, the described triples exist in G. Line 7 specifies an optional pattern. Optional
patterns are used to provide extra information in the results when it is possible. Let
us say there is a URI u that matches the pattern described in lines 5 and 6 in the role
of ?person. The optional pattern declared in line 7 causes that, if it exists a triple (

u , foaf:name , ?name) in G, then the name will be included in the results. In
case this triple does not exist, then the results will include u anyway, although the
name associated to u will be empty.

Line 9 allow to limit the maximum number of row results to 50. The keyword
DISTINCT ensures that there is not any repeated row in the table retrieved. The
SELECT keyword indicates that the result should be retrieved in a tabular way. Fi-
nally, line 3 indicates the headings (and their order) of the tabular result.

SPARQL is a complex language with many more features than the ones shown
in Figure 2.11. This document does not aim to be a complete description of SPARQL,
but just a brief introduction that allow the reader to 1) understand the purpose and
importance of SPARQL in the RDF ecosystem, and 2) understand the SPARQL snip-
pets or references that will be used in different chapters. The complete specification
of SPARQL is available on-line27, as well as many public tutorials.

26As with turtle, SPARQL also accepts declaration of namespace alias. The prefixes used in this
figure can be solved using Appendix A.

27https://www.w3.org/TR/sparql11-query/ Accessed in 2022/05/03.

https://www.w3.org/TR/sparql11-query/

30 Chapter 2. Theoretical Framework

2.5 Ontology

Ontologies are another essential piece within the RDF ecosystem. An ontology is
defined as “a specification of a representational vocabulary for a shared domain of discourse
(definitions of classes, relations, functions, and other objects)” [68]. In few words, ontolo-
gies are specifications of conceptualizations. They allow data practitioners to define
vocabularies to model the universe of discourse.

In the RDF context, in short, ontologies are used to define classes, individuals,
and possible relations between different nodes. Some of the notions that can be used
to describe these three concepts are:

• Classes. A textual description in natural language can be used to define the
class. They can be part of a hierarchy, i.e., they can be specializations of more
general concepts and can be specialized by more specific concepts. They can
also be declared as equivalent to other classes or disjoint with other classes.
When two classes c1 and c2 are disjoint, it means that an instance of c1 cannot be
instance of c2 too. There are some other operations available to define classes
w.r.t. other classes, such as union, intersection, and complement. Also, they
can define different restrictions w.r.t. property usage. These restrictions affect
the type of properties that an instance of a certain class can be linked with, the
number of triples with a certain predicate that the instance is expected to have,
or even some features about the content expected to be found at the opposite
end of such triples.

• Properties. They can be defined as data properties or object properties. The
former ones are expected to be used in triples in which the object is a literal. In
contrast, object properties are expected to be used in triples where the object
is either a IRI or a Blank node. Same as classes, properties can have a textual
definition and participate in hierarchies, i.e., they can specialize or be special-
ized by other properties. Also, they can define domain and range constraints.
These are useful to specify what type of subjects and what type of objects are
expected to be found in triples using a certain property as predicate. They can
also be defined w.r.t. other properties, as they can be declared to be equivalent
to other property or to have the inverse meaning of another element. Some
logic can be attached to a property. For example, they can be declared to be
symmetric28 or transitive29. They can also define global cardinalities, i.e., a
specific number of times that it can be used with a certain node.

• Individuals. Individuals represent actual objects with identity in the universe
modeled by the ontology. Any kind of knowledge could be expressed about
an individual. Individuals can be assigned one or more types, i.e., they can
be related to one of more classes with an instantiation property. They can be
linked to other individuals, literals, or even classes by means of any property
defined.

Classes and properties of RDF ontologies are defined using elements of some
special ontologies. The W3C recommended ontologies for such a task are RDFS and
OWL.

28This means that, if there is a triple (e1, p, e2), then the triple (e2, p, e1) can be inferred.
29This means that, if there is a triple (e1, p, e2), and another triple (e2, p, e3) then the triple (e1, p, e3)

can be inferred.

2.5. Ontology 31

RDFS allows for basic ontology definitions. Its core is mainly used to declare
URIs as classes/properties/Literal types, to define class and property hierarchies, to
specify some domain and range restrictions over properties, and to associate labels
and comments to different entities (both to classes/properties or to URIs standing
for instance-level elements).

OWL extends RDFS with many other properties and add logical axioms to on-
tologies, so it is possible to perform automatic inference on datasets using ontologies
defined with OWL. There are two versions of OWL: OWL 1 [69], and OWL 2 [70].
OWL 2 extends OWL 1 in different ways, including:

• Syntactic sugar to make frequent statements easier to write.

• More expressivity.

• Extended support for datatypes.

• Some meta-modeling capabilities.

• Extended annotation capabilities.

In the interest of brevity, along this document, we will use just ‘OWL’ to refer to
OWL 2.

The potential inferences that could be achieved by using the whole OWL vo-
cabulary can lead to huge computational tradeoffs. For this reason, OWL defines
several subsets of the language. Practitioners can decide which subset they want to
use when defining a new ontology w.r.t the expected usage of this ontology. Envi-
ronments in which it is important to perform automatic reasoning may use restricted
subsets of OWL, so the conclusions raised by automatic reasoners can be produced
in affordable time. On the other hand, ontologies which are not expected to be used
in reasoning environments may not need to worry about OWL subsets and could
use the whole language to achieve maximum expressivity.

The main subsets of OWL are the following ones:

• OWL Full. It includes the full expressivity of OWL and it is compatible with
any RDF graph. However, it is undecidable, i.e., automatic reasoning cannot
be applied over OWL Full.

• OWL DL. It represents a subset on OWL based on Description Logics. It is
highly expressive and, unlike OWL Full, it does support automatic reasoning.
It defines some restrictions so the graphs can be decidable30. These restrictions
cause that not every RDF graph can be considered an OWL DL ontology.

• Different OWL profiles. Like OWL DL, these profiles are based on Descrip-
tion Logics. However, some of the potential reasoning processes that can be
performed with OWL DL are too costly in computational terms. The different
profiles select subsets of OWL, so the expressivity is decreased but inference
results can be obtained easier. There are three different standard profiles de-
fined: OWL EL, OWL QL, and OWL RL.

Queries performed over ontologies defined with any of these profiles can be
solved in NP-Complete31 complexity32.

30These restrictions are specified in the following document: https://www.w3.org/TR/

owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL Accessed in 2022/05/03.
31A problem is NP-Complete when it can be solved in Polynomial time using a Non-deterministic

Turing machine.
32https://www.w3.org/TR/owl2-profiles/#Computational_Properties Accessed in 2022/05/03.

https://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL
https://www.w3.org/TR/owl2-syntax/#Global_Restrictions_on_Axioms_in_OWL_2_DL
https://www.w3.org/TR/owl2-profiles/#Computational_Properties

32 Chapter 2. Theoretical Framework

Note that, even if RDFS and OWL are the proposed W3C vocabularies to define
ontologies, it is possible to extend the classes and properties of these ontologies to
create new vocabularies [71–74].

When designing an ontology, it is a good practice to care about FAIR principles
[75]. FAIR is an acronym that stands for Findability, Accessibility, Interoperability,
and Reusability. The FAIR principles are a set of general good practices to implement
when publishing and sharing any kind of data. The scientific community identified
soon the need to follow these principles for the specific case of ontology design [76].
Several authors discuss and propose specific rules or concerns to design FAIR on-
tologies [77–79]. These proposals could be roughly summarized in some core ideas:

• Use universal, consistent, and persistent identifiers. Both to refer to the ontol-
ogy and each term defined within ontology.

• Provide complete and consistent definitions about described concepts. Specif-
ically, link enough metadata to those concepts.

• Ensure that the concepts and the associated metadata are both machine-readable
and human-understandable.

• Ensure the ontology is published with an adequate license, so it ca be reused.

• Ensure the ontology is available on-line and indexed in search engines, so it
can be discovered by other people.

• Design and implement reviewing and maintenance processes for the ontology.

Reusing well-designed and well-known ontologies is a key idea to maintain the
Linked Data ecosystem for several reasons. By reusing existing ontologies, data pro-
ducers are not forced to define a new ontology every time that they need to refer to
concepts of a certain domain model. More important, using well-known ontologies
causes that the data could be easily integrated with other datasets using the same
vocabularies, and also makes it easier to understand for anyone who already knows
the vocabularies used. There are many well-designed and widely known ontologies
which are commonly used in many LOD sources. The following ones are insightful
examples:

• Dublin Core (DC) [80]. This is a lightweight RDFS-based vocabulary to de-
scribe generic metadata.

• Friend of a Friend (FOAF) [81]. It is used to describe people and social rela-
tionships. It is compatible with OWL RL.

• The Music Ontology (MO) [82]. It is a reference ontology to describe data re-
lated to the music industry. It does not describe the music itself (notes), but
concepts such as releases, albums, events, etc. It is based on OWL DL con-
structs, but it is not fully compatible with OWL DL reasoning nor any of its
sub-profiles.

• SNOMED CT [83]. It is a large ontology (at the time of this writing, it includes
more than 350.000 elements) that is a reference in human health domains. It
describes concepts such as illnesses, symptoms, or treatments. It is fully com-
patible with OWL EL.

2.6. RDF Shapes 33

2.5.1 Assertion Box and Terminological Box

Triples in RDF sources, and , in general, any statement in a knowledge base, can
be classified in two categories according to the type of elements that it describes.
These categories are usually called Terminological Box (T-BOX) and Assertion Box (A-
BOX) in the literature. T-BOX statements describe abstract concepts and properties.
A statement such as (:City owl:subClassOf :HumanSettlement) is a T-BOX ex-
ample, as it describes two elements (:City and :HumanSettlement) which are con-
ceptualizations, i.e., instantiable ideas that do not refer to a actual individuals. On
the other hand, A-Box statements contain instance information. A-BOX statements
describe relations between named individuals or relations between these individu-
als and abstract conceptualization. The triple (:NewYork , rdf:type , :City) is
an A-BOX example as it links a concrete entity (:NewYork) with an abstract concept
(:City). The triple (:NewYork , :twinnedCcity , :Madrid) is another exam-
ple of A-BOX statement. In this case, it is a link between two existing entities.

In RDF, T-BOX statements are frequently found in ontology definitions, i.e., they
are used to define reusable vocabularies that model a domain of discourse. In con-
trast, A-BOX ones are more frequent in KGs oriented to NE-related knowledge (in-
stances).

In this document, we frequently talk about the T-BOX and the A-BOX parts of a
graph. The T-BOX part of a graph is the subgraph which is formed purely by T-BOX
knowledge. Analogously, the A-BOX part of a graph is purely composed by A-BOX
statements.

2.6 RDF Shapes

As explained in previous sections, ontologies can define concepts to model a knowl-
edge domain, and they can also define restrictions about the correct use of those
concepts (classes, properties) in an RDF graph. However, ontologies may not be the
adequate tool to define nor validate proposed schemata in the context of a specific
graph.

Let us say, for instance, that we are working with an RDF KG of a professional
social network. This KG contains some personal data, such as name, surname, and
age, but it also contains information about concepts related with people’s jobs, such
as metadata related to actual companies or occupations. Let us say that the data
designers of this KG want to represent people’s names using the FOAF ontology.
Specifically, they want a KG with the following constraints:

• People’s names will be represented with the property foaf:name.

• By people, we mean every node whose type is foaf:Person.

• Each person will have exactly one foaf:name.

• Names are supposed to be strings.

• The property foaf:name is expected to be used just with people. The names of
other concepts (companies, job descriptions) will be specified using different
properties.

If we explore the definition of the foaf:name property within the FOAF ontol-
ogy33, we discover that there are a couple of restrictions defined over this property:

33http://xmlns.com/foaf/spec/#term_name Accessed in 2022/05/03.

http://xmlns.com/foaf/spec/#term_name

34 Chapter 2. Theoretical Framework

its domain is owl:Thing34, and its range is rdfs:Literal35. These restrictions are
compatible with the KG context, which means that the desired features of the data
designers fit into the foaf:name formal definition. However, this definition is not
enough to meet the data designers’ expectations. For example, according to this def-
inition, any node which is an instance of owl:Thing (or any of its subclasses) can
have a foaf:name. Also, it does not enforce instances of foaf:Person to have exactly
one name, and it does not enforce names to be xsd:string rather than any other
literal type.

The actual FOAF ontology could hardly be redefined to be more specific for cov-
ering all these requirements. Doing so would imply to stop supporting many other
KGs which are already using FOAF with different expectations for the foaf:name

property. It can be feasible to define a new ontology which extends FOAF, so these
restrictions are specified in the new ontology. However, this approach has several
disadvantages, such as the following ones:

• Defining new well-designed ontologies is a costly task. Many times, the data
practitioners using ontologies do not need nor have this skill, as they just need
to develop or support the development of applications built on top of some
data which is expected to meet a certain structure. These concerns are far from
other questions such as the formal correction of an ontology definition nor its
inference potential.

• Such new ontology would not meet FAIR principles, as it is hardly reusable
out of the context of this KG. Also, it may not be a stable ontology, as changes
in the schema expected for this KG may trigger changes in the ontology itself.

• A newcomer to this graph with some prior knowledge about LD would proba-
bly understand immediately the meaning of a triple using the property foaf:name,
as FOAF is a widely used ontology. On the other hand, the same newcomer
may need to learn the ontology designed ad-hoc for this case for a full under-
standing of the KG’s content.

The task of validating the structure expected in a specific KG, or even the task
of formally describing it, demands a formalism different than ontologies. Such an
approach should be focused on the constraints and expectations of a specific graph
context rather than trying to provide general reusable models. It should allow to ex-
press how to combine different elements of different ontologies and propose mecha-
nisms to automatically check that the schemata defined are actually met by the target
data.

Some of the earliest suggestions to that end consisted of query-based approaches.
The content validation of a certain KG was performed by defining some queries
exploring the graph features expected to be found. Then, those queries were exe-
cuted to detect possible constraint violations. Most of those proposals were based on
SPARQL, although some early approaches were not built on top of this technology.
Non-SPARQL approaches include [84], which is based in the Squish query language
[85], and [86], which reinterprets XPath [87] for RDF validation.

One of the most insightful SPARQL-based approach is SPARQL Inferencing No-
tation (SPIN) [88]. Essentially, SPIN attaches ASK or CONSTRUCT SPARQL queries to

34This means that the class of every entity used as subject in a triple whose predicate is foaf:name
should be subclass of owl:Thing.

35This means that the object of a triple whose predicate is foaf:name should be a literal.

2.6. RDF Shapes 35

classes. The resolution of these queries can reveal some constraint violations regard-
ing the expected structure for the instances of the class under evaluation. Some other
SPARQL-based alternatives were proposed, such as [89], which combines SPARQL
and SPIN; [90], which uses SPARQL and property paths36; and RDFUnit [91], which
describes a validation framework based on SPARQL templates.

Another family of early suggestions to solve the problem of RDF validation are
the inference-based ones. These proposals are based on adaptations of RDFS or OWL
to specify expected schemata and they use to rely in SPARQL to validate the struc-
tures. Inference-based proposals are affected by a couple of assumptions used in
general in LD sources:

• Open World Assumption (OWA). LD sources may not be complete, i.e., they
may not contain every available information in the world about a certain topic.
OWA assumes that what is not known, it is not necessarily false. Let us say for
example that one wants to list every instance of ‘Q5 - human’ in Wikidata.
This can be achieved by executing the adequate SPARQL query in Wikidata’s
endpoint. This result will contain every human that Wikidata is aware of, but
it will not return every existing instance of human in the world. The oppo-
site to OWA is Closed World Assumption (CWA). CWA assumes that only the
knowledge known is true.

• Non-Unique Name Assumption. It consists in not assuming that two differ-
ent names (IRIs) always represent different concepts. The opposite to this is
Unique Name Assumption (UNA). Systems working with UNA assume that
different names always refer to different realities.

The use of OWA and Non-UNA decreases the validation possibilities, so most of
the inference systems work under CWA and different versions of UNA. The work
in [92] proposes to use OWL with CWA and a weak version of UNA to express in-
tegrity constraints. In [93], the validation problem is split in two parts: integrity
constraints and closed world recognition. Description logics is used to implemented
solutions by translating the axioms to SPARQL queries. Integrity Constraint Vali-
dation (ICV) [94] proposes an approach similar to these works. In ICV, constraints
are written in OWL syntax, but using semantics based on CWA and UNA. These
constraints are translated to SPARQL to perform the validation. ICV is part of the
Stardog database37.

Some novel languages were developed to solve the validation problem. OSLC
Resource Shapes [95], Dublin Core Application Profiles [96], and RDF Data Descrip-
tions [97] are examples of such languages. Nevertheless, the most relevant proposals
are Shape Expressions (ShEx) [21], which is used for validation and description in
some major KGs (such as Wikidata), and Shapes Constraint Language (SHACL) [20],
which has become a W3C recommendation for RDF validation. These two languages
are described in the following subsections.

2.6.1 Shape Expressions

ShEx is a language to describe and validate RDF sources. Its development started
at 2013 and the original intention was to provide a human-readable syntax to OSLC

36A property path is defined as “a possible route through a graph between two graph nodes. A trivial
case is a property path of length exactly 1, which is a triple pattern. Property paths allow for more concise
expression of some SPARQL basic graph patterns and also add the ability to match arbitrary length paths.”. Cf.
https://www.w3.org/TR/sparql11-property-paths/ Accessed in 2022/05/03.

37https://www.stardog.com/ Accessed in 2022/05/03.

https://www.w3.org/TR/sparql11-property-paths/
https://www.stardog.com/

36 Chapter 2. Theoretical Framework

FIGURE 2.12: ShEx example: a person should have a foaf:name.

1

2 :Person {

3 a [foaf:Person] ;

4 foaf:name xsd:string ;

5 }

6

FIGURE 2.13: Turtle example: a person with a foaf:name.

1

2 :jimmy a foaf:Person ;

3 foaf:name "James" ;

4 foaf:age 45 .

5

Resource Shapes, but it became more expressive than this language [42]. Its syntax
and semantics were influenced by OSLC, turtle, and SPARQL, and it also took some
ideas from regular expressions and Relax NG [98].

Graphs can be validated and described using ShEx schemata. A ShEx schema
is a set of labeled shape expressions, and a labeled shape expression consist of the
association of a label with a set of node constraints or shapes. These shapes and
node constraints are the way to express how the neighborhood of a certain node is
expected to be. Let us say we want to express the example introduced in this sec-
tion using ShEx, i.e., that a node of type person should have exactly one foaf:name.
Using ShExC syntax, this can be expressed as it is shown in Figure 2.1238.

By default, ShEx shapes are open. This means that a node conforming to a shape
must have the features described by this shape, but it can use other properties too.
For instance, the node :jimmy described in Figure 2.13 conforms to the shape :Person
defined in Figure 2.12. :Jimmy is declared to have type foaf:Person, and it has ex-
actly one foaf:name which is a string. Also, it is the subject of a triple with foaf:age.
However, since the shape :Person is open, this does not affect the validation.

A shape can be closed too. To do this in ShExC, one should use the keyword
CLOSED before the definition of a shape. If we try to validate :jimmy against a closed
version of the shape :Person, the node will not conform, as the usage of foaf:age is
not defined by this shape.

Figure 2.12 provides a description of how a node associated to the label :Person
should be like. However, it does not express in any way which are the actual nodes
whose conformance with this shape should be checked. To do so, ShEx proposes to
use shape maps. Shape maps are associations between node groupings and shape
labels. In Figure 2.14, we show a shape map including two example associations.
The first one, in line 2, indicates that the node :jimmy should be evaluated against
the Shape :Person. The second one, in line 4, uses a triple pattern to indicate that
every node which is an instance of foaf:Person should be evaluated against the
shape :Person.

A standalone ShEx schema can be enough to describe the structures expected to
be found in an RDF KG. In contrast, to perform validation, a ShEx implementation

38As with turtle, ShEx allows for defining alias for namespaces. It uses a similar syntax with PREFIX

declarations to that end. In the interest of brevity, we will avoid these declarations for every ShExC
example in this document. The prefixes used in the examples can be solved using Appendix A.

2.6. RDF Shapes 37

FIGURE 2.14: Shape map example

1

2 <http :// example.org/jimmy > @ <http :// example.org/Person >

3

4 { FOCUS a foaf:Person } @ <http :// example.org/Person >

5

FIGURE 2.15: ShExC example content

1

2 :Employee :Person AND {

3 :occupation @:Occupation * ;

4 :worksFor @:Company {1,3} ;

5 (:primaryID xsd:string

6 |

7 :alternativeID Literal

8)

9 }

10

11 :Person {

12 a [foaf:Person] ;

13 foaf:name xsd:string

14 }

15

16 :Occupation IRI AND {

17 rdfs:label rdf:langString +

18 }

19

20 :Company {

21 :denomination xsd:string ;

22 :sector [:primary :secondary :tertiary] ? ;

23 ^ :worksFor @:Employee + ;

24 :relatedWith IRI *

25 }

26

requires three different elements:

• A ShEx schema S.

• Some target RDF content T.

• A shape map M, indicating which nodes of T should be validated against
which shapes of S. This input shape map is called fixed shape map.

The output of the validation process should be a new shape map, which asso-
ciates nodes and shape labels. Those associations are qualified as either conformant
or non-conformant. Non-conformant associations also include an error message ex-
plaining why the validation of the node and the shape label associated failed. This
kind of shapes maps are called result shape maps.

In Figure 2.15, we provide a ShEx schema written in ShExC which includes some
of the major features of ShEx . We will use this example to make an overview of such
features:

• Shapes express features expected to be found in a focus node. We say a a node
n conforms with a shape s when the triples described by s exists if n is used as
focus node.

38 Chapter 2. Theoretical Framework

• Shapes are composed by triple expressions. A triple expression is a set of triple
constraints. A triple constraint consists of three elements:

– A property. It indicates what property should be used in a triple. They
are always IRIs.

– A node constraint. It expresses the type of the object which is expected to
be found in a triple. They can have different types of values:

* Macros. They are keywords expressing sets of possible values. For
example, the macro Literal used in line 7 stands for any kind of
literal. The macro IRI used in line 24 stands for any kind of IRI. Some
other usual macros are BNode, which stands for blank nodes, or the
macro ‘.’, which matches any value.

* Some IRI. They indicate the URI associated to a certain literal type.
For example, xsd:string is used in lines 5, 13, and 21 to express that
the triple described expects to have a string in the role of object.

* Value sets. Value sets are expressed as a succession of values within
square brackets separated by blanks. A node constraint matches a
value set when its content matches exactly one of the values within
the value set. For instance, line 12 uses a value set that only contains
the URI foaf:Person. The value set in line 22 would match the URIs
:primary, :secondary, and :tertiary.

* Shape labels. This node kind matches nodes that conform with the
shape associated with the indicated label. A shape label is preceded
by the character ‘@’. See examples in lines 3, 4, and 23.

* Nested shapes. This node kind works similarly to a shape label.
However, instead of using a label, one can write an actual shape be-
tween curly brackets in the node constraint position of the triple con-
straint. Those shapes are called nested shapes and cannot be referred
out of the scope of the triple constraint in which they are defined, as
they have no label.

– A cardinality. It expresses how many times a the triple described is ex-
pected to be found. When no cardinality is specified, it is assumed that
the triple described is expected to be found exactly once. The other possi-
ble cardinality values are:

* Kleene closure ‘*’ (see line 3). The triple described is expected to be
found between 0 and an unbounded number of times.

* Positive closure ‘+’ (see line 17). The triple described is expected to
be found between 1 and an unbounded number of times.

* Optional cardinality ‘?’ (see line 22). The triple described is expected
to be found between 0 and 1 times.

* Exact range, specified with two positive integers between curly braces
(see line 4). The triple described is expected to be found a number of
times in the range [a, b].

• A triple constraint is inverse when it starts with the character ‘^’ (see line 23).
An inverse triple swaps the roles of the focus node and the node constraint.
That is, the triple described expects to find the value matching the node con-
straint in the role of subject, and the focus node in the role of object. A triple
constrains can also be negated with the character ‘!’. This means that the triple
described should not be found in the focus node’s neighborhood.

2.6. RDF Shapes 39

• Triple constraints can be joined with the eachOf operator, expressed with the
character ‘;’. Triples joined with this operator are called triple expression. A
node must match every triple constraint within a triple expression in order to
match the triple expression.

• The logical operators and, or, and not are supported with its usual seman-
tics using the keywords AND, OR, and NOT respectively. Complex structures
can be specified using the logical operators AND, OR, and NOT. For example, a
node matching the shape :Employee should conform at a time with the shape
:Person and the triple expression described in lines 2 to 9.

• The operator oneOf is supported. The character ‘|’ is used to that extend.
A oneOf operator joining several expressions (each element joined can be a
triple constraint or a triple expression in brackets) indicates that the focus node
should conform with just one of the expressions. For example, lines 5 to 8 in-
dicate that an :Employee must have an identification. This identification can
be indicated using the property :primaryId or the property :alternativeId,
both a node conforming with :Employee cannot use both properties at a time.

The ShEx features shown in this example do not cover all the language’s possi-
bilities. However, they are enough to understand the ShEx snippets that we will use
along this document. At the time of this writing, ShEx 2.1 is the last version pub-
lished by Shape Expression’s W3C Community Group and its complete specification
is available on-line[99].

In this example, we have used ShExC, but ShEx can be expressed using some
other syntaxes. ShExJ[100] is a sub-language of JSON [101]. ShEx can also be written
in any RDF syntax by using ShExR. The RDF representation of ShEx is defined in
the ShEx JSON-LD context39. ShExC, ShExJ, and ShExR are equivalent. They have
identical expressivity and there are complete mappings from one syntax to another.

Despite ShEx has not become a W3C recommendation, it has been adopted as
the validation language for Wikidata. It is also being used in a variety of scientific
works related to RDF validation or description [102–107].

There are implementations of ShEx validators in several programming languages,
including JavaScript40, Java41, Ruby42, Python43, and Scala44.

2.6.2 Shape Constraint Language

SHACL is a recommendation proposed by the W3C to perform validation of RDF
content. SHACL has influences of SPIN, ShEx, and OSLC [42]. SHACL and ShEx
are not equivalent languages: not everything expressed in SHACL can be mapped
to ShEx, and vice-versa. Nevertheless, the core intention of both languages is similar:
the validation of RDF sources. Also, most of the core features of both languages can
be easily mapped from one to another.

SHACL is expressed in RDF. At the time of this writing, there is an ongoing draft
of a Compact Syntax for SHACL [108]. However, this compact syntax is not part of
the W3C recommendation, and its expressiveness does not match the expressiveness
of SHACL RDF. In this document, we will use turtle to write SHACL content.

39http://www.w3.org/ns/shex.jsonld Accessed in 2022/05/03.
40https://github.com/shexjs/shex.js Accessed in 2022/05/03.
41http://shexjava.lille.inria.fr/ Accessed in 2022/05/03.
42https://github.com/ruby-rdf/shex Accessed in 2022/05/03.
43https://github.com/hsolbrig/PyShEx Accessed in 2022/05/03.
44http://www.weso.es/shex-s/ Accessed in 2022/05/03.

http://www.w3.org/ns/shex.jsonld
https://github.com/shexjs/shex.js
http://shexjava.lille.inria.fr/
https://github.com/ruby-rdf/shex
https://github.com/hsolbrig/PyShEx
http://www.weso.es/shex-s/

40 Chapter 2. Theoretical Framework

Same as ShEx, SHACL is built around the concept of shape. SHACL distinguishes
two kinds of shapes:

• Node shapes (sh:nodeShape). They are conceptually similar to ShEx shapes:
they describe topological features that are expected to be observed among the
triples involving a certain focus node.

• Property shapes (sh:propertyShape). They are used to describe constraints
that should be met w.r.t. nodes that can be reached from the focus node by
following a certain path.

A fundamental difference between SHACL and ShEx is that SHACL shapes in-
clude explicit references to the nodes they are supposed to conform with, while,
when working with ShEx, one must provide an independent shape map to intro-
duce such information in a validator. The SHACL statements that indicate which
nodes should be evaluated with a certain shape are called target declarations. A node
shape must have at least a target declaration, which can be of one of the following
types:

• Target node sh:targetNode. A certain node is supposed to conform with the
shape.

• Target class sh:targetClass. Every instance of a certain class is supposed to
conform with the shape.

• Subjects of a certain property sh:targetSubjectsOf. Every subject of a triple
whose predicate is a certain IRI is supposed to conform with the shape.

• Objects of a certain property sh:targetObjectsOf. Every object of a triple
whose predicate is a certain IRI is supposed to conform with the shape.

By default, SHACL shapes are open too, i.e., a node n conforms with a SHACL
shape s when n conforms with every constraint defined by the shape. n can be used
in triples that are not profiled by any constraint in s and still be conformant with s.
However, s could be declared closed using the property sh:closed. In this case, n
will be conformant with s just in case it does not use more properties than the ones
described in the constraints of s.

In Figure 2.16, we show a SHACL mapping of the ShEx content shown in Figure
2.15. We can use this example to review some of SHACL’s major features:

• A node whose type is sh:nodeShape is a SHACL shape45.

• Every shape declares a target. As this was not necessary for ShEx, this part of
the example has been filled considering reasonable values for each case:

– :Person. Every instance of foaf:Person (see line 27). By using this tar-
get class, we ensure that the triple constraint for the ShEx shape :Person

declared in line 12 of Figure 2.15 is always fulfilled. Just instances of
foaf:Person will be evaluated with the SHACL shape :Person, then it
will be true for any entity ei meeting this condition that it exists a triple
such as (ei , a , foaf:Person).

45This is one of the mandatory conditions that a node should met to be a well-defined SHACL
shape. The rest of formal conditions can be read at https://www.w3.org/TR/shacl/#shapes Accessed
in 2022/05/03.

https://www.w3.org/TR/shacl/#shapes

2.6. RDF Shapes 41

FIGURE 2.16: SHACL example in turtle syntax

1

2 :Employee a sh:nodeShape ;

3 sh:targetSubjectsOf :worksFor ;

4 sh:node :Person ;

5 sh:property [a sh:propertyShape ; #- Optional declaration.

6 sh:path :occupation ;

7 sh:node :Occupation ;

8] ;

9 sh:property [sh:path :worksFor ;

10 sh:node :Company ;

11 sh:minCount 1 ; sh:maxCount 3 ;

12] ;

13 sh:xone (

14 [sh:property [sh:path :primaryId;

15 sh:datatype xsd:string ;

16 sh:minCount 1 ; sh:maxCount 1 ;

17]

18]

19 [sh:property [sh:path :alternativeId ;

20 sh:nodeKind sh:Literal ;

21 sh:minCount 1 ; sh:maxCount 1 ;

22]

23]

24) .

25

26 :Person a sh:nodeShape ;

27 sh:targetClass foaf:Person ;

28 sh:property [sh:path foaf:name ;

29 sh:datatype xsd:string ;

30 sh:minCount 1 ; sh:maxCount 1 ;

31] .

32

33 :Ocupation a sh:nodeShape ;

34 sh:targetObjectsOf :occupation ;

35 sh:property [sh:path rdfs:label ;

36 sh:datatype rdf:langString ;

37 sh:minCount 1 ;

38] .

39

40 :Company a sh:nodeShape ;

41 sh:targetObjectsOf :worksFor ;

42 sh:nodeKind sh:IRI ;

43 sh:property [sh:path :denomination ;

44 sh:datatype xsd:string ;

45 sh:minCount 1 ; sh:maxCount 1 ;

46] ;

47 sh:property [sh:path :sector ;

48 sh:in (:primary :secondary :tertiary) ;

49 sh:minCount 1 ; sh:maxCount 1 ;

50] ;

51 sh:property [sh:path [sh:inversePath :worksFor ;] ;

52 sh:node :Employee ;

53 sh:minCount 1 ;

54] ;

55 sh:property [sh:path :relatedWith ;

56 sh:nodeKind sh:IRI

57] .

58

42 Chapter 2. Theoretical Framework

– :Company. The :Company ShEx shape does not declare an expected type.
It seems reasonable to use the property :worksFor to define the targets
of this shape in SHACL. By using sh:targetObjectsFor in line 44, we
declare that any node which is an object in a triple whose predicate is
:worksFor should be evaluated with the shape :Company.

– :Occupation. This is a case similar to :Company, and we followed the
same strategy. We used a target declaration with sh:targetObjectsFor

in line 34, such that every node which is used as object in a triple whose
predicate is :occupation will be evaluated with the shape :Occupation.

– :Employee. Although the :Employee ShEx shape does not include a di-
rect triple constraint indicating a type expected, the focus nodes eval-
uated are supposed to be foaf:Person type, as every node conforming
with :Employee should conform with the shape :Person too. Then, a tar-
get declaration based on sh:targetClass should be avoided in this case,
as the class foaf:Person is already associated with the shape :Person,
and not every instance of foaf:Person need to conform with the shape
:Employee. Thus, we use a target declaration based on the property :worksFor

and sh:targetSubjectsOf.

• Most of the triple constraints expressed in the ShEx example are transformed
to a property shape associated to a node shape with sh:property. A node is
assumed to be a property shape when it is used as subject in a triple whose
predicate is sh:path. Optionally, the type of property shapes can be explicitly
declared as it is shown in line 5.

• The sh:path of a property shape indicates a property (or a more complex path)
to follow from the focus node in order to evaluate a certain constraint. Most of
the examples of sh:path shown in Figure 2.16 indicate simple properties, but
a more complex path is shown in line 51. Here, sh:path is linked to a SHACL
property path. SHACL property paths are nodes which indicate complex paths
from a focus node. In this case, the property path used indicates an inverse
path, i.e., a path where the focus node is used as object instead of subject.
Other possible types of property paths can be used46.

• Different SHACL properties are used to specify what type of node is expected
to be found at the opposite end of the focus node after following a certain
sh:path:

– sh:node. It is used to refer to other shapes (see line 7). Mind also the use
of sh:node in line 4. In this case, the subject of the triple with sh:node is
a node shape instead of a property shape. In any case, sh:node indicates
that the subject of the triple should conform with the shape indicated in
the object of the triple.

– sh:datatype. It is used to make reference to specific literal types (see line
15).

– sh:nodeKind. It is used to make reference to certain special SHACL val-
ues that match broad node categories. In this example we have used
sh:Literal (see line 20) and sh:IRI (see line 56), but more values are
defined47.

46Cf. https://www.w3.org/TR/shacl/#property-paths Accessed in 2022/05/03.
47https://www.w3.org/TR/shacl/#NodeKindConstraintComponent Accessed in 2022/05/03.

https://www.w3.org/TR/shacl/#property-paths
https://www.w3.org/TR/shacl/#NodeKindConstraintComponent

2.6. RDF Shapes 43

– sh:in. It is used to make reference to a fixed set of values by means of an
RDF collection (see line 48).

• Cardinalities are specified with the properties sh:minCount and sh:maxCount.
The default cardinality of a property shape is zero or more. An explicit definition
of sh:minCount can change the minimum boundary, while a explicit definition
of sh:maxCount can change the maximum boundary.

• The logical operators AND, OR, and NOT are supported with the properties sh:and,
sh:or, and sh:not respectively.

• The operator oneOf shown in ShEx for this example can be emulated with the
property sh:xone48. The object of a triple whose predicate is sh:xone is ex-
pected to be an RDF collection of property shapes (see lines 13 to 24). This
collection should contain one or more elements. The subject of this triple is
supposed to conform with just one of the members of this collection.

This overview does not include every SHACL feature. It just covers some of its
most usual constructions and it is enough to understand the SHACL examples used
along this document49.

The SHACL specification is divided in two sections. SHACL Core and SHACL
SPARQL. Every feature used in the example shown in Figure 2.16 is defined within
SHACL Core. SHACL SPARQL adds the capacity to define SPARQL-based con-
straints to the SHACL languages. SHACL Core does not have any dependency with
SHACL SPARQL, so SHACL validators focused on SHACL Core can ignore SHACL
SPARQL.

A SHACL validation requires two conceptual inputs that could be provided be
provided with a single RDF source or as independent elements. On the one hand,
they need a graph containing shape definitions such as the one shown in Figure
2.16. On the other hand, they need a data graph. This graph is supposed to contain
the nodes that should be evaluated against the shapes defined. The result of the
validation process is an RDF graph as well, which is called validation report. These
reports are described using the SHACL vocabulary for validation reports50. They
have the following essential features:

• They consist of a graph with exactly one instance of sh:ValidationReport.
Although it is not mandatory, the validation report is usually a BNode.

• The sh:ValidationReport is the subject of exactly one triple with the predicate
sh:conforms. The object of this triple can be either true or false.

• If sh:conforms is true, it means that no constraint violation has been detected,
so every target of every shape defined conforms with its corresponding shapes.
If sh:conforms is false, it means that some constraint violations have been
detected by the validator. Then, the node sh:ValidationReport is linked to
several instances of sh:ValidationResult with the property sh:result. These
instances are usually BNodes too.

48ShEx’s oneOf and SHACL’s sh:xone are not fully equivalent. This will be explained in section
2.6.3.

49The complete SHACL specification is available at https://www.w3.org/TR/shacl/ Accessed in
2022/05/03.

50https://www.w3.org/TR/shacl/#dfn-validation-report Accessed in 2022/05/03.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/#dfn-validation-report

44 Chapter 2. Theoretical Framework

• Each node sh:ValidationResult is linked to some other properties indicating
several aspects of the violation detected, such as shape, non-conformant focus
node, human readable text message describing the error, value causing the
constraint violation, path from the focus node, etc.

There are also some advanced SHACL features that are still not part of the stan-
dard [109]. Such advanced features are the following ones:

• Custom targets. The targets of a node shape are not limited to the properties
already mentioned. Custom groups of nodes can be defined as the result of
SPARQL SELECT queries.

• Annotation properties. With this feature, validation results based on SHACL
SPARQL can be more informative.

• Functions. This mechanism allows for defining operations which produce an
RDF term by processing zero or more parameters from a data graph. These
operations are based in functions defined in SPARQL. There are also some
SHACL JavaScript extensions [110] that are not part of the standard either.

• Node Expressions. They allow to refer to a set of RDF nodes w.r.t. the focus
node in the context of a shape definition. This means that this set of nodes has
potentially a different value for each focus node evaluated against a certain
shape defining a node expression.

• Expression constraints. They allow to evaluate a logical operation on the
nodes corresponding to a given node expression. Expression constraints are
evaluated as true when every node of the node expression is evaluated as
true for the logical operation defined. Otherwise, they are evaluated as false.

• SHACL Rules. They propose a mechanism to define rules within SHACL
shapes that are capable of infer new RDF triples from asserted triples.

SHACL is being used in a wide variety of projects[111–116] and there are SHACL
implementations for many programming languages such as Java51, Python52, JavaScript53,
Ruby54, and Scala55.

2.6.3 Brief comparison between SHACL and ShEx

SHACL and ShEx are not equivalent languages. Some fundamental differences be-
tween SHACL and ShEx have already been mentioned in the previous subsections,
such as 1) different ways to indicate which nodes should be evaluated with which
shapes; 2) different results outputted by validators; 3) different status w.r.t. W3C
standardization; or 4) some syntactical and semantic differences. Here we make a
list of some other key differences between ShEx and SHACL:

• General aim of validation results: schema vs. constraints. The usual val-
idation results of a SHACL implementation consist of a report of detected
constraint violations. When no errors have been detected, the results consist

51https://github.com/TopQuadrant/shacl Accessed in 2022/05/03.
52https://github.com/RDFLib/pySHACL Accessed in 2022/05/03.
53https://github.com/TopQuadrant/shacl-js Accessed in 2022/05/03.
54https://github.com/ruby-rdf/shacl Accessed in 2022/05/03.
55https://github.com/weso/shaclex Accessed in 2022/05/03.

https://github.com/TopQuadrant/shacl
https://github.com/RDFLib/pySHACL
https://github.com/TopQuadrant/shacl-js
https://github.com/ruby-rdf/shacl
https://github.com/weso/shaclex

2.6. RDF Shapes 45

of a single node with sh:conforms true. On the other hand, ShEx’s shape
map results include evaluation failures but also nodes successfully validated.
This type of result allows for directly performing further operations with those
nodes whose conformance with a certain shape has been confirmed. Of course,
a similar goal could be achieved with SHACL in a scenario of no errors re-
ported, as the positive results allow to solve the nodes conforming with the
shapes by turning the target declarations of each shape in SPARQL queries.
This is a slight difference between the aim of these two languages though.
While SHACL’s main goal is to verify that some RDF content satisfies a set
of constraints, ShEx aims to report an explicit schema on the graph evaluated
rather than just pure constraint violations.

• Inference. ShEx computes the RDF content as it is sent to the validator. No
inference to produce new triples is performed at any point of the validation.
SHACL, in contrast, does have some mechanisms that use inference. For in-
stance, the [sh:targetClass :A] declaration refers to explicit instances of
:A, but also to instances of any subclass of :A, which will be detected by using
inference.

• Violation severity. In general terms, SHACL shows a higher granularity when
reporting validations errors. Each sh:ValidationResult is associated to a
severity level, which is one of sh:Info, sh:Warning, and sh:Violation. SHACL
validators also provide different information about the error found. In con-
trast, ShEx validators do not enforce the use of fixed vocabularies to this ex-
tent. A ShEx validator must produce associations of nodes and shapes, either
conformant and non-conformant, and they also must produce an informative
message for the non-conformant cases. However, there is not a strict definition
on the format or content of such messages.

• Property paths. SHACL supports property paths natively. In contrast, ShEx’s
triple constraints are always paths of distance 1 from the focus nodes (either
direct or inverse). However, property paths can be emulated in ShEx using
nested shapes.

• Recursion. ShEx support recursion, either direct (a shape makes a reference to
himself in a triple constraint) or indirect (different shapes mention each other
so they create a cyclic-dependent validation). Although some types of recur-
sion can be described with property paths, in general, recursive shapes are not
permitted in SHACL.

• Repeated properties. ShEx allows to define different triple constrains that
have the same property. In contrast, when different property shapes with the
same sh:path value are defined in SHACL, they behave conjunctively. This
means that the constraints defined for each property shape will be applied to
validate every property shape with the same sh:path. In SHACL, this limita-
tion can be bypassed using qualified shapes.

• OneOf partial matches. ShEx’s oneOf and SHACL’s sh:xone behave differ-
ently when some of the expressions joined by these operators are composed
by more than one triple constraint in ShEx or more than one property shape
in SHACL. OneOf detects partial matches, i.e., a node conforming with an ex-
pression in a oneOf must not conform with any of the elements defined in the
rest of the expressions in order to match the OneOf expression. In contrast,

46 Chapter 2. Theoretical Framework

SHACL produces a positive validation of a sh:xone when the focus node com-
pletely conforms with just one of the elements joined. Partial matches of other
elements in the sh:xone does not affect the validation.

• Annotations. ShEx supports annotations, i.e., predicate-object pairs that can
be attached to a certain construction and are represented internally as triples
whose subject is that construction. In ShExC, annotations are written as in-line
comments. Annotations can be used to enrich the information on user inter-
faces based on shapes. SHACL does not support this very same concept, but
it does define some special properties such as sh:name and sh:description,
which are used to attach textual information to a certain node. These proper-
ties are ignored by the SHACL validator, but they can also be used to generate
richer user interfaces based on shapes.

A thorough comparison between ShEx and SHACL is provided in [42]. In the
context of this thesis, the differences between ShEx and SHACL are relevant for users
interested in automatic generation of shapes by means of the system described in
chapter 4.

2.7 Social Media

The term social media did not emerge in academic environments, but in popular press
[4]. However, social media attracted the interest of the scientific community very
early, due to its cultural impact and its general pervasiveness. Social media sites
have been mined or used for a wide variety of purposes. Such purposes include,
but are not limited to, various aspects of marketing [8], user profiling [9], commu-
nity detection and clustering [10], electoral predictions[11], depression and mental
illnesses detection[12], suicide prevention [13], disaster detection and crisis manage-
ment [14], analysis of gambling operators [15], cyber-bullying detection [16], fake
news detection [17], or, quite recently, studies on the positive and negative aspects
of social media usages during the COVID-19 pandemic [18].

Social media is indeed one of the fundamental pillars on which the so-called
Web 2.0, considered an evolution of Web 1.0, was built. The term Web 1.0 frames
a scenario in which the web content mostly consisted of static HTML pages popu-
lated with content entirely selected by their owners. By contrast, Web 2.0 enables
multi-directional communication and web content created with user actions and in-
teractions.

The notion on the exact nature of social media is not fully settled. The so-called
Social Network Sites (SNS), such as Twitter or Facebook, are consensual examples of
social media. However, it is unclear whether some other sites or on-line communi-
cation mechanisms should be classified as social media instances. For example, let
us think about Twitch, a trendy platform in the last years. The main goal of Twitch
is being a multimedia platform where creators can stream their content to be con-
sumed by the users. Despite this, it has some fundamental features that one may
intuitively assign to any social media, such as:

• Any user can become a content creator and a content consumer.

• There are mechanisms to establish multi-directional communications (chats,
comments).

2.7. Social Media 47

• There is a graph of user profiles in which one may select who to follow, i.e.,
who’s updates must be primarily (or exclusively) shown.

In [117] a social media classification is proposed. Each social media instance
is view as one of SNSs, collaborative projects, content communities, blogs, virtual
game worlds, and virtual social worlds. Despite this classification not being nor-
mative and prone to change in the future with the emergence of new concepts or
platform types, it gives some clues about the diversity of systems that can be seen as
social media.

Many definitions of social media have been proposed (nearly as many as social
media studies have been performed). In this document, we work with the defini-
tion of [4]: “Social media represent a set of communication practices that can typically be
described as ‘many-to-many’. In contrast to broadcast media, consumers are typically also
producers. In contrast to in-person communication, audiences are often ambiguous or un-
derspecified”. This definition draws two fundamental features of any social media
platform:

• ‘Many-to-many’ communication. This type of communication indicates that
there are no fixed roles for users as producers and consumers of content. In so-
cial media, every user can be both a producer and a consumer eventually. This
is a key difference with broadcast media such as television, radio, or newspa-
pers, where a few agents produce content that many users consume, with rare
and marginal forms of native feedback.

• Nonspecific audiences. A key feature of a social media platform is being able
to share content with unspecific recipients. Potential consumers of some con-
tent posted by a user could be every other user of the platform (public) or
a reduced group of people (such as Facebook friends or Twitter followers).
This feature distinguishes social media from other type of communications,
such as emailing some content to a large list of users, or using messaging plat-
forms such as WhatsApp or Telegram. Note that both the content shared on a
SNS and the desired audience for that content can be the same as, for exam-
ple, when someone sends an email to multiple recipients. However, the later
case implies to forward the content to specific individuals, while content on
SNS remains non-addressed even if some sorts of access restriction are imple-
mented. Many social platforms implement secondary mechanisms to provide
addressed communication though.

Note also that the examples provided about what is and what is not social me-
dia may not be consensual. Some authors argue that certain systems associated
to the stage of Web 1.0, such as email-lists, fit in the concept of social media [5].
They argue that original Berners-Lee’s vision of the Web consisted in a collaborative
reader–writer platform, but during the 1.0 stage the Web was dominated by static
web pages. Then, Web 2.0 is indeed an evolution from Web 1.0, but also a reality
closer to the original Berners-Lee’s idea.

Some other authors argue that any communication media is indeed a social me-
dia, as the act of communication itself is intrinsically social. Moreover, they argue
that the platforms known as social media are less social [6] than previous types of vir-
tual communications, as they involve private actors (owners of the platforms) in the
communication. The main aim of those actors is not to improve the communication
capabilities previously seen in the Web, but to exploit and monetize the communica-
tion act. A recent definition of social media includes a reference to its cost [7]: “Social

48 Chapter 2. Theoretical Framework

media are inexpensive and easily accessible digital tools that allow anyone to create an on-line
identity, publish, share and access multimedia contents intended for nonspecific audiences,
build personal relationships, and engage in collective actions”. Creating a basic account
in many social media platforms is free. However, in order to use it, one must have
access to expensive hardware devices, such as smart phones, tablets, or computers.
The inexpensive cost mentioned in this definition assumes a contemporary context
in which people already own such devices, but the acquisition of these hardware
elements was not (mainly) motivated by social media.

Most of the authors agree on the key importance of social media. Also, the vast
amount of data produced in social media raises tremendous research opportunities.
In this document, we focus on Wikipedia [118], a well-known collaborative on-line
encyclopedia. Wikipedia is not a SNS, but it is indeed a social media example, as it
fulfills the fundamental features of such systems:

• Many-to-many communication. Everyone can join Wikipedia to be an edi-
tor, and everyone can navigate Wikipedia to consume content. The platform is
knowledge-centered, in opposition to the SNSs which are mostly user-centered.
That is, the planned usage for Wikipedia is not about being up to date of cer-
tain user updates, but reading some page content that, in many cases, has been
written with the combined actions of several editors. This does not affect the
many-to-many style of communication, as the actions of editors across different
pages are indeed consumed by many readers.

• Non-addressed audience. Wikipedia’s target audience is the entire Web com-
munity, and no knowledge (nor any user activity regarding content edition) is
kept private nor only accessible for a reduced group of users.

2.7.1 Wikipedia

Wikipedia is a non-profit collaborative project aiming at gathering as much human
knowledge as possible to make it freely accessible for everyone in the world. Indi-
vidual users contribute — on a voluntary basis — bits and pieces of that knowledge
to Wikipedia. People contributing to Wikipedia are called editors.

Wikipedia is organized in pages. Each page is an encyclopedic entry about a
single entity or concept. Also, Wikipedia is organized in different language chap-
ters, where each chapter contains pages written in a certain language. Each idea or
concept has a single page within a chapter, but usually a certain concept has sev-
eral entries in the whole Wikipedia, as it appears in different chapters. There is no
warranty that pages in different chapters describing the same entity will contain the
same information or will be free of contradiction. This is perceived as a cultural
barrier, as the knowledge stored in a certain Wikipedia chapter remains inaccessi-
ble for users who cannot understand the chapter’s language. In order to tackle this
issue, there is an ongoing project56 to create an abstract Wikipedia. This abstract
Wikipedia would be written in an abstract language for which automatic translators
to any other languages should be developed [119]. This project is still in an early
development stage though.

56https://meta.wikimedia.org/wiki/Abstract_Wikipedia Accessed in 2022/05/03.

https://meta.wikimedia.org/wiki/Abstract_Wikipedia

2.7. Social Media 49

By February 2022, the total number of pages written in all Wikipedia chapters
amounts to more than 186 million57. The biggest Wikipedia chapter in size terms is
the English one, which has alone more than 42 million different pages. The number
of active editors in this chapter, i.e., people who have added some content, is higher
than 371.000 (just during the last year).

Wikipedia has some features regarding the quality of the content expected to be
found that distinguishes it from average user-centered social media platforms.

• The aim of the platform is to produce encyclopedic-like knowledge, so the
writings style is, in general, more formal.

• Each page is usually edited by several people. This not only means that several
editors write content, but also that several users review and correct the content
of other editors. Wikipedia is an auto-moderated community.

• Wikimedia encourages editors to add external references (i.e., references that
are not other Wikipedia sources), so only trusted information is included in the
platform. The usage of reliable references is recommended but not mandatory
though.

• Although the actual content of a page is decided by its editors, Wikipedia
pages of every chapter follow similar templates, so one can expect to find some
widely accepted structures or schemata to organize the data. These structures
allow human readers to easily locate key pieces of information in a Wikipedia
page, but also allow automatic agents to find these pieces of knowledge by
means of web scrapping58. Some structures frequently observed are:

– Abstract. This text piece is placed before the rest of the information. It
is supposed to contain few sentences which aim to be a summary of the
concept described in the page.

– Infobox. Infoboxes visually consist of tabular information placed at the
top-right corner of a Wikipedia page. Infoboxes are composed by stan-
dalone pieces of data organized in rows. Each row contains a property
and a value for that property. Infoboxes can be organized in subsections
using internal headings.

– Index and section headings. When the content of a page is large enough,
it is frequently organized in sections (and possibly subsections). Each
section is identified with a heading that is listed in a clickable index placed
right after the page’s abstract.

Generally speaking, the described features cause that Wikipedia’s content has
a higher quality compared to many other social platforms in dimensions such as
orthographic and grammatic correctness, content veracity, and homogeneous struc-
ture. Needless to say, in a platform with such number of users and editors, these
principles are not always successfully implemented. Wikipedia’s content has issues

57All the Wikipedia statistics offered in this section has been taken from Wikimedia’s stats page.
Wikimedia is the foundation owning and maintaining Wikipedia, as well as some other projects such as
Wikidata, or Commons. These statistics can be queried at https://stats.wikimedia.org/ Accessed
in 2022/05/03.

58Techniques of data scraping aim to automatically extract information from sources designed to be
human-readable rather than machine-processable. The specific task of web scrapping consist of ex-
tracting valuable information from pieces of HTML code.

https://stats.wikimedia.org/

50 Chapter 2. Theoretical Framework

related to out-of-scope content, incorrect or biased statements, unreferenced claims,
incompleteness, or different forms of vandalism [120].

The Wikipedia project have also a couple of features that makes it especially
suitable for the purposes of our thesis.

• Interlinked pages. Wikipedia editors are encouraged to use links to other
Wikipedia pages. When a certain Wikipedia page a is mentioned for the first
time in another Wikipedia page b, editors are supposed to turn this raw textual
mention into a hyperlink from b to a. On the one hand, this feature let process-
ing Wikipedia as a directed graph of pages pointing to each other. On the other
hand, those links generated and maintained by Wikipedia’s community allow
to trivially perform some Named Entity Recognition59 tasks.

• Relation with some KGs. Wikipedia has a close relation with some KGs rele-
vant in this thesis:

– Wikidata. Both Wikidata and Wikipedia are projects of the Wikimedia
foundation. As already mentioned, Wikipedia pages usually include in-
foboxes. Wikipedia allows for importing infoboxes’ isolated pieces of in-
formation from Wikidata. Wikidata, unlike Wikipedia, is not separated in
language chapters. Each concept and piece of data is represented a single
time and potentially maintained by users of any language. Multilingual-
ism in Wikidata is implemented by associated rdf:langString literals in
different languages to each entity.
This relation between the two sources allows for an automatic propaga-
tion of changes in Wikidata to infoboxes in Wikipedia pages. This pos-
sibility causes that infoboxes no longer must be manually maintained by
individual human editors, which implies less manual work and avoid po-
tential contradictions between different Wikipedia chapters.

– DBpedia. Same as Wikipedia, DBpedia is organized in different local
chapters60. As mentioned in section 2.1.1, DBpedia content is obtained
by mining Wikipedia. In the case of the Wikipedia English chapter, ev-
ery Wikipedia page has also a DBpedia page. Moreover, the URL of a
Wikipedia page can be trivially mapped to its corresponding DBpedia
URI.

These two features are relevant in our thesis context, especially in chapter 5,
where we need 1) to find swapped knowledge between a corpus written in natu-
ral language and a RDF KG, and 2) to map entities or relations observed in a text
to adequate URIs. The relation between Wikipedia and Wikidata, and specially be-
tween Wikipedia and DBpedia, can be used to that end.

2.8 Natural Language Processing

Natural Language Processing (NLP) refers to a set of computer science, linguistics,
and Artificial Intelligence (AI) techniques concerned about how to process raw hu-
man language using automatic agents. The areas explored by NLP include, but are

59The concept of Named Entity Recognition will be developed in section 2.8.
60At the time of this writing, there are 20 different local DBpedia chapters. Information available at

https://www.dbpedia.org/members/chapter-overview/ Accessed in 2022/05/03.

https://www.dbpedia.org/members/chapter-overview/

2.8. Natural Language Processing 51

not limited to, Information Retrieval (IR), automatic translation, natural language
generation, voice recognition, or sentiments analysis.

Extracting machine-readable knowledge from a text corpus such as Wikipedia
requires to perform some sort of NLP. There are many approaches to achieve such a
goal though. Most of the NLP techniques require or are benefited from performing
pre-processing or text normalization on the target content before trying to extract actual
semantics. Text normalization includes techniques such as the following ones:

• Tokenization. “Tokenization is the task of splitting the input text into very simple
units, called tokens, which generally correspond to words, numbers, and symbols”
[121]. This is not a trivial process though. The simplest approach of tok-
enization consists in splitting some content using white spaces as delimiters
between tokens. This is not enough to tokenize sequences such as ‘I’m’, which
should be transformed into the pronoun ‘I’ and the verbal form ‘am’. Com-
pound works or names with several words should also be identified as single
entities. Some constructions specially observed in social media, such as the us-
age of emojis, hashtags, or mentions to other users, must be treated in special
ways too.

• Stemming. Stemmers identify the stem of a word. For example, swim is the
stem of the words swimmer and swimming. Basic stemming algorithms sim-
ply strip off word affixes. Stemming is especially useful for IR systems, as it
brings together lexico-syntactic variants of a word which have a similar mean-
ing [121].

• Lemmatization. It is the process of determining the dictionary form of a word
[122]. Lemmatization is a more sophisticated form of stemming, as it tries to
identify actual word roots. For instance, as already mentioned, a stemming
process could map swimmer to the stem swim, as this process merely consists in
detecting and removing an affix. However, being able to map the word swum
to the lemma swim requires further computation.

• Sentence splitting. This process, also commonly referred as sentence detection
or sentence segmentation, is the task of separating text into its constituent sen-
tences. Simple approaches separate content using lists of punctuation marks
such as full stops, exclamation marks or question marks. Many sentence seg-
menters use abbreviation lists that include sequences such as “Mr.”. These
abbreviations use full stops that must not be used to split two sentences. Other
issues related of sentence splitting are related to texts with special structures,
such as content in addresses or bullet lists [121].

Text normalization techniques are handy for simplifying natural language and
decompose it in smaller units. However, further processing is required to extract
the actual meaning of a text. Let us suppose that we need to analyze the following
sentence: “New movie times for Indiana Jones and the Last Crusade in Indianapolis, In-
diana!”. For a human reader, it may be clear that the last mention to Indiana refers
to a city in the state of Indianapolis (United States). Also, that the first Indiana refers
to the fictional character Indiana Jones, and the whole sequence Indiana Jones and the
Last Crusade refers to a movie that seems to have new times in Indiana’s theaters.
Such conclusions involve mental processes such as context comprehension or usage
of background knowledge. Producing NLP systems that can get to similar conclu-
sions is a complex task. Many different approaches have been proposed to achieve
this goal. Those approaches include, but are not limited to, the following ones:

52 Chapter 2. Theoretical Framework

Regular expressions - Regular expressions are implemented in most program-
ming languages and text processing tools. They allow developers to define text pat-
terns (at character level). The target text is analyzed looking for matches for those
patterns, so further operations can be performed over the matching sequences.

Regular expressions in NLP are mostly used to locate special sequences in the
text, such as numerical pieces of data, dates, zip codes, phone numbers, URLs, pass-
ports, email addresses, or small constructions which must be mapped to some other
content in normalization stages.

Regular expressions are frequently used in pre-processing tasks such as tokeniza-
tion [123]. However, we can also find examples of complex systems heavily relying
in this simple mechanism. ELIZA is a well-known example of a chatbot61 who tried to
emulate conversations with a Rogerian psychotherapist[124]. Using regular expres-
sions, ELIZA was able to recognize sequences such as “I need X” and reply using
fixed constructions such as “What would it mean to you if you got X?”

Named Entities, Entity Linking, and Part of Speech - Named Entity Recognition
(NER), and Part of Speech (POS) analysis are sequence labeling tasks, i.e., they re-
ceive a text input and they assign a label to some words (or every word) in the text.

NER involves the identification of proper names or Named Entities (NEs) in texts
[123]. Sophisticated NER techniques not only detect NEs, but also assign a class
label to each one, such as Person, Event, or Reptile. This is known as Named Entity
Classification (NEC).

Entity Linking (EL), or Named Entity Linking (NEL), aims to assign NEs a proper
identifier of a certain Knowledge Base (KB) [121]. NEL systems usually rely on well-
known general-purpose graphs, such as DBpedia, to associate URIs to NEs [125].

POS is concerned with tagging words with their part of speech [121]. POS as-
signs linguistic roles to words, such as noun, verb, pronoun, adjective, or adverb.
POS analyses helps to process both the structure and the meaning of a sentence.
Current POS taggers reach an accuracy of 97% for many languages (and using dif-
ferent algorithms) [126]. This accuracy is comparable to the human-performance for
the same task.

Some techniques used to perform sequence labeling for the tasks described are
Hidden Markov Models (HMM) [127], Conditional Random Fields (CRF) [128], Con-
volutional Neural Networks (CNNs)62 [129], Recurrent Neural Networks (RNNs)[130],
or Transformers [131].

N-gram Language models - Language models (LMs) assign probabilities to sequences
of words [132].

One of the simplest LM is n-grams. An n-gram model accounts for how many
times a consecutive sequence of n tokens is observed in a text corpus. The tokens
are usually words. For example, n-gram models can be used to predict the last token
of a sequence of n− 1 tokens. State-of-the-art approaches to perform complex NLP
task are usually more sophisticated than n-grams, but this technique can be used in
combination with others [132].

Some public n-gram corpora are available to be reused. Examples of these public
models are Google Books n-grams [133], which contain more than 800 billion tokens
of n-grams in eight different languages, or the Corpus of Contemporary American

61Chatbots are artificial agents which try to emulate human conversations. They are able to process
human textual input and produce a response related to that input.

62The concept of Neural Network (NN) will be developed later in this section.

2.8. Natural Language Processing 53

English (COCA) [134], which is an English 1 billion word corpus carefully curated
to contain a balanced amount of information from different sources (news, social
media, fiction, etc.)63.

Naive Bayes - Naive Bayes is a Machine Learning (ML) algorithm used for produc-
ing automatic classifications. IN NLP, a Bayesian classifier usually processes input
texts as bags of words, i.e., it computes the frequency in which a word is seen in a text.
Texts labeled with a class are used to train this algorithm. Then, the Naive Bayes
is fed with new unlabeled samples of text. The algorithm produces a label for such
samples by applying similarity measures of these new bags with the bags used for
training. The classifier is used for tasks such as sentiment analysis (it classifies a text
as positive or negative) [135], language identification [136], and many other types of
text classification [137].

Logistic Regressions - Logistic regressions are also an ML classification technique
with applications similar to the Naive Bayes’ ones. Naive Bayes are generative clas-
sifiers, while logistic regressions are discriminative ones.

Informally, a generative classifier tries to learn how each target class should be
like. Then, an unlabeled input i is presented to the algorithm, and it tries to guess
which is the class model which is more similar to i to produce a result. In contrast,
discriminative models purely try to learn how to differentiate classes. Specifically,
logistic regressions try to learn a function in an n-dimensional space (n is the number
of features studied) with the labeled training examples. This function divides the
space in two sections, which represent two different classes. Then, an unlabeled text
i is computed and translated to a single point in that n-space. The position of this
point in one of the sections in which the n-space has been divided is used to classify
i.

Basic logistic regressions are binary classifiers. However, several logistic regres-
sions could be combined in multinomial logistic regression [138] to deal with classifi-
cation problems of k classes.

Support Vector Machines - Support Vector Machines (SVM) [139] are another ex-
ample of ML approach with similar application to Naive Bayes or Logistic Regres-
sions. In NLP, SVMs are frequently trained on context of high-dimension and sparse
features. They achieve a high performance on many tasks with lesser amounts of
training data [123].

SVMs are also binary classifiers. SVM aim to find the optimal plane that sep-
arates two classes by maximizing the distance of this plane to the classes’ closest
points [140]. SVMs have been used in NLP systems for different tasks, such as email
phishing detection [141], opinion mining [142], or sentiment analysis [143].

Neural Networks and Neural Language models - Neural Networks (NNs) are
called neural after a simplified model of the human neurons’ behavior described in
terms of propositional logic [144]. However, modern systems are no longer built on
top of those initial biological inspirations.

NNs are nets of small computing units (neurons). Each unit receives an input
consisting of a vector of values and produces an output consisting of a single value.

63The last COCA update was performed in 2020: https://www.english-corpora.org/coca/ Ac-
cessed in 2022/05/03.

https://www.english-corpora.org/coca/

54 Chapter 2. Theoretical Framework

FIGURE 2.17: Partial example vectors for the words driver, pilot, and
cactus.

DIMENSION

WORD car circuit … desert thorn water

driver 658 151 … 0 0 4

pilot 742 203 … 0 0 5

… … … … … … …

cactus 0 0 … 156 767 699

NNs combine layers of neurons to produce results. They are used to solve classifi-
cation problems too. NNs are based on mathematical models similar to regressions.
However, NNs are, in general, considered to be a more powerful classification al-
gorithm compared to logistic regressions64. Also, the usual procedure to work with
logistic regressions consist of feeding the algorithm with vectors composed by n
hand-picked features. One may need to evaluate different configuration features to
find the logistic regression producing better predictions. In contrast, NNs are usu-
ally feed with raw words, and they are able both to learn features from the text and
to decide whether a feature is useful or not to classify a text.

The computing units of a NN are often organized in layers, and layers are com-
puted iteratively. The term deep learning [145] refers to NN architectures using many
layers. Well known techniques based on deep learning architectures are CNN and
RNN65..

Vector semantics and embeddings - Vector semantics consist of a model which aims
to capture the meaning of a certain element by representing it as a vector in a multi-
dimensional space. The dimensions in this space are other elements. Each instance
is represented w.r.t. how frequently it is found being used with those other elements.
When vector semantics is used as a LM in a space of words, it is called word embed-
dings or just embeddings.

Word embedding algorithms are frequently applied on dense vectors, i.e., vec-
tors which do not have as many dimensions as possible words, but a representative
and meaningful set of elements (50-1000) is chosen instead. Dense vectors contain
less zeros than vectors in spaces of higher dimensions. Word2vec [147] or GloVe
[148] are well-known software packages to work with word embeddings.

One of the basic intuitions that can help to understand word embeddings is that
elements co-occurring with similar words, i.e., words having a similar vector, may
have similar meaning too. Word embeddings are used to detect relations between
words. In Figure 2.17, we show a partial example vector for the words driver, pilot,
and cactus. The dimensions of this vector are the number of times that the target
word co-occurs with other words.

64The computing units of a NN can consist of regressions. However, it cannot be strictly stated that
NNs are better than logistic regressions, nor, in general, that any ML algorithm is better in absolute
terms than any other. The adequacy of these algorithms is always related to an application context.

65In this subsection, we have introduced the uses of several ML approaches as classifiers for pro-
cessing natural language. Although is it out of the scope of this thesis, note that ML methods can be
also used in a generative way. For example, Large Language Models (LLM) such as GPT-3, which is a
pre-trained massive NN, can be used to generate human-like texts [146].

2.8. Natural Language Processing 55

As one can see, the words driver and pilot tend to co-occur with similar words
in a similar frequency. This can indicate that there is a synonymy relation between
them. Word embeddings can be also used for word disambiguation tasks (detecting
which sense of a polysemous word is used in a certain context) or to detect some
other kinds of semantic relations, such as the one existing between pine tree and
pineapple.

Note that the mentioned approaches to perform some sort of NLP tasks are not
mutually exclusive. It is frequent that complex NLP systems use several of the afore-
mentioned techniques to create a pipelines systems.

2.8.1 NLP on social media

The core algorithms to process text pieces generated in social media are not different
to the ones introduced in the previous section. However, the content produced in
social media has some features which are not observed with the same frequency in
more formal communication contexts, such as usage on non-standard abbreviations,
lack of structure, higher misspelling rates, usage of emojis, multilingualism within a
paragraph/sentence, or emphatic repetitions of characters.

For this reason, text normalization on user-generated content may need to exe-
cute some extra steps. Also, when using ML algorithms, it may be necessary to use
training data generated in social platforms rather than reuse generic models trained
with presumably correct and standard language samples.

Content generated in platforms such as SNSs raises some extra challenges, in-
cluding the following ones [149]:

• Relevance. When performing text mining tasks66, not every available content
is relevant. There are several reasons to consider that certain content is not
relevant. For example, it could be unrelated to the topic of study, it could be
duplicated or quasi-duplicated, or it could had been produced by malicious
agents, such as trolls67 and bots68 [150].

• Recipient Identification. Content expressed in social media can be implic-
itly addressed to a certain person or entity. This is known by the sender and
maybe by the receiver, but the actual receiver may not be clearly stated in the
text. Errors identifying the recipient of a message can alter the semantics of the
message that the sender originally intended to emit.

• Figurative Language. Figurative Language (FL) is a linguistic phenomenon
in which there is a contradiction between the literal and non-literal meaning
of an utterance [151]. Typical examples of FL are sarcasm, irony, metaphor,
and satire. Figurative uses of the language seem ubiquitous in social media
chats and discussion forums [152]. FL may not be expressed with any particu-
lar construction at all, i.e., it should be detected using contextual information
and background knowledge about the sender and the target topic. Many ap-
proaches, mostly based on ML, have been proposed to deal with FL-related

66The concept of data mining is developed in section 2.9.
67The term troll refers to accounts that post provocative, irrelevant, or out-of-scope content to cause

a negative reaction with diverse malicious intentions, such as altering public opinion, boycott, or even
just for fun.

68In social media environments, the term bot refers to fake accounts operated by hidden automatic
agents, i.e., agents pretending to impersonate actual humans.

56 Chapter 2. Theoretical Framework

issues [153]. The task of detecting whether a certain content out of context is
sarcastic is challenging even for human judges [154].

• Temporal frame. Some of the content published in social media is tightly con-
nected to time spans related to different events (both public and private) [155].
For example, a certain user could express contradictory opinions on a matter
in short time periods due to changing events. While this is not a problem for
understanding the content of a specific message, it becomes a problem when
trying to integrate or summarize knowledge stated in different messages.

• Context information. The content expressed in some social media platforms,
especially in those oriented to short messages such as Twitter, usually requires
a higher level of contextual information compared with more formal writing
contexts. This causes classic approaches to be less suitable to analyze this kind
of content [156]. Some examples of such phenomena are the following ones:

– Expressing an opinion on something without explicitly mentioning the
target of the opinion.

– Using personal references that can be only understood by a reduced group
of people.

– Equating some concept a to some other concept b assuming that b has
some representative features. For example, one could say that a famous
person is like Cruella de Vil, a fictional villain of the movie 101 Dalmatians,
meaning that this person is evil.

Note that Wikipedia, the social media platform target of this study, is more af-
fected by the problems mentioned in the discussion pages associated to each article.
In contrasts, the actual Wikipedia articles are expected to be expressed in a more for-
mal and neutral style, centered in a single topic, and, in general, with enough contex-
tual information. Such features can be achieved thanks to the knowledge-centered
model and the community’s commitment with the auto-moderation mechanisms of
the platform.

2.9 Data mining

Data mining is defined as “a process of discovering or extracting interesting patterns,
associations, changes, anomalies and significant structures from large amounts of data which
is stored in multiple data sources such as file systems, databases, data warehouses or other
information repositories”. [157].

Data mining is a broad concept involving many potential types of inputs and
outputs. There is a constant in every data mining approach though: the input usu-
ally consists of large amounts of data which are supposed to contain valuable knowl-
edge, but this knowledge is hard to process, locate, or generalize for humans. In con-
trast, the output produced by data mining processes is supposed to provide relevant
and actionable information regarding some features of interest of the data analyzed.
The output should be easier to understand for humans or to process by automatic
agents.

2.9. Data mining 57

A certain dataset could be analyzed by different data mining processes for differ-
ent purposes. For example, a web application’s log could be mined to locate Denial-
of-Service (DoS) attacks69, to produce usage statistics by client (user agents, country,
etc.), or to detect which are the contents getting more engagement from users. Typ-
ical outcomes of data mining processes are entity characterizations, entity discrimi-
nations, summarizations, classifications, clusterings, models for ML algorithms, and
detection of outliers, associations, or trends [158].

Data mining is a key process in many systems, and it is an active research field
from different perspectives, including looking for new functions, algorithms, tech-
niques, architectures, applications, and data domains in which to apply it [157].

There are many existing approaches to perform data mining. For example, when
the input consists of raw text, methods such as the ones introduced in section 2.8
can be used. Most of the times, achieving the actual goal of a data mining task
requires to implement and orchestrate several techniques. Some families of data
mining approaches, both to compute the data or to produce valuable outputs, can
be identified [158]:

Statistical approaches - Data mining can be based in statistical approaches, i.e., the
raw input data can be mapped to statistical models to perform further analysis or to
build some other product on top of the model. Correlation analyses, factor analyses,
discriminant analyses, clustering, regression analyses, etc., are widely used in data
mining environments [158].

The tool described in chapter 4 is an example of a statistical approach. This tool
mines RDF graphs to extract RDF shapes. Each shape contains the features most
frequently observed among a certain group of instances. The tool’s core uses a vot-
ing system. Each instance is modeled as a voter that casts positive votes for features
that can be observed in its immediate neighborhood. Simple statistics based on fre-
quency and ratios allow for transforming the most voted features into actual shape
constraints.

Note also that the gathered statistics in a data mining process could also be a
final product. An example of such system would be a study of content distribution
on a large text corpus [159].

Machine Learning - ML is widely used for classification and prediction-related
goals. It is frequent to use statistical approaches combined with ML when working
with large amounts of data to build representative sets of training data, to select
data to execute predictions or classifications, or to perform further analysis on the
outputs [160]. Several examples of data mining systems which combine statistical
and ML approaches has been recently produced for diagnosis, and virus profiling
during the COVID-19 global pandemic [161].

Many ML algorithms and architectures have been used in text mining environ-
ments [162], including NN [163], SVMs [164], and logistic regressions [165].

Genetic Algorithms - Genetic Algorithms (GA) [166] are mainly used to solve op-
timization problems and are inspired in processes of biological evolution. GAs start
with an initial population of individuals. Each individual can be seen as a chain of
features (conceptually similar to a chain of genes). Individuals are crossed in pairs

69A DoS attack aims to hut down a system by flooding it with more traffic or petitions than it can
handle. When DoS attacks are executed from several coordinates machines, they are called Distributed
Denial-of-Service (DDoS).

58 Chapter 2. Theoretical Framework

to create new individuals which inherit features of both of their predecessors. The
population evolves in a system driven by the following concepts:

• Fitness function. Each individual is evaluated with this function, which pro-
duces a fitness score for each one of them. This score indicates how good it
is compared to other individuals and which are the chances that it has to be
selected for reproduction.

• Selection. Selection stages chose fit individuals to be crossed, i.e., to act as
progenitors for a new generation of individuals.

• Crossover. A crossover function receives two individuals (progenitors) and
outputs a single individual (offspring) which is a combination of the input
elements. This combination is performed with a certain degree of randomness.

• Mutation. New individuals may not be a strict combination of their progeni-
tors, but they can also have random mutations.

After several iterations of creating new generations, GA systems expect to have
detected individuals with optimal fitness scores, i.e., individuals that represent an
optimal solution for a certain problem. GA can also be stopped w.r.t. other criteria,
such as reaching a maximum number of generations, or detecting a convergence of
results (the new generations do not produce better scores than their predecessors).

An example of a system based on data mining which uses genetic algorithms is
presented in [167]. The authors look for optimal combinations of forest fire related
variables and then apply mining on forest data to visualize wildfire susceptibility
maps.

Visualizations - Summaries of target data using visual and sometimes interactive
elements, such as charts, maps, or graphs, are also viewed as data mining techniques
by several authors [158, 168]. In this case, it is the user of a data mining-based system
who seeks for the final target or valuable knowledge produced.

An example of data mining approach oriented to visualizations is presented in
[169], where outlier detection is performed by Boxplot users. An alternative example
is presented in [170]. The system described produces different types of visualizations
based on crime data to support decision making.

Data mining is often performed in Big Data environments. With Big Data we refer
to different formats of large and rapidly increasing datasets [171]. How to compute
such amounts of data, or even how to store and access it, are issues associated to Big
Data environments [160]. Frequent solutions to this problem are based in parallel
computing. Cloud-based solutions are gaining momentum to perform such compu-
tations [172]. Also, the target data could be a stream instead of a static source, so
it must be processed in an iterative way using stream processing architectures [171,
173, 174].

The mining system described in chapter 4 uses a workflow in which the target
RDF content is transformed into a stream of triples, so large datasets can be pro-
cessed using inexpensive hardware.

2.9. Data mining 59

2.9.1 Data mining in social media

Data produced in social media are vast, noisy, unstructured, and dynamic in nature.
Mining the user generated content in social media platforms raises unique oppor-
tunities which can be beneficial for users, business, public organizations, and many
other agents [175].

Data mining in social media can be performed for a wide variety of purposes.
However, some of the most usual general goals can be enumerated:

Community analysis - Communities in social media can be explicit or implicit.
Explicit communities are those ones that can be trivially traced by using public in-
formation, such as declared friends, followers, or subscriptions to topics. In contrast,
implicit communities may be discovered only by mining data such as user interac-
tions with each other.

Different algorithms have been proposed to perform community detection under
different data scenarios [176, 177], and this research area has practical applications
for a number of purposes, such as producing adequate advertising for communities
[178], detection of malicious users [179], or to predict future connections [180].

Sentiment analysis and opinion mining - Sentiment analysis and opinion mining
can be applied to determine the public perception on a wide variety of topics on
social media. Examples of opinion mining processes are brand perception [181],
user profiling [182], or political sentiment [183].

Social recommendation - Social recommendation systems are based both in user pro-
filing tasks and community detection. These two types of knowledge are used to
suggest appropriate content for users in a social platform according to their observed
behavior and the trends observed within their communities. Such information can
be used to perform product advertisement, but also to select information relevant
for the user by prioritizing or filtering certain contents [184]. With this, the problem
of information overflow can be alleviated.

Some studies report that social recommenders can have pernicious effects, as
they produce excessive homogenization of the content without actually increasing
the usefulness of the service [185]. Recommendation system may even support or
ease the radicalization of individuals exposed to hateful content [186].

Influence modeling - Influence modeling studies how users in a network can affect
the opinions, consumption habits, or general behavior of other users in the network.

There are two main types of influence phenomena studied in social networks:

• Social influence. Individuals in a network tend to change their habits to be
like influent users.

• Homophily. Individuals tend to bond themselves to other individuals exhibit-
ing similar behavior or features, and are influenced by those users.

Both types of influences are studied and identified [187] so the influence graphs
in social platforms can be studied or used to achieve a number of purposes, such as
promoting products [188] or trying to alter the public opinion on a matter [189]. This
can be done by incentivizing influent individuals to perform some actions.

60 Chapter 2. Theoretical Framework

Many current marketing strategies are based on sponsoring influencers70 to pro-
mote their products. Some of these campaigns are not explicitly declared as adver-
tising, i.e., influences emit opinions on a certain product without informing their
audience that they have been incentivized to promote such product. Several stud-
ies analyzing the effectiveness, scope, and ethics of influencer marketing have been
performed [190–192].

Information diffusion and provenance - Detecting how information is propagated
in a social network is a research field with several practical applications. The study
of information diffusion patterns provides insight about mechanisms for an effective
spread of information across networks [193]. Also, those patterns allow for automat-
ically discovering rumors and fake news by tracking known patterns of information
spread, especially when it is found that the source of this information consists of
accounts that produce that kind of content frequently [194].

Privacy, security, and trust - Active users on social media, especially on SNSs, usu-
ally face two opposed needs. On the one hand, they would like their content could
reach its target audience as effectively as possible. On the other hand, they may want
that this content remains private and unreachable for anyone outside of that target
audience.

The target audience could consist of a quite reduced group of people, a large list
of contacts or a wider and nonspecific audience. When this last option is chosen,
the intended target audience may not be the whole Internet community, even if the
content posted is made public. Frequently, one may have higher interest on reaching
users with some particular profiles or may event want to exclude specific individuals
from the target for diverse reasons. The users’ privacy expectations are frequently
not fulfilled. This can happen due to having an undesired audience, but also because
of the actual rights and access level that the social platform implements over their
published content.

SNSs implement different mechanisms to configure access to the published con-
tent to avoid undesired interactions, but these mechanisms are far from perfect. Un-
desired interactions include actions such as stalking, spamming, bullying, or even
scamming, phishing, and clickjacking. Most of these misconducts can constitute of-
fenses with legal consequences.

Data mining can be used to track action patterns to discover such misconducts
[195], so actions to prevent or interrupt them can be implemented.

Wikipedia’s content is produced by many different users, and actions such as
content edition or participation in talk pages are logged and publicly available.
Then, despite being a knowledge-centered platform, it can be also an object of study
w.r.t. community analysis [196], social influencing [197], or opinion analysis [198]
among others. However, in this document, we will not explore the user-related di-
mensions of Wikipedia. Our efforts will be focused on analyzing articles’ content
regardless of its provenance.

70In social media environments, the term influencer refers to someone that has an influence over a
certain on-line audience. This influence, for example, can lead their audience to buy things or affect
their opinion on particular topics.

61

Chapter 3

Importance metrics in RDF graphs

Note: Most of the content of this chapter has been published in a paper entitled
Approaches to measure class importance in Knowledge Graphs [199].

3.1 Introduction

This thesis’ main goal is the extraction of RDF shapes from natural language con-
tent. Existing KGs can be used as support elements in this process for different
purposes, such as disambiguation, maximization of impact, or KBs to implement
distant supervision [200] approaches. In such a scenario, it is highly desirable to
identify important topics among the KGs used as support sources.

Although the concept of importance seems intuitive, there is not a canonical def-
inition of importance when applied to contents in a dataset. In the case of impor-
tant topics/nodes in a KG, the adjective important can refer to notions such as well-
connected, well-defined, truthful, complete, abundant etc. Importance is not only hard
to define in this context, but also hard to measure. Despite this, since detecting
important elements in network structures is a recurrent problem in different scenar-
ios, several automatic techniques to determine node importance in graph structures
have been developed [2, 201, 202]. The outputs produced by these techniques are
used for a wide variety of purposes, including ranking/statistical reports or graph
summarization techniques.

At initial stages of the thesis, we detected that most of the potential data sources
that we could use to support the process were large graphs covering many differ-
ent topics. Some of those sources are general purpose KGs, such as DBpedia [203],
Wikidata [26], YAGO [204], and OpenCyc [205]. Some others are natural language-
centered, such as WordNet [206], or FrameNet [207]. The size and variety of such
projects makes it hard to understand their schemata or to locate their most impor-
tant topics. This is especially true for crowd-sourced datasets, whose knowledge
proceed from collaborative efforts from a heterogeneous community.

The process of gradual discovery and understanding of the contents of a large
and unfamiliar KG has been called graph exploration [208] or semantic data explo-
ration [209]. To properly achieve such a goal, one needs to perform some sort of
graph summarization. Being able to synthesize a graph’s content is desirable to
achieve graph exploration. First, it allows consumers to decide whether a graph is
suitable for their purposes. Second, it could be used to discover the most important
entities, relations, or topics of the summarized source. Those summaries can be gen-
erated either in an automatic or handcrafted ways, but the bigger, more complex,
or larger it is the number of different agents maintaining a KG source, the harder
it is to produce accurate handcrafted summaries. Again, this is particularly edgy

62 Chapter 3. Importance metrics in RDF graphs

in crowd-sourced or cross-domain datasets, maintained by different people, organ-
isms, or automatic processes.

When dealing with graph-like structures, there are many existing techniques to
produce different kinds of summaries [210]. Most of them focus on classes, which
are key elements to easily describe a graph content [211–213]. These summaries
frequently consist of reduced graphs that aim to contain the key elements of the
original content. To achieve such a goal, the approaches need to know which are the
most important elements in the target source, and automatic rankings of importance
play a key role in this subtask. Importance rankings consist of top-bottom ordered
lists which sort elements w.r.t. some pre-established criteria. These lists can be used
to produce the mentioned graph summaries, but they can also be used as simpler
standalone summaries for certain applications.

As already stated, detecting important topics in KGs can be beneficial in sev-
eral ways in the context of our thesis. Our approach to do so consist of equating
the notions of class and topic. We see the concept of class as a useful abstraction
that groups several individuals which share some topological features using a com-
mon label (the class URI). The group formed by those individuals can be seen as a
topic. For instance, the accumulated knowledge about entities such as France, Ger-
many, Poland, etc., can be expressed as knowledge about countries. Similarly, the
subgraph formed by entities such as Metallica or The Beatles can be summarized as
band knowledge. In both cases, the topic that encompasses the subgraph associated
to the mentioned entities is also their actual ontological class.

The schema associated to a class, i.e., the set of relation types which one may
expect its instances to use, is also a powerful tool for an effective knowledge ex-
ploitation of an RDF source. In general, the knowledge of RDF graphs is used via
SPARQL queries. Then, knowing the expected structures associated to classes also
let the users choose the adequate properties and graph schemata to write effective
SPARQL queries.

Due to the exposed reasons, this chapter aims to answer the following research
question:

• RQ3: How can we identify the most important classes of an RDF graph?

It is important to remark the difference between the concepts of importance and
relevance. Relevance is much easier to define and evaluate, as it is tightly bounded to
a certain purpose. For instance, search engines provide rankings of elements w.r.t. its
relevance for a certain query. Recommendation systems produce lists with the most
relevant items for their users. All these relevance rankings are built for a purpose,
which is retrieving adequate content for a certain agent or purpose. Both search
engines and recommendation systems are designed to be used by some final users.
Since the final goal of such system is to produce results that meet users expectations
and preferences, then those users are legitimate judges to determine whether a set
of results is relevant.

In contrast, the idea of importance per se, decoupled of a specific purpose, can
be harder to evaluate. The owners of a dataset may consider that some elements
are important, while the final users may think otherwise, as their expectations for
the dataset could be different from the owners’ ones. Without a strict definition of
importance, it can be a matter of discussion whose criteria should prevail over the
rest of opinions.

Most of the existing techniques to automatically generate importance rankings
in network structures compute different graph topological features. That is, they

3.1. Introduction 63

aim to equate different metrics of graph centrality with the notion of importance.
These metrics range from plain and simple link counts to complex network theory
algorithms [201].

For the specific task of evaluating the importance of classes in RDF graphs, to
the best of our knowledge, few approaches have been proposed. Some alternatives
consist of a simple counting of instances, or combinations of this count with general
graph theory metrics [28]. Those graph theory metrics can determine class impor-
tance, but there is no difference in how they process class nodes and instance nodes.

In order to properly answer the question RQ3, we have designed and developed
ClassRank, a novel technique to automatically build rankings of class importance
in RDF graphs. ClassRank assigns an importance score to each class consisting of
the sum of its instances’ PagaRank score. Thus, the importance of a class is not
calculated w.r.t. the centrality of the actual class node in the target graph, but w.r.t.
the accumulated importance of its instances. That is, the class node is used as a label
which encompasses a set of individuals.

With ClassRank, classes that, by nature, cannot have a large number of instances,
but those instances are important for the graph structure, can be high-ranked. An
insightful example of such a class would be the notion of Country in general-purpose
KGs such as DBpedia or Wikidata. Country instances usually work as bridges be-
tween knowledge of many different domains: artists are born in a country, geo-
graphical features are located at a country, administrative units are organized within
countries, etc. The list of countries is limited though, so the class Country could not
compete against any class with many instances, even if such instances are barely
relevant for the graph’s general structure.

A recent study [28] proposed to assume that the most important classes in RDF
graphs which are exposed via SPARQL endpoints are those ones that are found to
be used more frequently in SPARQL logs. This notion of importance has two pecu-
liarities. On the one hand, it is close to the idea of relevance, as it assigns importance
w.r.t. the usage of the graph. However, unless usual relevance metrics, it does not
rank elements w.r.t. to a single specific purpose. Since it evaluates all the traffic seen
in the logs, the purposes of every user interacting with the content via the endpoint
are reflected in this notion of importance. On the other hand, unlike many other im-
portance metrics, it totally discards information related to the actual graph topology.
Each node in the graph is qualified w.r.t. data outside the graph itself.

Although this notion of importance seems reasonable, and some proposed ap-
proaches to determine node importance/relevance make use of it [214, 215], log-
related information is not alway available. Usually, logs can only be accessed by
system administrators. The authors in [28] propose to use SPARQL logs to evaluate
graph-based approaches. The assumption made is that those metrics which pro-
duce rankings more similar with the log-based rankings capture a better notion of
importance.

In order to evaluate ClassRank, we performed an experiment similar to the one
described by those authors. We used many state-of-the-art importance metrics to
evaluate class importance in Wikidata and DBpedia. Also, we analyzed class us-
age in public random slices of SPARQL logs in those two sources and elaborated a
ranking with the obtained information to be used as reference. Then, we analyzed
how similar were the reference rankings with the ones produced by each metric un-
der evaluation. This similarity was determined using Rank-Biased Overlap [216].
The results obtained indicate that, in general, ClassRank can produce rankings more
similar to the class-usage ones than any other evaluated technique.

64 Chapter 3. Importance metrics in RDF graphs

Despite the original aim of ClassRank was simply to provide a proper way to
measure class importance in the context of our thesis, we noticed that this algorithm
could be used as an standalone product in many other contexts, especially for graph
summarization purposes as the ones already described. For this reason, the eval-
uation has not been adapted to our thesis frame, but it was designed to evaluate
ClassRank in a general scenario that could be more relevant to the scientific commu-
nity.

This chapter’s content is organized as follows:

• In section 3.2 we make an overview of all the techniques that are evaluated in
our study and provide some preliminary notions that will be useful to read the
rest of the chapter.

• In section 3.3, we start describing our experimental set up: sources used, eval-
uation methods, and algorithm configurations. Then, we offer the results of
our experimentations.

• In section 3.4, we provide an extended discussion about the experimental re-
sults. We provide different explanations to justify the algorithms’ performance.

• In section 3.5, we provide a review of works related to ClassRank and the elab-
oration of automatic importance rankings in KGs. We make special emphasis
in those techniques that has not been used during the evaluation.

• Finally, in section 3.6, we expose the conclusions of our work.

3.2 Metrics

In this section, we will work with a formal definition of a graph G = (V, E), where
V is a set of nodes or vertexes, and E is a set of edges linking those nodes.

All the metrics under consideration will be used to produce rankings of node
importance in RDF sources. For that, they all consider certain topological aspects
of the target graphs. However, we can classify those techniques in two categories
depending on the type of nodes and links that they compute to produce a result.

On the one hand, we introduce approaches that are applied over graphs com-
posed only by T-BOX statements. In the interest of brevity, we will refer to them all
as Only Terminological Techniques (OTT). These techniques are Degree, Between-
ness, Bridging Centrality, Closeness, Harmonic Centrality, and Radiality. Theoreti-
cally, these algorithms could compute graphs containing A-BOX statements as well.
However, except for Degree, they all have a computational cost that does not make
them suitable to be applied over KGs as large as DBpedia or Wikidata.

On the other hand, we have algorithms that compute both A-BOX and T-Box sen-
tences of the target graph. Instance Counting (IC), PageRank, HITS, and ClassRank
fall on this category. In the interest of brevity, we will refer to them as Also Assertion
Techniques (AAT). Since IC and ClassRank are based on class-instance relations, they
both need A-BOX statements for their computation. In opposition, PageRank and
HITS can be applied over any directed network structure, so they can work as AAT
or OTT. In this chapter, we evaluate both algorithms in both ways. When computing
the whole target graph, we refer to them as PageRank/HITS AAT. When considering
just the T-BOX subgraph, we use the nomenclature PageRank/HITS OTT.

3.2. Metrics 65

3.2.1 Importance metrics applied over schema structures

The techniques mentioned in this section are used for general network analysis and
they all aim to measure node centrality. A thorough review of these approaches and
similar ones is offered in [201].

3.2.1.1 Degree

The Degree is one of the simplest measures of graph centrality. The Degree of a node
e is the number of edges incident to e. We will denote the Degree of a node e ∈ V as
D(e).

3.2.1.2 Betweenness

The Betweenness B(e) of a node e is the ratio of shortest paths between any pair of
nodes (u, v)/e ∈ V ∧ e ̸= u ̸= v that pass through e compared to the total number of
shortest paths. Let σ(G, e) be the function which gives the number of shortest paths
in G passing through e, and σ(G) be the total number of shortest paths in G. Then,
the Betweenness B(e) can be defined as:

B(e) = ∑
e ̸=u ̸=v

σ(G, e)
σ(G)

(3.1)

3.2.1.3 Bridging Centrality

A bridging path is an indirect connection between two aggregate nodes in a graph,
i.e., a link of two densely connected components (e.g., a domain knowledge, an or-
ganization) via a third node known as bridging node. On the top of this concept,
the Bridging Centrality BC(e) of a node e assigns e a score that indicates how much
e acts as a bridge mainly for the nodes in its neighborhood in G. For such a goal, it
combines both local and global metrics of centrality. It is based on Betweenness and
the Bridging Coefficient Bc(e) of a node e, which is defined as follows:

Bc(e) =
D(e)−1

∑i∈N(e) D(i)−1 (3.2)

where N(e) is the set of nodes in the immediate neighborhood of e. With this,
BC(e) is defined as:

BC(e) = B(e) · Bc(e) (3.3)

In the context of KGs, BC(e) can be used to identify useful nodes linking different
information topics or knowledge domains.

3.2.1.4 Closeness and Harmonic Centrality

The Closeness C(e) of a node e gives a hint about how close e is to every other node
in G. The Closeness score of e consists of the average of the length of the shortest
paths from e to every v/v ∈ V ∧ v ̸= e. The Harmonic Centrality HC(e) consists of a
slight modification of Closeness, computing the harmonic mean of distances instead
of the average. Let d(u, v) be the function that gives the length of the shortest path
between u and v. With this, HC(e) can be defined as follows:

66 Chapter 3. Importance metrics in RDF graphs

HC(e) =
1

∑u ̸=e d(e, u)
(3.4)

Harmonic Centrality and Closeness produce an inverse sorting of elements, i.e.,
the reverse rank of Closeness would be the same rank of Harmonic Centrality. The
element with the highest score in Closeness is the less central one, i.e., the one whose
paths to every other node happen to be the longest ones. In contrast, the element
with the highest score in Harmonic centrality is the most central one. Since the rest of
the techniques evaluated produce scores in which the higher is the ranking position,
the more important is the element, we use Harmonic Centrality instead of Closeness
during our experimentation.

3.2.1.5 Radiality

Radiality, as well as Closeness or Harmonic Centrality, aims to quantify how close is
a node to all the rest in a graph. Radiality is based on the concept of Diameter of a
graph ∆(G), which is the maximum distance between any pair of nodes in V. With
this, the Radiality R(e) of a node e can be defined as follows:

R(e) =
1

∑u ̸=e(∆(G)− (1
d(e,u)))

(3.5)

3.2.2 Importance metrics applied over the whole graph structure

During this subsection, we present the techniques which compute both A-BOX and
T-BOX statements of the target graph used in our experiments. Instance Counting,
PageRank and HITS are superficially reviewed, making emphasis mainly in those
aspects that are relevant for the comprehension of this chapter. We provide relevant
bibliography to deeper analysis of these algorithms in their respective sections for
the interested reader. In opposition, we provide a detailed review of ClassRank, our
novel proposal.

As it has already been mentioned, Degree has a computational cost that makes
it suitable to be applied using A-BOX knowledge. However, we have checked em-
pirically that the results of applying Degree AAT and IC over our target datasets is
nearly identical1, so we exclude this algorithm from the AAT subsection.

3.2.2.1 Instance counting

This importance metric is tightly linked to the RDF world and, specifically, to the
class-instance relation. The more instances a class has, the more important the class
is. Several public and widely used data sources offer statistics about the number
of instances as a clue of class importance, such as Wikidata2, or offer separate files
in their dumps to manage triples about instantiation, such as DBpedia3. Instance
Counting (IC) is a simple and scalable importance metric.

Typically, in RDF sources, the relation of instance-class between two elements ec
and c is expressed using the property rdf:type in a triple (ec, rdf:type, c). However,
properties with a similar semantic to rdf:type can be used for the same purpose,
such as ‘P31 - instance of’ in Wikidata.

1In section 3.3.2.1, we provide an extended explanation for this fact
2https://www.wikidata.org/wiki/Wikidata:Statistics/en Accessed in 2022/05/03.
3https://databus.dbpedia.org/dbpedia/mappings/instance-types/2019.09.01 Accessed in

2022/05/03.

https://www.wikidata.org/wiki/Wikidata:Statistics/en
https://databus.dbpedia.org/dbpedia/mappings/instance-types/2019.09.01

3.2. Metrics 67

3.2.2.2 PageRank

PageRank[2] is based in a notion of importance which can be informally explained
with the next statement: an element gains importance if it receives more links form
other elements, if those links come from important elements, and if those elements
have few outgoing links. PageRank scores are values in [0, 1] with a nice statistical
interpretation. The PageRank score of a node e is the probability that a random
surfer, starting at a random node and jumping from node to node following links,
stops at node e. PageRank was originally designed to rank the importance of pages
in the World Wide Web. To model the actual behavior of an Internet user that may
follow links between pages, but may write as well some new URL in his browser
to move to a page non-linked from the current one, PageRank uses a parameter α.
The probability d that the random surfer has of getting bored of following links and
jumps to a random page is d = 1− α.

3.2.2.3 HITS

The HITS algorithm [202] assigns two types of scores to the nodes in a graph: hub
score and authority score. A given node will have a greater authority score when
it receives links from nodes with a high hub score. Also, a given node will have a
greater hub score when it points to nodes with a high authority score.

As well as PageRank, HITS is an algorithm designed to rank the importance of
pages in web search contexts. The hub score proposed by HITS is a similar notion to
PageRank: in both cases, a node gains importance when it receives links from impor-
tant nodes. However, PageRank and HITS consider a different notion of importance
for those incoming links. The authority score aims for finding pages that link to
many other important nodes. This notion can be especially useful for web search
tasks: instead of looking for the most relevant result, it finds nodes from which you
can jump to many other relevant results.

HITS is usually applied over subgraphs of a certain network containing nodes
and edges relevant to a given query. For example, when applied to web search, HITS
does not compute the hub and authority score for each page on the Internet. Instead,
it computes the connections between those pages that are detected to be relevant for
a text query. Thus, both hub and authority scores are relevant to the nature of that
query, and not just to the importance w.r.t to the whole network structure.

Despite this, HITS can be applied over the whole KG, and so we do in our exper-
iments. When applying HITS, we will use the hub score in every case, which is the
one with closer semantics to the notion of node importance produced by the rest of
the algorithms under evaluation.

3.2.2.4 ClassRank

ClassRank, similarly to PageRank, assigns an importance score to each element ranked,
which is a value in [0, 1]. The ClassRank score of a class c consist of the aggregation
of the PageRank scores of its instances. Let PR(e, α) be the PageRank of e with a
damping factor of α. And let I(c) be a function which returns the set of all the in-
stances of the class c. Then, the ClassRank score CR(c, α) of a class c with a damping
factor of α can be simply defined as follows:

CR(c, α) = ∑
ec∈I(c)

PR(ec, α) (3.6)

68 Chapter 3. Importance metrics in RDF graphs

As well as IC, ClassRank qualifies the importance of a class w.r.t. their instances.
Nevertheless, while IC purely quantifies the number of instances, ClassRank can
keep a balance between the quantity and quality (aka importance) of those instances.

The ClassRank scores in [0, 1] have a nice statistical interpretation. CR(c, α) is the
probability that a random surfer such as the one described for PageRank has to land
in an instance of c.

Let VC be the subset of nodes in V that are classes. While it is always true that
∑e∈V PR(e, α) = 1, ClassRank does not have a similar property. The PageRank scores
of nodes with no classes are never used, while the score of nodes with more than one
class are used to increase the ClassRank score of several classes. ∑c∈VC

CR(c, α) = 1
would be true if every node e/e ∈ V ∧ PR(e, α) > 0 has exactly one class. Otherwise,
∑c∈VC

CR(c, α) = 1 does not have to hold.
To determine which instances give their score to a given class, ClassRank relies

on the concept of class-pointer. Usually, each KG uses a single property to express
instance-class relations, being rdf:type the usual choice for such a goal. In those
graphs, a straightforward pick of class-pointer is rdf:type. However, there are oc-
casions in which the user may find it useful to use a more flexible notion of instance-
class by picking different properties.

An example of such an arguable property could be :occupation. Let us consider
a triple (:sarah, :occupation, :doctor) representing that someone called Sarah works
as a doctor. It cannot be said that the essential type of :sarah is :doctor but, even
with that, it can be said that Sarah is a doctor in informal speech. Let G be a graph
describing some people’s jobs, where the rdf:type of all the individuals is :Person.
Then, choosing rdf:type as class-pointer to compute G with ClassRank will produce
useless results. The only class with instances would be :Person. However, an execu-
tion of ClassRank using :occupation as class-pointer, or rdf:type and :occupation

at a time, will give a distribution of importance among the different occupations
(classes) stated.

Some other scenarios in which it can be interesting to choose class-pointers dif-
ferent from rdf:type are ontologies or KGs where most of the knowledge is T-BOX.
Then, properties such as rdfs:subClassOf could be used to propagate the impor-
tance of subclasses to their parent classes.

To support those cases and similar ones, we define class-pointers as properties
that are supposed to be used in triples where the object is a class. This definition
does not imply that there must be a strict instance-class relation between a pair of
elements linked by a class-pointer. However, that is the usual case. In this chapter, to
avoid verbosity, we use the term instance to refer to elements that give its PageRank
score to a class. ClassRank can use several class-pointers in a single execution to
adapt to the user needs.

Even if ClassRank is inspired and built over PageRank scores, it is important to
remark that PR(c, α) ̸= CR(c, α). While PageRank measures the importance of the
URI of a class within a graph, ClassRank uses this URI as a pure label to represent the
accumulated importance of a group of elements whose common feature is having
the same class. Actually, as it is defined, PR(c, α) does not have any effect on CR(c, α)
unless c is its own instance. Formally stated, PR(c, α) does not have any effect on
CR(c, α) unless it is true that (c, p, c) ∈ G ∧ p ∈ CP(G), where CP(G) is the set of
class-pointers of G.

ClassRank’s pseudo-code is formalized in Algorithm 1. Some of the conven-
tions used in this formalization must be clarified for a proper understanding of the
pseudo-code:

3.2. Metrics 69

• We define a graph G as a set of triples G = {t1, t2...tn}. A triple t is a group
t = (st, pt, ot) (subject, predicate, and object).

• We use the macro fPR(G, α) to refer to the standard PageRank function. fPR(G, α)
receives a graph G and a dumping factor α as input, and it returns a vector of
size n, being n the number of nodes contained in G.

• We use E to denote the set of nodes contained in G, and P to denote the set of
properties used in any t ∈ G.

• We denote the set of classes to be classified with EC, and the set of class-pointer
properties with PC.

• We use f∅ to denote an empty function f∅ : ∅→ ℘(EC), i.e., a function whose
domain is the empty set ∅ and whose co-domain consist of all possible subsets
(powerset) of EC.

• In line 16, we initialize a vector of maps, and to represent each map we are
using function notation. Given a certain function f , we denote its domain with
D(f), and its graph with G(f). We modify the definition of a function f by
adding or modifying elements in G(f), i.e., to define f (a) = b, we will use
G(f)[a]← b.

Algorithm 1 receives the following inputs:

1. A target graph G.

2. A set PC of class-pointers.

3. A damping factor α used for the PageRank execution.

4. A security threshold θ.

5. A set of target classes EC, which can be empty if the target classes are not
known a priori.

The threshold θ is used to ignore classes with few instances. This is especially
useful when the classes to rank are not known a priori and the user of ClassRank
wants to discover those classes using the class-pointers, but he prefers to discard
those elements with few instances.

The algorithm returns three results:

1. The standard PageRank vector for every entity {e/e ∈ E}, denoted as L.

2. The ClassRank vector for every class {eC/eC ∈ EC}, denoted as L′.

3. A matrix containing information about which entities point to which classes
using which class-pointer, denoted as S

L′ provides the importance of each class. S Allows to analyze the source of the
importance for each class. S is useful for ClassRank executions using more than one
class-pointer, as it allows the user to analyze the source of the importance for each
class, i.e., which are the class-pointers that cause a bigger effect on a class score.

ClassRank can be seen as a succession of four stages:

• Preliminary stage: initializations.

70 Chapter 3. Importance metrics in RDF graphs

Algorithm 1 ClassRank pseudo-code

Input: G = Target Graph
Input: Pc = Set of properties identified as class-pointers
Input: α = Damping factor
Input: θ = Security threshold
Input: EC = Target classes (it can be an empty set)

1: Ic ← ∅

2: Q←

o1 o2 · · · om

p1 0 0 . . . 0
p2 0 0 . . . 0
...

...
...

. . .
...

pn 0 0 . . . 0

▷ Stage 1

3: L← fPR(G, α)
▷ Stage 2

4: for each ti = (sti , pti , oti) ∈ G do
5: if pti ∈ Pc then
6: Qpti ,oti

← Qpti ,oti
+ 1

7: if EC ̸= ∅ then
8: Ic ← EC
9: else

10: for each j ∈ [1, |E|] do
11: for each i ∈ [1, |Pc|] do
12: if Qpi ,oj > θ then
13: Ic ← Ic ∪ {oj}
14: break

▷ Stage 3

15: L′ ←
(ec1 ec2 · · · ecn

0 0 . . . 0
)

16: S←
(ec1 ec2 · · · ecn

f∅ f∅ . . . f∅
)

17: for each ti = (sti , pti , oti) ∈ G do
18: if pti ∈ Pc ∧ oti ∈ Ic ∧Qpti ,oti

≥ θ then
19: if pti /∈ D(Soti

) then
20: G(Soti

)[pti]← ∅

21: if sti /∈
a∈D(Soti

)⋃
Soti

(a) then
22: L′oti

← L′oti
+ Lsti

23: G(Soti
)[pti]← G(Soti

)[pti] ∪ {sti}
Output: L = PageRank score of each entity
Output: S = instantiation vector
Output: L′ = Aggregated PageRank score of each class

3.2. Metrics 71

• Stage 1: PageRank.

• Stage 2: Class-pointer matrix and class detection.

• Stage 3: ClassRank scores.

These stages are labeled with comments in Algorithm 1. In the following para-
graphs, we make an overview of each stage.

Preliminary stage: Initializations - At this stage, we initialize some data structures
that will be used during the calculations of the ClassRank scores.

Ic is a set that will contain identifiers of the ranked classes. Q is a matrix of (m · n),
where m = |E| and n = |PC|. In Q, we annotate how many times a given object oj is
linked with a given class-pointer pi.

Stage 1: PageRank - At this stage, we calculate the internal relevance of each entity
in G and we store it in vector L. The computation of PageRank is a widely studied
problem [217, 218]. Also, there are standard libraries for many widely used pro-
gramming languages to compute it. Our implementation of ClassRank is written in
Python and the PageRank computation is based on the networkx library [219]. Nev-
ertheless, to cope with huge graphs, we have implemented a memory-optimized
version of networkx’s PageRank just for non-weighted computations4. This imple-
mentation could be necessary to reproduce the experiments proposed in this paper.

Stage 2: Class-pointer matrix and class detection - This stage could be divided
into two phases.

In lines 4-6, the matrix Q is filled with values. This matrix contains the number
of times that each class-pointer is used to link each node of the graph.

In lines 9-14, we perform class discovery if needed. When EC ̸= ∅, it means that
the set of classes to be ranked is known a priori, so there is no need to execute lines
from 10-14. Otherwise, the algorithm looks for nodes that are pointed at least θ times
by at least a class-pointer. The set Ic is filled with the nodes fitting that condition.
Those nodes are considered classes by the algorithm.

The security threshold θ has been introduced to filter wrong identifications of
classes causing noise. This is especially handy in sources maintained by many agents
making small editions, where human actions can cause marginal mistakes. This
threshold should be used carefully, since it may also cause a certain number of false
negatives for all those actual classes that are pointed less than θ times by a class-
pointer.

Stage 3: ClassRank scores - The ClassRank score of each class is calculated as the
aggregation of the PageRank scores of its instances in lines 15 to 23. This stage can be
informally summarized with the next statement: if there is a high enough number of
triples that have the same class-pointer as predicate and the same class URI as object,
then the PageRank scores of the subjects of those triples are added to the ClassRank
score of the class URI.

In lines 17-18, for each triple ti = (sti , pti , oti), we check whether oti is a class and
pti is a class-pointer linked to oti at least θ times. If this is true, we perform three
actions:

4https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/

wespageranker.py Accessed in 2022/05/03.

https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/wespageranker.py
https://github.com/DaniFdezAlvarez/classrank/blob/develop/core/external/pagerank/wespageranker.py

72 Chapter 3. Importance metrics in RDF graphs

• In lines 19-20, we include pti as class-pointer of oti in the vector of maps S, only
if it had not been already included.

• In lines 21-22, we add the PageRank score of sti to the ClassRank score of oti ,
only if it had not been already added.

• In line 23, we specify in the vector of maps S that sti is instance of oti due to the
class-pointer pti .

There is a public implementation of ClassRank available in a GitHub repository5.

3.2.3 Adapted importance metrics

The authors in [28] propose an approach to adapt the OTT metrics described in sec-
tion 3.2.1. This adaptation incorporates A-BOX knowledge to compute the scores,
so the approaches become AAT. Let Ti be a given importance metric. To compute
an adaptation T′i of Ti, the authors first propose a score normalization N(Ti(e)) for a
given node e in a scale [0,1], defined as follows:

N(Ti(e)) =
Ti(e)−min(Ti, G)

max(Ti, G)−min(Ti, G)
(3.7)

Where min(Ti, G) is the value of the less important node in G according to Ti,
and max(Ti, G) is the value of the most important node.

The adapted metric T′i is computed as follows:

T′i (e) = N(Ti(e)) + N(IC(e)) (3.8)

Where IC(e) is the number of instances of class e. This adapted metric is an
equally weighted addition of the normalized scores of IC and Ti.

We have adapted all the OTT techniques mentioned in section 3.2.1 according to
this formula. Besides, we have experimented with adapted versions of the rest of the
AAT techniques which are compatible with this proposal. We have combined the IC
scores with PageRank OTT/AAT, HITS OTT/AAT, and ClassRank.

3.3 Experiments

We used some representative samples of Wikidata and DBpedia SPARQL logs to
determine which are the classes that appear most times in the logs of these two
sources. Then, we used the rankings obtained to evaluate the metrics described in
section 3.2. This section describes our experiments. It is structured as follows:

• Methodology. We describe our evaluation methods: we explain how to mea-
sure class usage, how to build the reference rankings, and the method to com-
pare rankings.

• Sources. We describe the aspects of Wikidata and DBpedia which are relevant
for our evaluation. This includes both the SPARQL sample logs used to build
our reference rankings and the KGs themselves.

• Results. We provide the results of our experiments, highlighting the most rel-
evant facts.

5https://github.com/DaniFdezAlvarez/classrank Accessed in 2022/05/03.

https://github.com/DaniFdezAlvarez/classrank

3.3. Experiments 73

3.3.1 Methodology

As suggested in [28], we have considered mentions class mentions in SPARQL queries
as a reliable metric of how important a class is. Note that this metric does not exe-
cute the SPARQL queries in the logs. A class is considered to be mentioned when
it appears in the query itself. We count a class mention in a query when one of the
following events occur:

• The URI of the class is mentioned.

• The URI of an instance of the class is mentioned.

• The URI of an element e is mentioned, in case e is used in a triple with a prop-
erty whose domain/range forces e to be an instance of a class. Let pI be a
property which links an instance to its class; let d(p) and r(p) be the domain
and the range of the property p; and let G be the KG under analysis. Then,
formally, a class c is considered to be mentioned in a query if e is mentioned
and it is true that ((e, pa, o) ∈ G ∧ c ∈ d(pa))∨ ((s, pb, e) ∈ G ∧ c ∈ r(pb)), even
if (e, pI , c) /∈ G.

The importance rankings are built so the classes are sorted w.r.t. its total number
of mentions. The classes with more mentions appear at the top of the list.

3.3.1.1 Reference rankings: human-generated traffic vs machine-generated traf-
fic

We produce two different lists for each studied source. One considers every en-
try available in the logs. The other one computes just those entries associated with
human-performed queries. With requests made by humans we mean requests caused
by people writing and executing ad-hoc SPARQL queries or performing small tasks
in some applications that trigger a single/few queries. Usually, machines generate
much more traffic than humans. To provide some revealing numbers, the sum of
requests performed by the top-10 most active IPs in our DBpedia’s log, which is as-
sociated with machine agents, represents 44% of the total requests. If we consider
the top-100 IPs, this percentage grows to 77%.

Human traffic is not a more reliable notion of importance than machine traf-
fic, nor vice-versa. However, it is relevant to check the difference between human-
generated queries and machine generated traffic, due to the notorious impact that
very few machine agents usually have over the whole log. The notion of impor-
tance purely based on human actions seems to adopt a more general point of view,
not so polarized by automatic voracious consumers of the endpoint. Distinguishing
between requests performed by humans and requests performed by bots or applica-
tions has already been purposed in some other studies of SPARQL logs [220].

To avoid verbosity, in this chapter, we will use the following abbreviations:

• Human Hosts (HH) to denote log entries associated with humans.

• Machine Hosts (MH) to denote log entries associated with machines.

• Every Host (EH) to denote all log entries.

74 Chapter 3. Importance metrics in RDF graphs

3.3.1.2 How to compare the rankings

The main goal of our experiments is to compare the rankings produced by class-
usage in SPARQL logs with the different lists produced by the techniques under
evaluation. These two rankings have two peculiarities. First, it is feasible to have
tied elements. Second, the significance of changes in the top of the ranking is higher
than changes in the low spots. Search engine results or classification in sports are
insightful examples of that last feature. When comparing two search engines, the
first results shown to the user are much more relevant than the ones in position
100th. Similarly, the event of a player climbing from the second seed to the top seed
in a given sport receives more social attention than jumps in deeper regions of the
ranking. Importance rankings in RDF sources are used to prioritize some elements
for different tasks or to get a general idea about the content of a given source. Then,
the top-ranked elements are more relevant than the low-ranked ones.

It is desirable to use a metric that can compare the similarity of two rankings
naturally handling these two features. We have found that Rank-Biased Overlap
(RBO) [216] meets our requirements. Originally, RBO is defined as a distance mea-
sure between two rankings, where 0 means minimum distance and 1 means maxi-
mum distance. However, it can be trivially transformed into a metric by calculating
1− RBO, where 1 means maximum similarity. From this point, we will work with
the definition of RBO as a metric.

RBO checks the overlap of two rankings at incrementally increasing depths. The
elements checked at each depth d are those in rank [1, 2..., d]. Since the first element
is checked looking for overlap at every iteration, this element has the greatest impact
on the results. The following element with more importance over the score will be
the second one, and so on. At each iteration, RBO computes the ratio of overlapped
elements. It produces a result by adding all those ratios weighted using an infinite
series of weights whose sum converges always to a fixed value. The weights can be
configured to give a certain amount of importance to a region of the top rank using
a parameter p.

The p parameter has a nice statistical interpretation. It models the user’s persis-
tence when performing a manual checking of the rankings. Low values of p arbitrar-
ily decrease the probability that a user has to keep exploring ranks, and vice-versa.
The extreme case p = 0 causes that the only position checked is the first one. With
p = 0, RBO gives a result of 0 (no overlap) when the first element of both rank-
ings is not the same, or 1 (perfect overlap) otherwise. The rest of the ranking would
be ignored. The higher is the value of p, the less probable it is that the user stops
exploring the ranking.

Greater values of p arbitrarily increase the importance of wider prefixes of the
rankings. Each iteration k will always have a greater impact over the results than
k + 1, but greater values of p decrease that difference. p can also be interpreted as
a parameter to configure the exact amount of importance over the final score that a
given prefix length has. For instance, a value of p ≃ 0.9 gives an importance of 86%
to the top 10 elements. This means that the sum of weights of the first 10 iterations of
RBO will be 0.86. Although there is not a function to obtain a value of p for a couple
of chosen values of importance and prefix length, the authors in [216] provide the
following useful equation:

WRBO(1 : d) = 1− pd−1 +
1− p

p
· d ·

(
ln

1
1− p

−
d−1

∑
i=1

p1

i

)
(3.9)

3.3. Experiments 75

In Equation 3.9, d is the depth or prefix length, and WRBO(1 : d) is the accumu-
lated weight of a ranking in positions 1 to d.

We have developed a script fp(d, w, θe) which receives a length d, a weight w,
and an error threshold θe, and it returns a value p which approximately solves the
equation 3.9 for d and w = WRBO(1 : d). The script computes Equation 3.9 for d
with different values of p, obtaining each time a result wpi . The script stops when
it founds a pi/|wpi − w| < θe, and returns pi. This script allows us to find accurate
enough values of p for any chosen pair of prefix length and accumulated weight.

The sum of the weights at each depth of RBO always converges to a fixed value.
This makes RBO an adequate candidate to compare infinite rankings without having
the infinite tail’s importance dominating the finite head. When computing RBO for
a given depth, even if this depth is the size of the compared rankings, the algorithm
produces two results: rbomin and rbores. The value rbomin is the overlapped score
obtained after having checked the target rankings until depth d. rbores is the residual
score that would have been added to the result in case the explored rankings had
infinite but equal and equally sorted elements beyond depth d. With this, we can
have that the max possible score for infinite lists is rbomax = rbomin + rbores.

Then, RBO can be defined as a function fRBO(R, L, p, d) → rbomin, rbores. It com-
pares two rankings R and L until depth d, with a user persistence modeled by p, and
returns a score rbomin in the range [0, 1], and a residual rbores based on the assump-
tion that R and L can have infinite elements.

The authors in [216] provide a formula to express RBO as a single point rboext
instead of a range. This formula extrapolates the tendency observed until depth d
and assumes that it will stay stable along the infinite tail, and it produces a score
rboext where rbomin ≤ rboext ≤ rbomax. In our experiments, we will use rboext to
obtain a single score point of similarity between two rankings.

The rankings compared will always have the same number of elements, but the
way in which ties are represented may cause that they do not have the same number
of ranks. When two elements have an identical score within the same ranking, they
are both assigned to rank k, and the element after them is placed at rank k + 1. This
means that the total number of ranks could be smaller than the total number of
elements. In our experiments, we will always execute RBO with the longest possible
depth, i.e., the depth of the ranking with more ranks.

A deeper discussion about the convenience of this technique in scenarios like
ours, as opposed to classic approaches such as Spearman [221], in which all the
elements have the same impact over the final score, is provided in [216].

3.3.2 Sources

3.3.2.1 DBpedia

Knowledge Graph - We used the English chapter of DBpedia in our experiments.
PageRank and ClassRank compute links between entity or class nodes, i.e., the re-
sults are unaffected by triples whose object is a literal or a blank node. The contents
exposed in DBpedia’s SPARQL endpoint are publicly available as text dumps. Dif-
ferent aspects of the graph are serialized in different files. The DBpedia subgraph
used for our experiments consist of the following files:

• Mapping-based objects.

• Infobox properties.

• Instance types.

76 Chapter 3. Importance metrics in RDF graphs

Log size 58.771GB
Nº of entries in the log 74,281,130
Nº of MH entries 74,187,809
Nº of HH entries 93,321
Nº of total class mentions 80,562,206
Nº of direct class mentions 42,788,969
Nº of instance mentions 33,609,979
Nº of class mentions inferred by domain/range 4,163,258

TABLE 3.1: Statistics about the DBpedia SPARQL logs used

• Infobox properties mapped.

• Person data.

• Specific mapping based properties.

• Topical concepts.

All the links to download these files are available on-line6. Such links point to
the in-force version of DBpedia content at the moment in which the SPARQL logs
were generated.

The classes ranked are the ones in the DBpedia ontology7. Also, the subgraph
used to compute the OTT techniques has been the DBpedia ontology itself.

Logs - The DBpedia logs used for this experiment contain queries made to the
DBpedia SPARQL endpoint in fourteen different random days during 2017. The log
entries are split into fourteen files. Each file includes every SPARQL request against
the endpoint within a single day. The main features of the log files are provided in
Table 3.1.

We counted class mentions using the criteria described at the beginning of this
section. The scripts used to perform such a mining task are publicly available in a
GitHub repository8.

Each line in the logs contains data related to a single request to the endpoint.
The version of the logs that we were able to compute was filtered and anonymized
to preserve users’ privacy. These anonymized logs have been provided by OpenLink
Software and are available for use9 under a CC-BY license (credits to OpenLink)10

We could use the following information for each entry:

• Hashed IP from where the request was performed.

• HTTP request. SPARQL queries are embedded in GET requests.

6https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/

dbpedia Accessed in 2022/05/03.
7The version of the DBpedia ontology used in this experiment is available in the follow-

ing link: https://github.com/DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/
dbpedia/dbo.ttl Accessed in 2022/05/03.

8https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/query_

mining Accessed in 2022/05/03.
9Log description and download link: https://github.com/DaniFdezAlvarez/classrank/tree/

develop/experimentation/doc/dbpedia#logs Accessed in 2022/05/03.
10License description: http://data.weso.es/classrank/logs/COPYING.txt Accessed in

2022/05/03.

https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia
https://github.com/DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/dbpedia/dbo.ttl
https://github.com/DaniFdezAlvarez/classrank/blob/develop/experimentation/doc/dbpedia/dbo.ttl
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/query_mining
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/query_mining
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia#logs
https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/dbpedia#logs
http://data.weso.es/classrank/logs/COPYING.txt

3.3. Experiments 77

• Timestamp of the request truncated to hour precision.

• HTTP status code (200 OK, 404 Not found, 5XX server error, etc.).

When mining logs, there is not a perfect technique to distinguish between human
and machine search sessions, or even to properly perform the task of identifying a
single search session. Also, the most accurate approaches use to rely on information
that is not available in the version of the logs that we have been able to analyze, such
as user agent, more precise timestamps, or user identifiers. For instance, authors
in [220] distinguish between queries performed by humans, which they call organic,
and queries performed by automatics processes, which they call robotic queries. The
SPARQL logs that they use do not contain IPs, but they do include user-agents. They
use this field to detect browser user-agents, which are usually connected to organic
queries, and some other agents linked to known applications used by humans.

In our scenario, we combined the information of hashed IP and timestamp to
detect hosts that have a human-like amount and rate of requests. We picked an
arbitrarily low number of requests by hour within a single day. Any IP showing a
request rate under that threshold was classified as belonging to organic agents. The
chosen threshold has been 2.

We are aware that there are several situations in which this heuristic and this ar-
bitrary threshold may cause false positives and false negatives, such as the following
ones:

• A true human agent produces too many requests within a single day, which
discards not just the requests of that day but also every log entry related to the
same IP.

• A machine agent produces a low enough number of requests every day.

• An IP is linked to different routers on different days due to, for instance, Dy-
namic Host Configuration Protocol (DHCP) changes.

The mentioned issues are hard to prevent without more precise information
about each log entry. However, the threshold has been chosen to pick IPs with high
chances of belonging to human agents by sacrificing recall yet having a representa-
tive sample of human-related entries.

OTT metrics - In this subsection, we describe how we computed techniques over
a subgraph containing just T-BOX statements. This subgraph is the version of the
DBpedia ontology in force at the time in which the logs were generated.

The authors in [28] use Degree, Betweenness, Bridging Centrality, Harmonic
Centrality, and Radiality to measure class importance by applying them to graphs
containing only T-BOX statements. In our paper, we used the same approach for
those techniques. Except for Degree, whose complexity is linear to the number of
nodes, all the aforementioned techniques need the computation of the shortest paths
between all the nodes in the graph. This requires at least a computation time of
O(V · (V + E))[28], being V the number of nodes and E the number of edges. Thus,
these algorithms are hard to compute in a source such as the analyzed section of the
English chapter of DBpedia, with more than 110M triples.

Also, we have applied HITS and PageRank over the DBpedia ontology. The
damping factor for the PageRank execution was set to α = 0.85, which is standard
and most usual configuration of PageRank [222].

78 Chapter 3. Importance metrics in RDF graphs

AAT metrics - We have applied HITS, PageRank, IC, and ClassRank over the
whole KG.

Even if Degree’s complexity is low enough to execute this technique as AAT, we
have not included its computation in this chapter because of its similitude with IC.
While IC only considers links class-instance, Degree computes every incoming or
outgoing link to rank a class. However, for the top positions of our rankings, the
vast majority of those links are the instance-class relations accounted by IC, which
leads to nearly identical results for IC and Degree AAT.

To build the ranking of classes of PageRank, we filtered all the A-BOX elements in
the obtained PageRank vector and sorted the remaining T-BOX terms in decreasing
order w.r.t. to its score. The damping factor for the PageRank execution was set to
the standard value α = 0.85.

The ClassRank scores are built on top of the PageRank ones described in the
previous subsection, so the setting α = 0.85 was used. When executing ClassRank,
the set of target classes is known a priori. Therefore, there was no need to per-
form class discovery in stage 2 of Algorithm 1. The property rdf:type was the only
class-pointer considered. Since the only property linking an A-BOX term with any
element in the DBpedia ontology is rdf:type, this is a straightforward decision in
the context of our experiment. The same decision was taken to compute IC, i.e., the
only property that we considered to link an instance to its class is rdf:type. Also,
since the set of classes to classify is known a priori, the value that makes sense for
ClassRank’s security threshold is θ = 0. We do not want to discard any class of the
DBpedia ontology from the results.

In section 3.2.3, we described an adaptation of OTT approaches with IC scores.
We have applied this adaptation to all the techniques mentioned in section 3.3.2.1,
but we have also computed an adaptation of PageRank, HITS, and ClassRank over
the KG to combine their scores with IC scores.

Reference rankings - In Table 3.2, we include the top-20 elements of each reference
list. The whole lists are publicly available11.

3.3.2.2 Wikidata

Knowledge Graph - Wikidata, as DBpedia, is a well known general-purpose LD
source. However, these two projects have some crucial differences that affect our
experiments.

Wikidata models two types of elements within its KG: entities and properties.
Entities are represented with an ID starting by Q and followed by an integer (ex: Q5
stands for human; Q6256 stands for country). Properties are identified with a ’P’ and
an integer (ex: P31 stands for instance of ; P279 stands for subclass of).

Within the entities, we can conceptually make a distinction between classes (such
as ‘Q6256 - country’) and instances (such as ‘Q30 - United States of America’). How-
ever, there is no distinction in the way these two elements are managed within Wiki-
data’s environment. Both classes and instances are maintained by community edi-
tions and Wikidata does not provide a list of classes. It categorizes as a class any
element in the KG that is an object in a triple with the property ‘P31 - instance of’ or
a subject/object in a triple with ‘P279 - subclass of’12.

11https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/doc/

dbpedia#user-content-mining-logs Accessed in 2022/05/03.
12https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes Accessed in

2022/05/03.

https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/doc/dbpedia#user-content-mining-logs
https://github.com/DaniFdezAlvarez/classrank/tree/master/experimentation/doc/dbpedia#user-content-mining-logs
https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes

3.3. Experiments 79

Human Hosts Every Host
Pos. Class Mentions Class Mentions

1 dbo:Album 1,342 dbo:Place 16,567,840
2 dbo:Company 667 dbo:Airport 16,082,487
3 dbo:Place 603 dbo:CareerStation 4,264,500
4 dbo:Airport 568 dbo:Band 4,065,636
5 dbo:Person 551 dbo:Person 3,228,266
6 dbo:Country 354 dbo:MusicalArtist 2,703,628
7 dbo:SoccerPlayer 319 dbo:Organisation 2,240,076
8 dbo:Settlement 301 dbo:PopulatedPlace 1,958,866
9 dbo:City 225 dbo:Company 1,934,215
10 dbo:RadioStation 178 dbo:Language 1,851,015
11 dbo:Film 166 dbo:Artwork 1,780,684
12 dbo:Writer 146 dbo:Device 1,774,061
13 dbo:OfficeHolder 145 dbo:Settlement 1,442,655
14 dbo:MilitaryConflict 129 dbo:VideoGame 1,126,766
15 dbo:Software 117 dbo:Album 1,014,906
16 dbo:MusicalArtist 114 dbo:Film 957,870
17 dbo:IceHockeyPlayer 113 dbo:OfficeHolder 841,060
18 dbo:VideoGame 108 dbo:City 834,053
19 dbo:Drug 108 dbo:SpTeamMember 828,302
20 dbo:Scientist 91 dbo:Writer 774,113

TABLE 3.2: Top20 elements for HH and EH entries in DBpedia

With this criterion, we have found 2,477,094 classes. The subgraph of elements
linking those elements contains 13,791,207 triples. In opposition to the DBpedia’s
case, this T-BOX subgraph is too big to apply some of the techniques mentioned in
section 3.2.1. Specifically, Betweenness, Radiality, Harmonic Centrality, and Bridg-
ing Centrality would require huge computational power and execution time.

Wikidata barely uses properties of external ontologies. With few exceptions such
as rdfs:label, which is used to link ‘Q’ items with their denominations in different
languages, the properties used to express most of the relations are defined within
its own ontology and referenced with a ‘P’ ID. The class-instance relation is not ex-
pressed with rdf:type, but the equivalent Wikidata property ‘P31 - instance of’.

Logs - Wikidata made public some SPARQL logs with random samplings of valid
queries in different time frames13. All these logs have been anonymized to preserve
users’ privacy. Each log entry contains the original SPARQL query with variable
names and most of the literals substituted by generic placeholders. There is also
some metadata associated with each query. Wikidata classifies each entry as either
‘robotic’ or ‘organic’. A query is labeled as robotic when its user agent is not a web
browser or when there is a non-human rate of queries coming from the same IP in a
time span. Otherwise, the query is considered organic.

This label let us build the HH and EH rankings without further computations of
the rest of the metadata. We used organic queries to elaborate the HH ranking and
both organic and robotic queries for the EH ranking.

13https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en Accessed in 2022/05/03.

https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

80 Chapter 3. Importance metrics in RDF graphs

Log size 50,358 GB
Nº of entries in the log 24,417,813
Nº of MH entries 23,545,258
Nº of HH entries 872,555
Nº of total class mentions 105,939,034
Nº of direct class mentions 22,094,776
Nº of instance mentions 83,844,258

TABLE 3.3: Statistics about the Wikidata SPARQL logs used

The logs used in this experiments are publicly available14. They contain a ran-
dom sample of queries performed between 2018-02-26 and 2018-03-25. A summary
of the log’s content is offered in Table 3.3.

In Wikidata, the process for creating a new property requires a thorougher com-
munity moderation than the process for creating a new ‘Q’ item. Even if any Wiki-
data user can propose a new property, this proposal needs to be discussed and
accepted by the community. At the moment in which our experiments were per-
formed, a total of 8,882 properties were defined in Wikidata15. However, some of
those properties are not used any longer or have been removed.

Not all the properties include domain and range restrictions in their definition.
Also, some of these restrictions aim to be pure information for Wikidata users in-
stead of actual ontological restrictions that may invalidate some triples when used
wrong. Properties usually define domain and range restrictions as choice lists. For
instance, ‘P106 - occupation’ is defined to be used in triples whose subject should be
an instance of one class in a list of 8 elements, which includes ‘Q5 - human’, ‘Q729 -
animal’, or ‘Q21070598 - narrative entity’.

Those domain and range definitions in some cases, and the absence of constraints
in some others, do not make it possible to count class mentions in the logs via do-
main or range inferences. Then, when mining the Wikidata logs, we only count as
class mentions 1) mentions to the class URI itself, and 2) mentions of its instances’
URIs.

OTT metrics - The high number of classes on Wikidata and the size of its T-BOX
subgraph discard the computation of too complex techniques such as Betweenness,
Radiality, Harmonic Centrality, and Bridging Centrality.

The set of techniques applied over the T-BOX subgraph of Wikidata consist of
Degree, HITS, and PageRank. As usual, PageRank damping factor was set to α =
0.85

AAT metrics - We computed the whole KG with HITS, PageRank, IC, and Class-
Rank. Also, we have computed the adaptation with IC scores of HITS, PageRank,
and ClassRank. As usual, the PageRank damping factor was set to α = 0.85.

We have computed several settings of ClassRank’s class-pointers PC against Wiki-
data. Since ‘P31 - instance of’ is equivalent to rdf:type, the most straight-forward
setting is using PC = { ‘P31 - instance of’}, so classes are scored w.r.t. pure instance-
class relations. However, in opposition to the DBpedia case, there are many different

14https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/

2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz Accessed in 2022/05/03.
15The current number of declared properties (some of them possibly already removed) is 9,973 Ac-

cessed in 2022/05/03.

https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2018-02-26_2018-03-25/2018-02-26_2018-03-25_all.tsv.gz

3.3. Experiments 81

P31- instance of P8006- footedness P4680- constraint scope
P279- subclass of P4882- segmental innervation P1354- shown with features
P1750- name day P6884- target muscle P548- version type
P1622- driving side P1913- gene dupl. assoc. with P4390- mapping rel. type
P8030- size designation P4954- may prevent P1914- gene ins. assoc. with
P3358- positive prog. pred. P922- magnetic ordering P2894- day of week
P8225- is metaclass for P2352- applies to taxon P2597- Gram staining
P6437- day of regular release P660- EC enzyme classif. P21- sex or gender
P5102- nature of statement P1480- sourcing circumstances P6216- copyright status
P6106- uses capitalization for P2443- stage reached P556- crystal system
P873- phase point P1310- statement disputed by P4794- season starts
P2308- class P4649- id. of subj. in context P6224- level of description
P1910- decreased expression in P1642- acquisition transaction P91- sexual orientation
P3357- negative diag. pred. P4850- perm. food additive P8127- tournament format
P2577- admissible rule in P1917- posttranslat. mod. P4224- category contains
P6118- season ends P8431- course P3150- birthday
P8115- eligible recipient P1915- gene inv. assoc. with P404- game mode
P970- neurological function P1918- altered reg. leads to P105- taxon rank
P3294- encoding P5439- research measurement P7937- form of creat. work

TABLE 3.4: Properties with a class ratio ≥ 0.99

properties linking instances and classes in Wikidata, which let use different PC set-
tings.

A class-pointer could be any property defined to be used in triples where the
object is a class. However, properties in Wikidata are not defined strongly enough
to find class-pointer candidates by checking their constraint definitions. Also, some
properties that could be automatically detected as class-pointer candidates are not
used as so in the KG. For example, ‘P413 - position played on team’, which is supposed
to point to classes standing for special roles in different sports, is just used to point
to actual classes 71.22% of the times.

Then, to obtain a list of class-pointer candidates, we computed the actual usage
of every property p in the whole KG to obtain a ratio rp =

Ucp
Up

, where Up is the
number of times that p is used in any triple, and Ucp the number of times in which p
points to a class. Then, we sort the properties in descending order w.r.t. rp. The list
of properties and its associated ratio is available on-line16. We tested every combi-
nation of properties above a certain ratio, starting at 1.0 (the property always points
to classes) and finishing at 0.5 (the property point to classes half of the times), with
decrements of 0.01 for each test.

In this chapter, we do not include the results of all these configurations, but just
the one that we found optimal, i.e., that aligns better with the reference rankings.
The best ratio for Wikidata has been r = 0.99. The resulting list of class-pointers
with r = 0.99 is shown in Table 3.4.

In this experiment, we seek to rank every Wikidata element that fits in Wikidata’s
definition of what a class is. Then, since the set of classes is known a priori and
provided to the algorithm, the configuration of the security threshold should be θ =
0.

16http://data.weso.es/classrank/wikidata/wikidata_classpointers_ratio.json Accessed
in 2022/05/03.

http://data.weso.es/classrank/wikidata/wikidata_classpointers_ratio.json

82 Chapter 3. Importance metrics in RDF graphs

Human Hosts Every Host
Pos. Class Mentions Class Mentions

1 Q5- human 312,245 Q5- human 26,902,123
2 Q55983715- organisms [...] 261,714 Q55983715- organisms [...] 3,296,393
3 Q515- city 215,273 Q6256- country 1,651,146
4 Q644371- international airport 209,245 Q3624078- sovereign state 1,553,641
5 Q6256- country 32,584 Q13442814- scholarly article 1,341,577
6 Q3624078- sovereign state 30,257 Q16521- taxon 1,306,359
7 Q28640- profession 21,421 Q11424- film 1,301,887
8 Q7270- republic 13,213 Q3947- house 1,279,807
9 Q12737077- occupation 11,975 Q48264- gender identity 1,231,213
10 Q20181813- colonial power 9,960 Q4369513- sex of humans 1,228,445
11 Q63791824- Baltic Sea countries 9,111 Q427626- taxonomic rank 1,013,172
12 Q43702- federal state 8,813 Q340169- communication medium 955,023
13 Q11173- chemical compound 8,519 Q3100180- rank 908,404
14 Q619610- social state 8,297 Q13578154- rank 907,632
15 Q4209223- Rechtsstaat 8,221 Q3331189- version, ed., or translat. 826,798
16 Q15079663- r. t. railway line 8,072 Q10876391- Wikipedia lang. edition 791,432
17 Q45- Portugal 7,548 Q515- city 773,382
18 Q11900058- explorer 7,493 Q7432- species 741,928
19 Q13442814- scholarly article 6,423 Q16970- church building 702,134
20 Q48264- gender identity 6,214 Q253019- Ortsteil 699,386

TABLE 3.5: Top20 elements for HH and EH entries in Wikidata

Reference rankings - The most important classes in Wikidata according to class
usage with EH and HH entries are shown in Table 3.5. When comparing these
rankings with the rankings produced by each technique, we have discarded some
special nodes from Wikidata, which are important from a structural point of view
due to Wikimedia’s organizational model, but rarely used by end-users in SPARQL
queries. The discarded nodes include elements such as ‘Q56005592 - Wikimedia help
page’, ‘Q35252665 - Wikimedia namespace’ and some other Wikimedia organizational
elements.

3.3.3 Results

To evaluate the similarity of two rankings R and L using different weights for their
top positions, we evaluated several configurations of p in RBO(R, L, p). We used
Equation 3.9 to obtain p values for different prefix sizes with a fixed importance of
0.9. In every case, the margin error to calculate p with the script described in section
3.3.1.2 was set to α = 0.00001.

Note that each p configuration solves Equation 3.9 for several pairs of WRBO(1 :
d) and d. For instance, p ≃ 0.876343 is an adequate value for d = 10 and WRBO(1 :
d) = 0.9, but it is also valid for d = 6 and WRBO(1 : d) = 0.8. We fixed WRBO(1 : d) =
0.9 just to provide understandable values of p instead of testing arbitrary increments.

In this chapter, we have run RBO comparing the reference rankings against the
rest of the metrics with several d values for WRBO(1 : d) = 0.9. Starting at d =
20, we have performed comparisons incrementing d in 20 spots each time until the
arbitrary depth of 500, whenever this was possible. However, the relatively low
number of positions in DBpedia’s HH ranking requires using a smaller maximum
depth to explore. When building the reference rankings, some elements receive the
same number of mentions. These ties, as explained in section 3.3.1.2, can cause that
the number of ranks in a ranking can be lower than the number of total elements.

3.3. Experiments 83

FIGURE 3.1: Comparison of techniques against EH log in DBpedia.

The total number of classes to rank in the DBpedia ontology is 827. However,
with HH entries, there are many ties due to classes with few mentions or no mention
at all in the logs (there are unmentioned 583 elements). This situation produces a
ranking with just 62 spots.

For this reason, just for the case of DBpedia’s HH entries, we start the evaluation
at the minimum prefix length of 10 and made increments of 5 spots until the arbitrary
depth of 60.

The results of comparing the metrics against the importance ranking of DBpe-
dia’s EH logs are shown in Figure 3.1. The results against DBpedia’s HH logs are
shown in Figure 3.2. The results against Wikidata’s EH logs are shown in Figure 3.3.
Finally, the results against Wikidata’s HH logs are shown in Figure 3.4.

Each figure contains two charts. On the left side, we show the result of the tech-
niques mentioned in section 3.2 in its raw version. On the right side, we show the
adaptations of those techniques with IC scores according to the formula explained in
Section 3.2.3. The top-performing metrics of each group are included in both sides
to show the distance between any technique and the best results obtained. IC is
shown on the charts of the right side because the comparison between IC and any
adapted technique is quite relevant. As we have already mentioned, the adaptation
to AAT of a technique T normalized in [0, 1] consist of a technique T′ that assigns to
each class ci a score T′(ci) =

T(ci)+IC(ci)
2 . Then, any T′ whose results are consistently

worse than IC should be avoided. In such a case, IC scores are performing better by
themselves than being used as a factor in T′, even when the computational cost of
T′ is higher than IC’s cost.

84 Chapter 3. Importance metrics in RDF graphs

FIGURE 3.2: Comparison of techniques against HH log in DBpedia.

3.3. Experiments 85

FIGURE 3.3: Comparison of techniques against EH log in Wikidata.

86 Chapter 3. Importance metrics in RDF graphs

FIGURE 3.4: Comparison of techniques against HH log in Wikidata.

3.4. Discussion 87

FIGURE 3.5: Performance comparison of ClassRank against any other
non-ClassRank metric at every source and prefix depth.

The Wikidata results shown in figures 3.3 and 3.4 include two different execu-
tions of ClassRank. We have named ClassRank P31 the configuration in which PC = {
‘P31 - instance of’}, and ClassRank r.99 the configuration in which PC includes the
properties shown in Table 3.4.

In this section, we have focused on the comparison by means of RBO between
the metrics’ results and the reference rankings at different prefix depths. To allow
further analyses, all the rankings produced are publicly available17.

3.4 Discussion

3.4.1 Best performing techniques

As can be seen in Figures 3.1, 3.2, 3.3, and 3.4, there is not a metric outperform-
ing all the rest in every case. However, ClassRank and Adapted ClassRank are the
approaches performing better at mostly any source and prefix depth configuration.

According to [223], when comparing two techniques, improvements of less than
5% could be discarded and attributed to the nature of the samples chosen in the
experiments; improvements between 5% and 10% are noticeable; improvements
greater than 10% can be considered material.

In Figure 3.5, we compare ClassRank and the best non-ClassRank score (i.e., any
score which was not produced by ClassRank or Adapted ClassRank) for each source
and prefix depth. The ClassRank performance curves used to make comparisons
in DBpedia logs are the ones labeled with ‘ClassRank’ in Figures 3.1 and 3.2. The
curves used for Wikidata are the ones labeled ‘ClassRank P31’ in Figures 3.3 and 3.4.
In Figure 3.6, Adapted ClassRank scores are compared with the best non-ClassRank
score for each source and prefix depth.

Whit the criteria proposed in [223], one can see that both ClassRank and Adapted
ClassRank perform materially better than any other metric for every depth explored
in Wikidata logs. This is even more noticeable for HH Wikidata. As shown in Figure
3.4, for depths between 40 and 260, both metrics have an improvement greater than
100% over the rest of the approaches.

With DBpedia logs, even if ClassRank variants are the best-performing ones at
most of the depths, this advantage is not that clear. As one can see in Figure 3.1, with
EH entries, Adapted PageRank OTT performs materially better than ClassRank until
depth 20. Between depth 40 and 140, ClassRank performs noticeably better than the

17https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/ Ac-
cessed in 2022/05/03.

https://github.com/DaniFdezAlvarez/classrank/tree/develop/experimentation/doc/

88 Chapter 3. Importance metrics in RDF graphs

FIGURE 3.6: Performance comparison of Adapted ClassRank against
any other non-ClassRank metric at every source and prefix depth.

rest of the approaches. From this depth, ClassRank performs slightly better than the
second best-performing approach, which is Adapted PageRank ATT. However, the
distance with this curve is always inferior to 5%. In depths beyond 380, ClassRank
is slightly outperformed by Adapted Betweenness, and beyond 420 by Adapted Ra-
diality as well.

We can observe similar circumstances with DBpedia’s HH entries. ClassRank
is slightly outperformed by Adapted PageRank OTT at depth 10. Then, ClassRank
performs noticeably better than the rest of the approaches at depth 15. From this
point, ClassRank keeps being the best-performing approach, but with advantages
lower than 5% over the second one at every depth.

The high top of DBpedia’s rankings are the only regions explored in which any
technique noticeably outperforms ClassRank. That situation happens with d = 10
for HH entries and with d = 20 for EH entries. Several factors related to the topology
of DBpedia Ontology cause this.

On the one hand, this ontology is structured as a tree in which owl:Thing is the
root and has many direct children. Many classes do not have any children at all and,
when they do, their subtrees are not deep. This structure causes owl:Thing to be
ranked in the first position of most OTT metrics, with a great distance to the class
ranked 2nd. The scores of the next classified classes are much closer. On the other
hand, the IC scores have higher score differences in the top positions of the rank.
Then, when the OOT metrics are adapted, except for the rank of the owl:Thing class,
IC has a more significant influence on the top spots of the adapted metrics. Also,
among those classes that do have a populated subtree, we can find elements such
as dbo:Place, dbo:Organisation, or dbo:Person. These nodes are general enough
to have a subtree of classes, boosting its rank in OTT approaches, such as Degree
or PageRank. At a time, these nodes are direct classes of many instances, which
increases the chances of being mentioned in SPARQL logs.

These factors, combined with the relatively small number of elements in the DB-
pedia Ontology, make some adapted approaches to perform even better than Class-
Rank at the very top of DBpedia’s rankings. However, this works just for few nodes,
such as the mentioned ones. The deeper we go into the ranking, the better perform
ClassRank and, in general, the metrics which were originally AAT.

It is hard to determine in which conditions Adapted ClassRank performs bet-
ter than ClassRank and vice-versa. In Figure 3.7, we show the comparison between
ClassRank and Adapted ClassRank. As one can see, the general case is that Class-
Rank outperforms its adapted version. Nevertheless, in most of the cases, the rela-
tive difference between these two approaches is lower than 5%. The only exceptions
to these situations occur in the top positions of each reference ranking. Adapted

3.4. Discussion 89

FIGURE 3.7: Performance comparison of Adapted ClassRank against
any other non-ClassRank metric at every source and prefix depth.

ClassRank performed materially or noticeably better than ClassRank until the top
100 of Wikidata EH, and until top 20 for Wikidata HH. In opposition, ClassRank
performed materially or noticeably better until top 20 of both DBpedia EH and HH.
With this data, it cannot be concluded whether ClassRank outperforms Adapted
ClassRank in general terms.

3.4.2 General performing of techniques in different sources

Most of the scores of any technique for any depth and source are, in general, far
from 1, which would mean a perfect alignment between a reference ranking and
the ranking produced by a given approach. The highest similitude between any
reference ranking and any tested metric is reached by Adapted Betweenness with
DBpedia’s EH entries, scoring 0.781 for a prefix depth of 500. However, except for
the case of DBpedia EH curves, no other reference ranking produces any measure
above 0.5 at any checked prefix depth.

That means that there is not such a technique able to precisely capture the notion
of importance observed in log’s class usage. The probable cause of this is that there is
not either a perfect mathematical relation between a graph’s structure and the actual
usage of its nodes in a SPARQL endpoint. Nevertheless, log usage information is not
always available, so it is worth it to keep working on metrics able to find the best
possible alignment between a graph’s structure and its actual usage.

With DBpedia, the lowest scores occur at the top positions of the rankings. The
higher is the ranking prefix, the better is the final score. All the performance curves
in Figures 3.1 and 3.2 have a linear or asymptotic-like shape with a constant im-
provement. That can be explained by the fact that the number of classes to rank
is nearly covered by the max prefix length chosen. Then, when exploring regions
of the ranking deep enough, even by pure randomness, it is easier to find classes
shared by the reference list and the list under evaluation. That boosts RBO scores
when considering wider prefixes.

In opposition, a prefix depth of 500 represents just 0.0002% of the classes detected
in Wikidata. Then, the chances of getting shared classes between the list compared
due to randomness dramatically decrease. With Wikidata’s large number of classes
to rank, there is not a general tendency with performance curves. Even within the
same chart, we observe linear, asymptotic, and parabolic-like curves. As shown in
Figures 3.5 and 3.6, with many classes to rank, ClassRank materially outperforms
any other metric at every measured prefix depth.

90 Chapter 3. Importance metrics in RDF graphs

3.4.3 EH vs HH results

It seems that, in general, the correlation between the graph’s structure and the class
usage in SPARQL endpoints is higher with robotic agents. For a given metric, prefix
depth, and source, the general case is that the HH score is lower than the EH score.
Also, the general case is that the difference between these two scores is material, i.e.,
higher than 10%.

However, as discussed in the previous section, ClassRank and Adapted Class-
Rank outperform the rest of the techniques both for EH and HH entries. This is,
among the evaluated algorithms, ClassRank seems to be the approach that captures
better the notion of importance w.r.t. class usage with both types of traffic (organic
and robotic).

3.4.4 OTT, AAT and adapted metrics

With the notion of class importance adopted in this paper, the general case is that
AAT techniques outperform OTT ones. There are very few exceptions to this ob-
servation. The most salient ones happen 1) with DBpedia HH entries, where HITS
OTT outperforms HITS AAT until depth 35, and 2) with Wikidata, where HITS AAT
scores are worse than some OTT approaches for some prefix values. This last excep-
tion occurs from depth 140 with EH entries and from depth 80 with HH entries.

Not computing the A-BOX section of the graph led to a loss of valuable knowl-
edge about the KG’s topology. The adaptation of OTT metrics with IC scores is
proposed to use, in a computationally cheap way, a salient feature of the graph,
which are class-instance relations. It is remarkable that the general case for every
raw metric T is that its adapted version T′ outperforms T. That is probably because
IC scores perform better than almost any other raw metric. The only exception to
this is ClassRank, which is also the only one that is not clearly outperformed by its
adapted version.

It is worth mentioning that, in every case, ClassRank and Adapted ClassRank
tend to describe performance curves of similar shape and, except for the top posi-
tions and the Wikidata EH log, they have score points nearly swapped. That means
that, in general, the adaptation with IC scores does not have a noticeable impact over
ClassRank. The probable reason for this is that several top-ranked classes appear in
the tops of both IC and ClassRank rankings. Since the top positions of the rankings
have a determinant impact on RBO scores, the inclusion of IC’s well top-ranked ele-
ments boosts the results of most of the metrics. That improvement does not happen
when adapting ClassRank because those key classes are already top-ranked in raw
ClassRank.

3.4.5 Configuration of class-pointers

The possibility to configure the set of class-pointers PC to be used during the execu-
tion of ClassRank is more linked to the concept of relevance than importance, as it is
a user’s choice to let the algorithm focus on some specific aspects of the KG.

We have been able to evaluate different PC settings with Wikidata. However,
due to the high number of potential class-pointers in this source, we have not tested
every possible configuration of properties, but just those described in section 3.3.2.2.
As can be seen in Figures 3.3 and 3.4, even the best PC setting performed materially
worse than the straight-forward configuration PC = { ‘P31 - instance of’}. Custom
and more user-centered configurations of PC could achieve better results.

3.4. Discussion 91

Technique Complexity
Degree O(n + e)
Betweenness O(n · (n · e))
Bridging Centrality O(n · (n · e))
Harmonic Centrality O(n · (n + e))
Radiality O(n · (n + e))
Instance Counting O(n + ei)
PageRank O((n + e) · log n

ϵ) *
HITS O(e · k)
ClassRank O(nc + ei + (n + e) · log n

ϵ)

n = number of nodes; e = number of edges; ei =number of instantiation edges;
nc = number of classes; k = maximum number of HITS iterations
* According to [224], PageRank can be computed in ϵ rounds, being log n

ϵ the
reset probability of PageRank, and having each round a complexity of O(n + e)

TABLE 3.6: Computational cost of the techniques evaluated

Also, it is worth mentioning that even if ClassRank r.99 performed worse than
ClassRank P31, both ClassRank r.99 and Adapted ClassRank r.99 performed better than
any other raw or adapted approach (excluding other ClassRank configurations).

3.4.6 Computational cost vs performance

In Table 3.6, we included the computational cost of every technique evaluated.
As one can see, Degree and IC are the cheapest techniques to execute, as they

perform simple counting actions over the target nodes.
Implementations of PageRank and HITS are usually based on eigenvector com-

putations. Even if the complexity of this is linear w.r.t to the number of nodes and
edges, both approaches require several iterations until they converge and reach a
result, increasing the complexity compared to Degree and IC. ClassRank has a com-
plexity similar to PageRank because it requires PageRank scores. Once those scores
are computed, the complexity of the rest of the algorithm is linear w.r.t. the number
of nodes and target edges.

Betweenness, Bridging Centrality, Harmonic Centrality, and Radiality have com-
plexities higher than quadratic w.r.t. numbers of nodes, as they all need to compute
the shortest path between any pair of nodes in the target graph. This complexity
makes them suitable for small or moderate-sized structures, but they can have a
prohibitive performance cost for big networks.

The adapted techniques have not been included in Table 3.6 because they all
have the same computational complexity as their raw version. That is because the
adaptations purely consist of normalizing and averaging the original scores with IC
scores, and IC has the lowest computational cost of all the analyzed techniques.

When choosing a metric to measure class importance, both the performance and
the computational cost should be considered. Different contexts may lead to dif-
ferent decisions regarding whether it is preferable to prioritize performance or cost.
However, some techniques could be discarded when they perform worse than their
competitors w.r.t. to both decision parameters.

Even though IC is the simplest approach, it outperforms any other raw technique
except ClassRank and, as one can see in Figure 3.1, PageRank AAT in a section of

92 Chapter 3. Importance metrics in RDF graphs

Rank ClassRank Instance Counting
1 dbo:Person dbo:Person
2 skos:Concept dbo:CareerStation
3 dbo:CareerStation dbo:SportsTeamMember
4 dbo:Settlement dbo:Settlement
5 dbo:SoccerClub dbo:PersonFunction
6 dbo:SoccerPlayer dbo:Village
7 dbo:SportsTeamMember dbo:TimePeriod
8 dbo:Country dbo:Album
9 dbo:City dbo:Insect
10 dbo:PersonFunction dbo:SoccerPlayer
11 dbo:Village dbo:Film
12 dbo:AdministrativeRegion skos:Concept
13 dbo:TimePeriod dbo:OfficeHolder
14 dbo:Insect dbo:Company
15 dbo:Album dbo:Plant
16 dbo:OfficeHolder dbo:MusicalArtist
17 dbo:Film dbo:Single
18 dbo:Company dbo:Building
19 dbo:MusicGenre dbo:Town
20 dbo:MusicalArtist dbo:Athlete

TABLE 3.7: Top 20 of ClassRank and Instance Counting

DBpedia EH ranking. Also, it is worth mentioning that, in most of the cases, the
adapted version of those algorithms does not outperform IC scores. Again, the only
exception to this is Adapted ClassRank and, as it is shown in Figures 3.1 and 3.2,
PageRank AAT and HITS AAT for some sections of the DBpedia logs.

Since the complexity of HITS, PageRank, and ClassRank is similar, but ClassRank
seems to outperform HITS and PageRank, we will discuss the differences between
ClassRank and IC. In table 3.7, we show the top 20 elements in DBpedia according
to ClassRank and IC.

As one can see, the rankings contain elements related to very similar domains
(mainly arts, sports, geopolitical divisions, and people). Fourteen classes appear at
the top-20 of both lists, and some of them even have an identical rank. That makes
sense, as many incoming links coming from many instances ensure high importance
with IC, but, frequently, they also imply high importance with ClassRank due to
accumulated PageRank scores of that many instances.

A couple of missing elements in the top-20 of IC raises a clue about the kind
of classes in which these two techniques heavily disagree: dbo:SoccerClub and
dbo:Country. With ClassRank, dbo:SoccerClub ranks 5th and dbo:SoccerPlayer

ranks 6th. The different soccer players are connected to their club, so some of the im-
portance accumulated by all soccer players goes to their respective teams. With this,
even if there are much fewer instances of clubs (21,955) than players (117,619), these
two classes can achieve a similar score of importance. In contrast, dbo:SoccerClub
descends to position 34th with IC.

The case of dbo:Country is more revealing. Instances of countries are frequently
key elements to link different topics in cross-domain KGs such as DBpedia. Many
kinds of individuals can be linked to their country, such as smaller administrative di-
visions, people, geographical entities, or events. With ClassRank, that accumulated

3.5. Related work 93

importance is good enough to rank 8th. dbo:Country is one of the top seeds accord-
ing to the reference rankings as well (9th with HH and 21st with EH). In contrast,
dbo:Country descends to 145th with IC.

Similar examples are dbo:MusicalGenre (19th with ClassRank vs 223rd with IC),
dbo:Legislature (42nd vs 192nd), and dbo:Language (24th vs 85th). In general, we
can say that IC and ClassRank produce rankings that tend to be quite similar. How-
ever, ClassRank can capture the importance of classes that do not have too many
instances when those instances are important elements of the KG. In contrasts, IC
cannot capture the importance of such classes.

3.5 Related work

We divide the related work section of this chapter in two subsections.
In the first one, we will focus on those proposals that explore node importance as

a main goal or as a previous step to achieve another goal, commonly graph summa-
rization. It is important to mention that node importance is not essential for every
graph summarization technique though. For instance, some alternative approaches
are based on pattern-mining methods [225] or quotient summaries [226, 227]. How-
ever, we will not analyze such proposals in detail as it they fall out of the scope of
this thesis.

In the second subsection, we will review algorithm proposals that are adapta-
tions of PageRank. None of these proposals have been evaluated in the experiments
of this chapter due to several reasons. Most of them are designed to work as a rele-
vance metrics instead of an importance one. Some others need an input or raise an
output which is not compatible with our domain of application. However, they are
relevant to our work as they inspire some of the ClassRank’s basic ideas.

3.5.1 Scoring entities or classes in graphs

Several authors have already used centrality metrics to determine entity importance
or relevance in KGs.

In [28], a study of different techniques to detect class importance is performed.
They check the performance of Degree, Betweenness, Bridging Centrality, Harmonic
Centrality, Radiality and Ego Centrality against a gold standard built using DBpedia
logs, in the same manner that we do in this chapter. Also, they propose the adap-
tation of the aforementioned metrics to make use of instance information which has
been evaluated in our document. The study is a preliminary stage in order to sup-
port graph summarization processes. There are two main differences between this
study and ours. First, the authors do not experiment with spectral measures such as
PageRank. Second, they use Spearman correlation coefficient to determine the sim-
ilarity between the rankings, so the top and the tail of each ranking have the same
weight on the results.

Authors in [211] perform another general study of class importance as a previ-
ous step for ontology summarization. All the techniques used are applied over the
ontologies, i.e., the do not use A-BOX knowledge at any point.

In [212], another case of measuring class importance for ontology summarization
is presented. They propose two methods, one inspired in Degree, which is defined
in [228], and another one inspired in Closeness. However, those methods require
some user input, such as relevant domain-specific relations in ontologies or weights
for certain elements.

94 Chapter 3. Importance metrics in RDF graphs

RDFDigest+ is a tool to perform RDF/S Knowledge Base exploration using sum-
maries [213]. It allows the user to choose and combine many different centrality
algorithms to identify the most important nodes. It also uses information related to
the instances of each schema element. In [229], the same authors expose zoom and
extend operations for RDFDigest+, which enable the user to get ontology summaries
with different detail level in an efficient way. They perform a stage of class impor-
tance detection in which HITS, PageRank, and Betweenness are used. They also
apply the adaptation of these approaches with IC scores proposed in [28].

In [215], an approach to rank relevant elements in RDF graphs is presented. The
authors define an approach that produces node scores with an hybrid strategy. On
the one hand, they compute structural relevance by using an adaptation of Degree
where the relations can be weighted according to user preferences. On the other
hand, they compute frequency of usage nodes in SPARQL query logs. They pro-
pose two graph summarization techniques built on top of these notions of node
relevance, named SummaryKG, which only uses structural information, and Query-
sumKB, which uses log frequencies too.

Another approach for graph summarization called WBSum is presented in [214].
In order to locate important nodes for a certain summary, the authors also use a hy-
brid approach in which they locate important nodes w.r.t. usage in SPARQL queries
combined with a notion of structural importance based on Personalized PageRank
[2].

In [230], the authors perform a study of several cross-domain KGs quality, in-
cluding DBpedia and four more sources. One of the features studied is class cover-
age for different knowledge domains. They manually classify each class to belong to
the different domains. Then, they measure the importance that each class provides
to each domain by counting their instances.

In [231], PageRank is applied over a graph of Wikipedia linked entries. Each en-
try is represented by its DBpedia URI, so they produce a ranking of DBpedia entities
based on the Wikipedia link graph. In combination with other methods, the results
are used for entity summarization [232, 233]. In order to merge the information of
different Wikipedia chapters, the authors compute a ranking of Wikipedia entities
using their Wikidata URI, which is unique for all the languages. In these works,
PageRank is used as a base metric to rank entities in a KG. However, they use a
voting method w.r.t. different Wikipedia chapters. Thus, this technique cannot be
applied over KGs whose elements are not linked (directly or indirectly) to Wikipedia
pages.

In [234], an approach to rank classes in DBpedia is presented. As well as Class-
Rank, this work is also based on aggregation of PageRank scores. Nevertheless,
these scores are not obtained from DBpedia’s structure, but each entity receives the
PageRank score of its associated page in Wikipedia. Then, this technique cannot
be applied over KGs whose entities are not linked to Wikipedia. Also, the authors
combine the aggregation of PageRank scores with some other parameters such as
Instance Counting.

In [235], PageRank is applied over the DBpedia link structure to mine significant
concepts. Given an element in DBpedia, the authors track its most related concepts
by exploring its neighborhood in the graph, and they rank those results according to
inverse PageRank. They consider that the most related elements are the ones with a
lower PageRank score. The authors argue that elements with low PageRank are not
so well connected because they are too specific of a given topic. Hence, those URIs
in the neighborhood of a concept c with low PageRank may have higher chances

3.5. Related work 95

of being semantically closer to c than those with high PageRank, which may be too
transversal.

An approach to explain and use entity relatedness in KGs is presented in [236].
The authors formalize the concept relatedness explanation between two entities as a
subgraph containing paths that link those two entities. Once they obtain an expla-
nation, they can detect pairs of entities in the KG sharing a similar notion of re-
latedness. This proposal focuses on the detection and ranking of important paths
between nodes. The authors compute the importance of each path using mainly
properties (predicates) instead of entities. However, there is also a stage of ranking
entity importance which is PageRank-based.

In [237], an approach to identify key concepts in ontologies is presented. This
work uses a notion of importance based on experts’ agreement. The algorithm pre-
sented combines purely topological features of the ontology with cognitive concepts
such as natural categories [238] or popularity according to results in web search
systems. The approach tries to detect the elements that best summarize the seman-
tics of the target ontology. The experiments show a high correlation between the
approach’s results and the experts’ choices. This work differs from ours in their
human-based notion of importance and the type of ontologies evaluated, which are
small to moderate-sized (the biggest ontology used in the experiments contains 247
elements), as well as domain-specific.

Freebase associates a score with ranking purposes to each one of its stored en-
tities. However, this score is not computed with PageRank, but using a simpler
formula based on link counts of an entity in Freebase KG and its associated page in
Wikipedia [239].

Wikidata Project maintains some special pages offering some metrics of the graph
that are frequently updated18. Among these results, link counts of the most used el-
ements can be found, but there are no reports about class importance or PageRank-
like scores of any element.

3.5.2 Alternative centrality measures based in PageRank

The idea of using personalized versions of PageRank to adapt the algorithm to dif-
ferent contexts was early suggested in [2]. The original authors of PageRank propose
an adaptation called Personalized PageRank (PPR). In PPR, there is a set of restart-
ing nodes which are the only ones that the random walker can jump to when it gets
bored of following links. PPR is still widely used, and several works propose ways
to optimize its execution [240].

Since that proposal, many PageRank adaptations have been published. Prob-
ably, the closest adaptations to our domain are those that compute aggregations
of PageRank scores. A representative example of this strategy is BlockRank [241],
which divides the target graph into several disjoint blocks of smaller units. An illus-
trative use of BlockRank-like strategies is HostRank [242], which was thought to be
applied over web structures. Nevertheless, most BlockRank-like approaches are not
compatible with our domain. In RDF graphs, an entity can be an instance of several
different classes. Hence, hypothetical blocks formed by instances of the same class
would not be disjoint.

Most of the PageRank adaptations have been thought to measure the relevance
of an element in a KG w.r.t. a query [243]. Those approaches are focused on IR tasks
and tend to rank entities using notions of semantic relatedness between query and

18https://www.wikidata.org/wiki/Wikidata:Database_reports Accessed in 2022/05/03.

https://www.wikidata.org/wiki/Wikidata:Database_reports

96 Chapter 3. Importance metrics in RDF graphs

resource. Some of them measure importance and are used in combination with other
notions to produce some result [244, 245]. Some others measure relevance, including
strategies such as text similarity or exploration of topic sub-graphs in the algorithm
itself [246–250].

OntologyRank [244] is designed to rank Semantic Web Documents (SWD), such
as ontologies or RDF files, which are linked to each other through their internal
elements. The algorithm uses the semantics of the properties to divide them into
four different categories. Then, it computes a version of PageRank where each link
can be weighted w.r.t. each category. Although it follows a strategy of aggregation
of PageRank-like scores, OntologyRank is designed to rank different SWDs instead
of elements within a single SWD.

PopRank [245] is an adaptation of PageRank designed to be applied over a net-
work of objects. It combines two factors to obtain the popularity of an object: a
weighted PageRank in which every property has its own weight, and the PageRank
of the database/web page which contains the object (Web Popularity). PopRank is
thought to assign a score to every entity in the graph, i.e., there is no aggregation or
grouping of individuals in some class or cluster, so PopRank and ClassRank have
different domains of application. Also, PopRank has a stage in which some training
data should be provided by experts, which may be too costly in graphs with many
properties such as DBpedia or Wikidata.

ReConRank [246] is a PageRank adaptation designed to be applied over RDF
domains that combines the approaches of ResourceRank and ContextRank. ReCon-
Rank is closely related to search and retrieval domains. The ranking of entities is
not applied over the whole target graph but over a sub-graph composed of certain
elements that are related enough to some keywords. The scores produced are a mea-
sure of relevance w.r.t. a query.

RareRank [247] makes use of transition scores between entities, as well as PageR-
ank does. However, it proposes a Rational Research model to define transitions
between elements, aiming to simulate a human strategy of jumping from one doc-
ument to another. RareRank is thought to be applied in semantic search of research
documents. It relies on meta-data associated with scientific papers modeled in an
ontological way, as well as topic relatedness computed with Latent Dirichlet Alloca-
tion [251]. As with ReConRank, RareRank produces scores of relevance instead of
importance. Also, the model of Rational Research should be adapted to apply it in
domains different from scientific documents.

DBpediaRanker [248] describes an algorithm to rank DBpedia entities w.r.t. a
query. In this case, the authors do not follow a PageRank-like approach, but they
consider several different notions of similarity. This includes textual similarity, prox-
imity to a certain set of seed nodes, or results supported by external resources, such
as search engines or tagging systems. Thus, although the main goal is also the rank-
ing of RDF resources, this approach has a specific domain of application and cannot
be used to measure class importance.

TripleRank [249] is a HITS-based algorithm to rank entities w.r.t. a subject and a
facet (predicate) in RDF environments. TripleRank gives a notion of relevance w.r.t.
some other graph elements instead of importance per se.

DWRank [250] ranks ontology concepts in search and retrieval environments.
It combines three types of notions to rank a given element: text similarity with a
query, hub score within its own ontology using a reversed PageRank function, and
authority of its ontology w.r.t. the rest of ontologies. The goal of the algorithm is to
rank ontology members, and it works purely with T-BOX elements, i.e., it does not
use any instance information to produce its results.

3.6. Conclusions 97

3.6 Conclusions

At the beginning of this chapter, the following Research Question was stated:

• RQ3: How can we identify the most important classes of an RDF graph?

To answer it, we have proposed a new algorithm to measure class importance in
RDF graphs and compared it with state-of-the-art techniques. Our approach, called
ClassRank, assigns each class an importance score which is a number in [0, 1]. The
ClassRank score of a class c is the probability that a person that navigates a graph
starting in a random node and then jumping randomly from node to node following
links has to stop at an instance of c. ClassRank is an aggregation of PageRank scores.
The score of a class is obtained by adding the PageRank scores of all its instances.
The algorithm allow to use a lasso notion of the class-instance relation. To determine
which entities are instances of a given class, it allows the user to specify a custom set
of properties CP. Every instance e that points to a class c using a property p ∈ CP
is considered an instance of c. This configuration parameter allows for adapting
ClassRank to specific user needs in different scenarios.

We evaluated different techniques to measure class importance in RDF graphs
based on the graph’s topology. To compare the approaches, we have performed
experiments using a notion of importance based on class usage in SPARQL logs.
We elaborated class rankings sorting classes w.r.t. their number of mentions in the
logs and measured the similarity of those rankings with the lists produced by the
evaluated techniques. This similarity was measured using Rank-Biased Overlap.

The experiments raise several conclusions. We observed that, in general, Class-
Rank outperforms the rest of the evaluated approaches in terms of similarity with
the reference rankings. Instance Counting, which is the technique requiring less
computational time among all the studies approaches, outperforms every other stud-
ied approach except for ClassRank and, in some cases, PageRank. We also observed
that those approaches considering just T-BOX statements are, in general, outper-
formed by techniques that compute A-BOX knowledge as well.

It has been proved that a simple adaptation of most of the techniques by aver-
aging its results with IC scores improves the performance of the original technique.
The only exception to this is the adaptation of ClassRank scores, for which it is un-
clear whether the adaptation with IC improves the performance of the base Class-
Rank algorithm.

A qualitative comparison of ClassRank and Instance Counting shows that they
produce rankings with a high proportion of elements similarly ranked. However,
Instance Counting is not able to catch the importance of really well-connected el-
ements that do not have too many instances, such as the class dbo:Country in the
DBpedia ontology.

The evaluated approaches have been compared against rankings of class usage
with log entries generated by organic agents and robotic agents. It has been shown
that, in general, all the evaluated techniques align better with the machine-related
log entries. Nevertheless, in our experiments, ClassRank outperforms the rest of the
proposals for both organic and robotic entries.

In the context of our thesis, we determined with this experiments that, among
the evaluated techniques, ClassRank is the most suitable approach to detect impor-
tant topics (classes) in an RDF graphs. However, we have proved that ClassRank
is a competitive approach to measure class importance in contexts unrelated to this
thesis. Thus, we consider that ClassRank can be useful not just as a software piece

98 Chapter 3. Importance metrics in RDF graphs

within our thesis, but as a standalone system. To let the scientific community use
our algorithm, our Python implementation of ClassRank is publicly available in a
GitHub repository which includes some documentation and example code to run it.

3.6.1 Future Work

We consider that ClassRank’s maturity and performance is adequate to fulfill the
goals of our thesis. However, we have detected several ways to 1) perform further
evaluations on ClassRank performance, and 2) improve the algorithm from various
points of view.

We consider several lines of future work:

• Extended evaluations. We have performed experiments against DBpedia and
Wikidata, both cross-domain projects well known for the LOD community. It
can be interesting to extend this evaluation to some other sources, both cross-
domain or domain-specific. Indeed, we think that domain-specific graphs
could be a better environment to evaluate the potential impact of custom sets
of class-pointers, as the number of properties to discuss could be lower and
related to the source’s main use cases.

• Aggregation of scores different to PageRank’s. ClassRank determines class
importance by aggregating the importance of a class’s instances. In its current
definition, the instance importance is determined by means of PageRank. But
it is feasible to think in versions of ClassRank built on top of different entity
level importance scores. PageRank for non-directed graphs, HITS, or Degree
are some of the options to consider.

• ClassRank as a relevance metric. ClassRank could be used as a relevance
metric instead of an importance metric in various manners:

– It could be combined with a blocking technique for limiting the target
graph to compute with ClassRank to a subgraph of the original source.
This subgraph would just contain elements relevant for a certain query or
topic.

– The set of class-pointers could be customized so it just contains properties
which are relevant for a certain context or purpose.

– The algorithm could incorporate custom weights at several stages: for
properties in a set of class-pointers, for entities w.r.t. to some user criteria,
etc.

99

Chapter 4

Mining triples to extract shapes

Note: Most of the content of this chapter has been published in a paper entitled
Automatic extraction of shapes using sheXer [252].

4.1 Introduction

The main goal of out thesis is being able to propose a system to extract RDF shapes
from natural language found in social media. Shapes can be used as machine-
readable representations of conceptual knowledge expressed in a text. Indeed, RDF
shapes can be informally described as concept descriptions. For example, let us con-
sider the following simplistic definition of the concept country: “A country consist of
a land area that can limit with some other countries, and it always has a capital city”.

The Shape Expression shown in Figure 4.1 captures most of the information ex-
pressed in this quoted definition. It can be feasible to think about a system able
to extract the shape in 4.1 from that textual description. An alternative way to ex-
tract shapes from text content is the generalization of examples. Let us consider the
following statements about different countries:

1. “Spain has 550.990 km2. Its capital is Madrid, and it limits with Portugal to the west,
Morocco to the South, and France and Andorra to the North”.

2. “The capital of Andorra is Andorra la Vieja. The country has a surface of 468 km2 and
it limits with France and Spain”.

3. “Iceland is a state island whose capital is Reikiavik. The island has a total surface of
102,775 km 2”.

A system that it is told that Spain, France, and Iceland are countries could be
able to produce the RDF content shown in Figure 4.2. Then, another system could
generalize the relations observed for different ex:Country instances in 4.2 so it can
produce the shape <CountryShape> shown in Figure 4.1.

FIGURE 4.1: Example shape of Country in ShExC

1

2 <CountryShape >

3 {

4 rdf:type [ex:Country] ;

5 ex:landAreaKm2 xsd:int ;

6 ex:capital <CityShape > ;

7 ex:borderWith <CountryShape > *

8 }

9

100 Chapter 4. Mining triples to extract shapes

FIGURE 4.2: Content about some countries in turtle.

1

2 # Info related to Spain

3 ex:Spain a ex:Country ;

4 ex:landAreaKm2 550990 ;

5 ex:capital ex:Madrid ;

6 ex:borderWith ex:Portugal ,

7 ex:Morocco ,

8 ex:Andorra ,

9 ex:France .

10 # Info related to Andorra

11 ex:Andorra a ex:Country ;

12 ex:landAreaKm2 468 ;

13 ex:capital ex:Andorra_La_Vieja ;

14 ex:borderWith ex:Spain ,

15 ex:France .

16 # Info related to Iceland

17 ex:Iceland a ex:Country ;

18 ex:landAreaKm2 102775 ;

19 ex:capital ex:Reikiavik .

20

We consider that extracting shapes from RDF example generalizations instead of
literal text descriptions is a more promising approach due to several reasons:

• We think that content describing facts and relations about specific entities is
more likely to be found in social media. Literal concept descriptions such as
the one used in the first paragraph of this section are more likely to be found
in more formal documents.

• We think that generalizing examples rather than processing descriptions may
bring opportunities to capture knowledge that could be hardly found in defi-
nitions. Let us consider the notion of country in a cross-domain source such as
Wikidata. It is quite probable that one may found that important artists are re-
lated to the place in which they were born, or important events are associated
to the country in which they occur. A shape obtained by example general-
ization could express expected relations between countries, artists, and events
in case this information is found in the example entities. Of course, a shape
extractor based on definitions could produce similar constraints as well. How-
ever, with this example, it seems odd to produce a canonical country definition
which include statements such as “A country is a place where some artists can be
born, and some events may occur”. A shape obtained by example generalization
brings a notion which aims to contain a common ground of the actual usage
of the individuals that are supposed to conform with that shape. In contrast,
a shape build from concept definitions provides a notion based on a single
source of information, which may be more reliable regarding to the essential
features of the modeled concept, but less informative w.r.t. the possible rela-
tions of that concept with some other types of entities.

• A strategy which aims to obtain a shape from example generalization of RFD
triples rather than parsing actual text let us divide the main task into two inde-
pendent subtasks: 1) producing RDF from text, and 2) producing shapes from
RDF triples. This division allows us to propose a final system built on top of
existing approaches that partially/completely solves each one of those tasks.

4.1. Introduction 101

The complete process to convert text into RDF is deeply studied in Chapter 5. In
this chapter, we focus in one of the subtasks previously mentioned to obtain such a
final system. Specifically, we want to provide an adequate answer for the following
research question:

• RQ2: How can we produce shapes by mining RDF triples?

As already explained in section 2.6, shape languages are relatively new. When
we started to work on this thesis, both ShEx and SHACL were still immature pro-
posals and there was no software nor published scientific work describing how to
perform automatic extraction of shapes from RDF content. Indeed, to the best of
our knowledge, we produced one of the firsts scientific publications suggesting to
perform automatic extraction of Shape Expressions from an RDF source [253]. Af-
ter such proposal, we developed a library for the task of extracting ShEx content.
We published a first prototype evaluated on DBpedia [254] and kept evolving our
approach. Nowadays, our prototype has become a mature and highly parameteriz-
able Python library called sheXer, which is able to produce both ShEx and SHACL
content [252].

However, the global scenario has changed since that first proposal. Within the
context of our thesis, the automatic extraction of shapes from existing RDF data is
a subtask to achieve a more general goal. But this problem has become a general
challenge for the RFD community too [255], and many other approaches to perform
automatic shape extraction has been proposed [112, 256–260].

The usual procedure to create RDF shapes is to have domain experts writing
them from scratch. However, this is a costly process which becomes harder to per-
form in complex scenarios. Let us suppose, for example, that we want to produce a
shape associated to each class in Wikidata. As explained in section 3.3.2.2, Wikidata
contains millions of classes. Many RDF-skilled domain experts would be needed to
write an adequate shape for each class in such a case. Much manual work would
be required, as well as many discussions about features of specific shapes due to
divergences among the domain experts. The more data, more different agents main-
taining the data, and more topic variety has the target source, the more difficult
becomes the task of writing shapes.

However, automatic extractors allow for reducing or even removing the cost of
producing those shapes. Instead of having humans writing down their mental mod-
els to ShEx/SHACL, automatics extractors can produce shapes that fit existing RDF
content. That is, while humans write shapes describing how the graph is supposed
to be, extractors obtain shapes that describe how the graph actually is. The distance
between these two notions may depend on the quality of the data. Some other rel-
evant factors in this process are the existence of hidden features hardly observable
in the graph (such as complex disjunction constraints), or the actual capabilities and
performance of the extractor used.

Depending on the target scenario and user intentions, the shapes obtained could
be used as final products or as drafts. sheXer has already been used in both scenarios
in different scientific proposals:

• In [261], a Linked Data portal to describe the National Budget of Chile is pre-
sented. This portal is based on checked, high-quality and homogeneous data.
To describe the classes found in the data, sheXer is used to automatically pro-
duce a shape associated to each one of them. The quality of the data makes
that the shapes obtained can be used as final products with no further changes
from domain experts.

102 Chapter 4. Mining triples to extract shapes

• In [262], a protocol to add knowledge to Wikidata using human coronaviruses
as a running example is described. Such protocol suggests using ShEx during
the process, both to guide actions and validate content. The proposal starts by
locating some key entities of a target class. Then, sheXer is used to extract a
shape that conforms with them all. Finally, this initial shape is customized by
domain experts to produce a final schema that will be used to guide the rest of
the process.

Also, sheXer has been compared with other tools for automatic shape extraction
that are being used by the Semantic Web community [25]. The authors of this study
made the following statements about sheXer:

• Among the evaluated tools, it showed the best performance when working
with large RDF files.

• It is the only one that support both triplestores and raw RDF graphs as input.

• It is the only one that provides a mechanism to filter content in the resulting
shapes.

Automatic shape extractors can be roughly classified in two groups. On the one
hand, ontology-based approaches produce shapes based on T-BOX knowledge. On
the other hand, instance-based techniques, such a sheXer, explore A-BOX relations
as well, aiming to describe classes w.r.t. to the neighborhood observed among its
instances.

In this chapter, we describe sheXer, an instance-based approach designed to pro-
vide an adequate answer for RQ2. We describe and evaluate sheXer not just as a
piece of our thesis, but as standalone system that can be used in many other con-
texts in which automatic extraction of RDF shapes is required. Even if nowadays
there are several other approaches apart from sheXer that can perform such a task,
our approach has a unique combination of features unseen among the rest of alter-
natives:

• It performs shape inter-linkage, i.e., it can produce constraints that refer to
other shape labels. Most of the alternatives use less specific macros instead,
such as IRI1.

• It uses an iterative approach that allows for computing big datasets. There
is not a strict relation between the size of the computed KG and the memory
consumption, as there is no need to keep in memory the whole graph at any
point in the process. Most of the alternatives produce errors when handling
datasets whose content cannot be completely allocated in the main memory of
the host.

• It assigns a trustworthiness score to each one of the inferred constraints. This
score is used to sort, filter, and merge constraints while performing the shape
extraction.

• It can natively produce both ShEx and SHACL content.

1In ShEx, the macro IRI stands for any node which is an IRI. In SHACL, sh:IRI has an equivalent
meaning.

4.2. System description 103

• It can produce direct and inverse constraints, i.e., constraints describing triples
in which the target node is used as object instead of subject. This feature is
shared with the system presented in [112], which is based on ABSTAT [225].

The contents of this chapter are organized as follows:

• In section 4.2, we provide a general description of sheXer. This includes its
architecture and main algorithms.

• In section 4.3, we describe and discuss several experiments to evaluate sheXer’s
performance.

• In section 4.4, we provide an overview of the multiple configurations of our
library, and discuss them to explain how our system can be adapted to different
use cases.

• In section 4.5, we describe some other works able to perform automatic shape
extraction. We place this content after the system description and experimen-
tation to let the reader fairly compare our approach with the alternative ones.

• Finally, in section 4.6, we describe the conclusions of our work related to sheXer
and outline future work lines.

4.2 System description

sheXer has been designed with a modularized architecture that allows for adapt-
ing the system to many different scenarios. sheXer integrates several modules in a
pipeline to produce shapes from input RDF content. Each module expects an input
and produces an output. The outputs of each module can be presented to the final
user as intermediate results or be consumed by some other module.

sheXer’s architecture is shown in Figure 4.3. Its essential workflow consists of
the following steps:

• The user chooses some target RDF, target shapes to extract, and (possibly) con-
figures some parameters. The input can be provided as local or remote files,
content allocated in main memory, or content exposed in a SPARQL endpoint

• The Instance Tracker determines which nodes of the target source will be used
to extract which shapes. It consumes relevant triples from the Graph Iterator.

• The Feature Tracker within the Shape extractor generates a set of candidate con-
straints associated with each shape. It uses the information produced by the
Instance Tracker and consumes the graph’s content using the Graph Iterator.

• The Shape Adapter filters, adapts, merges, and sorts candidate constraints ac-
cording to the configuration settings, so a final set of constraints is produced.

• The Shape Serializer turns the in-memory shapes produced by the Shape Adapter
into the content chosen by the user.

Every module can be implemented in several ways, as long as the implemen-
tation complies with the specifications of a certain interface. Our current sheXer
Python library includes several versions of most of the modules. In the following
sections, we detail the structure and mission of each module. Occasionally, we de-
scribe some implementation details of our library, as they can be helpful to under-
stand the architecture and the internal details of each module.

104 Chapter 4. Mining triples to extract shapes

FIGURE 4.3: sheXer base architecture.

sheXer

Graph iterator

Instance Tracker

Shape Serializer

Shape Extractor

Shape Adapter

Feature Tracker

<Raw shape
profile>

<Adapted
shape profile>

INPUT

Target
RDF

Target
shapes

Shape
features

OUTPUT

Resulting
shapes

<Instance
dictionary>

<Shape
representation>

4.2. System description 105

4.2.1 Graph Iterator

There are two stages of the workflow in which the target RDF source needs to be
parsed: 1) determining which nodes will be used to build which shapes, and 2)
building the abstract profile for each shape. The target RDF content is served by the
Graph Iterator (GI) to perform those actions.

Regardless of the type of input, the mission of the GI is to retrieve relevant triples
for those processes. Both stages are performed in an iterative way, i.e., avoiding to
host unnecessary pieces of information in main memory whenever it is possible.
This allows sheXer to deal with large datasets using inexpensive hardware.

The internal details of this software piece may change according to the kind of
input. For example, an RDF input based on local text files can be trivially served
by reading small chunks and processing triple by triple. The input could be instead
part of the content exposed in some remote SPARQL endpoint, which forces the
GI to deal with extra issues. For instance, a different strategy to handle memory
could be necessary, as the purely iterative approach could cause too many SPARQL
queries being executed against the endpoint. Also, the GI needs to handle errors and
timeouts from the SPARQL endpoint.

The current approach of the sheXer library to consume SPARQL endpoints starts
by finding which are the seed nodes to build shapes. Once the seed nodes are
found, sheXer retrieves all the content in their neighborhood until a certain depth
is reached, aiming to perform as less SPARQL queries as possible during this pro-
cess. After that, sheXer merges all the content retrieved in an in-memory graph
using the rdflib library2. The relevant triples in this graph are then served to the rest
of the modules on demand in an iterative way. Note that this approach prioritizes
to reduce execution times over saving memory, as it avoids the repetition of queries
to a remote endpoint by creating a local temporal copy of the relevant content. This
means that it is discouraged to process too large parts of RDF graphs by consum-
ing its endpoint, as it may lead to memory errors. The recommended approach to
process Big Data is processing local dumps.

4.2.2 Instance tracker

The mission of the Instance Tracker (IT) is determining which nodes (aka instances)
will be used to build which shapes. The nature of this process can vary depending
on the type of input and the target shapes and instances.

For example, sheXer allows for using shape maps to link a shape label with some
entities. If the shape map contains a SPARQL query, this query should be executed
to locate those entities. A similar situation occurs when the input is provided via
a SPARQL endpoint. In contrasts, when the target shapes are specified using a list
of target classes, the process consists of finding the instances of those classes. These
instances can be located by processing the graph iteratively, with no need of execut-
ing an actual SPARQL query. sheXer also lets the user to generate a shape for every
class with at least one instance in the target graph. Our proposal can combine some
of those strategies too. For example, one can request shapes with custom instance-
class associations via shape maps and, at a time, shapes for every class in the target
KG.

The IT outputs a dictionary that links instances (keys) with their list of target
shapes (values). Note that a given node can be used to build different shapes in

2https://rdflib.readthedocs.io/en/stable/ Accessed in 2022/05/03.

https://rdflib.readthedocs.io/en/stable/

106 Chapter 4. Mining triples to extract shapes

FIGURE 4.4: Example of constraints that could get positive votes from
a certain triple.

:John :age “32”^^xsd:integer .

:age xsd:integer {1}
:age xsd:integer +
:age xsd:integer *
:age xsd:integer ?
:age LITERAL +
:age IRI +
:age . +
:age . *
…

case it is instance of several target classes or it appears in the result of different node
selectors in a shape map.

4.2.3 Feature Tracker

The Feature Tracker (FT) finds a candidate set of features for each target shape using
a voting system. The FT receives the instance dictionary produced by the IT. Then,
it processes the triples sent by the GI. The triples are used to cast positive votes for
some constraints. sheXer annotates the instance dictionary with the number of times
that a combination of predicate and object type is found for each instance. These
constraints can have different specificity w.r.t. predicate and object. In Figure 4.43,
we show an example of several candidate constraints supported by the triple te = (

:John :age �32�^^xsd:string)..
Potentially, each triple could cast positive votes for infinite combinations of type

of object and cardinality. Indeed, just cardinality could produce infinite options, as
every range which includes one occurrence of te ({0,2}, {1,2}, {0,3}...) could receive
a positive vote. Our current implementation of sheXer limits the positive votes to
some representative object and cardinality combinations using the following criteria:

• Exact cardinality, i.e., exact number of triples where a combination of property
and object type occurs in the dataset for a given entity.

• The range {1, unbounded}, represented by the positive closure ‘+’.

sheXer can produce shapes whose range includes 0 occurrences of a given con-
straint. However, they are generated in the Shape Adapter module. Regarding the
object’s specificity, the following constraints get positive votes:

• When the object is a literal: the exact type of the literal, the macro LITERAL

(any literal), and the macro ‘.’ (any element).

• When the object is an URI: the macro URI (any URI) and the macro ‘.’. In case
the URI is used to extract a shape s, also the label of s.

• When the object is a blank node: the macro BNODE (any blank node) and the
macro ‘.’.

The maximum number of votes that a constraint of a shape s can obtain is the
number of instances used to extract s. Once all nodes have been explored, each
constraint cs is associated with a trustworthiness score θcs = ncs

ns
, where ncs is the

number of positive votes to cs and ns is the number of instances of s.

3The constraints shown in this Figure are written for shapes in ShExC.

4.2. System description 107

The user can specify a minimum θU ∈ [0, 1]. When the FT finishes, every shape s
is associated with a candidate set of constraints which is at least supported by ns · θU
of its instances. This means that every constraint c such that θcs < θU is discarded
from the results.

4.2.4 Shape Adapter

The Shape Adapter (SA) analyzes the shapes outputted by the FT to filter, modify,
and merge some constraints. Finally, it sorts them. For such a task, the SA uses Al-
gorithm 2. Several symbol conventions must be clarified for a proper understanding
of that algorithm:

• Every function or macro used to encapsulate any behavior is denoted as fa(x),
where a is an identifier.

• S is the set containing all the target shapes.

• We denote the constraints associated to a shape s with Cs.

• fU(X) receives a set of constraints X and returns a collection of sets U. Each
TU ∈ U is a group of constraints that have the same property and type of
object, but different cardinality.

• fdU (X) receives a set of constraints X which are expected to have the same
property and type of object, and it returns the dominant constraint αU of the

Algorithm 2 Shape Adapter: filtering stage pseudo-code

Input: S = target shapes
1: for each {s | s ∈ S} do

▷ Stage 1:
2: C′s ← ∅
3: U ← fU(Cs)
4: for each {TU | TU ∈ U} do
5: αU ← fdU (TU)
6: IαU ← ∅
7: for each {c | c ∈ TU ∧ c ̸= αU} do
8: Iαu ← Iαu ∪ f#(c)
9: C′s ← C′s ∪ {αU}

▷ Stage 2:
10: C′′s ← ∅
11: V ← fV(C′s)
12: for each {TV | TV ∈ V} do
13: αV ← fdV (TV)
14: if ∄IαV then
15: IαV ← ∅
16: for each {c | c ∈ TV ∧ c ̸= αV} do
17: Iαv ← Iαv ∪ f#(c)
18: C′′s ← C′′s ∪ {αV}

▷ Stage 3:
19: Cs ← C′′s

108 Chapter 4. Mining triples to extract shapes

set. By default, αU is the constraint with the highest trustworthiness. In case
of tie, the αU is the one with the most restrictive cardinality. However, the
dominance criteria can be configured differently by the user4.

• The constraints can have some text comments associated. We denote the com-
ments associated to a constraint c as Ic.

• f#(x) receives a constraint x and returns a textual comment with some relevant
information of x, such as θxs , cardinality, and type of object.

• fV(X) receives a set of constraints X and returns a collections of sets V. Each
set in V contains constraints that have the same property but different type of
object.

• fdV (X) receives a set of constraints X and returns a dominant constraint αV .
By default, a constraint c ∈ X is found the dominant constraint αV of X when
two conditions are met. First, for any ci ∈ X : θci < θc, the object type of c
subsumes the object type of ci. Second, there cannot be any ci ∈ X : θci > θc
such that the object type of ci subsumes the type of c. Informally, this means
that the object type of c is as specific as possible and, at a time, c is supported
by as much instances as possible5.

Algorithm 2 can be divided in several consecutive stages.

Stage 1 (lines 2 to 9) - The original set of constraints Cs of s is transformed into a
new set C′s , such that every c ∈ C′s has a unique combination of property and object
type in C′s. If Cs already meets this condition, then Cs = C′s. The constraints of Cs not
included in C′s will not appear in the final shape as actual constraints, but its infor-
mation is kept so it can be presented to the user as text comments. A discarded con-
straint cd is transformed into a text comments and associated with a non-discarded
constraints having the same property and type of object as cd.

For example, let us suppose a group of constraints composed by c1 = (foaf:name

xsd:string +), with θc1 = 1, and c2 = (foaf:name xsd:string {1}), with θc2 =
0.9. This group is related to a shape s. θc1 > θc2 , so c1 is picked as the dominant
constraint of the group. However, the user may find relevant also that 90% of the
target instances associated to s has exactly one foaf:name. sheXer uses in-line text
comments associated with c1 to provide the information related with c2.

Stage 2 (lines 10 to 18) - The constraints with the same property are transformed
into a single dominant constraint. Note that the set of constraints transformed in
Stage 2 is C′s (see line 11), so every constraint has already a unique combination of
property and object type. The constraints in C′s may already have some comments
associated that should be considered when adding a new comment in this stage.

There are two fundamental algorithmic differences between Stage 1 and Stage
2. The main one is the nature of the function fdV (TV). Although it is not its default
behavior, this function, in contrast with fdU (TU) in line 5, can return a dominant

4The criteria to choose dominant constraints can be configured by the user in different ways. For
example, more general cardinalities could be chosen as preferment. See sheXer’s documentation for
further details.

5This dominance criteria can be configured as well. For example, constraints with oneOf operators
could be generated. Also, some tolerance thresholds to keep precise constraints that do not cover all
the cases can be defined.

4.2. System description 109

constraint αV | αV /∈ TV . This can happen when the user configures sheXer to return
constraints with the operator oneOf to merge constraints that have the same property
but different type of object.

The second difference is a consequence of the previous one. When the algorithm
obtains αV | αV ∈ TV , then αV already has an associated set of comments Iαv (empty
or not). In contrast, if fdU (TU) creates a dominant constraint αV | αV /∈ TV , then it is
necessary to create a new set of comments Iαv associated to αV .

Stage 3 (line 19) - Finally, C′′s becomes the set of constraints of s. At this point,
every constraint associated to s has a unique property in s and can have extra infor-
mation in text comments.

The SA still needs to perform some iterations which are not described in Al-
gorithm 2 but can modify some constraints or even remove some shapes. Those
iterations are described in the following subsections.

4.2.4.1 Extending cardinalities

As already stated, the FT outputs constrains whose cardinality does not include the
possibility of zero occurrences, such as optional (‘?’) or none-to-many (‘*’). This can
lead to situations where an instance i used to build a shape s does not conform with
s. Let us suppose that sheXer is configured to extract shapes with θU = 0.8, and
a shape s is obtained. s includes a constraint c = (foaf:name xsd:string +) with
θc = 0.9. c has been included in s because θc > θU , but θc = 0.9 means that 10% of
the instances does not support c, ergo they do not conform with s.

sheXer includes a configuration option that allows modifying conflictive cardi-
nalities, so every instance conforms with its related shapes. When this option is ac-
tive, the cardinality of every constraint c whose θc < 1 is modified to include a range
with zero occurrences. Constraints with cardinality ‘+’ are changed to ‘*’. Cardinali-
ties of ‘{1}’ are changed to ‘?’. In general, every cardinality is modified to include the
zero-case without losing precision w.r.t. its maximum number of occurrences.

The original cardinality and its θs are associated with the constraint as a textual
comment. With this, the results include the proportion of instances that conform
with the constraint excluding the zero-case.

When the zero-case is included, the θc of any constraint c automatically raises to
1. When using Kleene closure, this is trivial to justify, since any instance can match
any constraint with a cardinality zero-to-many. When using cardinalities more re-
strictive with the maximum value, the trustworthiness is always 1 anyway. The fact
that there is a constraint c with a restriction for the maximum value in the current
stage can only happen when all the instances under analysis have at most that max
value of occurrences for a given feature. The new range cardinality with the zero-
case is included to conform also with those instances which does not conform with
the minimum value.

4.2.4.2 Sorting triple constraints

The shapes extracted can include a large number of constraints, and the user may
not want to read or consider them all.

The SA sorts a shape’s constraints in decreasing order w.r.t. their θc. With this,
the most reliable constraints are shown first. Constraints including the zero-case are
sorted using the θcs computed before the zero-case was included. Otherwise, any
constraint including the zero-case would be placed at the top of its shape, since its

110 Chapter 4. Mining triples to extract shapes

score is always one. This could raise a wrong idea of the actual trustworthiness of a
given constraint. Scores with the zero-case are modified just to ensure compilation
with every instance, but the relations described in such constraints may be infre-
quent among the seed instances. In contrast, the relations of constraints with no
zero-case and a score of 1 are always observed in the neighborhood of every seed
instance.

4.2.4.3 Removing empty shapes

Sometimes, sheXer can produce shapes which do not contain a single constraint.
This can happen due to two reasons:

• No instance was found to build a certain shape, so sheXer could not infer any
constraint.

• Every extracted constraint cS of a shape S is discarded before the execution of
the SA module because its score θcS is lower than the threshold θU specified by
the user.

sheXer can remove those shapes from the results using the following approach:

1. It locates those shapes that do not have any associated constraints and remove
them. It annotates the label of those shapes.

2. It explores each constraint that remain in the results to erase references to the
shapes removed in the previous iteration. In general, this operation consists in
transforming specific shape labels into IRI macros.

Our library allows the user to configure whether empty shapes should be re-
moved from the results.

4.2.5 Shape Serializer

The Shape Serializer (SS) transforms the in-memory information into an actual out-
put for the user. The complexity of this task depends on the divergence between
the target output format and the conceptual information outputted by the SE. Our
library includes two different implementations of the SS: one for the generation of
ShEx (in ShExC format) and another one for the generation of SHACL (in turtle for-
mat).

Both implementations of the SS are trivial. Even if ShEx and SHACL are not fully
compatible [42], the subset of shape features used by sheXer can be represented in
both languages.

4.2.6 Computational complexity analysis

The computational complexity of sheXer is the sum of the complexities of its mod-
ules, which are sequentially executed. The base complexity of the SA and SS mod-
ules is O(c2/s) and O(c) respectively, where c is the total number of constraints
extracted and is s the number of target shapes. The SA’s O(c2/s) complexity is an
approximation supposing a balanced number of constraints per shape and it comes
from Algorithm 2. Each constraint is compared with the rest of its shape’s con-
straints, so unbalanced constraint distributions could lead to higher complexities.
The worst case, where a single shape has all the constraints, will be executed in
O(c2). The rest of the SA’s stages are executed in O(c).

4.3. Experiments 111

The complexity of the IT and the FT modules is tightly linked with the nature of
the input. For example, the IT can be executed trivially in O(1) when the instance-
shape relation is provided as part of the input. However, when a RDF file needs to
be parsed for this task, the process takes O(t), being t the number of triples. The
complexity can be higher if a SPARQL endpoint is involved in the process. The FT
behaves similarly, as both the IT and the FT depend on the GI’s execution.

In section 4.3, we perform several experiments to extract shapes from local RDF
files. Under these conditions, the IT and the FT have the following base complexity:

• IT: O(tc), where tc is th number of instance-class triples.

• FT: O(t + ti), where t is the number of triples and ti is the number of triples
whose subject is a relevant instance.

With this, sheXer would be executed in O(tc) + O(t + ti) + O(c2/s) + O(c) =
O(t + tc + ti + c2/s). Note that t >= tc and t >= ti. Note also that the only
non-linear complexity is O(c2/s). However, when computing large datasets where
ti >> c, this part of the algorithm is not the most expensive. Many instances usu-
ally generate a relatively small number of constraints. Then, it takes more time to
generate constraints from those instances in O(ti) than to process later those few
constraints in O(c2/s).

4.3 Experiments

Shape languages are relatively new, and so is the problem of automatic shape ex-
traction. To the best of our knowledge, there is not yet a published benchmark to
compare the correctness nor performance of existing approaches. The experiments
of automatic extractors already published range from mostly qualitative compar-
isons to performance or scalability analyses.

In this chapter, we perform experiments to check the performance of sheXer
in two dimensions: memory consumption and execution time. We have executed
sheXer to extract shapes from three well known LD data sources: Wikidata6, YAGO7,
and DBpedia8. Details about these computations can be found in Table 4.1.

In our experiments, we always parse local RDF content. Alternative ways of
input, such as querying an endpoint, would depend on the endpoint’s performance
and availability. This could introduce factors that may not be related to sheXer’s
actual performance in the experiments.

Processing local RDF content is the recommended approach to handle big data
sources. With such an approach, sheXer can use parsers that do not keep in memory
a full representation of the target graph, but they are able to read the input data in
an iterative way and keep in memory just those pieces of information relevant for
the shape extraction process.

We run our experiments in a virtual machine with the following specifications:
Debian 8 Jessie OS, Intel Xeon E5502 processor 1.87 GHz, 32GB RAM, HDD disk

6Only triples using Wikidata direct properties in the namespace http://www.wikidata.org/prop/

direct/ where used to extract shapes. The source can be downloaded at https://archive.org/

details/wikidata-json-20150518 Accessed in 2022/05/03.
7We computed YAGO3, which can be downloaded at https://yago-knowledge.org/downloads/

yago-3 Accessed in 2022/05/03.
8We used a subgraph containing mapping-based literals and objects, as well as class-instance re-

lations. This collection can be downloaded at https://databus.dbpedia.org/danifdezalvarez/

collections/latest_mapping_shexer_test Accessed in 2022/05/03.

http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/direct/
https://archive.org/details/wikidata-json-20150518
https://archive.org/details/wikidata-json-20150518
https://yago-knowledge.org/downloads/yago-3
https://yago-knowledge.org/downloads/yago-3
https://databus.dbpedia.org/danifdezalvarez/collections/latest_mapping_shexer_test
https://databus.dbpedia.org/danifdezalvarez/collections/latest_mapping_shexer_test

112 Chapter 4. Mining triples to extract shapes

Dataset
Target
shapes

Dataset
size
(GB)

Nº of
triples

(millions)

Nº of
instances
(millions)

Memory
usage
(GB)

Execution
time

(hours)

Wikidata dump
2015-05-18

1000 (top 1000
classes with

more instances)
42.0 991.6 M 13.0 M 25.2 38.3

YAGO3
1000 (top 1000

classes with
more instances)

10.3 138.3 M 5.3 M 12.6 17.2

English chapter
of Dbepedia

422 (every class
in the DBpedia
Ontology with

instances)

6.0 44.0 M 6.6 M 16.1 4.1

TABLE 4.1: Basic information about the YAGO, Wikidata and DBpe-
dia computations.

with a read speed of 145 MB/s measured with the hdparm9 command. We set an
arbitrarily low threshold θU = 0.01 to discard noisy marginal features for every
computation. θU = 0.01 discards constraints that comply with less than 1% of the
total instances considered. The Python version used to run sheXer has been 3.6.4.

As one can see, the time and memory consumption to get a result are different
for each source. Several parameters of the input affect the numbers obtained. In
the following subsections, we propose scenarios with different inputs to analyze the
impact of each parameter on our proposal’s performance.

The actual content of the triples does not have any effect on our approach’s per-
formance. The feature inputs under study are dataset size, number of instances, and
number of shapes to extract. These parameters will be arbitrarily altered using a
single data source (DBpedia) for every experiment. Memory usage and time con-
sumption are measured at each test scenario. This let us trace performance curves.

In Figure 4.5, we show a fragment of one of the shapes extracted from DBpedia.
As one can see, there is just one triple constraint with no zero-case that complies
with every instance. Such triple constraint indicates that a node conforming with
the shape :TelevisionShow must be of type dbo:TelevisionShow. Excluding the
zero-case, the compliance of the rest of the constraints ranges from 77.8% to 59.2%.

Most of those constraints would have a cardinality of ‘+’ without the zero-case.
However, some few nodes cause these constraints to not have a cardinality of ex-
actly ‘{1}’, as the score difference between constraints with ‘+’ and ‘{1}’ cardinality is
always relatively low. Note in the comments that the property dbo:network is fre-
quently used to point to nodes conforming with the shapes :TelevisionStation

(25.6% of the instances) and :BroadcastNetwork (16.6% of the times). However,
many other times, this property is used to point nodes that are not typed with any
target class, so sheXer uses the macro IRI instead of any specific shape label for the
dominant constraint with dbo:network.

The shape shown in Figure 4.5 has been shortened in the interest of brevity, as
its purpose in this document is to let us discuss a sheXer example output. The com-
plete version of the :TelevisionShow shape extracted is available on our published
results10.

9https://linux.die.net/man/8/hdparm Accessed in 2022/05/03.
10http://data.weso.es/shexer/dbpedia/all_shapes.shex Accessed in 2022/05/03.

https://linux.die.net/man/8/hdparm
http://data.weso.es/shexer/dbpedia/all_shapes.shex

4.3. Experiments 113

FIGURE 4.5: Fragment of the DBpedia’s shape :TelevisionShow in
ShExC

1

2 :TelevisionShow

3 {

4 rdf:type [dbo:TelevisionShow] ; # 100.0 %

5 dbo:runtime xsd:double *;

6 # 77 .80100848604108 % obj: xsd:double. Cardinality: +

7 # 74 .30820317304145 % obj: xsd:double. Cardinality: {1}

8 dbo:releaseDate xsd:date *;

9 # 74 .45988603287829 % obj: xsd:date. Cardinality: +

10 # 72 .85901693108679 % obj: xsd:date. Cardinality: {1}

11 dbo:numberOfEpisodes xsd:nonNegativeInteger *;

12 # 67 .68335178124872 % obj: xsd:nonNegativeInteger. Cardinality: +

13 # 66 .30180789570778 % obj: xsd:nonNegativeInteger. Cardinality:

{1}

14 dbo:network IRI *;

15 # 59 .207559545771325 % obj: IRI. Cardinality: +

16 # 52 .248595908662324 % obj: IRI. Cardinality: {1}

17 # 25 .64260238593039 % obj: :TelevisionStation. Cardinality:+

18 # 16 .60312384700529 % obj: :BroadcastNetwork. Cardinality: +

19 # ...

20 }

21

4.3.1 Limiting the number of instances used

As shown in Table 4.1, the number of instantiation triples in DBpedia is higher than
6.6 million. We repeated the process of shape extraction limiting the number of in-
stantiation triples to a certain number. We started in 1M triples and repeated the
computation with arbitrary increments of 1M instances each time, until every in-
stance of every target class was used. The results regarding execution time and
memory consumption are shown in Figure 4.6.

As one can see, the number of instances has a linear relation with execution time
and memory consumption. The impact on memory consumption is caused by the
instance dictionary generated by the IT and the FT. The more instances, the bigger
becomes this dictionary and its associated memory usage. The effect on execution
time is lower than the impact on memory usage because sheXer is parsing the whole
content in every case. This parsing process sets a minimum execution time, which
is more significant in environments where the I/O disk speed is relatively low. The
FT module evaluates whether a triple sent from the GI is relevant. The relevant
triples trigger extra computations in the TF and SA modules. The more instances
are considered, the more triples become relevant. This causes the linear relation
between the number of instances and execution time.

4.3.2 Limiting the number of target shapes

As stated in section 4.2.6, sheXer’s complexity depends, among other parameters, on
the number of constraints produced. However, the number of constraints cannot be
known a priori. In opposition, in case there is a balanced distribution of the number
of constraints per shape, the number of shapes, which can be known a priori, can be
used to estimate execution times and memory usage. In this subsection, we study
the impact on the performance of the number of target shapes.

114 Chapter 4. Mining triples to extract shapes

FIGURE 4.6: Performance of sheXer with different amounts of in-
stances used.

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

E
x
e

cu

�

o
n

 �

m
e

 (
h

o
u

rs
)

M
e

m
o

ry
 u

sa
g

e
 (

G
B

)

Millions of instances used

Memory (GB) Time (hours)

In our experiments, we started with just 20 target shapes and then perform ar-
bitrary increases of 20 shapes for each iteration until every class with at least one
instance was used. As already shown in section 4.3.1, the number of instances has a
crucial impact on the performance. Then, the more instances a class has, the greater
is its impact. To avoid erratic numbers due to classes with an unbalanced number
of instances, we used an arbitrarily small number of instances to be considered (as
most) per each class. We picked this limit so 90% (380 out of 422) of the DBpedia
classes has at least this number of instances. In our dataset, dbo:Chancellor ranks
380th w.r.t. to number of instances, with a total of 57. Then, the limit picked was
57 instances. The results obtained are shown in Figure 4.7. Note that the memory
scale in the y-axis is different from the rest of the figures. It ranges from 0 to 200 MB
instead of 0 to 16 GB.

As one can see, using a relatively small number of instances drastically decreases
memory usage. However, there is a linear relationship between the number of
shapes used and memory consumption. This relation is explained by two factors: on
the one hand, the FT generates an abstract profile in main memory for each shape.
On the other hand, each shape causes a growth in the instance dictionary propor-
tional to its number of instances.

There is also a linear relation with execution time, with a trend similar to the one
observed in Figure 4.6. However, there is a noticeable difference in execution time
between Figures 4.7 and 4.6 at the maximum values of the x-axis, explained by the
limit of 57 instances per class used in Figure 4.7. The difference of 1.39 hours is the
time used to compute the instances discarded in Figure 4.7’s experiment.

4.3.3 Limiting the amount of triples

In this subsection, we study the effect of the number of triples processed on sheXer’s
performance. Since the impact of the number of instances has already been studied,
in this experiment, we kept the same number of instantiation triples across all it-
erations. Every instance was used in every case. We did change the number of

4.3. Experiments 115

FIGURE 4.7: sheXer’s with different number of target shapes.

0

2

4

6

8

10

12

14

16

0

25

50

75

100

125

150

175

200

0 50 100 150 200 250 300 350 400 450

E
xe

cu

�

o
n

 �

m
e

 (
h

o
u

rs
)

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Number of shapes

Memory (MB) Time (hours)

entity-to-entity and entity-to-literal triples. Our DBpedia dataset contains 37.328M
of these two kinds of triples.

We performed iterations starting at the arbitrary amount of 5M triples (without
counting the instantiation triples). Then, we made an arbitrary increment of 5M
triples for each iteration until reaching the total 37.328M triples. The number of
triples of each kind added at each iteration is proportional to the total number of
triples available. In the first iteration, we used 2.698M object triples and 2.302M
literal triples, which make together 5M elements. We add the very same number of
triples of each type at each iteration. The results are shown in Figure 4.8.

As one can see, memory usage stays stable and independent of the number of
triples used. There is not a determinant linear relation between memory usage and
triples which are not expressing a class-instance relationship.

However, there is a linear relation with execution time caused by the different
number of triples relevant for the process in each iteration. Those triples are poten-
tially spread across the whole dataset. Then, the bigger is the slice of the dataset
used, the higher are the chances to find this kind of triples.

4.3.4 Convergence w.r.t. number of instances used

As already shown, sheXer’s performance scales linearly w.r.t. some features of the
input dataset. Too ambitious goals can lead to high rates of memory usage or execu-
tion time.

The structure with more impact on memory usage is the instance dictionary gen-
erated by the IT. The instance dictionary is a key element to produce shape inter-
linkage in reasonable execution time, as the operation to check the class of a given
instance is frequent, and it allows to perform it in O(1) complexity. It is also used to
produce precise cardinalities.

To cope with this limitation, we explore whether using a relatively small num-
ber of instances per shape can be enough to extract accurate shapes. We extracted
shapes for every DBpedia class in different iterations, using an increasing maximum

116 Chapter 4. Mining triples to extract shapes

FIGURE 4.8: Performance of sheXer with different dataset sizes.

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0 10 20 30 40

E
xe

cu

�

o
n

 �

m
e

 (
h

o
u

rs
)

M
e

m
o

ry
u

sa
g

e
(G

B
)

Millions of triples used

Memory (GB) Time (hours)

number of instances per shape at each iteration. We started using two random in-
stances per class. Then, we performed successive iterations doubling the maximum
number of instances. In figure 4.9, we show the changes detected between consec-
utive iterations. Note that the scale of the x-axis in this chart is logarithmic. At the
end of each iteration, we checked two factors:

1. The number of total changes w.r.t. the previous iteration. We count as a change
in a shape one of the following events:

• Gaining a triple constraint.

• Loosing a triple constraint.

• Having a modification in any element of a triple constraint.

2. The number of shapes changed w.r.t. the previous iteration. We consider that
a shape has changed when there is at least one change among its triple con-
straints.

The numbers shown in the y-axis are relative. For shapes, we show the propor-
tion of elements that changed w.r.t. the total number of shapes, which is 422 in every
case. For triple constraints, we show the proportion of changes detected w.r.t. to the
total number of triple constraints at each iteration.

As one can see, with very few exceptions, every iteration causes fewer changes
than its previous iterations. With a high enough instance limit, the shapes tend to
converge. For example, using 8192 instances per class, just 1,5% of the constraints
are changed. These changes affect 11% of the shapes. For any other iteration with a
higher instance limit, the proportion of shapes getting some change is always lower
than 10% and affects 1% or less of the constraints.

The ratios of shape and constraint changes detected for every iteration are also
available in Table 4.2, as well as some other information related to the shapes’ evo-
lution. Let C be the set of all target shapes to extract. An increment of x units in
the instance limit for a given iteration would introduce |C| · x new instances on the

4.3. Experiments 117

FIGURE 4.9: Shape convergence using different amounts of instances
per shape.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

R
a

�

o
 o

f
e

le
m

e
n

ts
 c

h
a

n
g

e
d

Maximun number of instances per class

Ra�o shapes changed Ra�o constraints changed

computations just in case every c ∈ C has at least x instances still not considered.
Since this is not always the case, the actual number of new instances introduced in
the experiments in successive iterations is shown in the sixth column of Table 4.2.

The number of new instances for each iteration allows us to calculate what we
called Shape-Instance Performance (SIP) and Constraint-Instance Performance (CIP).
SIP is shown in the seventh column of Table 4.2, and it is defined as the relation be-
tween the number of instances used and the number of shapes changed. SIP can also
be interpreted as the number of instances required to cause a single shape change.
As one can see, the more instances are processed, the smaller is the effect of a single
instance over the results, and the SIP grows rapidly with each iteration. For exam-
ple, at the already mentioned limit of 8192 instances per class, 9267 new instances
are worth a single shape change.

CIP is shown in the eighth column of Table 4.2 and it is defined as the relation
between the number of instances used and the number of constraints changed. As
one can see, the CIP is slightly better than SIP for almost every iteration. However,
both numbers tend to stay in the same magnitude order.

Table 4.2 and Figure 4.9 indicate that a representative sample of instances can
be enough to extract highly accurate shapes. Using 8192 as instance limit, the total
instances computed are close to 1.3M. As shown in Figure 4.6, this leads to a memory
usage close to 3.2GB, which is five times smaller than the 16GB needed to compute
the dataset using every available instance.

4.3.4.1 Discussion on execution times

The experiments performed reveal that sheXer can be applied over large real-world
RDF datasets. The linear relation between memory consumption and instances used

118 Chapter 4. Mining triples to extract shapes

In
st

an
ce

li
m

it
pe

r
cl

as
s

in
pr

ev
io

us
it

er
at

io
n

In
st

an
ce

li
m

it
pe

r
cl

as
s

in
cu

rr
en

t
it

er
at

io
n

To
ta

lc
on

st
ra

in
ts

R
at

io
of

sh
ap

es
th

at
ch

an
ge

d

R
at

io
of

co
ns

tr
ai

nt
s

th
at

ch
an

ge
d

A
ct

ua
ln

um
be

r
of

ne
w

in
st

an
ce

s
us

ed

Sh
ap

e-
In

st
an

ce
Pe

rf
or

m
ac

e
(S

IP
)

C
on

st
ra

in
t-

In
st

an
ce

Pe
rf

or
m

an
ce

(C
IP

)

0 2 2842 1,000 1,000 840 2,0 0,30
2 4 3409 0,742 0,319 827 2,6 0,76
4 8 3992 0,711 0,261 1637 5,5 1,57
8 16 4550 0,701 0,208 3227 10,9 3,41
16 32 4303 0,758 0,232 6342 19,8 6,36
32 64 4214 0,661 0,163 12239 43,9 17,84
64 128 4292 0,566 0,127 23547 98,5 43,36
128 256 4378 0,538 0,115 44335 195,3 88,14
256 512 4392 0,441 0,081 78907 424,2 221,65
512 1024 4409 0,329 0,060 131876 948,7 495,77
1024 2048 4414 0,280 0,044 217935 1846,9 1117,62
2048 4096 4424 0,204 0,028 325744 3787,7 2626,97
4096 8192 4445 0,114 0,015 444817 9267,0 6541,43
8192 16384 4436 0,083 0,010 567820 16223,4 12343,91
16384 32768 4443 0,050 0,005 640852 30516,8 26702,17
32768 65536 4444 0,019 0,002 668062 83507,8 66806,20
65536 131072 4447 0,019 0,002 807333 100916,6 73393,91
131072 262144 4448 0,036 0,003 801842 53456,1 53456,13

TABLE 4.2: Shape convergence with different instance limits per class.

can be an issue for ambitious computations. However, in section 4.3.4, we have
shown how the results of sheXer tend to converge when using a relatively small
number of instances, tackling the issue of memory usage.

There can also be implementation alternatives that reduce memory usage with-
out causing a critical increment of execution times, such as solutions combining ef-
ficient databases with in-memory caches. However, this option has not been yet
implemented and cannot be evaluated.

The experiments have revealed a linear relation between execution time and
dataset sizes. Even if sheXer is able to compute real-world dataset in affordable
time, this relation could be also a scalability issue with larger datasets. To tackle this,
the different components of sheXer could be parallelized using usual solutions such
as MapReduce[263] in different stages:

• Instance Tracker. Every triple is computed in an independent way looking for
instances of target shapes. Thus, different nodes could process chunks of the
dataset and merge later their results to produce a single instance dictionary.

• Feature Tracker. Again, every triple in the dataset is computed independently,
in this case to cast positive votes for shape constraints. This stage requires
the instance dictionary as input. Different nodes could compute chunks of
the dataset sharing an access to a single instance dictionary, or even having

4.4. sheXer working modes 119

FIGURE 4.10: Python code - Basic example of sheXer usage

1

2 from shexer.shaper import Shaper

3

4 local_graph = "/disk/path/to/local/ntriples_file.nt"

5

6 shaper = Shaper(all_classes_mode=True ,

7 graph_file_input=local_graph)

8

9 result = shaper.shex_graph(string_output=True)

10 print(result)

11

its own copy of the dictionary. There would be no need to synchronize the
different copies, as the feature tracker use the instance dictionary in read-only
mode. The votes generated by each node can be trivially merged later in a
single structure.

• Shape Adapter and Shape Serializer. These two stages do not process the
dataset, but intermediate products of each respective previous stage. These
products can be split in every case in shapes that will be processed indepen-
dently, which allows for implementing parallel computing strategies.

4.4 sheXer working modes

In this section, we expose different settings for sheXer and explain how those set-
tings can be used to tackle different use cases. Also, we provide code snippets to let
the reader test the described features using our Python library.

Regardless of the configuration chosen, the way to use our library is quite straight-
forward. One must instantiate a Shaper object with some initial parameters, and
then call the method shex_graph() on the newly created object. A toy example of
this is shown in Figure 4.10. This code prints in the standard output the shapes
extracted from a file located in the disk path indicated with local_graph.

4.4.1 Input types

4.4.1.1 Formats

sheXer can process content written in most of the usual RDF syntaxes. The library
supports n-triples, turtle, rdf/xml, n3 and json-ld formats. If no input format is
specified, sheXer will assume that the content to parse is written in n-triples. To
change this, one must give a value to the input_format parameter when building
a Shaper object. This parameter expects a string indicating the expected syntax,
and the accepted values can be found in the package shexer.const. An example is
shown in Figure 4.11.

sheXer also supports a non-standard input format. If shexer.const.TSV_SPO is
chosen as input format, sheXer will expect to process content in which there is a
triple per line, and each line consist of three elements representing subject, property,
and object separated by tab (‘\\t’) characters.

It is important to remark that the current implementation of sheXer does not offer
the iterative parsing strategy described in Section 4.2.1 for every input format. Some

120 Chapter 4. Mining triples to extract shapes

FIGURE 4.11: Python code - Change input format

1

2 # The input_format param could be filled with one of the

3 # following values available in shexer.const:

4 # NT , TSV_SPO , N3, TURTLE , TURTLE_ITER , RDF_XML , JSON_LD

5 from shexer.shaper import Shaper

6 from shexer.const import TURTLE

7

8 shaper = Shaper(all_classes_mode=True ,

9 input_format=TURTLE

10 graph_file_input="/path/turtle_file.ttl")

11

12 print(shaper.shex_graph(string_output=True))

13

of the parsers use the rdflib library to load the target content, which requires to
load the entire target graph in main memory. The formats that allow to process the
graph using iterative strategies are the following ones:

• const.NT (default option). It processes n-triples.

• const.TSV_SPO.

• const.TURTLE_ITER. It processes turtle. Note that there are two available op-
tions to process turtle graphs. When the user choses const.TURTLE, sheXer
uses a parser based on rdflib, which is robust but cannot process too large
graphs. In opposition, the parser used when the user choses const.TURTLE_ITER
allows to save memory but has some known issues when the content makes
usage of the syntax “[]” to define blank nodes.

4.4.1.2 Input types

Currently, sheXer provides five different ways to provide input data. In every case,
the input type is specified by setting the value of some parameter(s) when creating
an instance of a Shaper object. Note that these options are exclusive, i.e., a single
input type should be chosen in every case.

• Raw strings. The content to parse is provided using an in-memory str or
unicode object11. The user should provide this object using the raw_graph pa-
rameter.

• Remote files. sheXer can retrieve and parse content available on-line. This
content is specified by providing its URL. To choose this mode, two parame-
ters can be set. In case the whole target content can be retrieved from a single
URL,url_graph_input should be set with the value of this URL. In case the tar-
get content is composed by several files, having each one its own URL, then the
user can build a Python list and pass it to the parameter list_of_url_input.
sheXer will download and process those files as if they were a single graph.
Note that, in case of providing a list of values, the content of all files is ex-
pected to have the same syntax, which should had been specified using the
parameter input_format.

11str and unicode are the Python built-in types to represent raw string and encoded string content
respectively.

4.4. sheXer working modes 121

• Local files. This option is analogous to the previous one but, in this case,
sheXer expects to find this content in local files instead of remote ones. The
parameter graph_file_input should be set to provide the disk path of a single
file, while the parameter graph_list_of_files_input is handy for providing
a list of files.

• SPARQL endpoints. sheXer can explore an endpoint to retrieve target con-
tent by executing different SPARQL queries. For this, the user must provide
the URL of the SPARQL endpoint using the parameter url_endpoint. Note
that, when url_endpointis used, the input_format parameter has no effect,
as sheXer do no need to parse any file but to process the results of several
SPARQL queries.

• Rdflib graphs. sheXer can mine rdflib.Graph objects with content already
loaded. This allows for easily using sheXer with many other Python libraries
that work with this library. In such a case, the user should set the parameter
rdflib_graph.

4.4.1.3 Independent class-instance file

As already stated, sheXer performs two iterations to process the content. In the first
one, it locates which instances are used to build which shapes. In the second one,
it annotates the features occurring in the neighborhood of those instances. How-
ever, when working with graph dumps, there could be no need to explore the whole
target content to perform the first iteration. Some sources, such as DBpedia12, or-
ganize their data dumps by splitting the content in several files. Each file contains
triples of a certain topic or category. With this, a user interested in just one of those
topics/categories does not need to download nor compute the whole dump.

In case the instance-class relations are in a separate file, then sheXer can be con-
figured so just this file is processed during the execution of the IT module. An ex-
ample of how to do this is shown in Figure 4.12. The path to the class-instance
file should be indicated in the parameter instances_file_input, and that file will
be the only content that the GI will send to the IT. The GI will send to the FT the
whole target content instead, which will be usually specified as a list of files using
the parameter graph_list_of_files_input. Note that the class-instance file should
be included in this list too in case the user wants it to be processed by the FT module.

4.4.1.4 Working with endpoints

When sheXer consumes the content of an endpoint, it first locates some target seed
nodes (the way to detect those seed nodes is explained in section 4.4.2). Then, it
retrieves content surrounding those nodes. This process can trigger a big amount
of SPARQL queries, causing issues such as high execution times or error responses
from the endpoint due to excessive traffic in short time periods.

sheXer lets the user to configure how to tackle this process to keep a balance
between the amount of information retrieved and the performance cost. By default,
sheXer tries to retrieve just those triples in which the seed nodes are used as subjects.
This can be changed using three parameters:

12DBpedia typings can be downloaded in a single file which does not contain any other type
of triples. Cf. https://databus.dbpedia.org/dbpedia/mappings/instance-types/ Accessed in
2022/05/03.

https://databus.dbpedia.org/dbpedia/mappings/instance-types/

122 Chapter 4. Mining triples to extract shapes

FIGURE 4.12: Python code - Standalone file for instance-class rela-
tions

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(all_classes_mode=True ,

5 instances_file_input="/path/class -instance.nt",

6 graph_list_of_files_input =[

7 "/path/class -instance.nt",

8 "/path/some_other_content1.nt",

9 "/path/some_other_content2.nt"

10])

11

12 print(shaper.shex_graph(string_output=True))

13

• depth_for_building_subgraph. Default value: 1. It indicates the maximum
distance between the seed nodes and the content retrieved. A value of ‘1’ pre-
vents sheXer to create shape-interlinkage except for cases in which there are
direct links between seed nodes.

• track_classes_for_entities_at_last_depth_level. Default value: False.
When it is set to True, the SPARQL endpoint is explored to find the types of
those IRIs found at the depth level indicated in depth_for_building_subgraph.
That is, sheXer will explore an extra depth level beyond the threshold specified
in depth_for_building_subgraph, but only to look for typing triples.

• inverse_paths. Default value: False. When it is set to True, sheXer also looks
for triples where the seed nodes are objects. If depth_for_building_subgraph
> 1, then sheXer also looks for triples where the IRIs related to previous seed
nodes are used as objects.

In Figure 4.13, we show an example graph with different areas containing sub-
graphs to clarify the usage of this parameters. The graph represented in this figure
uses the following conventions:

• Elements labeled S_$value$: IRIs which are seed nodes.

• Elements labeled n_$value$: IRIs which are not seed nodes.

• Elements labeled lit_$value$: literal values.

• Relations labeled type: links between an instance and its class.

• Relations labeled rel_$value$: any relation except the one used to link an in-
stance with its class.

• Elements labeled Type $value$: class URIs.

Figure 4.13 defines several subgraphs using its background color. The relevant
areas to consider are specified and labeled in the Figure’s legend. Those areas con-
tain the following elements:

• A1. It contains the seed nodes.

4.4. sheXer working modes 123

FIGURE 4.13: Subgraphs reachable according to different endpoint
configurations

• A2. It contains every node at distance 1 from the seed nodes. sheXer would
retrieve this content with depth_for_building_subgraph = 1 and
track_classes_for_entities_at_last_depth_level = False.

• A3. It contains nodes at distance 1 and also the classes of those nodes. sheXer
would retrieve this content with the setting depth_for_building_subgraph =
1 and track_classes_for_entities_at_last_depth_level = True.

• A4. It contains every node at distance 2 from the seed nodes. sheXer would
retrieve this content with depth_for_building_subgraph = 2. The setting of
track_classes_for_entities_at_last_depth_level would not have any ef-
fect in this case, as the example graph does not include any node at distance
more than 2 form the seed nodes.

The code shown in Figure 4.14 includes an example to get a shape for every class
consuming a certain endpoint. sheXer will explore the immediate neighborhood of
the instances of each class as well as the types of those nodes at distance one from
the seed instances.

4.4.2 Target entities and shapes

sheXer needs to be told which nodes should be used to build which shapes. Usually,
shapes are linked with classes, so the class’s instances are mined to extract a shape
for their class. However, sheXer can also extract shapes from custom node groupings
using ShEx’s shape maps. The current implementation of our library support three
main ways to indicate target entities and shapes:

• All classes mode. sheXer will produce a shape for every class with at least
an instance in the target content. It will use every available instance for each
shape. To choose this option, one must set all_classes_mode = True.

124 Chapter 4. Mining triples to extract shapes

FIGURE 4.14: Python code - Consuming and endpoint with depth=1
+ extra classes

1

2 from shexer.shaper import Shaper

3

4 # The default value for depth_for_building_subgraph is 1,

5 # so there is no need to set this parameter in case the

6 # user does not want to explore deeper regions of the

7 # graph

8 shaper = Shaper(url_endpoint="https :// example.org/sparql",

9 track_classes_for_entities_at_last_depth_level=True ,

10 all_classes_mode=True)

11

12 print(shaper.shex_graph(string_output=True))

13

• Target classes. sheXer will produce a shape for each class in a list. The system
will use every available instance of those classes to build each shape. The list
of target instances can be provided in two ways:

– Parameter target_classes. It expects a Python list containing the URIs
of the target classes.

– Parameter file_target_classes. It expects a disk path to a file which is
expected to contain a target class URI per line.

• Shape maps. sheXer accepts shape maps linking custom node groupings with
target shapes. It can parse two syntaxes to define shape maps: the JSON syn-
tax (set shape_map_format = shexer.const.JSON) and the specialized shape
maps grammar (shape_map_format = shexer.const.FIXED_SHAPE_MAP, which
is the default value). These two syntaxes are defined in the official shape maps
specification13. The node selectors of each shape association can be either a
single RDF node, or a triple pattern (cf. 2.6.1 for further details about those
selectors). Additionally, sheXer accepts SPARQL patterns as node selectors.
A SPARQL pattern is a single-column SPARQL query whose results, i.e., the
set of nodes retrieved by that query in a givne endpoint, are associated with a
shape label. SPARQL patterns are not yet included in the official shape map
specification, but some ShEx implementations support them14. Two parame-
ters can be used to choose this option:

– Parameter shape_map_raw. It expects an unicode or str object containing
the shape associations.

– shape_map_file. It expects a disk path to a file containing shape associa-
tions (one per line).

4.4.2.1 Finding target entities in endpoints

As stated in section 4.4.1, the process of retrieving content from a SPARQL endpoint
starts by selecting some seed nodes. The seed nodes are found by executing some
SPARQL queries with the following criteria:

13http://shex.io/shape-map/ Accessed in 2022/05/03.
14Cf. https://github.com/shexjs/shex.js Accessed in 2022/05/03.

http://shex.io/shape-map/
https://github.com/shexjs/shex.js

4.4. sheXer working modes 125

• All clases mode. Every node which is instance of any class is used as seed
node15.

• Target classes. Every node which is instance of a target class is used as seed
node. sheXer executes separated SPARQL queries to find the instances of each
class.

• Shape maps. Each node selector of each shape association in a shape map is
mapped to a SPARQL query (except for node selectors which are actual RDF
nodes). This SPARQL query should have a single column result. There are two
different cases of node selectors which trigger SPARQL queries:

– Triple patterns. Valid triple patterns should contain exactly one focus se-
lector. The query generated is the one which identifies the nodes which
fits the focus of the triple pattern.

– Actual SPARQL selectors. SPARQL selectors will be executed to find
seed nodes as long as they produce single-column results. If this condi-
tion is not met, sheXer raises an informative error.

4.4.2.2 Compatibility between modes

When sheXer works with a list of target classes or in all_classes_ mode, and it is
told to produce SHACL content, the shapes are linked to its corresponding class
with the property sh:targetClass16. However, note that shape maps are a concept
exclusively defined in ShEx. sheXer accepts to be configured to produce SHACL
content and use shape maps to determine target entities anyway. Nevertheless, a
selection of targets based on shape maps cannot ensure that every individual used
to build a shape is an instance of a common class. Then, the resulting shapes will
not be linked with a class with sh:targetClass.

The all_classes_mode is compatible with the other two ways of input specifi-
cation. In Figure 4.15, we show an example of such a configuration. A shape map
is provided, so the node :Jimmy is used to build a shape labeled <Person>. How-
ever, all_classes_mode is active too. This means that any class with instances will
generate a shape too.

When target_classes and all_classes_mode are both active, the set of shapes
extracted could contain more elements than the ones produced in an execution which
does not define target classes.

This situation can happen in two scenarios:

• all_classes_mode causes to extract a shape for every class with at least an
instance. target_classes causes to produce a shape for every class specified,
not mattering if it has instances or not. That is, a class included in the list
of target_classes could produce an empty shape that could not had been
generated by only having all_classes_mode active.

• sheXer can be told to remove empty shapes form the results (see section 4.4.9
for further details). However, no shape associated with a class included in the
target_classes list will be removed from the results.

15The current implementation of sheXer has this feature disabled. When working against endpoints
of large graphs, the SPARQL queries produced cause frequent issues such as timeouts with big results
or temporal IP banns due to the execution of too many queries.

16Cf. https://www.w3.org/TR/shacl/#targetClass Accessed in 2022/05/03.

https://www.w3.org/TR/shacl/#targetClass

126 Chapter 4. Mining triples to extract shapes

FIGURE 4.15: Python code - Shape maps and all classes mode to-
gether

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(url_endpoint="https :// example.org/sparql",

5 depth_for_building_subgraph =2,

6 shape_map_raw="<http :// example.org/Jimmy >@<Person >",

7 all_classes_mode=True)

8

9 print(shaper.shex_graph(string_output=True))

10

4.4.3 Management of instantiation property

The class-instance relation receives a special treatment by sheXer. On the one hand, it
is a usual way to locate seed entities for shapes shapes. On the other hand, sheXer’s
FT module processes instantiation triples in a different way. Instead of casting posi-
tive votes for certain object types (some shape label, the macro IRI, or the macro ‘.’),
it produces positive votes for constraints with a value set containing the actual class
URI found in a triple. An example of this was shown in Figure 4.1 in this chapter’s
introduction. The described <CountryShape> includes a constraint with the property
rdf:type associated to a value set that indicates that the type of a node conforming
with this shape should be specifically the URI :Country.

In RDF, the standard property to indicate an instance-class relation between two
nodes is rdf:type. However, some KGs use different properties for the same pur-
pose. An insightful example of this is Wikidata, which uses ‘P31 - instance of’ in-
stead of rdf:type. To support such use cases, sheXer allow to specify alternative
instantiation properties. To do so, one must provide the URI of this property using
the parameter instantiation_property. If no value is provided for this parameter,
then sheXer will use rdf:type by default.

4.4.4 Namespaces management

sheXer can be fed with some prefix-namespace pairs using a Python dictionary. An
example of this is shown in Figure 4.16. The parameter namespaces_dict expects to
receive a dictionary where the keys are namespaces and the values are prefixes.

These prefix-namespace pairs can be used to make inputs and outputs easier to
read and write. On the one hand, sheXer’s output (both in SHACL and ShEx) will
declare and use those prefixes whenever it is possible to avoid absolute URIs. On
the other hand, the user can use those prefixes to write URIs in many configura-
tion parameters, such as target classes specification, shape maps, and instantiation
property.

When parsing RDF content in turtle syntax, sheXer may find some other prefix
declarations. These new prefix declarations will also be used to generate readable
ShExC/SHACL output. In case of conflict, i.e., in case there is a prefix declaration for
a namespace already paired with a prefix in the namespaces_dict, the prefix used
will be the one explicitly provided by the user in namespaces_dict.

4.4. sheXer working modes 127

FIGURE 4.16: Python code - Feeding sheXer with namespace-prefix
pairs

1

2 from shexer.shaper import Shaper

3

4 namespaces = {

5 "http :// example.org/" : "ex",

6 "http :// www.w3.org /1999/02/22 -rdf -syntax -ns#": "rdf",

7 "http :// www.w3.org /2001/ XMLSchema#": "xsd"

8 }

9

10 shaper = Shaper(all_classes_mode=True ,

11 namespaces_dict=namespaces ,

12 graph_file_input="/path/local_file.nt")

13

14 print(shaper.shex_graph(string_output=True))

15

FIGURE 4.17: Python code - Generation of SHACL content

1

2 from shexer.shaper import Shaper

3 from shexer.consts import SHACL_TURTLE

4

5 shaper = Shaper(all_classes_mode=True ,

6 graph_file_input="/path/local_file.nt")

7

8 # output_format also accepts the value const.ShExC

9 # const.ShExC is the value used by default

10 print(shaper.shex_graph(string_output=True ,

11 output_format=SHACL_TURTLE))

12

4.4.5 Configuring output

sheXer can be told to produce ShEx and SHACL content. As stated in section 2.6,
both languages can be expressed in several syntaxes. However, sheXer produces
content in just one syntax for each language in a native way. ShEx is expressed in
ShExC, and SHACL is expressed in turtle. By default, sheXer generates ShEx con-
tent. One must use the parameter acceptance_threshold of the function shex_graph

to obtain SHACL content. In Figure 4.17, we show an example of such configuration.
The extracted shapes can be returned as a str object or written to a file. sheXer

returns a str object if the parameter string_output is set to True, such as in the ex-
ample of Figure 4.17. To write the results to a file, the target path should be provided
using the parameter output_file of the shex_graph function.

At least one of string_output = True or output_file = �/a/path.nt� should
be used when calling shex_graph. However, they can be used at the same time, so
the content is returned as a str and serialized in a file too.

4.4.6 Acceptance threshold

The acceptance threshold used to discard infrequent constraints during the execu-
tion of the FT module can be set with the parameter output_format of the function
shex_graph. An example of such configuration is provided in Figure 4.18. Note that

128 Chapter 4. Mining triples to extract shapes

FIGURE 4.18: Python code - Setting an acceptance threshold

1

2 shaper = Shaper(all_classes_mode=True ,

3 graph_file_input="/path/local_file.nt")

4

5 # The acceptance_threshold should always be a value

6 # in the range [0,1]. the default configuration is 0

7 print(shaper.shex_graph(string_output=True ,

8 acceptance_threshold =0.3))

9

FIGURE 4.19: Python code - Enabling inverse paths

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(all_classes_mode=True ,

5 graph_file_input="/path/local_file.nt",

6 inverse_paths=True)

7

8 print(shaper.shex_graph(string_output=True))

9

this threshold prevents topological features infrequently observed to be part of the
actual shapes, but it also removes every information related to those features from
the text comments.

4.4.7 Inverse paths

By default, sheXer extracts constraints in which the focus node acts as subject of a
triple. However, our library can also extract inverse constraints, i.e., those in which
the focus node acts as object of a triple. This can be configured by setting the param-
eter inverse_paths = True as shown in Figure 4.19.

When inverse_paths is active, the performance cost of executing sheXer, both
in execution time and memory usage, is increased. The size and composition of the
instances dictionary produced by the IT module remains exactly the same. However,
the FT module and the results that it produces are affected in two ways:

• More triples could be processed. With inverse_paths = False , the FT just
process those triples whose subject is among the target instances. However,
when inverse_paths = True, triples whose object is among the seed instances
are processed too, which triggers extra computations (and increase the execu-
tion time).

• The instances dictionary produced by the IT is decorated with more feature
observations. Inverse paths observations are independent of direct path ob-
servations. The process described in section 4.2.3 to cast positive votes for
different constraints is duplicated to be applied also with inverse paths. In
general, this causes that the decorated instance dictionary grows more when
inverse_paths is active, so the memory usage increases too.

The events triggered during the execution of the FT are propagated to the rest of
remaining modules because, in general, more constraints need to be computed.

4.4. sheXer working modes 129

FIGURE 4.20: Python code - Disabling all-compliant mode

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(all_classes_mode=True ,

5 graph_file_input="/path/local_file.nt",

6 all_instances_are_compliant_mode=False)

7

8 print(shaper.shex_graph(string_output=True))

9

FIGURE 4.21: Python code - Keeping empty shapes

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(all_classes_mode=True ,

5 graph_file_input="/path/local_file.nt",

6 remove_empty_shapes=False)

7

8 print(shaper.shex_graph(string_output=True))

9

4.4.8 All-compliant mode

By default, sheXer generates shapes that comply with every instance used to build
them. This is achieved by modifying cardinalities of conflictive constraints, so they
include a zero-case (cf. section 4.2.4). However, those users who want to use the
produced shapes as drafts may not be interested in getting shapes with perfect con-
formance among their instances. They may prefer instead to get constraints with
more accurate cardinality information. To choose this option, one must set the pa-
rameter all_instances_are_compliant_mode = False, as shown in Figure 4.20

4.4.9 Removing empty shapes

By default, sheXer avoids producing results containing empty shapes, except when
those shapes are part of of a list of target classes or a shape map. This behavior can
be changed with the parameter remove_empty_shapes as it is shown in Figure 4.21.

Empty shapes can be informative in several ways. On the one hand, the presence
of an empty shape let the user know that a class (or the results of a certain node se-
lector) does not have any instance, or those instances do not have features observed
in a proportion of at least θU . On the other hand, the presence of an empty shape in
a schema could be useful to produce more precise constraints.

Let us suppose that an execution of sheXer produce an empty shape <Person>.
Let us suppose that it also produces a shape <Company> with a constraint c = (

ex:worker @<Person> +) . Even if the user does not know what a node <Person>

should be like, the shape label itself raises a hint about the type of content ex-
pected to be found when a node <Company> uses the property ex:worker. If the
<Person> shape is removed, then c should be modified, resulting in a constraint c′ =
(ex:worker IRI +). The nodes conforming with <Company> from a pure valida-
tion point of view would be the same. However, from the documentation point of
view, c′ offers less information than c.

130 Chapter 4. Mining triples to extract shapes

FIGURE 4.22: Python code - Disabling exact cardinality

1

2 from shexer.shaper import Shaper

3

4 shaper = Shaper(all_classes_mode=True ,

5 graph_file_input="/path/local_file.nt",

6 disable_exact_cardinality=True)

7

8 print(shaper.shex_graph(string_output=True))

9

4.4.10 Cardinality prioritization

By default, sheXer aims to produce constraints with maximum agreement among the
target entities but also as precise as possible. This process in described in Algorithm
2.

However, exact cardinalities can be hard guesses for certain execution context.
Setting the parameter disable_exact_cardinality as shown in Figure 4.22, sheXer
avoids the generation of constraints with an exact number of occurrences, except
when this number is exactly 1. That is, the only possible cardinalities for any con-
straint when this mode is active are ‘{1}’, ‘+’, ‘?’, and ‘*’.

4.4.11 Adaptation to Wikidata model

4.4.11.1 Readable results

Wikidata is nowadays a key project for the LD community. As stated in previous
sections, Wikidata uses its own ontology, which defines opaque URIs17. Classes,
properties, and entities’ URIs consist of a letter plus a numeric identifier which is
unrelated with the concept represented by the URI.

For that reason, shapes based on Wikidata elements are usually hard to read for
humans. When working with Wikidata content, sheXer can be told to generate com-
ments in which each property or entity used in a constraint is mapped to a human
readable label in a text comment. One must set the parameter wikidata_annotation
= True for such a goal. Also, those comments will be generated using rdfs:comment

annotations. This allows the user to translate the results into some other ShEx or
SHACL syntax using third-party application without losing this information.

4.4.11.2 Handling qualifiers

The content exposed in Wikidata’s endpoint represents most of the relations in two
different ways. The first one consist of the so-called direct-properties18. These proper-
ties are used as predicates in triples where the subject is a ‘Q’ element and the object
is either a ‘Q’ element or a literal. The content offered using direct properties do not
include all the content uploaded to Wikidata:

• References and qualifiers are not represented using direct properties. These
are key elements in Wikidata’s ecosystem. On the one hand, a reference about

17“Opaque URIs are resource identifiers which are not intended to represent terms in a natural language”
[264]. They are useful in multilingual contexts such as Wikidata when it is preferred to not have
language bias.

18Cf. https://heardlibrary.github.io/digital-scholarship/lod/wikibase/ Accessed in
2022/05/03.

https://heardlibrary.github.io/digital-scholarship/lod/wikibase/

4.4. sheXer working modes 131

FIGURE 4.23: (‘Q30 - United states’, ‘P6 - head of government’, ‘Q6279
- Joe Biden’) using both direct and non-direct Wikidata properties

wds:

(…)

20 January 2021

pq:P580 (start
me)

wdt:P6 (head of government)

wikibase:

PreferredRank

ps:P6 (h
ead of government)

wikibase:rank

p
:P

6

(h
. o

f
go

vern
m

en
t)

wd:

Q6279

wd:

Q30

a statement allow to check that the referenced piece of information was ob-
tained from a reputable source. On the other hand, qualifiers allow to nuance
the statements. For instance, qualifiers could define a validity period for a
certain relation. Representing both references and qualifiers in RDF requires
using some kind of reification schema, which is not compatible with direct
properties.

• Only the so-called preferred statements19 are represented with direct proper-
ties. Preferred statements in Wikidata help users to quickly understand the
most up to date, current, correct, or, in short, preferred statement for a given
subject and property. For instance, there are many statements linking ‘Q30 -
United states’ with some elements using the property ‘P6 - head of government’.
However, among those relations, there is just one preferred statement, which
is the one linked to the current US head of Government.

Wikidata’s SPARQL endpoint also offer information using non-direct properties.
Such properties do include qualifiers and references. For that, the actual subject and
object of any notion are not directly linked in a triple. A statement node is placed
between these two elements, so the subject points to the statement node with an
indirect property, and the statement node points to the object with another indirect
property. With this schema, each relation can be associated with qualifiers and ref-
erences by linking such elements with the statement node. Since statement nodes
have its own unique ID, they are not blank nodes. However, they are used as so,
as they do not represent actual entities, but are used as a convenient structure to
nuance pieces of knowledge.

As a running example, in Figure 4.23, we show the notion (‘Q30 - United states’,
‘P6 - head of government’, ‘Q6279 - Joe Biden’) represented both in direct and non-
direct style.

When one wants to extract a Wikidata shape based on direct statements, the
Wikidata properties used for reification can be noisy. sheXer offers a parameter
namespaces_to_ignore to deal with this situation. This parameter expects a list of

19Cf. https://www.wikidata.org/wiki/Help:Ranking Accessed in 2022/05/03.

https://www.wikidata.org/wiki/Help:Ranking

132 Chapter 4. Mining triples to extract shapes

FIGURE 4.24: Python code - Extracting Wikidata shapes with direct
properties

1

2 from shexer.shaper import Shaper

3

4 # The namespaces specified in this list ignore Wikidata 's

5 # non -direct properties. Some other namespaces could be

6 # specified to exclude some other properties which are not

7 # Wikidata direct ones from appearing in the shapes , such

8 # as "http ://www.w3.org /2004/02/ skos/core#",

9 # "http :// schema.org/", or "http :// wikiba.se/ontology #"

10 namespaces_to_ignore = [

11 "http :// www.wikidata.org/prop/",

12 "http :// www.wikidata.org/prop/direct -normalized/"

13]

14 i_p="http ://www.wikidata.org/prop/direct/P31"

15

16 # Q85795487 --> RNA vaccine

17 shaper = Shaper(target_classes =[

18 "http :// www.wikidata.org/entity/Q85795487"

19],

20 url_endpoint="https :// query.wikidata.org/sparql",

21 instantiation_property=i_p ,

22 namespaces_to_ignore=namespaces_to_ignore)

23

24 print(shaper.shex_graph(string_output=True))

25

namespaces. sheXer will ignore triples whose predicate is a direct child of any of the
namespaces indicated. With this, reification properties can be ignored, while direct
ones can be parsed. A configuration example to extract Wikidata shapes excluding
non-direct properties is shown in Figure 4.24.

In contrast, a user could be interested in the qualifiers. In such a case, sheXer can
adapt to the Wikidata schema by using several parameters:

• shape_qualifiers_mode. This parameter must be set to True.

• namespaces_for_qualifier_props. This parameter expects a list of names-
paces. This list must contain those namespaces used to link entities with node
statements. With the example shown in Figure 4.23, that list should contain a
single element, which would be the p namespace. This is the usual configura-
tion to work with standard Wikidata content.

• namespaces_to_ignore (optional). This parameter could be set with the direct-
properties namespace. In this case, the shapes produced would contain only
non-direct properties.

When this configuration is active, sheXer understands that every node found as
object in a triple whose predicate is a property of one of the namespaces defined in
namespaces_for_qualifier_props is a statement node. Regardless of its declared
type (if any), sheXer will create a shape for each group of statement nodes pointed
with a same property. With this, for a certain non-direct property, the user can know
which are the usual qualifiers and references used to describe its statement node. An
example of such a configuration is shown in Figure 4.25.

4.4. sheXer working modes 133

FIGURE 4.25: Python code - Extracting shapes for Wikidata qualifiers

1

2 from shexer.shaper import Shaper

3

4 namespaces_to_ignore = [

5 "http :// www.wikidata.org/prop/direct",

6 "http :// www.wikidata.org/prop/direct -normalized/"

7]

8 i_p="http ://www.wikidata.org/prop/direct/P31"

9

10

11 # This example consumes Wikidata 's endpoint. In order to

12 # retrieve triples for the statement nodes , the depth to

13 # explore the subgraph should be at least 2. Otherwhise ,

14 # the shapes created for statement nodes will be created

15 # but will be empty.

16 shaper = Shaper(target_classes =[

17 "http :// www.wikidata.org/entity/Q85795487"

18],

19 url_endpoint="https :// query.wikidata.org/sparql",

20 instantiation_property=i_p ,

21 namespaces_to_ignore=namespaces_to_ignore ,

22 wikidata_annotation=True ,

23 depth_for_building_subgraph =2,

24 shape_qualifiers_mode=True ,

25 namespaces_for_qualifier_props =[

26 "http :// www.wikidata.org/prop/"

27])

28

29 print(shaper.shex_graph(string_output=True))

30

134 Chapter 4. Mining triples to extract shapes

4.5 Related work

Several approaches to automatically extract shapes have been proposed. The instance-
based proposals, such as sheXer, extract shapes from KG mining. In contrast, ontology-
based approaches compute ontologies T-BOX knowledge to produce shapes.

The closest work to sheXer is Shape Designer [256]. Shape Designer consists of
a tool to perform automatic extraction of shapes with KG mining. Both sheXer and
Shape Designer support ShEx and SHACL, and both keep an internal score of how
trustworthy a given constraint can be w.r.t. how frequently is it supported by the
nodes used to extract it. However, there are fundamental differences between these
two approaches. Shape Designer is integrated with a graphic tool and aims to pro-
duce shapes that are not intended to be definitive. The tool extracts candidate shapes
that the user can customize later. In opposition, sheXer aims to produce shapes as
accurately as possible and does not necessarily include human intervention in its
workflow. Also, sheXer and Shape Designer offer different approaches to solve con-
straints including IRIs. Shape Designer uses either the macro IRI or value sets that
can restrict the possible IRIs to a string pattern. sheXer can produce actual shape
inter-linkage, i.e., triple constraints whose object is another shape label.

The system proposed in [257] uses a machine learning approach to generate
SHACL shapes associated with classes. The authors choose class-property combina-
tions and associate them to two types of constraints: cardinality and range. Cardi-
nality refers to the minimum and maximum occurrences. Range refers to the type
of object, which is one of sh:IRI, sh:BlankNode, sh:BlankNodeOrIRI, sh:Literal,
or specific literal types. Both types of constraints have a finite set of possible final
values, so the approach is formulated in terms of a classification problem. Once all
pairs have been associated with their constraints, the constraints of a given class c
are all merged to produce a SHACL shape associated to c.

The approach presented in [112] transforms abstract semantic profiles generated
by ABSTAT [225, 265] into SHACL shapes. ABSTAT generates abstract semantic
profiles of KGs, which essentially consist of statistics regarding relations between
types and data-types. These statistics are then used to generate SHACL shapes.
Since these profiles do not handle the concept of shape, the tool does not perform
shape inter-linkage. However, with such an approach, shape-interlinkage could be
produced in case there is a one-to-one relation between each class and each shape,
so exact mappings can be created. This proposal is the only approach (apart from
sheXer) that we are aware of it is able to produce inverse paths. This system also
computes the frequency in which a certain feature is observed among a group of
nodes. This information is used to exclude part of the information generated by
ABSTAT. As already stated, sheXer uses it for the same purpose, but also to sort the
constraints w.r.t. its trustworthiness score, and to produce text comments that could
be relevant for the user. The constraints regarding cardinality are expressed in terms
of minimum and maximum occurrences outputted by ABSTAT.

Regarding automatic conversions between ontologies and shapes, the authors
in [258] propose using Ontology Design Patterns (ODP) to obtain SHACL shapes.
However, no actual mappings between SHACL and ODP are proposed. In [266], the
authors provide an extended argument for using ODPs to produce SHACL shapes.
ODPs, unlike ontologies, are modular and naturally bounded to application con-
texts, can easily evolve with use cases, and can combine concepts and relationships
of multiple ontologies. ODPs are adequate tools to describe expected schemata in
specific RDF graphs. Therefore, mappings between ODPs to SHACL shapes allows
for reusing ODPs for validation tasks. In [267], SHACL and OWL are thoroughly

4.6. Conclusions 135

compared in terms of meaning and expressiveness. The authors also provide map-
pings between OWL and SHACL. These mappings can be used by proposals that
aim to extract shapes from T-BOX content.

Astrea [259] is a tool to perform automatic extraction of shapes from ontologies.
The authors produce SHACL content by mapping ontology patterns into SHACL
constructions. Astrea is a publicly available tool based on the mappings of Astrea-
KG20. Astrea-KG’s content allows generating SHACL shapes with an expressiveness
that includes 60% of the total constraints available in SHACL.

SHACLerarner, a method to learn SHACL constraints based on Inverse Open
Path rules (IOP), is presented in [260]. SHACLerarner adapts Open Path Rule Learner
(OPRL) [268] to extract IOP rules, which can be translated to SHACL. SHACLearner
works with rules between entities in a KG, which causes that the shapes obtained do
not contain constraints related to literals. Same as sheXer, the authors of SHACLer-
arner evaluate its system using large RDF sources. SHACLerarner proves to be able
to handle a slice of DBpedia containing 11,498M triples in a 66GB RAM environment.

SHACLGEN21 is a public Python library to extract SHACL shapes. It can han-
dle both instance data and ontologies. However, it uses an approach that requires
to load the input data in a triplestore, which leads to scalability issues when han-
dling large input graphs. The private tool TopBraid Composer22 also supports the
extraction of SHACL from ontologies and instance data.

In [269], a method to generate SHACL and ShEx shapes from R2RML documents
is presented. R2RML is a W3C standard language to enable automatic translation
from Relational databases to RDF documents. R2RML files are written also in RDF,
and they describe the mappings from the database’s model to the RDF data model.
Since the generation of shapes is based on R2RML, this approach can be applied
only in KGs whose genesis is a mapped relational database. However, it achieves
excellent conformance with the target data model.

A similar work is presented in [270]. In this case, authors are able to gener-
ate SHACL shapes by using mappings from RDF Mapping Language (RML) [271].
RML is an extension of R2RML. However, unlike R2RML, RML not only allow to
transform relational database schemata into RDF, but it can handle different input
sources. With this, the approach presented in [270] has a broader scope than the
proposal in [269].

Some other previous works extract different schema notions from RDF graphs.
In [272], the authors present an approach to extract frequent graph patterns concep-
tually similar to shapes, whose aim is to characterize the content of RDF triple-stores.
The patterns are represented using an adaptation of Deep-First Search code. The au-
thors in [273] extract Knowledge Patterns from KGs. These patterns are expressed in
OWL and characterize classes by detecting their frequent properties and providing
an adequate range for them.

4.6 Conclusions

At the beginning of this chapter, we stated the following Research Question:

• RQ2: How can we produce shapes by mining RDF triples?

20Endpoint to query Astrea KG: https://astrea.helio.linkeddata.es/sparql Accessed in
2022/05/03.

21https://pypi.org/project/shaclgen/ Accessed in 2022/05/03.
22https://www.topquadrant.com/from-owl-to-shacl-in-an-automated-way/ Accessed in

2022/05/03.

https://astrea.helio.linkeddata.es/sparql
https://pypi.org/project/shaclgen/
https://www.topquadrant.com/from-owl-to-shacl-in-an-automated-way/

136 Chapter 4. Mining triples to extract shapes

To provide an answer to this question, we have developed sheXer, a system
to perform automatic shape extraction based on generalization of instance knowl-
edge. Our proposal extracts shapes by mining the neighborhood of some seed target
nodes. Each extracted constraint is qualified with a trustworthiness score that allows
for filtering infrequent elements, sorting results, and providing extra information us-
ing textual comments.

Despite there are other existing approaches to perform automatic shape extrac-
tion, sheXer fits better in our thesis context because its unique combination of fea-
tures. The features of sheXer that makes it a suitable system to be use in our context
are:

• It is instance-based, which is a prerequisite in our scenario.

• It allows for processing large real-world datasets.

• It performs shape inter-linkage, which allows for producing more specific con-
straints.

• It can extract inverse paths. This let us capture more knowledge about the
neighborhood of the target nodes of a shape.

• Its trustworthiness score allows us to discard features rarely occurring. It also
allows us place the most trustworthy constraints at the top of a shape. Both
goals are key to our scenario, as shapes obtained by instance-based extractors
could be too long and noisy in heterogeneous graphs.

• The possibility of producing ShEx and SHACL content allow us to build a
system whose output is useful for the users of both languages.

Our system is based on an iterative mining strategy that avoids loading in main
memory the entire KG whenever this is possible. The execution time and the peak of
memory usage of our proposal have a linear relation with the number of instances
relevant for the extraction process. However, we have shown that the shapes ob-
tained using large amounts of instances tend to converge with shapes obtained us-
ing a low but representative number of elements. An adequate instance limit has a
significant positive effect on memory usage and execution time, and little effect on
the results’ quality.

The experiments also reveal linear relations between several parameters of the
input and execution times, including the number of triples relevant for the process,
the dataset size, or the number of target shapes. Those relations could become scal-
ability issues when dealing with too large data sources. However, as discussed in
section 4.3.4.1, it is feasible to produce an implementation of sheXer using parallel
computing approaches.

Beyond the context of our thesis, sheXer has proven to be a competitive approach
for the general task of automatic shape extraction. As shown in section 4.4, our cur-
rent implementation of sheXer can be adapted to many scenarios and user prefer-
ences.

We have publicly released a public and free to use Python library which imple-
ments the system described in this chapter.

4.6. Conclusions 137

4.6.1 Future work

Our current implementation of sheXer already fulfills the requirements for the gen-
eral goals of the thesis. However, several future research lines emerge from our
work:

• Producing and evaluating an implementation of sheXer using parallel comput-
ing based on the proposals discussed in section 4.3.4.1.

• Including ontological (T-BOX) information in sheXer’s workflow. The system
could be improved in several ways with such a feature:

– The shapes created could include constraints with an instance-based or
an ontological-based genesis.

– Instance-based constraints could be evaluated before producing the final
results. Those causing some ontological violation could be adapted or
discarded.

– It could be feasible to generate hierarchical results ontology-based. For
instance, our current implementation of sheXer could generate a shape
<PersonShape> for instances of :Person, and a <ITWorkerShape> shape
for instances of :ITWorker. These two shapes could potentially share
many properties. It could be feasible to write <ITWorkerShape> as an ex-
tension of <PersonShape> in case it can be ontologically determined that
the class :ITWorker is a specialization of the class :Person.

• Working on a public benchmark to evaluate proposals for automatic shape
extraction, both on performance terms (execution time, memory usage) and
quality of results. The existence of such a benchmark is key to fairly compare
existing approaches.

• sheXer has been designed to work with RDF data. However, the need of de-
scribing and validating schemata is also frequent in other types of KGs, such
as the property graphs described in section 2.3. Thus, we also plan to adapt
sheXer’s core ideas to other graph models.

139

Chapter 5

Mining shapes from social media

5.1 Introduction

In this chapter, we aim to provide an answer for the following Research Question:

• RQ1: How can we automatically extract shapes from social media content?

To the best of our knowledge, there is no system able to extract shapes from social
media content. The closest existing proposal is described in [22]. This approach
can extract SHACL content from textual descriptions of shape constraints, such as
“Every user has exactly one username” or “Each student has at least one subject enrolled”.
However, such type of content could be hard to find in social media. There are,
however, systems which can perform some tasks that, connected in a pipeline, can
generate shapes by parsing social media content. Specifically, there are two tasks
which could be combined to extract shapes from social content: 1) the automatic
extraction of triples from natural language, and 2) the automatic extraction of shapes
from RDF content.

Extracting triples from natural language requires integrating the output from
several subtasks. Some of those subtasks are NER, EL, and RE.

NER consists in detecting mentions of entities in plain text. In EL stages, the
entities detected with NER are associated to unique identifiers (URIs). Finally, RE is
performed to discover relations between those entities, which, in turn, should also
be associated to URIs (properties). Some existing systems are specialized in solving
NER [274, 275], EL [125, 276, 277], or RE [278, 279] problems, while some others
provide complete solutions for the entire process [280–284].

The problem of extracting shapes from RDF content has been thoroughly studied
in chapter 4. To that extent, we reviewed the existing approaches and developed and
evaluated the library sheXer, which is an instance-based shape extractor.

Therefore, we propose a novel architecture that integrates subsystems of triple
extraction from natural language and shape extraction from RDF content. We have
named it Shape Extraction from Instance Text Mining Architecture (SEITMA). Imple-
mentations of this architecture can be used to perform the tasks associated to RQ3.
SEITMA describes how to integrate the mentioned subsystems to produce using ex-
amples of instances described in natural language. Thus, SEITMA implementations
are suitable candidates to extract shapes from textual content found in social media.

As a first use case for SEITMA, we chose the extraction of shapes from Wikipedia
abstracts of the English Wikipedia chapter. We have implemented two prototypes
following SEITMA specifications that were able to perform such a task. Both use
sheXer to produce the final shapes, but they implement different approaches to ex-
tract triples from the Wikipedia abstracts. The shapes extracted are associated to
important classes in DBpedia, which are determined using the ClassRank algorithm.

140 Chapter 5. Mining shapes from social media

We also use important instances of those classes, which are determined using PageR-
ank. The combination of ClassRank and PageRank allows us to locate a group of
reasonably central entities with presumably more than enough text to be used to ex-
tract shapes for their classes. The input provided to the SEITMA prototypes consists
of a set of Wikipedia abstracts associated to those target DBpedia entities.

Our experiment with Wikipedia abstracts is a proof of concept to 1) prove the
feasibility of SEITMA proposals, and 2) discuss the strengths, weaknesses, and po-
tential uses of different SEITMA implementations. We selected Wikipedia as the
target source of this experiment for several reasons:

• Wikipedia is a public well-known corpus of natural language. Despite be-
ing an example of social media, its community-moderated encyclopedic-like
writing style causes it to have higher quality standards than many other user-
generated text corpora. This quality is a desirable feature to successfully ex-
tract triples from the text.

• Each Wikipedia page contains knowledge associated to a main entity, which is
the title of the Wikipedia page. More specifically, each abstract in a Wikipedia
page is supposed to contain just the core elements describing such entity. This
content matches perfectly the SEITMA expected input, as the architecture must
be fed with descriptions of different examples of a certain class. The concise na-
ture of the Wikipedia abstracts makes them an excellent corpus of short entity
descriptions. Those descriptions are expected to contain features (relations)
that are likely to be found in abstracts of similar entities (instances of the same
class).

• Most Wikipedia pages can be trivially associated with a single DBpedia URI
that stands for the same entity described in the Wikipedia page. The relation
between these two projects allows us to easily locate text descriptions of enti-
ties associated to important classes in DBpedia.

In this chapter, we describe in a detailed way our two prototypes and discuss the
results of the experiments conducted with them.

The potential of the shapes that could be obtained with SEITMA implementa-
tions goes beyond the pure description or validation purposes usually associated to
RDF shapes. The shapes obtained, as a formally structured expression of conceptual
knowledge, could be used for a variety of practical purposes which can be beneficial
in contexts which are not primarily related to RDF environments nor require RDF-
skilled users. Examples of systems that could be built on top of the shapes generated
by a SEITMA implementation are template generators, automatic text classifiers, or
editing tools with content suggestion. In this chapter, we also introduce and dis-
cuss several use cases that were not explored during our experiments. Some of the
use cases require shapes extracted from Wikipedia, but some others are framed in
scenarios involving different text sources.

This chapter’s content is organized as follows:

• In section 5.2, we describe the SEITMA core proposals.

• In section 5.3, we describe our two SEITMA prototypes.

• We start section 5.4 describing our experimental setup. Then, we present and
discuss the obtained results. We also compare our prototypes to each other
and discuss their potential.

5.2. Architecture description 141

FIGURE 5.1: SEITMA core

Natural Language
Corpus

Triple
extractor

Temporal
RDF

Shape
extractor

ShEx/SHACL
Shapes

• In section 5.5, we introduce different use cases which can benefit from shapes
produced using a SEITMA implementation.

• In section 5.6, we provide a review of related work. We focus on those ap-
proaches which perform tasks similar to SEITMA and make emphasis on sys-
tems that extract triples from natural language.

• Finally, in section 5.7, we expose the conclusions of this chapter and describe
lines of future work.

5.2 Architecture description

SEITMA is an architecture for the extraction of shapes associated to classes through
the generalization of knowledge found at instance level. A SEITMA implementation
must be fed with different pieces of text containing information about some target
entities. Those target entities must be associated with a URI and should have, a least,
a type (an RDF class). SEITMA should transform the input text into RDF triples. The
generated RDF content should contain triples in which the URIs associated to the
target entities are used (either as objects or subjects). Then, SEITMA would produce
shapes associated with the classes of those entities.

In this workflow, the instance-level knowledge, which is transformed form raw
text to RDF, is used as an example of a class occurrence. The features associated with
a class are determined by generalizing those examples, i.e., each shape produced
with SEITMA describes the features observed among a class’s instances.

The SEITMA core is graphically represented in Figure 5.1. SEITMA proposes to
combine two potentially independent software elements to perform shape extraction
from pieces of natural language:

• C1, Triple extractor. A component to extract RDF from a natural language
corpus. Two kinds of triples should be extracted:

– Typings. The entities that are going to be used as targets (or seeds) to
extract a certain shape must have the same type.

– A-BOX knowledge. The suitability of the shapes produced is aligned to
the amount and quality of the triples produced at instance level. More
specifically, a SEITMA implementation should generate as many truthful
triples using typed entities as possible.

• C2, Shape extractor. This component will consume the RDF content generated
in the prior stage, group entities by class, and produce shapes associated with
those classes.

142 Chapter 5. Mining shapes from social media

FIGURE 5.2: SEITMA’s C1. General solution for an ML approach

Natural Language
Corpus

Triple extractor

Temporal
RDF

Training data

Feature
extractor

ML
learner

ML
learner

ML
learner

ML predictor

Trained
model

ML predictor

Trained
model

ML predictor

Trained
model

Ontology
mapper

Ontology

Structured
knowledge

Both components can be implemented using a wide variety of approaches, so
both may involve a complex internal architecture. For example, C1 could be based
in a usual combination of NER, EL, and RE analyses to extract entities and relations
in the target text. Then, a mapper could be used to convert the output of those
processes into triples using URIs from some target ontologies.

Figure 5.2 shows an example specification to implement SEITMA’s C1 based on
ML approaches. In general, such a system would require three different input ele-
ments: 1) Training data for prediction models, 2) target text to extract knowledge,
and 3) ontologies so the knowledge extracted can be expressed as triples using con-
trolled vocabularies. The workflow of this example system consists of the following
steps:

1. The training data is sent to the Feature Extractor.

2. The Feature Extractor transforms the positive and negative examples of the
training data into the sets of feature representations expected by ML algo-
rithms.

3. The adapted training data is sent to some ML learners. These learners produce
trained models for identifying entities/relations in new data. Note that this
stage can involve one to many ML learners and can produce one to many trained
models, depending on the algorithms used.

4. The target texts are sent to the Feature Extractor, so they can be also trans-
formed into sets of input features.

5. The sets of features representing the target texts are sent to the ML predictors.
These components are supposed to use the models produced by the ML learn-
ers to perform actual predictions for the input features.

6. The ML predictors should produce results in a structured form. This content,
however, may not consist of actual triples. The ML predictors output is sent to
an Ontology mapper to be transformed into actual RDF which uses URIs from
target ontologies.

7. The Ontology mapper should also produce typing triples for the entity URIs
generated.

5.3. Prototypes 143

Note that Figure 5.2 is just a general solution involving ML. For example, it may
not be needed to perform the mapping stage after the prediction stage. Instead, the
mapping could be partially or totally performed during the feature extraction stage
in case the ML predictors were trained to produce results using URIs from the target
ontologies. .

The type of RDF content produced by C1 should contain instance-level knowl-
edge. For this reason, in every case, the C2 component should be implemented us-
ing an instance-based shape extractor. As explained in chapter 4, the existing au-
tomatic shape extractors could be divided in two broad categories: instance-based
and ontology-based. The later ones analyze T-BOX knowledge to produce shapes.
These shapes are built using direct mappings between ontology restrictions and ele-
ments in the resulting shapes. In contrast, instance-based approaches aim to produce
shapes based on generalization of examples. They explore the A-BOX neighborhood
of some target nodes, so they can extract constraints based on common features ob-
served on those neighborhoods.

5.3 Prototypes

We have implemented two prototypes of SEITMA, named SEITMA-L and SEITMA-
F. These two prototypes aim at the same goal: being able to extract shapes associated
to DBpedia classes using Wikipedia abstracts as input text.

Both systems use sheXer to transform RDF triples into actual shapes, but they
follow different approaches to implement the SEITMA’s triple extractor submodule.
In this section, we describe the internal details of SEITMA-L and SEITMA-F. We
make especial emphasis in the triple generation stage, as the internal complexity of
the shape generation stage was fully described in Chapter 4.

5.3.1 Prototype 1: SEITMA-L

SEITMA-L is based on the ML architecture described in Figure 5.2. The shape ex-
tractor role is played by sheXer. The triple extractor role is played by an ad-hoc
implementation of a system based on the proposals of the work Language-Agnostic
Relation Extraction from Wikipedia Abstracts (LAREWA)1 [285]. SEITMA-L has been
implemented using Python and is publicly available in a GitHub repository2.

In this section, we first enumerate and explain the key proposals of LAREWA
and then describe SEITMA-L.

5.3.1.1 LAREWA

LAREWA consists in an approach to perform NEL and RE in Wikipedia abstracts.
The outputs of this system can be used to automatically generate RDF triples from
Wikipedia’s content. LAREWA’s proposals are based on an ML approach trained
with examples of equivalences between entities mentioned in Wikipedia abstracts
and triples in DBpedia. The examples are used to predict relations between an entity
mentioned in an abstract and the entity mentioned in the abstract’s title. LAREWA’s
main premise is that similar contexts may express similar relations.

Authors in [285] indicate that they were able to generate 1.6M relations (triples)
that were not originally in DBpedia with a precision of 95% using their system.

1The acronym LAREWA has not been coined by the authors of [285]. We introduce this acronym to
improve the readability of this chapter, as this work will be mentioned several times.

2https://github.com/DaniFdezAlvarez/wikipedia_shexer Accessed in 2022/05/03.

https://github.com/DaniFdezAlvarez/wikipedia_shexer

144 Chapter 5. Mining shapes from social media

LAREWA’s model to represent a text context is based on numerical or boolean vari-
ables that are language-agnostic. Thus, potentially, this approach could be used for
any Wikipedia chapter with a corresponding DBpedia chapter in the same language.
LAREWA’s publication indicates how to obtain data to train the ML models and how
to generate new triples with these models.

Finding training data - Authors in [285] do not use human-labeled data to train
LAREWA’s models. Instead, they use distant supervision, i.e., automatic alignments
between text pieces and a database of facts [200]. With such an approach, they can
find pieces of knowledge represented in text form in Wikipedia and in RDF form
in DBpedia. They use these equivalences as positive examples to train the ML al-
gorithms. For a given Wikipedia abstract of an entity e, this process involves the
following steps:

1. They perform NER to locate entities mentioned in the abstract. This process is
trivial, as it merely consists in finding wikilinks3 wi. The text anchored in the
wikilink is the label of the named entity.

2. The URL of e and the links of each wi page are mapped to their corresponding
DBpedia URI. This EL process can be trivially performed too, as the last part
of the path of a Wikipedia URL is identical to the last part of its corresponding
DBpedia URI, and all DBpedia entities belong to the same namespace.

3. For each combination (e, wi), it is checked whether there exists a triple in DB-
pedia such as (e, r, ,wi). If it does exist, then the text context surround-
ing the mention of wi in the Wikipedia abstract of e is considered a positive
example to express the relation r.

4. Negative examples of a relation r are found using ontological knowledge and
local closed world assumption [286]. It is assumed that a certain relation is com-
plete in its local context. Hence, for a relation r and a certain context C, it is
assumed that no other entities are linked with r unless this relation is stated in
C. Gathering negative examples involves the following steps:

(a) For a relation r with at least one positive example (e, r, wa) , it is
checked whether there is any other entity wi mentioned in e’s abstract
compatible with r according to the rdf:range defined for r in the DBpedia
ontology.

(b) For each wi that meets the previous condition, if it is true that there is
not a triple in DBpedia such as (e, r, wi) , then the text context sur-
rounding the mention of wi in the Wikipedia abstract of e is considered a
negative example to express the relation r.

The examples (positive and negative) found for a relation r in a certain abstract
are called candidates of r.

The process of gathering positive and negative examples within a Wikipedia
abstract can be easily explained with an example. The United States’ Wikipedia
page (entity dbr:United_States in DBpedia) contains, among others, mentions to
Washington D.C. (dbr:Washington,_D.C.), New York (dbr:New_York_City), and the
Moon (dbr:Moon). In DBpedia, the triple (dbr:United_States , dbo:capital,

3Wikilinks are Wikipedia hyper-links that lead to another Wikipedia page.

5.3. Prototypes 145

dbr:Washington,_D.C.) exists. Then, we assume that the context surrounding
the mention of Washington D.C. in United States’ abstract is a positive example of
the relation dbo:capital.

To find negative examples for this relation, we look for any mention wi whose
type is compatible with the ontological description of dbo:capital. In this case,
DBpedia ontology states that the range of dbo:capital is dbo:City. Therefore, we
need to find mentions whose DBpedia URI is declared as an instance of dbo:City
or any of its subclasses. For each mention meeting this condition, if there is not a
DBpedia triple such as (dbr:United_States, dbo:capital, wi) , then wi can
be used as negative example. dbr:New_York_City is instance of dbo:City, therefore
dbr:New_York_City’s textual context is used as a negative example of the relation
dbo:capital. In contrast, dbr:Moon, which is instance of dbo:Planet, dbo:Location,
and dbo:Place, is not used as a negative example. This mention is excluded from
any consideration w.r.t. to the dbo:capital relation.

In [286], this procedure is applied over DBpedia properties having explicit do-
main and range definitions in DBpedia ontology.

Features - As already stated, LAREWA is based on a language agnostic ML ap-
proach. Each positive and negative example is mapped to a set of features that de-
scribe the context of a mention. The concept of candidate already described is used in
several features. The features for describing a candidate are the following ones:

F1. Total number of candidates in the abstract.

F2. Total number of candidates in the sentence.

F3. Relative position in the abstract w.r.t. other candidates.

F4. Relative position in the sentence w.r.t. other candidates.

F5. Total mentions in the sentence.

F6. Relative position in the abstract w.r.t. other mentions.

F7. Relative position in the sentence w.r.t. other mentions.

F8. Relative position of the sentence w.r.t. other sentences.

F9. Existence of a back-link in the mention’s abstract to the target entity.

Each relevant mention in an abstract is represented as a vector containing these
9 features plus a boolean value that indicates whether it is a positive or a negative
example.

Performing classifications - Once the training data has been obtained, it is used
to train as many classifiers as properties are under analysis. Each classifier is binary
and works with a single property r. These classifiers receive input vectors with the
features enumerated in the previous subsection. They evaluate whether each vector
is a positive example of the property r. Vectors found positive are used to produce
an actual triple linking the abstract’s title and the mentioned entity by means of r.

In [286] the authors just use those classifiers achieving a precision of at least 95%
evaluated on the training data. From an original set of 395 candidate properties, they
were able to train classifiers meeting this condition for 99 cases.

146 Chapter 5. Mining shapes from social media

FIGURE 5.3: SEITMA-L: implementation based on a language-
agnostic ML approach

Triple extractor

Temporal RDF

Feature
extractor

ML
learner

ML
learnerSklearn
learner

property i

ML predictor

Trained
model

ML predictor

Trained
model

Sklearn predictor

Trained
model

property i

Model
Evaluator

Type cacheBack-link cache

Abstract
Abstract

Abstract

Model
abstracts

Triple
gen.

A-BOX

Types

ShEx/SHACL

sheXer

Target
abstracts

Abstract

Infobox

…

Abstract

Infobox

…

Abstract

Infobox

…

Ontology A-BOX

With those 99 classifiers, they were able to generate 998,993 new relations, i.e.,
triples that were not originally in DBpedia.

The authors evaluated several ML algorithms, including Naive Bayes, RIPPER
[287], Random Forests [288], Neural Networks, and Support Vector Machines (SVM)
[139], and found that Random Forests were the best performers with their training
data.

5.3.1.2 SEITMA-L implementation

The internal architecture of SEITMA-L’s triple extractor is detailed in Figure 5.3.
Similarly to LAREWA, SEITMA-L’s triple extractor works with a workflow con-

sisting of two stages. In the first one, it collects training data and trains a number of
ML classifiers. In the second one, it generates triples using those classifiers.

Stage 1: Training classifiers A number of target Wikipedia abstracts are selected
to be used as model. These abstracts are sent to the Feature extractor module, which
detects positive and negative examples using a system based on LAREWA. Our im-
plementation differs slightly from LAREWA though:

• We compute relations with properties having an explicit domain or range dec-
laration in DBpedia ontology. LAREWA is described to work just with those
properties that have both domain and range explicit declarations.

• SEITMA-L generates two different classifiers for each relation r considered.
LAREWA’s classifier for a relation r work with triples such as (e, r, wi) ,
where e is the entity whose abstract is being parsed and wi is a mention within
this abstract. SEITMA-L also trains a classifier to recognize triples such as (

wi, r, e) , i.e., triples where e is used as object instead of subject. This kind
of triples are useful to obtain shapes with inverse paths.

• Our system uses two special caches to featurize a certain abstract in affordable
time:

5.3. Prototypes 147

– Back-link cache. It is used to determine in O(1) complexity which are
the Wikipedia pages linked from a certain page. This cache is populated
processing DBpedia wikilinks, i.e., DBpedia triples that indicate directed
links between Wikipedia pages.

– Type cache. It is used to determine in O(1) which are the declared types
within the DBpedia ontology for a given entity. This cache is populated
processing DBpedia typing triples.

For n relations considered, 2 · n classifiers are trained. Those classifiers are sent
to a Model evaluator module. This module is used to filter unreliable classifiers. A
certain classifier must meet two conditions to be accepted:

• The data used to train it must contain a minimum number of positive and
negative examples θn.

• Evaluated with a random split of the training data, the classifiers must reach
at least a certain precision θp.

Several ML algorithms were evaluated to be used as classifiers. Using a repre-
sentative sample of entities linked to important classes in Wikipedia4, and setting an
arbitrary θp = 0.75 we found that the algorithm producing better results was SVM.
SVM outperformed the rest of algorithms both in total number of classifiers with at
least θp precision, and average precision among the accepted classifiers.

Stage 2: Triple generation - Two types of inputs are required to perform the stage
of triple generation. On the one hand, the Wikipedia abstracts of the set of entities
E from which the triples are going to be extracted. On the other hand, a local file
containing a partial DBpedia dump. This dump should include, at least, wikilinks
and typing triples. This information is used to build the Back-link and Type-link
caches, which are also used in this stage.

In this stage, target abstracts are sent to the Feature extractor to transform the
candidate mentions into sets of features. This process has some key differences with
the feature extraction performed in stage 1. In that stage, negative examples are
generated w.r.t. to positive ones. For a certain abstract Ae of an entity e, and a certain
relation r, there must be a positive example of r in Ae to look for negative examples
of r in Ae.

In contrast, in stage 2, it is unknown whether a certain mention wi is a positive
example. The classifiers determine this a posteriori. Then, every mention compatible
with a certain relation r in domain and range is used as candidate. An immedi-
ate consequence of this approach is that the number of candidates tend to be much
higher. The less constrained is the domain and range definition of a certain property,
the more noticeable is the increase of the number of candidates.

SEITMA-L generates candidates just for those relations that are associated to a
valid classifier, i.e., a classifier meeting the minimal quality conditions specified with
θn and θp.

Once the candidates are featurized, they are evaluated with their respective clas-
sifiers. The candidates classified as positive examples of a relation are used to gen-
erate RDF triples. This task is performed in the Triple generator module.

The Triple generator also outputs typing triples for the entities in the content
generated using classes declared in the DBpedia ontology. Those typing triples allow
the shape extractor to select which entities should be used to extract which shapes.

4The nature of this sample is described in section 5.4.

148 Chapter 5. Mining shapes from social media

Shapes from triples - sheXer is used to extract shapes from the triples generated.
sheXer is executed using inverse_paths = True and all_classes_mode = True (cf.
section 4.4 for a detailed explanation of these working modes).

This configuration has two consequences. On the one hand, the shapes obtained
can contain inverse paths/triple constraints, i.e., they can describe topological fea-
tures where the focus node is the object of a triple. On the other hand, the system
will output shapes for each class with at least an instance. Therefore, SEITMA-L will
produce shapes related to the classes of the target abstracts, but also shapes for the
classes of entities mentioned in those abstracts.

About input files and system requirements - SEITMA-L does not use any Appli-
cation Programming Interface (API) nor remote endpoint. Every input is provided
via local files. The required files are the following ones:

• Wikipedia dump file to get both the model and target abstracts to mine.

• DBpedia partial dumps, including:

– Typing triples to build the Type cache.
– Wikilinks to build the Back-link cache.
– Object-to-object relations, to identify positive and negative candidates

in stage 1.
– Class hierarchy and domain/range declarations for elements within the

DBpedia ontology, so negative examples in stage 1 and candidates in
stage 2 can be identified.

Avoiding the use of any kind of on-line service has several effects.
On the positive side, it enables to perform big computations. Wikimedia public

APIs apply temporal Internet Protocol (IP) bans after receiving too many requests
from a certain IP address in a short time period. One cannot make extensive use of
these services without a special permission from Wikimedia.

On the negative side, the hardware requirements to execute SEITMA-L increase,
as one need to have enough disk space to store the dump files and enough Random
Access Memory (RAM) memory to allocate some index structures. The two software
pieces that demand more RAM are the Back-link cache and the Type cache.

The Wikipedia dump and the object-to-object link graph do not need to be allo-
cated in main memory. These two structures are parsed iteratively by the Feature
Extractor. That submodule keeps in main memory only the relevant information
related to the target entities and their mentions.

5.3.2 Prototype 2: SEITMA-F

As with SEITMA-L, SEITMA-F uses sheXer in the role of shape extractor. For the role
of triple extractor, SEITMA-F uses an ad-hoc implementation based on the FRED
system [176]. In this section, we will first describe FRED. Then, we will describe our
prototype’s architecture and workflow.

5.3.2.1 FRED

FRED is presented as a machine reader, i.e., a tool able to transform text in natural
language to some sort of knowledge with a formal structure. Specifically, FRED
transforms natural language into RDF/OWL ontologies.

5.3. Prototypes 149

FIGURE 5.4: DRS representation of “Larry likes coffee. If someone likes
it, he drinks it.”

x y

x = LARRY

LIKE (x, y)

COFFEE (y)

u v

LIKE (u, v)

v = y

w

DRINK (u, w)

w = y

The graphs produced by FRED are designed according to Frame Semantics [289].
In this theory, a frame describes a system in which a certain element cannot be com-
pletely understood without the others. For instance, the complete meaning of a verb
such as eat in a certain context requires to know circumstantial elements such as
what is being eaten or who/what is eating it. FRED represents frames using OWL n-ary
relations5 [290]. The frames’ roots are instances of some kind of event or situation.

FRED’s workflow consists of the following steps:

1. The input text is transformed to Discourse Representation Structures (DRSs),
based on Discourse Representation Theory [291]. DRSs are informally called
boxes due to its box-like visual representation. For example, a sequence of sen-
tences such as “Larry likes coffee. If someone likes it, he drinks it.” can be repre-
sented using the DRS shown in Figure 5.4. DRS supports First Order Logic.
Using the previous example, it could be inferred that “Larry drinks coffee”. In
order to transform natural language into DRSs, FRED uses the tool Boxer [292].

2. Boxer is able to perform some Coreference Resolution (CRR) tasks. However,
the FRED system improves those capacities by integrating Boxer with other
tools. Pronoun CRR is improved by computing Boxer’s output with CoreNLP
[293]. Similarly, Boxer’s NER capabilities are improved by computing its out-
put with TAGME [294]. That system is able to recognize entities in short
texts. It also performs EL, as it can link the recognized entities to the title of
a Wikipedia page. Boxer, CoreNLP, and TAGME are combined to produce the
DRSs that will be processed in the next stages.

3. The DRSs are sent to a module to be transformed into triples. That module
performs several heuristic-based subprocesses to achieve such a general goal:

• Taxonomy induction. FRED is able to identify compound terms and infer
taxonomies. For example, FRED may find that the event of a class is a
SoccerMatch. This is a compound term formed by the ideas Soccer and
Match. FRED can express this notion by producing a triple such as (

fred:SoccerMatch , rdfs:subClassOf , fred:Match) .

5RDF basic model is binary, as a triple represents a relations between two elements. N-ary relations
are used to link n elements. Extra vocabularies can be defined in order to support semantically rich
properties to represent n-ay relations.

150 Chapter 5. Mining shapes from social media

• Variable reification. FRED represents n-ary relations using RDF reifica-
tion schemata.

• Periphrastic relation extraction. FRED recognizes periphrastic relations
annotated by means of prepositions, such as “born to” or “going to”. Using
prepositions as relations in a semantic graph can lead to incongruence.
For example, the notion of “to” in “born to” and in “going to” is quite dis-
similar. FRED identifies the element associated to a certain preposition to
create periphrastic relations, such as fred:bornTo and fred:goTo.

• Frame and situation extraction with Semantic Role Labeling (SRL). The
n-ary relations are represented by means of frames or verbs from existing
vocabularies when possible. Specifically, FRED reuses verbs as frames
from VerbNet [295] and FrameNet [207]. Roles w.r.t. the frame situation
are identified and labeled too.

• Representation of several aspects, such as role propagation, entailment,
modality, negation, qualities, and tense.

4. The heuristic-based triplication outputs a first version of an RDF graph. This
preliminary result is sent to a module of graph enrichment which executes the
following tasks to produce a final result for the user:

• Entity Linking. TAGME’s results are used in the graph enrichment mod-
ule to perform EL. Entities recognized by TAGME are linked to a DBpe-
dia URI using owl:sameAs axioms. Both individuals and classes can be
enriched with these axioms.

• Type induction. The owl:sameAs axioms can produce new rdf:type dec-
larations by using the semantics declared in external ontologies.

• Ontology alignment via Word Sense Disambiguation (WSD). FRED per-
forms WSD by linking classes with equivalent or broader elements in
WordNet [206] and BabelNet [296] when appropriate. The WSD pro-
cess can also perform alignments with WordNet supersenses6 and a subset
of DOLCE+DnS Ultra Lite (DUL) classes. This process is performed by
means of the UKB tool [297].

• Compositional Association Induction. The taxonomies induced from
compound terms are enriched in this stage. When the feature that it is
used to specialize a class is a noun, FRED adds triples with the property
dul:associatedWith to the results. When this feature is expressed as an
adjective or adverb, FRED uses dul:hasQuality. For example, fred:SoccerMatch
is a specialization of fred:Match that is related with the concept of Soccer
(a noun). In this case, FRED would enrich the graph by adding the triple
(fred:SoccerMatch , dul:associatedWith , fred:Match) .

• Validation and possibly correction of the RDF content produced after
executing every heuristic for triple extraction and graph enrichment.

• Textual annotation. FRED can annotate pieces of the text parsed with
the triples produced. This annotation is performed using the Earmark
vocabulary [298] and the NLP Interchange Format (NIF) [299].

6WordNet senses are sometimes too fine-grained even for human annotators. WordNet supersenses
consist of a much smaller coarse-grained set of elements, with less precise semantics but easier to
handle for classification tasks.

5.3. Prototypes 151

FIGURE 5.5: SEITMA-F: implementation based on FRED

Triple extractor

Temporal RDF

ShEx/SHACL

sheXer

Target

abstracts

Abstract

Infobox

…

Abstract

Infobox

…

Abstract

Infobox

…

<<external API>>API

FRED-API

Abstract

normalizer

Graph

lterer

Type

injector

FRED

consumer

Typings

Type cache

5. The graph produced during the enrichment stage is returned as result.

The processes described up to now works with English content, but FRED ac-
cepts 48 different input languages. Non-English content is translated to English us-
ing external APIs, and then sent to FRED’s core workflow.

FRED can be executed in several ways. One can use a public on-line demo7 that
consumes a REST8 API. FRED is also offered as a Python library9 that consumes the
same REST API. This REST API can be accessed by some other mechanisms such as
CURL commands.

At the time of this writing, anyone can use the public on-line demo. However,
in order to work with the Python library or to consume the REST API by any other
means, one need to request an API key to FRED’s maintainers10.

5.3.2.2 SEITMA-F implementation

The internal architecture of SEITMA-F’s triple extractor is detailed in Figure 5.5.
SEITMA-F’s triple extractor integrates FRED in a workflow composing the following
steps:

1. The system receives some raw Wikipedia abstracts. Those abstracts are written
in markdown [300], as they are found in the Wikipedia XML dumps.

2. The abstracts are sent to a Abstract normalizer module. This module removes
markdown features to transform the content in plain text.

3. The normalized content is sent to the FRED consumer module. The main goal
of this module is to query the FRED API to transform the input text into an
RDF graph. To do so, it performs several actions:

7http://wit.istc.cnr.it/stlab-tools/fred/demo/? Accessed in 2022/05/03.
8REST stands for Representational State Transfer.
9http://wit.istc.cnr.it/stlab-tools/fred/fredlib.py Accessed in 2022/05/03.

10Cf. http://wit.istc.cnr.it/stlab-tools/fred/demo/? Accessed in 2022/05/03.

http://wit.istc.cnr.it/stlab-tools/fred/demo/?
http://wit.istc.cnr.it/stlab-tools/fred/fredlib.py
http://wit.istc.cnr.it/stlab-tools/fred/demo/?

152 Chapter 5. Mining shapes from social media

• It splits the abstract in smaller units (chunks), usually composed by a
couple of sentences. These units are sent to the FRED API in different
requests. Splitting the abstracts with this strategy can lead to CRR errors
due to a lack of context for some sentences. However, the FRED API
does not support the computation of big text chunks. The splitting is
performed in such a way that FRED can process each unit within a single
API request.

• It handles API response errors to retry the computation of conflictive units
by dividing them in smaller chunks.

• As aforementioned, one needs an API Key to work with FRED API. Each
API key is associated with some usage restrictions w.r.t. maximum peti-
tions within a minute and maximum petitions within a day. The FRED
consumer module schedules requests to FRED API so the API key limits
are not exceeded.

• It integrates the results of successive API calls into a single RDF graph
result.

4. The results collected by the FRED consumer are sent to the Graph filterer mod-
ule. Even if this content is always related somehow to the central abstract’s
entity, the triples extracted are not always directly linked with the abstract’s
target entity. The mission of the Graph filterer is to locate and adapt those
triples which are directly linked with the abstract’s entity. This module works
as follows:

(a) For a certain graph Gi obtained from the abstract of an entity ei, the mod-
ule looks for the DBpedia URI of ei in Gi. Finding ei’s DBpedia URI in Gi
implies that FRED has correctly identified a mention of ei in the text, as
it has been able to enrich it with the adequate DBpedia URI. If this URI
is not found, Gi is discarded, as there is no evidence that the knowledge
produced by FRED is actually referring to ei.

(b) The module looks for every node nij such that a triple (nij, owl:sameAs,

ei) exists in Gi. nij nodes are expected to be URIs in the fred names-
pace.

(c) A temporal graph G′i is created. This graph is seed with every triple of Gi
using a nij node. However, these triples are stored in G′i changing every
mention of a nij node by the DBpedia URI of ei.

(d) The triples containing types of those elements found in the opposite po-
sition of each triple using a nij are also added to G′i .

(e) The module removes from G′i any triple whose predicate belong to a user-
configured list Lban. We have introduced Lban to avoid some properties
frequently found but barely meaningful, such as prepositions (fred:to,
fred:as, etc.)11 that were not used to create a compositional relation
within FRED’s workflow.

(f) The content produced by the Graph filterer is sent to the Type injector mod-
ule. Here, every DBpedia URI is located. For each URI wi, the module in-
troduces every type declared for wi within the DBpedia ontology names-
pace which was not already include by FRED in the resulting graph. For

11In FRED’s output, the prepositions to and as can be used as predicate in a triple and are rep-
resented with the URIs <http://www.ontologydesignpatterns.org/ont/fred/domain.owl#to> and
<http://www.ontologydesignpatterns.org/ont/fred/domain.owl#as> respectively.

5.4. Experiments 153

such a task, it uses a Type Cache. The Type Cache module is built using the
same data and works in the same manner as described for SEITMA-L.

(g) Every Graph Gi produced from the abstract of an entity ei is integrated in
a single RDF graph G. G is the output sent to the shape extractor.

Shapes from triples SEITMA-F also uses sheXer with inverse_paths = True and
all_classes_mode = True to extract shapes from the triples generated.

The temporal RDF graphs generated by SEITMA-F are centered in the content
related to the target entities, i.e., entities that are an instance of a target class. When-
ever the system is able to extract knowledge of at least one instance of a target class,
a shape for this target class is produced. During this process, target entities can be
linked with non-target entities. The types associated with those target entities using
rdf:type triples also produce a shape.

Usually, when SEITMA-L and SEITMA-F are fed with the same target abstracts,
SEITMA-F is able to extract more shapes. This is because SEITMA-L works exclu-
sively with classes within the DBpedia ontology, while SEITMA-F graphs also uses
other types generated by FRED.

About input files and system requirements - SEITMA-F requires the following
inputs:

• Wikipedia dump file containing the target abstracts to mine.

• DBpedia typings, to build the Type cache.

• A valid FRED API key.

Every SEITMA-F computation is performed locally with the exception of the re-
quests to FRED API. Those requests can be a bottleneck though. The API Key that
we used during our experiments allows us to perform a maximum of 7,500 calls per
day. Since the API calls to FRED API usually contain two sentences, this makes a
maximum of 15,000 sentences parsed per day in optimal conditions. However, the
number of sentences parsed per day is usually lower due to sentences that are too
long to be parsed in couples and API calls that return an error.

SEITMA-F needs less resources than SEITMA-L to allocate caches in main mem-
ory, as SEITMA-F uses a Type cache but does not need a Back-link cache.

5.4 Experiments

In this section, we describe some experiments with our two SEITMA implemen-
tations. Those experiments are not designed to produce optimal shapes for each
abstract parsed, but to demonstrate the potential of systems based on SEITMA’s
proposals. Actually, the notion of optimal for the task of extracting shapes form nat-
ural language pieces can be hard to define without a benchmark to compare with or,
at least, a well-established context of application.

The target abstracts to extract shapes are chosen using importance criteria based
on ClassRank and PageRank notions. The shapes extracted from those abstracts
let us discuss the strengths and weaknesses of each prototype, propose application
domains, and suggest different configurations, adaptations, or new prototype pro-
posals.

154 Chapter 5. Mining shapes from social media

In order to make our experiments reproducible, we provide a link to every file,
configuration, and material used in this process12. The Wikipedia dump used is
available on-line on our data servers13. The rest of input files are related to DBpedia.
They are all available in a DBpedia’s Databus collection or our data servers14. That
Databus collection includes:

• Object to object relations: files mappingbased-objects and infobox-properties.

• Links between Wikipedia pages: file wikilinks.

• Instance-class relations: file instance-types.

We have extracted shapes for 200 target classes, which are the 200 most impor-
tant classes of the DBpedia ontology according to ClassRank (cf. chapter 3 for more
information about ClassRank). ClassRank was executed using rdf:type as the only
class-pointer and setting the standard configuration α = 0.85. The set of classes
C to rank consists of every element in DBpedia’s ontology within the namespace
dbo. Since C is known a priori, it was not necessary to execute the ClassRank class-
discovery stage detailed in Algorithm 1 of Chapter 3.

We have detected the most important instances of each class using the PageRank
algorithm [301]. PageRank was executed with the standard configuration α = 0.85
over an object-to object DBpedia subgraph. This subgraph was obtained by merging
the object-to-object triples in the mappingbased-objects and the infobox-properties files.
This means that we have ranked the importance of instances w.r.t. the DBpedia link
structure. A different and feasible option would have been to rank entities w.r.t.
to the Wikipedia’s structure. For that, one can apply PageRank over the wikilinks
graph, which can be easily parsed using DBpedia’s wikilinks file.

The maximum number of instances used per class was set to 300 items. Never-
theless, note that not every class on the top 200 ranking has 300 instances. Every
available instance among that group of 300 (as most) was used to get a shape for
their corresponding class.

There are some special classes whose instances are relevant for the DBpedia
graph but do not have associated Wikipedia pages. An insightful example of such
a class is dbo:CareerStation15. This class ranks 2nd with ClassRank, but none of
its instances is related to a Wikipedia page. Those kinds of special instances were
excluded from further analyses. Consequently, some of the classes of the top 200,
such as dbo:CareerStation, do not produce any shape as they cannot be mined in
Wikipedia using any SEITMA implementation.

Thus, the total number of abstracts processed was 38,247. Note that some of those
abstracts are linked to entities which are among the 300 most important instances of
more than one target class.

12In order to reproduce SEITMA-F experiments, one should use a personal FRED API key
13The dump used is no longer available in Wikipedia servers, but it can be downloaded from the

following link: http://data.weso.es/setima/ . This data is shared using GDFL license, i.e., un-
der the same conditions of Wikimedia’s servers. Check license description at https://www.gnu.org/
licenses/fdl-1.3.html Accessed in 2022/05/03.

14The Databus collection contains most of the target DBpedia files and can be downloaded at
https://databus.dbpedia.org/danifdezalvarez/collections/seitma_inputs . The OWL file con-
taining class and property definitions can be downloaded from https://data.weso.es/seitma/

dbpedia_2021_07.owl Accessed in 2022/05/03.
15The property dbo:CareerStation “links to a step in the career of a person, e.g. a soccer player, holding

information on the time span, matches and goals he or she achieved at a club”. Cf. http://dbpedia.org/

ontology/careerStation Accessed in 2022/05/03.

http://data.weso.es/setima/
https://www.gnu.org/licenses/fdl-1.3.html
https://www.gnu.org/licenses/fdl-1.3.html
https://databus.dbpedia.org/danifdezalvarez/collections/seitma_inputs
https://data.weso.es/seitma/dbpedia_2021_07.owl
https://data.weso.es/seitma/dbpedia_2021_07.owl
http://dbpedia.org/ontology/careerStation
http://dbpedia.org/ontology/careerStation

5.4. Experiments 155

One can obtain the list of top classes and their most important instances by ex-
ecuting ClassRank and PageRank as it has been indicated. However, to facilitate
the reproducibility of our experiments, we have published the list of top classes and
their respective instances as a JSON file16.

We executed SEITMA-L and SEITMA-F using the target abstracts and input files
described. In the following subsections, we detail the configurations and results
obtained with each prototype.

5.4.1 Experiments with SEITMA-L

We have divided the content related to SEITMA-L experiments in three sections.
First, we explain the inputs and settings used. Then, we analyze the output obtained.
Finally, we discuss the prototype’s potential and applicability to other scenarios.

5.4.1.1 Inputs and settings

As already explained, SEITMA-L requires two types of input abstracts. On the one
hand, it needs some reference abstracts Ar to extract positive and negative examples.
These examples are used to train k · 2 classifiers, where k is the number of properties
used in those examples. On the other hand, it requires some target abstracts At to
extract triples using the trained classifiers.

Let us denote FAr the set of examples extracted from Ar. Also, let us denote FAt

the set of candidates extracted from At In this experiment, Ar = At. Despite this, FAr

and FAt are disjunct, i.e., FAr

⋂
FAt = ∅. Also, it can be observed in the data collected

that |FAr | << |FAt |. There are several reasons for those facts:

• At the stage of training data generation, negative examples of a certain prop-
erty r in a certain abstract a are generated just in case there is a positive exam-
ple of r in a. Since this is not the case at the stage of candidate generation, the
number of candidates for predictions tends to be much bigger than the number
of training examples. Using the abstracts described, the original set of candi-
dates C detected contains 2,414,222 elements, while number of examples FAr

collected is 11,338.

• Domain and range inference are used to find negative examples, but are not re-
quired to find positive ones. For a certain abstract ae of an entity e, we consider
that a mention wi is a positive example when there is a triple te,wi in DBpedia
that links wi and e by means of a relation r. The existence of te,wi is considered
enough evidence to determine that the context of wi is a trustworthy positive
example of the relation r. However, on some occasions, te,wi produces some
constraint violation according to the domain and range definition of r in the
DBpedia ontology. Therefore, wi is used as a positive example in the train-
ing data stage, but it is not even detected as candidate in the prediction stage.
3,872 examples do not belong to the original set of candidates C, i.e., 21% of
the elements in FAr .

Just 7,466 of the elements of C are in FAr too. We denote C′ the set of candidates
that exclude those elements, i.e, C′ = C \ FAr . In our experimentation, C′ is used
as the set of candidates FAt . Then, FAt and the set of examples FAr totally disjoint.
In those conditions, every triple predicted in SEITMA-L’s triple generation stage is

16One can download this file using the following URL: http://data.weso.es/seitma/

300instances_from_200classes.json Accessed in 2022/05/03.

http://data.weso.es/seitma/300instances_from_200classes.json
http://data.weso.es/seitma/300instances_from_200classes.json

156 Chapter 5. Mining shapes from social media

new, i.e., it is a triple which is not in DBpedia. The total number of elements in
FAt is 2,406,756. In order to facilitate the reproduction of this experiment, we have
published the list of final examples and final candidates used. They are contained
in two Comma Separated Values (CSV) files. In those files, each row represents an
example/candidate already mapped to a set of features by SEITMA-L17.

Despite LAREWA’s approach for triple prediction is language-agnostic, the ab-
stracts used for training and the abstracts used for predictions should be in the same
language. This is because both syntactical and cultural aspects may affect how the
information is expressed, or even what kind of information is more frequently added
to Wikipedia.

Our intuition is that a similar premise could affect the performance of the models
if they are trained with central entities but used to predict knowledge in non-central
ones. That is, the most central entities of each class may be the ones which are more
actively edited and moderated by the community, so they could contain more and
better written knowledge than non-central ones. Such special features of central
entities may decrease the performance of prediction models when they are used
with less important elements. For this reason, we decided to use the same abstracts
to train data models and to produce triples from.

SEITMA-L needs a value for three internal thresholds:

• θs, sheXer’s acceptance threshold (cf. section 4.4). We arbitrarily set θs = 0. As
this experimentation seeks to analyze the potential of SEITMA-L, this value
allows us to inspect every piece of knowledge extracted.

• θp, minimum precision that a model must achieve to not be discarded. We
arbitrarily set θp = 0.75. This is a low value for the specific task of triple
prediction. However, SEITMA-L aims to produce shapes rather than triples.
A moderated error on triple prediction in our scenario can affect the sheXer’s
constraint ratios, and thus alter the order of constraints, but it is not expected
to cause the removal of a constraint, especially when θs = 0.

• θn, minimum number of examples to train a model. We chose a value for θn
that let us keep at least the arbitrary percentage of 30% of all the models with
at least a training example (achieving a minimum precision θp = 0.75). There-
fore, we set θn = 13, as using such a value 66 out of 220 potential models can
be accepted. θn = 13 can be a low number too, as we may be accepting mod-
els trained with non-representative enough data. However, such a setting for
θn let us produce shapes using properties which are not frequently observed
among the examples in this experimental proof of concept, even if those mod-
els may have over fitting problems due to the sample size [302].

In Table 5.1, we provide summary data about the candidate and accepted models
in our experiments.

Let us denote P-R a combination of a Property p and a certain Role r (one of sub-
ject or object) for an abstract’s entity in a triple. Each P-R is a candidate to train a
classifier. As one can see in Table 5.1, the total number of P-R seen in the training
abstracts is 220. However, despite using a low minimum sample size θn = 13, only
88 P-R had enough examples to train and evaluate a model. Using a minimum tar-
get precision of θp = 0.75, only 66 models were accepted. With this setting, the total

17Examples can be downloaded at http://data.weso.es/seitma/seitma_l_example_features.

zip . Candidates can be downloaded at http://data.weso.es/seitma/seitma_l_candidate_

features.zip Accessed in 2022/05/03.

http://data.weso.es/seitma/seitma_l_example_features.zip
http://data.weso.es/seitma/seitma_l_example_features.zip
http://data.weso.es/seitma/seitma_l_candidate_features.zip
http://data.weso.es/seitma/seitma_l_candidate_features.zip

5.4. Experiments 157

Nº of P-R with at least a positive example 220
Nº of P-R considered with θn = 13 88
Nº of models accepted with θn = 13 and θp = 0.75 66
Nº of properties with at least an accepted model 54
Average precision of accepted models 0.93
Average sample size of accepted models 268.52
Standard deviation w.r.t. precision of accepted models 0.07
Standard deviation w.r.t. sample size of accepted models 316.98

TABLE 5.1: Summary data about automatic classifiers in SEITMA-L
experiments.

number of properties used to produce triples is 54. That is, some properties gener-
ated two models, so they can be used to predict direct and inverse triples w.r.t. the
role of the abstract’s entity.

The low values of θn and θp were set to accept some interesting domain specific
properties with few uses. Note that, despite those low threshold values, the average
precision of the used models is 0.93, while the average size of the sample for training
a P-R model is 316.98. As the standard deviation w.r.t. precision indicates, most
of the models are close to the 0.93 average precision. However, we can observe a
huge dispersion w.r.t. sample size. Several P-R classifiers were trained using small
samples, while some others had much more training examples than the average.

5.4.1.2 Outputs

In this subsection, we first show an example of a shape extracted with SEITMA-L.
We comment some features that can be observed in this example and let us perform
a first qualitative analysis of SEITMA-L’s output. Then, we perform a statistical
analysis of the shapes generated with SEITMA-L.

Example shape - In Figure 5.6, we show a reduced version of the shape :Band

produced by SEITMA-L during our experiments. The original shape :Band is 109
lines long. Part of the content has been removed so the shape can be displayed in
this document (comments starting with “# ...” mark removed parts). This shape
aims to generalize features observed among the instances of the class dbo:Band.

First, note that there is not a single Triple Constraint (TC)18 whose node con-
straint is a literal type. This is true for every shape generated with SEITMA-L. The
SEITMA-L’s triple generator module mines Wikipedia object-to-object relations. No
object-to-literal relation is computed during that stage, so no triple nor shape con-
taining literals is produced.

Note that many :Band’s TCs define a cardinality that includes a zero-case. Most
of the times, this cardinality is zero-to-many (‘*’), but examples of optional (‘?’) are
also found. This fact is not just observed in the shape :Band, but also in many shapes
produced by SEITMA-L, especially those built using a large number of triples.

This fact indicates that few features mined by sheXer are observed in every in-
stance of a certain class. When mining a big crowd-sourced dataset such as Wikipedia,
this observation makes sense in general. It is unlikely that every instance of a certain
class defines a value for a certain property.

18TC is a non-standard abbreviation of the concept triple constraint. We will use it to improve the
readability of this chapter.

158 Chapter 5. Mining shapes from social media

FIGURE 5.6: :Band. A shortened example of a shape produced by
SEITMA-L

1

2 :Band

3 {

4 rdf:type [dbo:Band] ; # 100.0 %

5 dbo:designer IRI * ;

6 # 59 .34065934065934 % obj: IRI. Cardinality: +

7 # ...

8 # 56 .043956043956044 % obj: @:MusicalArtist. Cardinality: +

9 # 2.197802197802198 % obj: @:Artist. Cardinality: {1}

10 # 1.098901098901099 % obj: @:Royalty. Cardinality: {1}

11 # 1.098901098901099 % obj: @:Guitarist. Cardinality: {1}

12 # 1.098901098901099 % obj: @:Politician. Cardinality: {1}

13 # 1.098901098901099 % obj: @:ComicsCreator. Cardinality: {1}

14 dbo:location IRI * ;

15 # 45 .05494505494506 % obj: IRI. Cardinality: +

16 # ...

17 # 34 .065934065934066 % obj: @:City. Cardinality: +

18 # 7.6923076923076925 % obj: @:Settlement. Cardinality: {1}

19 # 4.395604395604396 % obj: @:AdministrativeRegion...

20 # 3.296703296703297 % obj: @:Town. Cardinality: {1}

21 # 3.296703296703297 % obj: @:Country. Cardinality: {1}

22 # ...

23 dbo:origin IRI * ;

24 # 45 .05494505494506 % obj: IRI. Cardinality: +

25 # ...

26 # 34 .065934065934066 % obj: @:City. Cardinality: +

27 # 6.593406593406594 % obj: @:Settlement. Cardinality: {1}

28 # 4.395604395604396 % obj: @:AdministrativeRegion...

29 # 3.296703296703297 % obj: @:Town. Cardinality: {1}

30 # 3.296703296703297 % obj: @:Country. Cardinality: {1}

31 # 1.098901098901099 % obj: @:CityDistrict. Cardinality: {1}

32 # ...

33 ^ <http :// dbpedia.org/ontology/developer > IRI * ;

34 # 37 .362637362637365 % obj: IRI. Cardinality: +

35 # 31 .868131868131865 % obj: @:MusicGenre. Cardinality: +

36 # ...

37 # 15 .384615384615385 % obj: @:Song. Cardinality: +

38 # 14 .285714285714285 % obj: @:Album. Cardinality: +

39 # 12 .087912087912088 % obj: @:Person. Cardinality: +

40 # ...

41 dbo:owningCompany @:RecordLabel * ;

42 # 23 .076923076923077 % obj: @:RecordLabel. Cardinality: +

43 # ...

44 dbo:hometown IRI ? ;

45 # 8.791208791208792 % obj: IRI. Cardinality: {1}

46 # 7.6923076923076925 % obj: @:City. Cardinality: {1}

47 # 1.098901098901099 % obj: @:Town. Cardinality: {1}

48 dbo:associatedMusicalArtist @:Guitarist ? ;

49 # 1.098901098901099 % obj: @:Guitarist. Cardinality: {1}

50 ^ dbo:publisher @:Album ?

51 # 1.098901098901099 % obj: @:Album. Cardinality: {1}

52 }

53

5.4. Experiments 159

There are different situations in which a TC with a zero-case cardinality can be
generated:

• The feature studied is correctly identified as optional. For instance, the rights
of a certain band may or may not be owned by a company.

• The feature is not optional, but the source data is not complete. For example,
the shape indicates that 45% of the bands has an origin. This may be true
according to the mined information, but it is probable that this happens due to
incompleteness of the source of information.

• The approach fails to extract the target knowledge. This shape indicates that
only 1% of the bands has some dbo:associatedMusicalArtist. It also indi-
cates that, when this association exists, the artists is a :Guitarist. Both state-
ments seem inaccurate. It is probable that more bands are associated to musical
artists in Wikipedia, and that those artists have roles different than guitarist.

The actual reason of a cardinality including a zero-case may be hard to automat-
ically identify, and to fix in case it is an error. Wrong zero-case cardinalities, regard-
less of their cause, could be fixed with human supervision a posteriori, or by adding
some extra computation layers to the shape extractor module. For example, such
layers could consist of using external and trustworthy ontological knowledge about
the target classes, or implementing some ML approach able to identify non-optional
relations.

A salient exception of this observation w.r.t. TC cardinalities are the typing con-
straints. Every shape must have at least a TC which uses a value set to indicate the
type that is related with the shape label. This type is the feature that sheXer uses to
distinguish which instances are used to extract which shapes. Then, TCs describing
the main type of a shape have a cardinality of exactly one and are observed in 100%
of a shape’s related instances.

Another feature observed is that the node constraint of most of the :Band’s TCs is
the macro IRI. This happens because there is not a unique shape that conforms with
every node observed at the opposite side of the focus node for a certain relation.
This fact causes the TC to be less informative for description tasks and less useful for
validation tasks, as the combination of the node constraint IRI and the ‘*’ cardinality
may be too unspecific.

Nevertheless, sheXer provides text comments with statistical observations that
can help to increase the value of each constraint. For example, a node conforming
with :Band could have a dbo:location of type IRI. The comments indicate that
45% of them has at least one location though. Also, several comments indicate fre-
quent types of those locations, such as :City, :Settlement, :AdministrativeRegion,
:Town, or :Country. In addition, several comments indicate that a frequent cardinal-
ity for this relation is exactly one. All these pieces of information can help human
experts or further processing layers to transform too general TCs into more specific
values regarding the specificity of the node constraint and the cardinality.

In the :Band shape, we can see some examples of TCs with a node constraint dif-
ferent to IRI. In general, there are two main scenarios where such precise constraints
tend to appear:

• Properties with precise domain and range definitions. Domain and range
definitions tend to use classes general enough to not cause constraint vio-
lations. For example, the range defined for the property dbo:origin is

160 Chapter 5. Mining shapes from social media

dbo:PopulatedPlace 19, and dbo:PopulatedPlace is a class with many dif-
ferent subclasses. This makes unlikely to happen that each dbo:origin of each
:Band is an instance of the same subclass. To increase the node constraint speci-
ficity, it is feasible to think about using a supershape representing the essen-
tial features of dbo:PopulatedPlace. This supershape could be extended by
shapes linked to the subclasses of dbo:PopulatedPlace. However, at the time
of this writing, the concept of shape inheritance is not yet supported by ShEx
nor SHACL20.

In contrast, the range of dbo:owningCompanny is dbo:Company21, which is a su-
perclass of dbo:RecordLabel. Compared to dbo:PopulatedPlace, the class
dbo:Company restricts more the possible object types. SEITMA-L is benefited
from this at the triple generation stage, as the number of candidates for this re-
lation is reduced. Then, the shape generator module works with triples whose
objects are more homogeneous, and the chances of finding precise node con-
straints are increased.

• Properties rarely observed. This seems the case of the TCs expressed in lines
48 and 51. Those two features are just observed for 1% of the :Band instances.
When a certain feature is observed for few instances, the chances of agreement
w.r.t specific node constraint are increased.

The :Band shape also includes some comments that seem to reveal wrong pre-
dictions in the triple generation stage. For example, line 39 indicates that it has been
observed that 12% of the bands are developers of one or more :Person nodes.

A triple such as (b, dbo:developer, p) , where b is an instance of dbo:Band
and p is an instance of dbo:Person is, indeed, ontologically correct: dbo:developer
defines a range of dbo:Agent, which is a superclass of dbo:Person, and it does not
define any domain. However, the property dbo:developer is described in its ontol-
ogy in the following terms: “Developer of a Work (Artwork, Book, Software) or Building
(Hotel, Skyscraper)”22. This definition does not seem to suggest that an instance of
dbo:Person is a valid object for a triple whose predicate is a dbo:developer. Also,
one can assume that 12% of the Wikipedia abstracts of dbo:Band instances (maybe
not even a single one) state such a relation between a person and a band.

In this example, it is also noticeable that the actual number of TCs (7 direct and
2 inverse) is low compared with the potential notions that a human could have an-
notated from the target sample of 300 bands. In figure 5.7, we show a subsection
of the Metallica’s abstract23, which is one of the target abstracts used to extract the
shape :Band. In this Figure, we have highlighted in different colors some property-
value pairs that a human annotator could have extracted from the abstract. Those
pairs contain some values which do appear in the shape :Band, such as the notions
of hometown (Los Angeles), or publisher (of several albums). However, there are some
others that have not be included in the obtained shape :Band, such as band members,
genre, or award nominations.

19Check range definition at https://dbpedia.org/ontology/origin Accessed in 2022/05/03.
20As shown in section 2.6, both languages have mechanisms to re-use the constraints of a shape s1 in

the definition of another shape s2. However, the semantics of those mechanisms does not imply that
s2 is a s1, which is a core idea of inheritance in programming languages.

21https://dbpedia.org/ontology/owningCompany Accessed in 2022/05/03.
22https://dbpedia.org/ontology/developer Accessed in 2022/05/03.
23https://en.wikipedia.org/wiki/Metallica Accessed in 05/04/2022.

https://dbpedia.org/ontology/origin
https://dbpedia.org/ontology/owningCompany
https://dbpedia.org/ontology/developer
https://en.wikipedia.org/wiki/Metallica

5.4. Experiments 161

FIGURE 5.7: Part of Metallica’s Wikipedia page.

The mentioned properties are not represented in the shape because 1) the knowl-
edge that they represent does not exists in DBpedia, or 2) the models trained to
predict such property were not reliable enough to make triple predictions.

Shapes’ stats - All the shapes obtained with SEITMA-L in this experiment are pub-
lic and can be downloaded24. We have summarized the content of those shapes in
several tables and charts. In Table 5.2, we describe general information, such as
number of shapes, TCs, and comments produced. We also show average values and
standard deviations at shape, TC, and comment level. Several conclusions can be
extracted from this table.

First, note that it is a coincidence that the number of extracted shapes is exactly
the number of target classes. Some of the target classes do not have instances or
SEITMA-L has not been able to extract triples from their instances. At the same
time, some elements linked with the target entities has a type which is not part of
the initial target 200 classes.

The average number of constraints per shape is 6.08, with a standard deviation
of 3.47. Those facts allow us to generalize some of the stated observations about
the shape :Band. In general, the shapes produced by SEITMA-L do not contain a
high number of constraints compared to the number of potential relations that a
human annotator could have extracted from an abstract. This is frequently caused
by the limited amount of positive and negative examples that can be automatically
extracted form an abstract.

The average number of comments associated to a shape is 33.78. We can observe
a great dispersion between shapes w.r.t. this feature, as the standard deviation is
34.04. The average number of comments associated to a certain constraint is 5.56.

24One can download the shapes at http://data.weso.es/seitma/seitma_l_shapes.zip . The
intermediate triples generated to extract those shapes are public too and can be downloaded at
http://data.weso.es/seitma/seitma_l_triples.zip Accessed in 2022/05/03.

http://data.weso.es/seitma/seitma_l_shapes.zip
http://data.weso.es/seitma/seitma_l_triples.zip

162 Chapter 5. Mining shapes from social media

Number of shapes 200
Number of TCs 1216
Number of comments 6756
Avg. constraints per shape 6.08
St.dev. constraints per shape 3.47
Top nº of constraints in a shape 18
Avg. comments per shape 33.78
Std.dev. comments per shape 34.04
Avg. comments per constraint 5.56
Std.dev. comments per constraint 5.00
Avg. ratio constraints 43.75
Avg. ratio comments 11.34

TABLE 5.2: Statistics about shapes in SEITMA-L results

FIGURE 5.8: Cardinality, node constraint, and constraint direction
w.r.t. focus node of TCs in SEITMA-L results.

2.14%

22.12%

0.16%
28.29%

47.29%

Posi ve Exactly one Exact (not one)

Op onal Kleene

50.58%

32.98%

16.45%

IRI A shape Value set (type)

67.68

%

32.32

%

Direct Inverse

Cardinality Node constraint Constraint direc�on

We can also observe a noticeable dispersion on this data, as the standard deviation
is 5.00.

The extremes w.r.t. number of comments per shape is mainly caused by the se-
mantics of the properties that generated a reliable model. Some classes use those
properties frequently, while some other barely use them. Classes with many uses for
a property generated many triples. Then, the chances of finding specific cardinalities
or node constraints among those examples increases. In contrast, few examples lead
to situations in which sheXer cannot find many different patterns among the target
triples. A reduced number of instances for a certain class also causes to have less
associated comments, as it also decreases the target sample that sheXer can use to
mine a certain relation.

In Figure 5.8, we show the distribution of TCs w.r.t. cardinality, path sense (direct
or inverse w.r.t. the focus node), and node constraint. In Figure 5.9, we provide
similar information w.r.t. text comments.

The trends observed in the shape :Band w.r.t. cardinality seems to apply to the
rest of the shapes. The two most frequent cardinalities are ‘*’ and ‘?’, i.e., those in-
cluding the zero-case. There is a noticeable proportion of constraints with cardinality
‘1’ too. 200 of those constraints (74% of the constraints with cardinality ‘1’) are type
specifications. The rest of them are mostly observed in shapes built using a small
number of target instances. Cardinalities which are not ‘1’ nor include the zero case
are marginal and always observed in shapes built using few target nodes.

The trends observed in :Band w.r.t. node constraint distribution are also con-
firmed. 50.58% of the node constraints are the macro IRI. 16.45% correspond to

5.4. Experiments 163

FIGURE 5.9: Cardinality and node constraint of comments in
SEITMA-L results.

21.83%

53.98%

24.19%

Posi ve Exactly one Exact (not one)

32.55%

67.45%

IRI A shape

Cardinality Node constraint

value sets used for type specifications, and 32.98% use another shape label. This
last type of node constraint appears more frequently in TCs with a low trustworthy
score or built using a small number of target instances.

One can observe that the number of direct TCs is approximately twice the size of
inverse ones. This is a proportion similar to what we observed in the :Band shape.
We think that this occurs because each abstract is focused in a given entity and, in
RDF, when one want to state something about an entity e, e is naturally used as
subject instead of object.

As one can see comparing Figure 5.8 and Figure 5.9, the distribution of node
constraints and cardinalities among the comments differs from the distributions ob-
served among the TCs.

The cardinalities ‘*’ or ‘?’ are never seen in comments. However, note that this
is because sheXer does not cast votes for candidate constraints including a zero-case
(cf. section 4.2.4).

Note also that the most specific cardinalities (exactly one or an exact range) are
more frequent than the less specific ‘+’ cardinality. This makes sense in this con-
text due to sheXer’s configuration. sheXer is aiming to generate TCs as specific as
possible. When a shape contains a TC with cardinality ‘+’, it means that there were
several candidate TCs with the same node constraint and different exact cardinali-
ties that were transformed into comments. If there had been just one candidate with
exact cardinality, then that candidate would had been selected as part of the actual
shape’s TCs. Thus, in any execution of sheXer using a similar configuration, it will
be observed that the number of comments containing exact cardinalities is, at least,
twice the number of comments with ‘+’.

A similar logic can be applied to explain the distribution of node constraints
among comments. When there are several candidate TCs with a different shape
label as node constraint, the macro IRI is selected as the node constraint of the TC.
However, in this case, it cannot be generalized that the number of shape label node
constraints among comments is at least twice the size of IRI node constraints in any
execution of sheXer. Whenever sheXer analyzes an object-to-object triple, if the non-
focus node is not associated to any shape, a candidate TC with the macro IRI gets
a positive vote, but no positive votes are generated for candidate TCs referencing a
shape label.

In Figure 5.10, we show the distribution of scores associated to each TC (each
score indicates the ratio of instances conforming with the TC). Note that any TC in-
cluding a zero-case cardinality conforms with every instance. In that case, the score
accounted for a TC is not 100.0, but the score that this TC would have had if we
exclude the zero-case. Such score can be always found in the first text comment

164 Chapter 5. Mining shapes from social media

FIGURE 5.10: Distribution of trustworthy scores among TCs in
SEITMA-L results.

0

50

100

150

200

250

300

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
n

st
ra

in
ts

Ra o ranges

associated to the TC. In Figure 5.11, we show a similar score distribution for com-
ments.

One can see two main differences between Figure 5.10 and Figure 5.11:

• The most frequent score range among TCs is (95, 100]. In contrast, this range is
the most infrequent one among comments. Two facts explain this observation.

On the one hand, every typing is indicated with a TC of score 100.0 with no
associated comments25. Those TCs represent 200 of the total 258 cases in which
the score 100.0 is used.

On the other hand, several TCs with a score of 100.0 generated for shapes with
few target nodes express the most precise cardinality and node constraint pos-
sible (a shape label with an exact cardinality). Those TC do not have associated
comments either.

• In general, the actual TC’s score is higher that the comments’ score. This ob-
servation can be extrapolated to any sheXer execution, as the score of each TC
is always the maximum score among its associated candidate TCs.

Except for the (95, 100] range among the TCs, both figures show a similar trend:
they describe a curve in which the lower ranges are more frequent than the greater
ones. The curve among comments’ scores is more pronounced: the number of com-
ments with a score in (0, 5] is higher than the sum of comments with scores in any
other range.

25We are computing the comments that represent a whole TC discarded. An non-discarded TC
with a 100.0 score does have an associated comment indicating this score. However, this later type of
comment was not accounted in the statistics generated in Table 5.2 nor considered in the rest of figures,
as it lacks its own node constraint and cardinality definitions.

5.4. Experiments 165

FIGURE 5.11: Distribution of trustworthy scores among comments in
SEITMA-L results.

0

500

1000

1500

2000

2500

3000

3500

4000

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
m

m
e

n
ts

Ra o ranges

Such distributions of scores, especially the one observed among TCs, indicate
that the RDF data is heterogeneous and it is more frequent to find patterns that are
observed among a reduced number of target instances. This can happen because the
input target data of SEITMA-L is indeed heterogeneous or because the triple gen-
erator module fails to catch part of the knowledge. Although it is hard to quantify
which is the proportion in which these two causes affect the data, examples of both
have already been mentioned among the TCs of the :Band shape shown in Figure
5.6.

5.4.1.3 Discussion about SEITMA-L features

SEITMA-L is able to extract promising shapes based in Wikipedia abstracts. An
obvious downside of our current approach is that it is tightly connected to the Wiki-
media ecosystem. However, we think that it could be possible to adapt SEITMA-L
to sources different to Wikipedia, as long as those data sources have the following
features:

• It must be possible to perform NER and EL so the entities in the text are not
only recognized, but also associated with an URI and typed using classes of a
controlled vocabulary.

• The set of candidate relations (properties) to extract between the named en-
tities of the target text should be known a priori. Also, those relations must
define domain and range constraints which allow to filter candidate mentions
w.r.t. to the types of the entities detected during the NER and EL stages.

166 Chapter 5. Mining shapes from social media

• The text corpus to analyze should be structured in small units that can be iden-
tified with the description of a certain entity/topic. This entity should be typed
with classes of the vocabulary used during the EL stage.

• The writing style of the target text pieces should be reasonably homogeneous.
The text samples are expected to be focused on the topic they describe and to
contain similar types of notions expressed about different examples of a certain
class or topic.

Even if it is possible to expect such features in some examples of technical, scien-
tific, or encyclopedic-like entries, the use of SEITMA-L with a non-Wikipedia dataset
would require a specific study of feasibility.

The shapes extracted from Wikipedia with SEITMA-L have some interesting fea-
tures:

• The classes and properties generated belong to the dbo namespace, which is a
well-known and well-defined vocabulary.

• The simplicity of the vocabulary and the nature of the relations that can be
mined with the LAREWA-based proposals lead to shapes concise and easy to
interpret.

• Even if the triple constraints are in general unspecific w.r.t. cardinality and
node constraint, their associated comments allow for a better understanding
of the type of nodes that can be expected to find in the focus nodes’ neighbor-
hood.

The performance of SEITMA-L relies on the correctness and completeness of DB-
pedia in several ways:

• Entity types. A mention can be considered candidate for a triple as long as
the type of the depicted entity matches the domain a range defined for the
predicate. This means that, in case an entity is not typed or wrongly typed, it
cannot be used as candidate even if the sentence in which it is used contains
truthful knowledge.

• Knowledge representation. Sometimes, the training data on which the mod-
els rely is not representative of the actual knowledge contained in the abstracts,
because the relations used in the abstracts are not stated in DBpedia. Proper-
ties for which it is not possible to find enough examples in DBpedia cannot
produce reliable learning models. The knowledge associated to those proper-
ties does not generate triples and, thus, does not have any effect on the final
shapes.

• Domain and range definitions. The prototype needs domain and range defini-
tion for any property involved in the triple extraction stage. Properties lacking
those elements are discarded, and triples that define too vague domain and
range generate too many candidates.

• Constraint violations. Some triples in DBpedia cause constraint violations
w.r.t. to the domain/range definition of the triple’s predicate. This causes the
exclusion of actual DBpedia triples in the RDF content generated by SEITMA-
L’s triple extractor.

5.4. Experiments 167

Issues occurring due to those DBpedia features can have negative effect on the
results. Most of those issues are related with the distant supervision approach used
to gather training data. As already stated, just 54 properties generated at least one
model to make triple predictions, and some of those properties have been detected
to be involved in wrongly predicted relations.

A way to tackle most of the issues mentioned would be to feed SEITMA-L with
training data annotated by humans. We think that this kind of training data would
be a more trustworthy source of knowledge. This approach would allow for us-
ing positive examples even if they represent pieces of knowledge which are not in
DBpedia. Besides, it would avoid false negatives caused because a certain piece of
knowledge is not in DBpedia. Also, it could be feasible to combine human annota-
tors and automatic processes to generate negative examples.

We also think that SEITMA-L would be able to generate reliable models for more
properties using human annotated training data. During our experiments, we set 13
as the number of minimum examples to train and evaluate each classifier. Despite
this low value, we were able to extract enough training data for only 66 classifiers.
This could be corrected using enough data labeled by humans, making it possible to,
at least, evaluate classifiers for any property as long as 1) its semantics are actually
used within the target abstracts, and 2) it provides domain and range definitions
that allow to generate candidates for the triple extraction stage.

Note that our current implementation of SEITMA-L’s triple extractor is fully fo-
cused on the relation between entities (URIs). This means that no triples using liter-
als are produced. This could be fixed using human annotators as follows:

• The human annotators should identify literal values linked to the abstract’s
entity by means of a relation r.

• An xsd type should be assigned to each literal. This type can be used to look
for candidates in the triple extraction stage.

• Some additional features related to the actual value of the literal could be used
to train the classifiers and to predict triples.

Needless to say, using human-annotated would affect in a negative way the pro-
totype’s scalability. With our current system based on distant supervision, a user
only needs to choose some target classes and entities, and SEITMA-L performs every
operation in order to extract example data, train models, generate triples, and pro-
duce shapes. In contrast, the need of human annotation of positive examples would
suppose a bottleneck to expand the extraction process to compute new classes or be
executed in new environments, such as different Wikipedia chapters.

Note also that the SEITMA-L’s approach relies on the Wikipedia community’s
precision and recall identifying mentioned entities and linking them correctly with
its corresponding Wikipedia page. Even if it is assumed that the entity labeling
process in Wikipedia has been performed with the best possible quality, there are
some issues virtually unavoidable within SEITMA-L basic workflow:

• If there is no Wikipedia page for an entity mentioned in the text, then that
entity cannot be linked. Thus, it cannot be recognized to generate a candidate
triple.

• According to Wikipedia standards, the community is supposed to use a link
between pages just for the first mention of an entity in the text. This means

168 Chapter 5. Mining shapes from social media

that, in case an entity is mentioned twice in an abstract, just the first mention
will be recognized and possibly used to generate candidate triples.

Labeling errors related to the mentioned situations can have a negative effect
in the triple generation stage. However, as long as those errors are not general-
ized among the target abstracts, we think it would have little effect on the obtained
shapes. They can decrease the score of some TCs or comments, but they would not
cause a certain TC to be removed from a shape as long as the number of target enti-
ties used to extract that shape is large enough.

5.4.2 Experiments with SEITMA-F

This section is structured as follows: first, we explain the inputs and settings used.
Then, we analyze the outputs using an example shape and statistical analyses. Fi-
nally, we discuss the potential of SEITMA-F.

5.4.2.1 Inputs and settings

SEITMA-F requires two types of inputs:

• Target abstracts. We have extracted shapes from the set of abstracts described
at the beginning of section 5.4, i.e., the abstracts of the 300 most important
instances from the 200 most important classes in DBpedia.

• DBpedia typings. We have used the same typings described earlier in section
5.4, which are the ones corresponding to the target instances within the dbo

namespace.

SEITMA-F also requires some extra settings to configure sheXer and the FRED
Consumer sub-module:

• Gap between FRED requests. This gap ensures that the maximum rate of
requests per minute to the FRED API is never exceeded. We set this value to
15 seconds.

• Maximum number of requests per day. It ensures that the maximum requests
per day performed to FRED API is never exceeded. We set this value to 7500
petitions.

• θs, sheXer’s acceptance threshold (cf. section 4.4.6). We set θs = 0, which is
the same configuration used in SEITMA-L’s experiments.

The number of temporal triples and final shapes generated with SEITMA-F is
much bigger than the data volume generated with SEITMA-L. The number of classes
in the RDF content increased because FRED generated custom typings for many
entities and sheXer works in all_classes_mode (cf. section 4.4).

We think that using a single file to contain all the shapes could be confusing due
to the large number of elements generated. For this reason, instead of executing
SEITMA-F to extract every shape from every target instance in a single iteration,
we have split the experiments and performed one iteration per class. Each iteration
extracts shapes using the target instance of a certain class.

5.4. Experiments 169

5.4.2.2 Outputs

This subsection is organized in two parts. First, we show and comment an example
shape produced by SEITMA-F which let us highlight some of our prototype’s fea-
tures using a real example. Then, we summarize the overall results with a statistical
analysis of the shapes produced by SEITMA-F.

Example shape - In Figure 5.12 we show a shortened version of the shape :Band

produced by SEITMA-F when executing it over the target instances of dbo:Band. The
content removed from the original shape :Band has been marked with a “# ...” com-
ment. The version of :Band shown in Figure 5.12 is much smaller than the original
shape, which is 686 lines long.

Note that the shape :Band produced by SEITMA-L is written in 109 lines, and
note also that SEITMA-L’s experiments were designed to extract every shape in a
single iteration, which increases the chances of finding extra inverse TCs and extra
comments with specific node constraints. This fact raises a clue about how different
can be the amount of data generated by SEITMA-F and SEITMA-L.

Note also that SEITMA-F only keeps the triples generated by FRED in case this
subsystem is able to successfully identify a certain node with the correspondent tar-
get DBpedia URI. Then, even if the system receives 300 target abstracts, it may gen-
erate triples for only a reduced slice of them. In the case of :Band, FRED was able
to successfully match 50 individuals with its corresponding DBpedia URI. Then, the
shape :Band was extracted by using knowledge of just those 50 entities.

Even with this, the number of triples that FRED is able to extract from a certain
abstract is, in general terms, higher than the triples extracted with LAREWA26. Using
only those 50 target abstracts, SEITMA-F is able to generate a total of 182 TCs for the
shape :Band.

The sample population used is heterogeneous, so there are just two TCs con-
forming with every node, i.e., having a score of 100.0. Most of the TCs use ‘*’ and ‘?’
cardinalities that include a zero-case.

As one can see, :Band has several typing TCs. Every shape extracted with in-
stances of a target class includes a typing TC with score 100.0 referring that target
class. However, many other typing TCs use classes which are not in the dbo names-
pace. Such classes are mainly defined in the fred and schema namespaces (see lines
8, 10, 37, and 39 in Figure 5.12). The triples causing those types to appear in the shape
are generated by FRED and kept by SEITMA-F because they can be valuable knowl-
edge. For example, the TC in line 39 let us know that 8% of the :Band instances (at
least) are English rock bands. Those types can include also noisy or wrong knowl-
edge though. For example, 8% of the target entities are also detected to be instances
of fred:Song, which seems a wrong association.

We can observe some properties with quite general semantics at the top of :Band’s
TCs, such as framester:playsRoleIn, dul:associatedWith, and boxer:agent. This
is something that can be observed in most of the shapes generated by SEITMA-F.
Those TCs usually include the node constraint IRI. Such general semantics makes
them a poor tool to describe or validate a shape, as most of the target instances con-
form with them. However, the comments associated to those TCs contain valuable
knowledge. For example, one can know that bands are associated to albums and
songs with the comments in lines 15 and 16. Also, that they can be agents of re-
leases, as indicated in line 26.

26This affirmation will be developed later in this section.

170 Chapter 5. Mining shapes from social media

FIGURE 5.12: :Band. A shortened example of a shape produced by
SEITMA-F

1

2 :Band

3 {

4 framester:playsRoleIn IRI +; # 100.0 %

5 # 20.0 % obj: IRI. Cardinality: {2}

6 # ...

7 rdf:type [dbo:Band] ; # 100.0

%

8 rdf:type [schema:Organization] ?;

9 # 86.0 % obj: schema:Organization. Cardinality: {1}

10 rdf:type [schema:MusicGroup] ?;

11 # 86.0 % obj: schema:MusicGroup. Cardinality: {1}

12 ^ dul:associatedWith IRI *;

13 # 80.0 % obj: IRI. Cardinality: +

14 # ...

15 # 34.0 % obj: @:Song. Cardinality: +

16 # 34.0 % obj: @:Album. Cardinality: +

17 # 32.0 % obj: @:SecondAlbum. Cardinality: +

18 # ...

19 dul:hasQuality IRI *;

20 # 76.0 % obj: IRI. Cardinality: +

21 # ...

22 ^ boxer:agent IRI *;

23 # 68.0 % obj: IRI. Cardinality: +

24 # ...

25 # 34.0 % obj: @:Thing. Cardinality: +

26 # 26.0 % obj: @:Release. Cardinality: +

27 # ...

28 # ...

29 ^ fe:Place.coming_to_be IRI *;

30 # ...

31 ^ fe:Seller.commerce_sell @:Commerce_sell *;

32 # ...

33 dul:hasDataValue xsd:nonNegativeInteger ?;

34 # ...

35 ^ fe:Cook.cooking_creation @:Cooking_creation *;

36 # ...

37 rdf:type [fred:Song] ?;

38 # 8.0 % obj: fred:Song. Cardinality: {1}

39 rdf:type [fred:English_rock_musicBand] ?;

40 # 8.0 % obj: fred:English_rock_musicBand. Cardinality: {1}

41 # ...

42 boxing:declaration IRI *;

43 # ...

44 # 2.0 % obj: @:InternalStruggle. Cardinality: {1}

45 # ...

46 fred:secondAlbumOf IRI *;

47 # ...

48 ^ fred:musicOf @:Music *;

49 # ...

50 # ...

51 ^ fred:albumOf IRI ?;

52 # ...

53 # ...

54 ^ fred:commercialFailureOf IRI ?;

55 # ...

56 # ...

57 }

58

5.4. Experiments 171

The number of different node constraints in comments for such general proper-
ties can be quite big when using enough target entities though. For example, the
number of different node constraints among comments associated to the TC (^

dul:associatedWith IRI *) in the non-shortened version of the :Band shape is
40.

We can observe some properties with more concise semantics too. Some of them
are related the music domain, such as fred:albumOf, fred:commercialFailureOf,
or fred:musicOf, while some others, such as fe:Cook.cooking_creation, are not.
The first group of TCs helps to determine the frequency of relations that one may
expect to find in any instance of Band. The later group reveals knowledge which
could be hardly expected to be found a priori, even by domain experts.

Note that the semantics for some of those properties are sometimes subsumed
by the semantics of another property. For example, the properties fred:albumOf and
fred:secondAlbumOf are found among :Band’s TCs. One can intuitively understand
that any second album of a certain band is also an album of this band. The notion
of second album should probably be represented using the property fred:albumOf

and some kind of reified schema. Performing such a knowledge refactoring in an
automatic heuristc-based manner is feasible. Indeed, FRED already performs such
a task for some properties detected to be compound (cf. section 5.3.2.1). However,
the current SEITMA-F implementation is not able to decompose every compound
property.

Some other observations that seem to correlate with the specificity of the prop-
erty’s semantics are the TC’s score and its number of comments. The more general a
certain property is, the more comments and high scores have (except for typing TCs,
which do not have associated comments with extra node constraints).

This cannot be clearly observed in the version of the :Band shape shown in Fig-
ure 5.12 due to the content removed. Let us refer to some representative examples
of already mentioned properties of this shape though. The TCs with the proper-
ties dul:associatedWith (score 80.0) and boxer:Agent (score 68.0) have 47 and 52
associated comments respectively, and they both use IRI as node constraint. In con-
trast, properties with less general semantics, such as fe:Cook.cooking_creation

and fred:musicOf have 3 associated comments each and use a node constraint that
refers to a shape label. There seems to be a reasonable inverse relation between the
specificity of a certain TC and the number of observed examples for such relation.
As already explained in the analysis of SEITMA-L’s experiments, fewer examples
usually imply to be able to extracts more precise TCs, which have lower score and
less associated comments.

We can observe that the TCs using properties with general semantics usually
have a better score than TCs using properties with concise semantics. This happens
due to FRED’s schema to represent n-ary relations. Frequently, the properties with
broad semantics are used to link the focus node with an element which is related to
some other pieces of knowledge that, all together, can represent the whole meaning
of a certain statement in a frame. The current SEITMA-F implementation scratches
that meaning by detecting the type of the main node in such n-ary relations, which
is useful to produce informative comments associated to the TCs. The rest of the
elements in the frame are discarded by SEITMA-F, in an attempt to generalize struc-
tures that could apply to any band instance rather than a specific statement about a
given band.

The properties which are fundamental for such general schemata are frequently
used in the graph. Therefore, TCs using those properties usually have a high score

172 Chapter 5. Mining shapes from social media

Target shapes Every shape
Number of shapes 136 15141
Number of TCs 9974 123287
Number of comments 27717 255799
Avg. constraints per shape 73.34 8.14
St.dev. constraints per shape 78.24 7.56
Top nº of constraints in a shape 709 709
Avg. comments per shape 203.80 16.89
Std.dev. comments per shape 242.42 19.65
Avg. comments per constraint 2.78 2.07
Std.dev. comments per constraint 2.65 2.33
Avg. ratio constraints 9.00 70.12
Avg. ratio comments 5.19 54.69

TABLE 5.3: Statistics about shapes in SEITMA-F results

but broad cardinalities and node constraints (typically ‘*’ and IRI). In contrast, prop-
erties with more precise semantics are found among less target instances, causing
them to have lower scores.

A difference observed between the :Band shape produced by SEITMA-F and the
one produced by SEITMA-L is that the SEITMA-F’s :Band seems to have a balanced
distribution of direct and inverse TCs, or even more inverse TCs if we ignore typings.
This is caused by the FRED’s data schemata already mentioned. Focus nodes are
frequently involved in subgraph structures designed to represent the meaning of a
certain statement with reified schemata. In such schemata, the focus node is used as
the object of a triple whose subject is connected to some other pieces of information.
Those types of structures make inverse paths from the focus node more frequent in
SEITMA-F graphs compared to SEITMA-L graphs.

Shapes’ stats - In Table 5.3, we show general data about the shapes obtained dur-
ing the described experiment with SEITMA-F. The total number of shapes generated
with the abstract inputs is 15,141. From those elements, just 136 (0.9%) are related
to the actual target classes of the experiment. The rest of elements are consequence
of typing triples introduced by FRED. Those shapes are helpful to understand the
structure of knowledge related to the main ones.

As one can see in Table 5.3, the average number of constraints and comments per
shape is much higher among the target shapes than among the total shapes. We will
first provide an independent analysis of the target shapes. Then, we will perform a
similar analysis on the total shapes produced by SEITMA-F.

Every shape and RDF content generated during this experiment have been pub-
lished27

Target shapes’ stats - The number of average TCs associated to a target shape in
SEITMA-F is more than 12 times the SEITMA-L’s average. Also, the average num-
ber of comments associated to a target shape in SEITMA-F is more than 6 times the
average observed in SEITMA-L. Those differences are mainly caused by two facts.
First, the graph size. The number of triples generated by SEITMA-L is 24,376, while

27The shapes can be downloaded at http://data.weso.es/seitma/seitma_f_shapes.zip . The
triples can be downloaded at http://data.weso.es/seitma/seitma_f_triples.zip Accessed in
2022/05/03.

http://data.weso.es/seitma/seitma_f_shapes.zip
http://data.weso.es/seitma/seitma_f_triples.zip

5.4. Experiments 173

SEITMA-F was able to generate 89,971 triples using the same input abstracts. Sec-
ond, the number of different properties. We were able to train SEITMA-L to generate
tripes using only 54 different properties. In contrast, the amount of properties seen
in SEITMA-F’s generated graph is 2,723.

The larger number of triples and property variety of SEITMA-F’s content allow
for finding richer shapes whose TCs use to have many associated comments cover-
ing features observed in few cases.

Note that the standard deviations of the mentioned averages are even higher
than the average itself. This remarkable dispersion among the number of elements
associated to each shape is caused by the different amount of knowledge extracted
for each class. Even if SEITMA-F improves the absolute numbers of SEITMA-L w.r.t.
number of triples and property variety, the amount of triples extracted for each class
is not homogeneous. Several causes lead to that situation:

• Some target class lack enough instances, or the abstracts associated to those
instances are too short or cannot be processed.

• A certain sentence parsed as an independent element with FRED needs con-
text to be properly interpreted. Even if FRED performs CRR tasks, sometimes
the sentences sent to the tool do not contain enough context to identify that a
certain noun or pronoun is used to refer to the abstract’s title entity.

• FRED is able to identify the abstract’s title entity in a sentence and to extract
knowledge about it, but it fails to successfully link such entity with its DB-
pedia URI via an owl:sameAs axiom. In those cases, SEITMA-F discards the
sentence’s RDF graph. FRED’s EL performance seems to decrease with en-
tities representing actual people, so this is a common situation when min-
ing subclasses of dbo:Person. For example, classes such as dbo:Politician

or dbo:SoccerPlayer produce empty shapes even if FRED can extract many
triples from their instance’s abstracts.

We can see in Table 5.3 that average score ratios for TCs and comments gener-
ated by SEITMA-F are lower compared with SEITMA-L. However, this average is
not caused by a lack of high-scored TCs, but by a large number of low-scored ones
that appear due to features rarely observed among the target instances. For exam-
ple, the shape :Settlement generated by SEITMA-F, which is the shape with the
highest number of TCs (709), has 28 TCs which are above the average score. This
amount of TCs is higher than the total number of TCs of the shape :Plant, which
is the shape that has more associated TCs among the ones generated by SEITMA-L
(18). SEITMA-F’s :Settlement, in addition to those 28 TCs above the average, has
another 682 TCs with a score under 9.00. Although :Settlement is an extreme case,
it is a frequent situation to have an unbalanced number of high-scored and low-
scored TCs and associated comments, which decreases the averages shown in Table
5.3.

In figure 5.13, we show the distribution of cardinalities, node constraints and di-
rections observed among the TCs generated by SEITMA-F. As one can see, cardinal-
ities including a zero-case are predominant. Only 2,18 % of the TCs use a cardinality
of exactly one. Most of those cases correspond to typings indicating the DBpedia
class used to locate the instances of a target class. The rest of TCs with no zero-case
cardinalities are marginal. In general, those TCs use frequent properties of broad
semantics or are typings of classes in the schema namespace.

174 Chapter 5. Mining shapes from social media

FIGURE 5.13: Cardinality, node constraint, and constraint direction
w.r.t. focus node of TCs in SEITMA-F target shapes.

0.20% 2.18%

0.27%

82.08%

15.27%

Posi ve Exactly one Exact (not one)

Op onal Kleene

32.24%

29.20%

38.56%

IRI A shape Value set (type)

57.68%

42.32%

Direct Inverse

Cardinality Node constraint Constraint direc�on

The optional cardinality is especially frequent. The reason for finding more ‘?’
cardinalities than ‘*’ is the specificity of many properties generated by FRED. It is
frequent that a certain relation r is observed for few instances which generate car-
dinalities that must include a zero-case. Also, those few instances usually use r a
single time. The optional cardinality is the most specific w.r.t. maximum and mini-
mum occurrences to express such situation.

The great amount of typing TCs observed among the target shapes is caused
by the classes generated by FRED too. Each target shape is not just related with
its DBpedia type, but usually also to many other classes in the schema and fred

namespaces.
The variety of properties produced by FRED causes that there is a balanced num-

ber of TCs using IRI and a certain shape label as node constraint. In line with the
trends observed for the shape :Band, the macro IRI is frequently observed in high-
scored TCs. In opposition, low-ranked ones, which are usually generated over a
single or a few observations among the target instances, tend to use a precise shape
label as node constraint.

Also in line with the trends observed for the :Band shape, the direct and inverse
observations are quite balanced. As already explained, the increase of inverse TCs
in SEITMA-F compared to SEITMA-L is caused by FRED’s patterns to express n-ary
relations.

In Figure 5.14 we show cardinality and node constraint distributions among gen-
erated comments. Comparing those distributions with the TCs distributions, one
can see a general increase of specificity. The predominant cardinality is ‘1’. Re-
garding node constraints, shape labels are used more than twice more compared to
the macro IRI. This trend is mainly caused by the large number of classes gener-
ated by FRED. High-scored TCs tend to use IRI node constraints and ‘*’ cardinality.
However, those TCs are frequently extracted using a large number of target entities
showing many particular cases, which motivates the appearance of comments with
precise shape labels and cardinality ‘1’.

In Figure 5.15, we show the score distribution of TCs among the shapes asso-
ciated to target classes. In Figure 5.16, we show the same distribution among the
comments associated to those classes.

Please, note that these two figures have a chart break in the y-axis. In both cases,
the number of observations in the range (0, 5] is an order of magnitude higher than
the observations associated to any other range. Again, this is caused by the amount
of particular cases generated by FRED. The chart break in those figures has been
introduced in order to be able to properly compare the rest of the ranges.

5.4. Experiments 175

FIGURE 5.14: Cardinality and node constraint of comments in
SEITMA-F target shapes.

Cardinality Node constraint

4.94%

72.56%

22.50%

Posi ve Exactly one Exact (not one)

31.70%

68.30%

IRI A shape

FIGURE 5.15: Distribution of trustworthy scores among TCs in
SEITMA-F target shapes.

0

200

400

600

800

1000

1200

1400

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
n

st
ra

in
ts

Ra o ranges

7600

7400

176 Chapter 5. Mining shapes from social media

FIGURE 5.16: Distribution of trustworthy scores among comments in
SEITMA-F target shapes.

0

500

1000

1500

2000

2500

3000

3500

4000

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
m

m
e

n
ts

Ra o ranges

22500

22000

As one can see, both charts tend to have more observations in low scores. This
general trend is less clear among the TCs scores though. There is a noticeable pro-
portion of cases accumulated in the range (95, 100]. Such scores appear mainly in
three scenarios: 1) TCs with DBpedia typings, 2) some TCs with general properties
such as framester:playsRoleIn, and 3) TCs in shapes built with few examples.

Total shapes’ stats - In this subsection, we analyze the statistics of the total 15,141
shapes produced by SEITMA-F. In Figure 5.17, we show the cardinality, node con-
straint, and triple direction observed among the TCs. In Figure 5.18, we show the
cardinality and node constraint distribution observed among comments. In Figure
5.19 we offer the TC’s score distribution. Finally, in Figure 5.20, we show the score
distribution among comments. In this subsection, we will focus on the main dif-
ferences observed between these figures and the measurements associated to the
shapes associated to the target classes.

We will denote the set that contains every shape with S. The shapes of S can be
roughly classified in three groups.

• The shapes associated to the target classes studied in the previous subsection.
We denote this group with STAR.

• Shapes that are extracted for some other classes but have still been mined us-
ing many instances. Frequently, the instances used for those shapes are also
instances of the target classes. They are linked to classes in the schema and,
sometimes, fred namespaces. We denote this group as SALT. The statistical
composition of SALT and STAR is similar.

5.4. Experiments 177

FIGURE 5.17: Cardinality, node constraint, and constraint direction
w.r.t. focus node of TCs in shapes produced by SEITMA-F.

0.75%

50.89%

10.97%

29.84%

7.54%

Posi ve Exactly one Exact (not one)

Op onal Kleene

41.09%

15.51%

43.40%

IRI A shape Value set (type)

69.48%

30.52%

Direct Inverse

Cardinality Node constraint Constraint direc�on

FIGURE 5.18: Cardinality and node constraint of comments in shapes
produced by SEITMA-F.

2.68%

69.89%

27.43%

Posi ve Exactly one Exact (not one)

17.45%

82.55%

IRI A shape

Cardinality Node constraint

FIGURE 5.19: Distribution of trustworthy scores among TCs in
shapes produced by SEITMA-F.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
n

st
ra

in
ts

Ra o ranges

178 Chapter 5. Mining shapes from social media

FIGURE 5.20: Distribution of trustworthy scores among comments in
shapes produced by SEITMA-F.

0

20000

40000

60000

80000

100000

120000

(0
,

5
]

(5
,

1
0

]

(1
0

,
1

5
]

(1
5

,
2

0
]

(2
0

,
2

5
]

(2
5

,
3

0
]

(3
0

,
3

5
]

(3
5

,
4

0
]

(4
0

,
4

5
]

(4
5

,
5

0
]

(5
0

,
5

5
]

(5
5

,
6

0
]

(6
0

,
6

5
]

(6
5

,
7

0
]

(7
0

,
7

5
]

(7
5

,
8

0
]

(8
0

,
8

5
]

(8
5

,
9

0
]

(9
0

,
9

5
]

(9
5

,
1

0
0

]

N
º

o
f

co
m

m
e

n
ts

Ra o ranges

• Shapes that are extracted using a few instances linked to some class in the fred
namespace. We denote this group as SMIN . The features observed among those
shapes are different to SALT and STAR. Shapes in SMIN tend to have less TCs
and comments and higher specificity w.r.t. cardinality and node constraint.
Most of the shapes in S belong to SMIN .

We have not defined a strict formal difference that allow to classify a certain
shape s as a member of SMIN or SALT. Such classification of shapes is still useful, as
it allows us to avoid verbosity when referring to some group of shapes exhibiting
some distinctive features. Most of the statistical differences observed between the
figures associated to S and the figures associated to STAR are caused by the SMIN
shapes.

One of the most remarkable differences between STAR and S is the dominance
of cardinalities without zero-case among the TCs of S. Just the cardinality ‘1’ is
found in more than half of the TCs. Cardinalities without zero-case are unusual in
shapes extracted using many instances such as STAR and SALT. However, most of the
shapes produced in our experiments belong to SMIN . This increases the chances of
observing features that actually conform with every individual extracted to generate
a shape without needing to use a zero-case cardinality.

The proportion of typing TCs tend to be higher in SMIN . This has an effect on
measurements related to node constraint and direction distributions of S. The pro-
portion of value sets (typings) is increased. Also, the proportion of direct TCs is
increased too, as all typings are direct.

SMIN shapes also have a decisive effect on the comment distributions within S.
The lack of a large number of different observations for a given feature causes that
there are less comments using the macro IRI with different cardinalities. Instead,

5.4. Experiments 179

the comments contain a higher proportion of specific shape labels and ‘1’ cardinality.
This explains why the use of the macro IRI is less frequent among comments when
it is actually more frequent among TCs.

The last big difference between the statistics of S and STAR can be observed in the
score distributions. In the figures 5.15 and 5.16 related to STAR, we observe that the
charts are dominated by the cases occurring in the (0, 5] range. In contrast, in figures
5.19 and 5.20 related to S, we can see that the majority of cases are concentrated at
the (95, 100] range. This is caused by the amount of TCs with ‘1’ cardinality, as they
are always associated with a 100.0 score.

Excluding the (95, 100] range, the trend observed in these two charts is still a
curve that concentrate cases in low ranges. However, both charts have a peak of
observations in the (45, 50] range. This is explained by the large number of shapes
in SMIN that have exactly two instances. With this number of instances, the possible
scores for any TC or comment can be either 50.0 or 100.0. In case a certain feature
conforms with just one of the instances, then the score is 50.0.

Note that a similar fact can be observed in the range (30, 35] in both charts. Here,
this is motivated by shapes extracted using exactly 3 instances, in which many fea-
tures are observed for just one of the instances. Those cases produce scores of 33.33.

5.4.2.3 Discussion about SEITMA-F features

In this experiment, we have used SEITMA-F to extract shapes form Wikipedia ab-
stracts. However, unlike SEITMA-L, SEITMA-F could be easily executed with dif-
ferent data sources. FRED, which runs the core processes within the triple extraction
submodule, relies on techniques that are independent of our experiment’s context.

Our current SEITMA-F prototype would require the following minimal adapta-
tions in order be able to extract shapes from a different text source:

• SEITMA-F uses an abstract normalizer submodule which is specifically de-
signed to adapt Wikipedia content written in markdown syntax. This module
should be adapted to features of the new target corpus.

• Currently, the Graph filterer submodule discards any subgraph generated by
FRED if it does not contain the DBpedia URI of the target abstract’s entity.
This module should be adapted to perform a different filtering strategy.

• The Type injector submodule adds triples related to the Wikipedia abstracts’
entities. Again, the typing triples injected to the graph at this stage should be
adapted to the target application scenario.

In comparison to SEITMA-L, the number of shapes, TCs, and comments ex-
tracted with SEITMA-F can be even overwhelming. As it has been shown, the shapes
extracted with SEITMA-F can reach a high level of detail and specificity. Neverthe-
less, using SEITMA-F on a real scenario would probably require a different config-
uration of sheXer’s θs. θs = 0 allow SEITMA-F to extract every feature observed
in any target instance, which causes the final shapes to include particular cases ob-
served among few seed entities. This did not seem an issue with SEITMA-L shapes,
as that prototype produced a much lower number of constraints per shape and, in
every case, it used a controlled vocabulary. In contrast, the triple extraction per-
formed with FRED in SEITMA-F can be too precise. Many particular cases were
included in the shapes obtained during our experiments, and such particular cases
may not be representative of the ideas that one may expect to find in a shape re-
lated to a general abstract concept (class). On the contrary, they can cause relevant

180 Chapter 5. Mining shapes from social media

FIGURE 5.21: Section of the shape :Artists produced by SEITMA-F

1

2 :Artist

3 {

4 # ...

5 rdf:type [dbo:Artist] ; # 100.0 %

6 ^ boxer:agent IRI *;

7 # ...

8 # 12.5 % obj: @:Employ. Cardinality: {1}

9 # 12.5 % obj: @:Continue. Cardinality: {1}

10 # 12.5 % obj: @:Despite. Cardinality: {1}

11 # 12.5 % obj: @:Seem. Cardinality: {1}

12 # 12.5 % obj: @:Reluctant. Cardinality: {1}

13 # 12.5 % obj: @:Discuss. Cardinality: {1}

14 # 12.5 % obj: @:Wear. Cardinality: {2}

15 # 12.5 % obj: @:Perform. Cardinality: {1}

16 # 12.5 % obj: @:Attract. Cardinality: {1}

17 # 12.5 % obj: @:Cultivate. Cardinality: {1}

18 # 12.5 % obj: @:Launch. Cardinality: {1}

19 # ...

20 }

21

FIGURE 5.22: Partial example of FRED’s output.

1

2 :bob a dbo:Artist .

3

4 _:1 boxer:agent :bob ;

5 boxer:patient :an_album ;

6 #... Some other knowledge could be linked to _:1

7 a fred:Launch .

8

9 :an_album a schema:Album .

10

shape features to go unnoticed among the many TCs mined from particular cases.
Nevertheless, determining an adequate value for θs is necessarily linked to the user
intentions on real scenarios.

The strategies used during the execution of SEITMA-F’s Triple filterer are quite
straight-forward. More sophisticated graph adaptation strategies could be performed.
Let us focus on some very frequent properties in the resulting shapes, such as boxer:agent
or boxer:patient. With our current implementation, the valuable knowledge of TCs
using that kind of properties can be found among their associated comments, which
provide frequency scores of specific shape labels. However, it is feasible to use map-
pings for sub-graph structures using such generic properties. In Figure 5.21, we
show a shortened version of the shape :Artist produced by SEITMA-F. As one
can see, most of the shape labels associated to the property boxer:agent are verbs
that could be mapped into properties. In Figure 5.22, we show some RDF example
that could have produced some of the features observed in the shape :Artist. In
figure 5.23, we show a possible mapping for this structure and describe the steps
performed to achieve such mapping.

With such a mapping, some knowledge attached to the original BNode could be
lost, but the shape obtained by mining the neighborhood of the node :bob would be

5.5. Discussion on use cases 181

FIGURE 5.23: Possible mapping for the content shown in Figure 5.22.

1

2 # We remove the BNode _:1.

3 # The type of the BNode is transformed into a new property.

4 # The boxer:agent and the boxer:patient are directly linked.

5

6 :bob a dbo:Artist ;

7 :launch :an_album .

8

9 :an_album a schema:Album .

10

more specific. It would not contain a TC with the property boxer:agent, but several
TCs with properties linked to fred types. Note also that those new TCs could in-
clude comments associated to other specific shapes labels (such as a potential :Album
shape for the content shown in Figure 5.23). It could be feasible to implement simi-
lar mappings using structures associated to elements of known vocabularies already
included in FRED’s output, such as VerbNet verbs or FrameNet senses.

A limitation of the current SEITMA-F implementation is its inability to perform
CRR tasks whenever the target node of an iteration is not explicitly stated in the
parsed content. In order to tackle this issue, it could be possible to implement an
extra layer for post-processing FRED outputs. The nature of such layer would be
related to the specific context application of SEITMA-F.

A possible heuristic-based approach to improve the CRR of graphs extracted
from DBpedia abstracts could consist in mapping nodes referring to the type of the
abstract’s entity to its DBpedia URI. For example, let us suppose that SEITMA-L is
analyzing the abstract of London city, and it finds a sentence such as “This city was
founded by the Romans”. After extracting content with FRED, we could assume that
those nodes whose type is fred:City and do not seem to be linked to an specific city
(its label is a neutral name such as fred:city_1, they are not equated to external
URIs with owl:sameAs axioms, etc.), can be interpreted as indirect forms of London.
Then, we could merge the content related to those city nodes into the graph con-
taining direct statements about the node dbo:London. Similar approaches for CRR
applied to distant supervision environments have already been studied [282].

5.5 Discussion on use cases

The main purpose of shape languages is to serve as validation and documentation
tools for RDF graphs. The automatic extraction of shapes from RDF sources is gain-
ing attention from researchers during the last years, as these shapes can be useful
in several ways for the users/maintainers of RDF sources. On the other hand, most
of the times, the benefit of having shapes which describe text pieces instead of RDF
content is not direct. One cannot expect an average user of a text-oriented platform
to be interested nor perceive potential uses from code on a formal language based
on RDF concepts. In this case, the benefit of extracting shapes is indirect, i.e., it lies
on applications that could be built on top of such shapes.

In this section, we will introduce several use cases in which SEITMA can be ben-
eficial. We will divide the use cases in two groups. First, we will mention some
scenarios related to Wikipedia. Then, we will discuss use cases related to other data
sources.

182 Chapter 5. Mining shapes from social media

5.5.1 Use cases for Wikipedia

5.5.1.1 Automatic generation of templates

Should a user want to write the abstract of an entity of a given class, and having a
shape available for that class, then a first textual draft could be automatically pro-
duced based on that shape.

Such a draft could consist of a text template with some gaps or placeholders. The
user could replace those gaps with appropriate values. That template would consist
of a textual representation of the shape’s TCs. Labels and descriptions associated to
the TCs’ properties could be used for the generation of such a template.

It is also reasonable to think about an application to produce forms instead of
text templates with placeholders. Such a form would ask the user to fill in some
data values associated to the properties found among the TCs of a certain shape.
The node constraints of those TCs could also be used to check whether the values
introduced by the user are valid. There are existing approaches to automatically
transform shapes into forms, both for SHACL [113] and ShEx28.

For example, one may want to add a new page of a certain band in Wikipedia.
If it exists a shape :Band with the most usual features of any band instance, an ap-
plication could generate an automatic text draft/form for an abstract with content
suggestions. Those suggestions may include properties such as hometown, active/-
former members, record labels, etc. This first abstract may be helpful to save some
writing time. Moreover, it may give a clue to the editor of the new band’s page about
what type of information is usually found in a band’s abstract. Those clues can help
the editor to not forget including any key piece of information in the new abstract.

It could be also feasible to implement applications which are able to fill in some
of the template’s placeholders by using knowledge in existing KGs, such as DBpedia
or Wikidata. This could be possible as long as:

1. The entity described in this new Wikipedia page has an URI on this external
source.

2. The properties used in this external source are the same properties used in the
shape which generates the template or, at least, it is possible to map the shape
properties to the source’s properties.

Note that, with such an approach, the content generated would be based on in-
formation from external sources. Nevertheless, the template structure would still be
entirely based on Wikipedia abstracts, as the shapes used to generate such templates
would have been obtained by mining Wikipedia.

The verbalization of formal languages to create textual content has already been
explored by Wikimedia’s community with the project Abstract Wikipedia[303]. The
aim of this project is to write articles using a work-in-progress formal syntax, so this
syntax can be automatically translated into different languages. The success of such
a project may help to remove cultural barriers to access Wikipedia knowledge. The
same content would be available for any language, as long as there is a translator im-
plemented for such language. Abstract Wikipedia seeks for a higher expressiveness
level than shape languages though. The syntax used for this project must be able
to capture language hints, so the quality of the translated content is not different
to quality of the current Wikipedia. Nevertheless, until such syntax is developed,

28This feature is available in the portal https://rdfshape.weso.es/shexConvert . Select “Shape-
Forms” within the Target engine combo-box to see a demo. Accessed in 2022/05/03.

https://rdfshape.weso.es/shexConvert

5.5. Discussion on use cases 183

shapes can generate less expressive pieces of text that can contribute the Abstract
Wikipedia general goals.

5.5.1.2 Content suggestion

SEITMA’s triple extraction stage could be ran independently over abstracts of class
instances which already have an associated shape. In case the triples extracted from
those target abstracts do not conform with their class shape, the constraint violations
could be used to suggest content additions or corrections. Such suggestions could
be implemented in different levels:

• Bots. The process to check whether an abstract conform with a class shape
could be automatically performed by bots in every instance of a class with
a shape. Such bots could produce automatic alerts indicating the constraint
violations detected in different ways (comments in the discussion page29, asyn-
chronous notifications to the bot’s maintainers, etc.).

• Live suggestions for editors. It could also be possible to prompt some alerts or
propose some content when a human editor starts working on a page whose
abstract does not match with its class shape.

• Automatic type suggestions affecting DBpedia. Let us picture an abstract
which uses all of the properties indicated in its corresponding shape, but still
does not conform with its shape due to node constraint issues. For example, a
band abstract could be linked with a record label, but that record label has not
been typed with dbo:RecordLabel in DBpedia. Detecting such a constraint vi-
olation can produce typing suggestions for the mentioned entities in the target
abstract.

5.5.1.3 Vandalism detection

Vandalism detection in crowd-sourced projects such as Wikipedia has attracted the
interest of the research community[304, 305]. Automatically extracted shapes could
be used as a tool to detect structural anomalies indicating potential vandalism.

This could be achieved by using SEITMA to produce shapes of vandalized en-
tities. The shapes could be extracted by using target entities of different classes, so
the resulting shapes contain vandalism features of non-specific knowledge domains.
It could be also possible to extract vandalized shapes per class or using any other
entity-clustering strategy. This way, the shapes produced would contain frequent
vandal actions for a certain domain knowledge. In both cases, the shapes obtained
should be compared to shapes from non-vandalized versions of the targets abstracts,
so one can detect which are the actual constraints that only fit with the altered texts.

A shape-based system to detect vandalism could be able to discover structural
signs of vandalism, such as presence of suspicious properties or usage of suspicious
object types in relations, which could point to elements frequently used in vandal
actions. For example, such elements may include content heavily unrelated to the
target domain knowledge or references to trendy jokes.

A decrease of the general conformance of an abstract with its target shape after
an edit could also be a sign of vandalism. This could be checked by running a triple

29Discussion pages, also known as talk pages, are spaces in which Wikipedia editors can discuss
modifications of a certain Wikipedia page. Each Wikipedia page has an associated discussion page.
Read more at https://en.wikipedia.org/wiki/Help:Talk_pages Accessed in 2022/05/03.

https://en.wikipedia.org/wiki/Help:Talk_pages

184 Chapter 5. Mining shapes from social media

extraction process before and after an edit, and trying to validate those triples us-
ing a previously extracted shape. If the second validation reveals more constraint
violations than the first one, then the edit could be malicious.

5.5.2 Use cases out of Wikipedia

The use cases described above are mainly focused on improving the maintainabil-
ity of Wikipedia, either by improving the editors experience or by automatically
detecting malicious editing behavior. Some of the applications already mentioned
for the Wikipedia scenario could be implemented also in any platform sharing this
crowd-sourced nature. Examples of such projects can be other on-line encyclope-
dias, specialized wikis, on-line dictionaries, etc.

The challenges that should be tackled to run SEITMA on those sources are mainly
linked to the used vocabularies. In special, the approach implemented in SEITMA-L
is heavily dependent on the DBpedia ontology, which is tightly related to Wikipedia.
SEITMA-F may need less adaptations to be used on sources with a similar structure
to Wikipedia. However, in order to use SEITMA-F for any of the use cases described
in section 5.5.1, it would be necessary to perform a study on how to adapt the FRED’s
output to each specific use case.

In the following subsections, we will mention and discuss potential uses on
sources whose main purpose or essential structure is not that to Wikipedia.

5.5.2.1 Text validation and class summarization in formal environments

Any source composed of text descriptions which must fulfill some requirements may
require text validation. Legal, technical, or scientific sources in formal environments
are examples of such scenarios. SEITMA could be used then to extract shapes from
some exemplary documents. The shapes automatically extracted could be used as
drafts that may be tuned by some domain expert.

Once the shapes are validated by the domain experts, a new stage of triple ex-
traction could be performed over the documents. In case the triples obtained from
a document do not conform with its corresponding shape, the constraint violations
can reveal lack of specific pieces of information in the document.

An alternative use for those shapes validated by domain experts would be the
automatic generation of summaries which describe the fundamental parts of a doc-
ument. This would require mapping a shape TC’s to natural language sentences.
However, unlike the generation of Wikipedia templates, this translation is not ori-
ented to the generation of a template which needs to be completed with instance
values, but to produce a textual expression of the TCs themselves.

Needless to say, those automatically extracted shapes could also be used just as
they are. Its formal syntax can be useful to describe the features of a certain group
of documents from a structural point of view.

5.5.2.2 Automatic types or tags

Many text-oriented platforms rely on the ability to make an effective classification
of the different pieces of information that they contain. Tag systems in blogs and
forums, categories in news portals, or entity classifications in encyclopedic platforms
are examples of such useful classifications.

An implementation of SEITMA could be used in those systems to produce auto-
matic text classification w.r.t. the entities described in the different text pieces. First,

5.5. Discussion on use cases 185

SEITMA should be used to extract some model shapes using enough exemplary en-
tities. Then, the triple extraction process should be performed over the target texts.

The classification could be produced at text level or at entity level. Text-level
tagging would be produced when a certain target text piece conforms with a certain
shape associated to a topic. Instance-level tagging would occur when some of the
entities mentioned in the text produce a match with a shape associated to a certain
class.

The automatic classification of text pieces is a well-studied problem [306]. Most
of the modern approaches to perform automatic text classification are based on ML
techniques. A usual problem with ML classifiers is that they work in a black-box
manner. The user knows which are the algorithms used and may have an intuition
on which are the determinant features to produce some classification results. How-
ever, most of the times, the decisions taken by ML algorithms are opaque.

The actual performance of using shapes in classification scenarios as the de-
scribed ones still needs to be studied. However, an extra value that such an approach
can bring is that decisions would be no longer black-box like. When a certain tag t is
produced, the user can know which are the text features that caused t to be proposed
from the TCs of the shape associated to t.

5.5.2.3 Application in text streams

Platforms such as Twitter, Reddit, or even some forums, can be viewed as text
streams consisting of small actions of many different users posting about a wide
variety of topics. The user of those platforms, especially Twitter, tend to post about
trendy topics or events. A large amount of data is produced about such events in
short time periods and, frequently, those topics stop being trendy and relevant for
the community in short time periods too.

In such environments, the text stream produced by the community could be pro-
cessed to produce triples. Simultaneously, when an entity e of such stream is de-
tected to be an instance of a class c, the accumulated knowledge about e could be
processed to generate or modify a shape associated to c.

Those shapes could be useful to produce automatic live classifications. Once a
shape is already available and consolidated, the process of automatic triple extrac-
tion can still be active not to look for new shapes, but to recognize structures which
lead to automatic typings for an entity. Again, performing such automatic classifica-
tions is already possible, but most of those approaches are based on ML techniques.
As already mentioned, introducing shape languages in this scenario cause that the
classifications produced less opaque.

The shapes used for this purpose could be generated in batch-processes with ex-
ample data manually chosen instead of extracted from the actual stream data. With
this, a system can be trained to discover instances of target classes (music releases,
sport events, financial news, etc.). This can be already performed by heuristic-based
approaches, such as tracking updates about specific tags or keywords. Those ap-
proaches allow to locate target pieces of information. However, using a triple extrac-
tion process over the text would also allow for performing automatic computations
over specific pieces of information associated to the target events.

The heuristic-based approaches could be used as a first filter, so SEITMA is used
just to parse text pieces which are found to be relevant because they contain some
tags or keywords.

186 Chapter 5. Mining shapes from social media

5.6 Related work

To the best of our knowledge, the only alternative to perform shape extraction from
natural language is described in [22]. This approach is designed to parse conceptual
descriptions which are indeed very similar to actual descriptions of shapes. The sys-
tem can parse sentences such as “Every user has exactly one family name” or “Each user
has at least one contact mail”. The text patterns recognized by this tool are described
in [307]. We think that this type of tool may not be suitable to process social media
content, where explicit conceptual descriptions may not be frequent.

The work described in [22] consists in a specific form of model generation based
on textual requirements in which the obtained products are SHACL shapes. Some
other approaches of model generation from text requirements extract different fi-
nal products, such as Unified Modeling Language (UML) diagrams [308], or Entity-
Relationship (ER) models [309, 310]. Most of the existing approaches combine gen-
eral NLP techniques with domain-specific patterns and heuristics. Such patterns
allow for detecting key pieces of knowledge that are mapped to some structured
representation format. Even if some of the approaches accept unrestricted text as
input [311, 312], the type of knowledge obtained is usually limited by the heuristics
and patterns used.

The SEITMA approach is not a case of model extraction from requirements, but
model extraction though generalization of examples. SEITMA propose two main
tasks. Extraction of triples from natural language, and extraction of shapes from
RDF graphs. System related to the later subtask has already been reviewed in section
4.5. In this section, we will make an overview of works related with the extraction
of RDF (or RDF compatible models) from natural language. We will use the term
machine reader to refer to those systems30.

Many approaches have been proposed to solve subtasks of machine reading
(NER, EL, POS, WSD, RE, etc.). Indeed, most of the machine readers consist of com-
pilations of several systems with different roles working together.

Several machine readers are somehow related to Wikipedia corpora. Such ap-
proaches would be candidates to be integrated in a SEITMA implementation that,
as with our current prototypes, can be used to extract shapes from a Wikipedia text
corpus. Sometimes, the relation with Wikipedia is caused by a data dependency. Ap-
proaches in this situation use some ML methods that, same as LAREWA, are based
on distant supervision. The systems described in [313] and [314] have such depen-
dency. However, those approaches could be adapted to work with other sources, as
long as it is possible to gather adequate training data with distant supervision. An
example of distant supervision out of the Wikipedia context is described in [315].
The authors are able to annotate entities and relations between them in a text corpus
from the New York Times using Freebase as a knowledge base.

Some other systems are just related with DBpedia because its published evalu-
ation only utilizes Wikipedia data. Such systems do not rely on specific Wikipedia
features and, theoretically, it could be easier to adapt them to other sources. This is
the case of Graphia [316], Refractive [317], the approach described in [318], or BOA
[319]. This last system was also evaluated using the news corpus described in [315].

Among existing machine readers successfully evaluated in open domains, apart
from FRED, we can mention systems such as LODifier [281], PIKES [283], the tech-
niques associated to Knowledge Vault [286] and DeepDive [320, 321], or the systems

30Machine readers do not necessarily produce RDF outputs.

5.6. Related work 187

described in [284] and [282]. Those approaches, same as FRED, could be candidates
to be integrated in a SEITMA implementation with unspecific target sources.

LODifier [281] is a system which implements a pipeline similar to FRED’s one. It
transforms the output of a deep semantic analysis performed with Boxer into RDF
triples. LODifier also performs WSD with UKB to introduce mappings to WordNet,
and EL with Wikifier [276] to link NEs with Wikipedia links. The text is processed
with the statistical parser C&C, which is based on the CCGBank corpus [322]. This
parser is used after applying a standard process of tokenization and detecting named
entities with Wikifier.

DeepDive [320, 321] was31 a project to perform Knowledge Base Population
(KBP) by integrating several different types of sources. Its NLP pipeline consisted of
a combination of NER using StanfordNER [274], EL using a set of ad-hoc rules and
heuristics to create links with Wikipedia pages (string matching, Wikipedia redi-
rects, Google and Bing search results, etc.), and RE using the methods described in
[278]. DeepDive proved the feasibility of performing large-scale KBP using unstruc-
tured web resources. The candidate mentions and relations obtained with the NLP
pipeline were evaluated using statistical inference in Markov Logic. The necessary
classifiers were trained using distant supervision supported by Freebase data. This
approach was scaled using Condor [323] to perform parallel tasks.

Knowledge Vault [286] is another example of KBP, in this case using different
types of sources. Knowledge Vault include knowledge extracted from natural lan-
guage, but also from other types of semi-structured sources, such as tables or HTML
pages. Several extractors can work on information represented in different manners.
The triples stored in Knowledge Vault have an associated confidence score in [0, 1],
where 1 means maximum confidence. This is based on agreement between different
extractors. The KG described by the authors contains 1.6B triples, from which 271M
triples has a confidence level above 0.9. This work implements distant supervision
using Freebase knowledge. The authors introduce the notion of local closed world
assumption which is also used in LAREWA.

PIKES is a frame-based system for ontology population. Its workflow consists
of two main stages. During the first one, standard NLP techniques are performed.
In this stage, CoreNLP [293] is used to perform the first parsing tasks (tokenization,
POS, lemmatization, etc.). WSD is implemented with UKB, and DBpedia Spotlight
[125] is used to link mentions with DBpedia URIs. Also, two different tools are used
to perform SRL: Semafor [324] w.r.t. FrameNet, and Mate-tools [325] w.r.t. PropBank
[326, 327] and NomBank [328]. The second stage, named knowledge distillation, aims
to produce a graph for which the Unique Name Assumption is met. That is, nodes
which are detected to refer to the same entity are merged. With this, PIKES abstracts
the knowledge obtained from the specific mentions to entities and relations in the
input text. This stage is supported by the tool RDFPRO [174], which allows for per-
forming data filtering and transformation, RDFS inference, owl:sameAs smushing,
and statistics extraction on RDF content.

Another machine reader is presented in [284]. The main novelty of this approach
is the strategy to select an adequate property of a certain KB in order to represent the
relation between two entities. Binary relations between entities are extracted using
OpenIE [329]. Then, candidate relations between pairs of entities are selected using
a SPARQL-based approach. The candidate property chosen is the one which is more
similar to the binary relation previously extracted. The similarity is computed using

31It is not under active development since 2017, as stated in http://deepdive.stanford.edu/ Ac-
cessed in 2022/05/03.

http://deepdive.stanford.edu/

188 Chapter 5. Mining shapes from social media

a knowledge-based score obtained using notions of semantic sources such as WordNet,
and a corpus-based score obtained using word embeddings. The authors implement a
prototype which integrates this idea using standard tools for others tasks: CoreNLP
for general preprocessing and POS; DBpedia Spotlight, TagME, Babelfy [277], and
WAT [330] for NEL; ClausIE [331] for SRL.

In [282], an approach to support distant supervised systems is presented. To im-
prove the precision of those systems, the authors propose to filter ambiguous seed
nodes used to train classifiers. For example, lexicalizations with too many poten-
tial senses are discarded as seed node candidates. In order to improve the recall,
they propose a scope broader than a sentence to find relations between entities. The
authors argue that paragraphs may contain constant subjects and objects. This is, if
two entities with a known relation r are mentioned in different sentences of the same
paragraph, then the paragraph may be a valid expression of the relation r. With such
approach, finding actual relations between entities requires an especial emphasis on
CRR to detect pronouns or synonyms of entities involved in known relations. CRR
and other usual NLP-related tasks of the system implemented in [282] are performed
with CoreNLP.

To assist distant supervision techniques, sar-graphs are proposed in [332]. Sar-
graphs are meant to be a bridge between linguistic sources such as WordNet and
knowledge graphs such as DBpedia or Wikidata. Sar-graphs link semantic relations
from factual knowledge graphs with their linguistic representations in human lan-
guage. These graphs contain linguistic constructions to represent semantic relations
in specific languages. Vertexes in such constructions are words that can be related
with data such as word form, lemma, word class, word sense, global identifiers, or
some statistical metadata. The constructions (extraction patterns) are modeled as
sub-trees of dependency-graph representations of sentences. To prove the feasibil-
ity of their approach, the authors build sar-graphs for 25 different relations using
off-the-shell tools for NLP-related tasks.

Extended reviews about techniques and tools used to represent natural language
using semantic web standards are available in [24] and [333].

5.7 Conclusions

At the beginning of this chapter, we stated the following Research Question:

• RQ1: How can we automatically extract shapes from social media content?

In this chapter, we have described SEITMA, an architecture which combines sev-
eral subsystems to perform automatic extraction of shapes from natural language
pieces.

We have implemented two different prototypes following SEITMA specifica-
tions. Both prototypes were able to extract shapes describing classes by mining
Wikipedia abstracts. The shapes obtained using these prototypes prove the feasi-
bility of SEITMA proposals in order to tackle the challenges associated with RQ1.

We have performed an experiment to evaluate the potential of both prototypes:
we used them to extract shapes associated to the most important classes of DBpe-
dia using Wikipedia abstracts. Both prototypes achieved promising results, but the
experiments revealed ways in which the performance of both systems could be im-
proved.

The prototype named SEITMA-L implements an ML approach based on distant
supervision which uses Wikipedia and DBpedia data. The shapes obtained with

5.7. Conclusions 189

SEITMA-L under our experimental conditions were concise, based on the vocabu-
lary of the dbo ontology, and easy to interpret. However, the data obtained with
distant supervision caused that many relevant properties were not included in the
resulting shapes, as it was not possible to train reliable ML classifiers for that. Our
hypothesis is that SEITMA-L can produce better results when it is used with human
annotated data, even if this may affect the system’s adaptability to different contexts.

The prototype named SEITMA-F was able to produce shapes with a high level
of detail using several vocabularies. We detected that the amount and variety of fea-
tures generated under the conditions of our experiments could be even excessive.
We proposed some alternative settings and prototype adaptations to filter noisy fea-
tures and to increase the specificity of the shapes obtained. Nevertheless, the exact
nature of such modifications may be tightly related to specific contexts of applica-
tion.

We have introduced several use cases in which using a SEITMA implementation
could be beneficial. Some of the cases refer to actions that could have a positive im-
pact on Wikipedia. The goals described in those cases could be achieved with minor
adaptations of our current SEITMA implementations. Other use cases describe po-
tential uses of SEITMA out of the Wikipedia context. This last group of use cases
may be achieved with customized versions of SEITMA-F or using a new SEITMA
implementation whose module for triple extraction is adapted to the features of the
target text corpus (or text stream).

5.7.1 Future work

The experiments performed in this chapter allowed us to detect several lines of fu-
ture work:

• Experiments with SEITMA-L using human-annotated training data. Many
properties that a human annotator could have identified in the target abstracts
were not included in the shapes produced by SEITMA-L because there was
not enough training data. We think that the variety of features observed in
SEITMA-L shapes could be increased by using human-annotated examples.
An experiment using human annotated data would probably require to choose
some specific classes/domain knowledges to be able to produce enough train-
ing data.

• Full implementation and evaluation of use cases. Most of the use cases in-
troduced in this chapter use the shapes produced by SEITMA as a source of
knowledge. However, they require some other systems to solve their respec-
tive issues, such as automatic classifiers, error detectors, or template genera-
tors. Those subsystems should receive shapes as input and be able to create
some other outputs or perform some further actions with these shapes.

• SEITMA implementation for working with noisy sources. Such an imple-
mentation would need a triple extraction submodule able to deal with spe-
cial features associated to this kind of context: lower quality writing, lack of
context, jargon, etc. Such an implementation would allow to use SEITMA for
extracting shapes from social platforms such as Twitter or Reddit.

191

Chapter 6

Conclusions

6.1 Conclusions (English version)

We have developed a number of solutions to provide answers to three different Re-
search Questions. In this chapter, we propose answers for each of those questions
based on results described in chapters 3, 4, and 5.

RQ3 - How can we identify the most important classes of an RDF graph?
A feasible and top performant way of doing that is applying ClassRank. Class-

Rank is an algorithm that determines the importance of a class within an RDF graph.
Each class is assigned a score which is the sum of the PageRank scores of its in-
stances.

We compared ClassRank with several state-of-the-art approaches to measure
class importance in different KGs. We built reference rankings of class importance
for each source using SPARQL logs. In those rankings, the position of a class is de-
termined by how frequently it appears in the logs. The different techniques were
evaluated by determining the similarity between the importance ranking they pro-
duced and the reference rankings. That similarity was calculated using Ranking
Biased Overlap.

The best-performing technique was ClassRank. Surprisingly, the technique pro-
ducing the closest results to ClassRank was Instance Counting. This approach deter-
mines the importance of a class by simply counting how many instances it has. The
main difference observed between rankings produced by ClassRank and Instance
Counting is that the later one penalizes classes that have few instances (e.g., Coun-
try) even when those instances (e.g., Japan, India, Australia) are fundamental for the
graph’s structure. In contrast, such classes tend to be high-ranked with ClassRank.

The techniques evaluated can be classified in two groups: those only using con-
ceptual knowledge (OTT techniques) and those which also use instance-level knowl-
edge (AAT techniques). Our study also revealed that, in general, AAT approaches
perform better than OTT ones.

Cf. chapter 3 for further details.

RQ2 - How can we produce shapes by mining RDF triples?
A feasible way to do that is using sheXer. sheXer is an automatic instance-

based shape extractor. It uses a voting system which can detect features frequently
observed among a group of entities, so they can be generalized into a shape. sheXer
implements an iterative approach that avoids loading into main memory any con-
tent that is not relevant for the execution. This allows for processing large datasets
with inexpensive hardware.

192 Chapter 6. Conclusions

When we start working in problems related to RQ2, the automatic extraction of
shapes was a barely explored research field, as shape languages were a novelty at the
time. sheXer was one of the first available systems to perform such a task. Nowa-
days, a number of alternatives have been proposed. Still, sheXer is a competitive
solution, as it has a unique combination of features among the existing systems:

• It can generate both ShEx and SHACL.

• It can handle large real-world datasets.

• The inputs can be provided in several ways, such as local RDF files or remote
SPARQL endpoints.

• It allows for filtering shape features which are not frequent among the relevant
instances.

• It performs shape inter-linkage, i.e., it produces shapes that can reference to
each other.

• It allows for customizing the extraction process with many different options.

Although sheXer can handle large datasets, our experiments with sheXer reveal
linear relations between memory usage and some input variables, such as the num-
ber of target shapes or the number of relevant entities. Such relations can be a scal-
ability issue when processing too large datasets. Yet, we have shown that when
sheXer is fed with a reduced but representative set of instances the memory usage is
drastically reduced and the shapes obtained are not noticeably affected.

Cf. chapter 4 for further details.

RQ1 - How can we automatically extract shapes from social media content?
A feasible way to do that is using a SEITMA implementation. SEITMA is an

architecture that describes how to combine subsystems of triple extraction from nat-
ural language and shape extraction from RDF. It is based on example generalization.
SEITMA inputs are expected to contain descriptions or statements about several in-
stances of some concepts. As output, it produces shapes associated to those concepts
containing the features most frequently occurring in the examples.

To the best of our knowledge, there is just another proposal to obtain shapes
from natural language apart from SEITMA. However, such system is designed to
work with texts including actual descriptions of shape features, a kind of content
that could be hard to find in social media.

We implemented two prototypes of SEITMA. Both use sheXer to extract shapes
due to the following reasons:

• It can produce ShEx and SHACL content, which may allow SEITMA to reach
a broader set of developers and practitioners.

• It can extract shapes with inverse paths, i.e., shapes where the focus node is
used as the object of a triple. This allows for producing more constraints asso-
ciated to the shapes obtained.

• It generates textual comments attached to the shape’s constraints which are
valuable knowledge and can be used as input further automatic processes.

• It can handle large RDF datasets.

6.2. Conclusiones (Versión en castellano) 193

We performed a similar experiment with both prototypes: extracting shapes as-
sociated to the most important classes in DBpedia using Wikipedia abstracts. The
most important classes of DBpedia were determined using ClassRank. The most
important entities for those classes were used as model to train Machine Learning
algorithms for one of the prototypes. The other prototype relies on general Language
Models independent from Wikipedia.

Both prototypes were able to extract promising but different shapes using the
input abstracts. While one of the prototypes produced concise shapes using vocab-
ulary associated to DBpedia, the other one produced shapes with many details built
on top of several vocabularies. We discussed ways to adapt these systems so they
can be used in real scenarios. Such adaptations range from gathering different train-
ing data to using context-dependent graph mappings.

We also described several use cases where using shapes produced by a SEITMA
implementation could be helpful. We discussed potential implementations or adap-
tations of our current prototypes to be used in such use cases.

Cf. chapter 5 for further details.

General conclusions - We have been able to provide an answer for each of the
three Research Questions posed in this work. To do it, we have developed three
different systems: the ClassRank algorithm, the sheXer library, and the SEITMA
architecture.

Even if ClassRank and sheXer were developed to satisfy the needs of SEITMA,
they are separate tools which can be used in other contexts apart from those consid-
ered in this thesis. We have produced several publications where these two systems
are described or evaluated as standalone items [199, 252–254]. In particular, sheXer
seems to have been especially well received by the scientific community. It has al-
ready been included as a piece of other scientific works [261, 262], and integrated
in WikidataIntegrator1, which is a relevant tool for the Wikidata community. It has
also been positively evaluated in a recent comparison among different solutions for
automatic shape extraction [25].

While our current two SEITMA prototypes use sheXer and can benefit from
ClassRank, the SEITMA architecture is independent of these two tools.

We have outlined several lines of future work for ClassRank, sheXer, and SEITMA.
For example, we want to evaluate ClassRank as a relevance metric instead of an
importance one. Also, we would like to implement and evaluate new versions of
ClassRank based on notions of entity importance different from PageRank. W.r.t.
sheXer, we want to add several functional features to the system, including ontol-
ogy processing to detect and produce shape hierarchies. We also aim to implement
and evaluate optimizations of our library to tackle scalability issues when working
with too large input data, and to produce adaptations of our library to work with
KG models different to RDF. Finally, our priority with SEITMA is to use an imple-
mentation to solve some of the discussed use cases.

Those lines of research will be developed in parallel over the next few years.

6.2 Conclusiones (Versión en castellano)

Hemos desarrollado varias soluciones que dan respuesta a las Preguntas de Investi-
gación planteadas. En este capítulo, respondemos a dichas preguntas en base a los
resultados descritos en los capítulos 3, 4 y 5.

1https://github.com/SuLab/WikidataIntegrator Accessed in 2022/05/03.

https://github.com/SuLab/WikidataIntegrator

194 Chapter 6. Conclusions

RQ3 - ¿Cómo podemos identificar las partes más importantes de un grafo RDF?
Una forma factible y de eficacia probada para hacerlo es el uso de ClassRank.

ClassRank es un algoritmo que mide la importancia de clases en grafos RDF. A cada
clase se le asigna una puntuación calculada como la suma de la importancia de sus
instancias. La importancia a nivel de instancia se mide usando PageRank.

Hemos comparado ClassRank con varias alternativas existentes para medir im-
portancia de clases en grafos de conocimiento. Para ello, hemos elaborado unos
rankigns de importancia basados en logs de SPARQL. En estos rankings, la posición
de cada clase se determina en función de la frecuencia con la que es mencionada en
los logs. Las diferentes técnicas son evaluadas midiendo la similitud entre los rank-
ings que producen con los rankings de referencia basados en logs. Dicha similitud
se calcula usando Ranking Biased Overlap.

ClassRank fue la técnica que obtuvo mejores resultados durante nuestra exper-
imentación. Sorprendentemente, la técnica que produjo resultados más cercanos a
ClassRank fue Conteo de Instancias. Dicha métrica consiste en asignar a cada clase
una importancia basada simplemente en su número de instancias declaradas en el
grafo. La mayor diferencia observada entre los rankings de ClassRank y Conteo de
Instancias es que esta última métrica penaliza aquellas clases que tienen pocas in-
stancias, aun cuando estas estas resultan fundamentales para la estructura del grafo.
Ejemplo de ello sería la clase País, cuyas instancias (Japón, India, Australia, etc.) ac-
túan como puentes entre distintas regiones de los grafos evaluados. En cambio, tales
clases aparecen en las posiciones más altas del ranking usando ClassRank.

Las técnicas evaluadas pueden ser divididas en dos grandes grupos: aquellas
que solo utilizan conocimiento conceptual (llamadas OTT) y aquellas que además
utilizan conocimiento a nivel de instancia (llamadas AAT). Nuestro estudio también
revela que, en general, las métricas AAT producen rankings de mayor calidad que
las OTT.

En el capítulo 3 se ofrecen más detalles a este respecto.

RQ2 - ¿Cómo podemos producir shapes mediante minado de tripletas RDF?
Una forma factible de lograrlo es el uso de sheXer. sheXer es un extractor au-

tomático de shapes que utiliza minado de conocimiento a nivel de instancia. Imple-
menta un sistema de votos con el cual es capaz de detectar características topológicas
observadas con frecuencia entre un grupo de instancias. Esto permite generalizar
tales características para producir shapes. sheXer implementa un flujo iterativo que
evita mantener en memoria principal aquel contenido que no es relevante para el
proceso en ejecución. De esta manera es capaz de procesar grandes volúmenes de
datos utilizando hardware asequible.

Cuando comenzamos a trabajar en temas relacionados con la pregunta RQ2, la
extracción automática de shapes era un campo de investigación prácticamente inex-
plorado, pues los lenguajes de shapes eran relativamente nuevos. sheXer fue uno
de los primeros sistemas disponibles para llevar a cabo esta tarea. A día de hoy,
sheXer continúa siendo un sistema competitivo, pues exhibe una combinación de
características que no existe entre los sistemas alternativos:

• Puede generar tanto ShEx como SHACL.

• Puede procesar grandes grafos RDF.

• Permite filtrar aspectos de shapes que no son vistos con la suficiente frecuencia
entre las instancias minadas.

6.2. Conclusiones (Versión en castellano) 195

• Soporta referencias entre shapes, es decir, la etiqueta de una shape puede in-
tervenir en la definición de otra shape.

• Permite personalizar el proceso de extracción a través de múltiples opciones
de configuración.

Aunque sheXer ha probado ser capaz de procesar grandes volúmenes de datos,
nuestros experimentos revelan relaciones lineales entre el consumo de memoria y
algunas características de los datos de entrada, como el número de instancias rele-
vantes para el proceso. Estas relaciones pueden causar problemas de escalabilidad
con fuentes demasiado grandes. No obstante, hemos demostrado que la calidad de
las shapes producidas por sheXer es similar cuando se utiliza un conjunto represen-
tativo de instancias y cuando se utilizan todas las instancias disponibles. Cuando se
usa un conjunto reducido de instancias, el consumo de memoria mejora de forma
drástica.

En el capítulo 4 se ofrecen más detalles a este respecto.

RQ1 - ¿Como podemos extraer shapes a partir de contenido textual generado en
medios sociales?

Una forma factible de lograrlo es el uso de implementaciones de SEITMA.
SEITMA es una arquitectura que describe como combinar procesos de extracción
de tripletas a partir de lenguaje natural y de shapes a partir de contenido RDF. La
arquitectura se basa en la generalización de ejemplos. La entrada esperada para la
arquitectura es un corpus que contiene descripciones de varias instancias de ciertos
conceptos. El sistema produce shapes asociadas a dichos conceptos que contienen
las características más observadas entre sus instancias.

Hasta donde tenemos constancia, aparte de SEITMA, solo existe otro sistema ca-
paz de generar shapes a partir de contenido textual. No obstante, dicho sistema está
diseñado para procesar textos incluyendo descripciones estructurales de conceptos.
Estimamos que ese tipo de contenido es más infrecuente en redes sociales que el
conocimiento expresado a nivel de instancia.

Hemos implementado dos prototipos de SEITMA. Ambos prototipos utilizan
sheXer para la extracción de shapes a partir de RDF debido a las siguientes razones:

• Puede producir contenido tanto en ShEx como en SHACL, lo que nos puede
permitir alcanzar una audiencia más amplia para nuestro sistema.

• Puede extraer shapes con rutas inversas, es decir, shapes en las que el nodo foco
actúa como objeto en una tripleta. Esto aumenta la información potencial que
podemos añadir a cada shape.

• Puede generar comentarios asociados a las shapes producidas. Dichos comen-
tarios, son una fuente de información valiosa. Aunque los comentarios no
tienen una estructura formal estricta, su patrón es predecible y estable, lo que
permite que procesos automáticos puedan parsear esta información.

• Puede manejar grandes volúmenes de datos.

Hemos llevado a cabo un experimento similar con ambos prototipos: hemos
extraído shapes asociadas a las clases más importantes de DBpedia usando como
fuente resúmenes de Wikipedia. Las clases más importantes de DBpedia fueron de-
terminadas mediante el algoritmo ClassRank. Las entidades más importantes de
dichas clases fueron usadas como datos modelo para uno de los prototipos, que se

196 Chapter 6. Conclusions

basa en un sistema de Machine Learning. El otro prototipo utiliza modelos lingüísti-
cos independientes de Wikipedia.

Si bien las shapes generadas por estos sistemas tienen distintas características,
ambos fueron capaces de producir resultados prometedores. Mientras que uno de
los prototipos generó shapes concisas usando vocabulario de DBpedia, el otro gen-
eró estructuras con un alto nivel de detalle que usan vocabularios tanto de DBpedia
como de otras fuentes. Hemos discutido diferentes formas de adaptar estos pro-
totipos para su uso en escenarios reales. Tales adaptaciones van desde una aproxi-
mación diferente para la obtención de datos modelo hasta la utilización de mapeos
de grafo dependientes del contexto de aplicación.

También hemos descrito diferentes casos de uso en los que la utilización de
shapes producidas por una implementación de SEITMA pueden ser útiles. Hemos
discutido potenciales implementaciones de nuestra arquitectura o posibles adapta-
ciones de nuestros prototipos para ser utilizados en estos casos.

En el capítulo 5 se ofrecen más detalles a este respecto.

Conclusiones generales - Hemos sido capaces de dar respuesta a las tres Pre-
guntas de Investigación planteadas. Para ello, hemos desarrollado tres principales
propuestas distintas: el algoritmo ClassRank, el sistema sheXer y la arquitectura
SEITMA.

A pesar de que ClassRank y sheXer fueron desarrollados para resolver distintas
necesidades relacionadas con SEITMA, son productos que pueden ser utilizados en
contextos distintos al de nuestra tesis. Hemos producido varias publicaciones en las
que estos dos sistemas son descritos y evaluados como elementos independientes
[199, 252–254]. Particularmente, sheXer parece haber sido bien recibido por la co-
munidad científica. Ya ha sido incluido como parte de otros trabajos [261, 262] y
también ha sido integrado en WikidataIntegrator2, una herramienta relevante para
la comunidad de Wikidata. También ha sido evaluado de forma positiva en una
comparación reciente de herramientas para la extracción automática de shapes [25].

A pesar de que nuestros prototipos de SEITMA utilizan sheXer y ClassRank, la
definición de la arquitectura también es independiente de estos dos elementos.

Hemos descrito varias líneas de trabajo futuro relacionadas con ClassRank, sheXer
y SEITMA. Por ejemplo, planeamos evaluar ClassRank como métrica de relevancia
en lugar de métrica de importancia. Además, planteamos implementar y evaluar
diferentes versiones de ClassRank basadas en nociones de importancia de instancia
distintas a PageRank. Con respecto a sheXer, hemos planteado añadir varias carac-
terísticas funcionales a nuestro sistema. Además, buscamos implementar y evaluar
adaptaciones de la librería para lidiar con potenciales problemas de escalabilidad.
Buscamos también implementar versiones de sheXer capaces de extraer estructuras
de grafos de conocimiento con modelos no basados en RDF. Por último, nuestra
prioridad respecto a SEITMA es la experimentación con un prototipo para resolver
casos de usos reales.

Estas líneas de trabajo futuro serán desarrolladas en paralelo en los próximos
años.

2https://github.com/SuLab/WikidataIntegrator Consultado por última vez el 03/05/2022.

https://github.com/SuLab/WikidataIntegrator

197

Appendix A

Prefix definitions

PREFIX : <http://example.org/>
PREFIX boxer : <http://www.ontologydesignpatterns.org/ont/boxer/boxer.owl#>
PREFIX boxing : <http://www.ontologydesignpatterns.org/ont/boxer/boxing.owl#>
PREFIX dul : <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX dbo : <http://dbpedia.org/ontology/>
PREFIX dbr : <http://dbpedia.org/resource/>
PREFIX ex : <http://example.org/>
PREFIX fe : <http://www.ontologydesignpatterns.org/ont/framenet/abox/fe/>
PREFIX foaf : <http://xmlns.com/foaf/0.1/>
PREFIX framester : <http://w3id.org/framester/schema/>
PREFIX fred : <http://www.ontologydesignpatterns.org/ont/fred/domain.owl#>
PREFIX geo : <http://www.opengis.net/ont/geosparql#>
PREFIX org : <http://www.w3.org/ns/org#>
PREFIX p : <http://www.wikidata.org/prop/>
PREFIX pq : <http://www.wikidata.org/prop/qualifier/>
PREFIX ps : <http://www.wikidata.org/prop/statement/>
PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs : <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema : <http://schema.org/>
PREFIX sh : <http://www.w3.org/ns/shacl#>
PREFIX skos : <http://www.w3.org/2004/02/skos/core#>
PREFIX sx : <http://shex.io/ns/shex#>
PREFIX wd : <http://www.wikidata.org/entity/>
PREFIX wdt : <http://www.wikidata.org/prop/direct/>
PREFIX wdtn : <http://www.wikidata.org/prop/direct-normalized/>
PREFIX weso-s : <http://weso.es/shapes/>
PREFIX wikibase : <http://wikiba.se/ontology#>
PREFIX xml : <http://www.w3.org/XML/1998/namespace/>
PREFIX xsd : <http://www.w3.org/2001/XMLSchema#>

199

Bibliography

[1] Timothy J Berners-Lee. Information management: A proposal. Tech. rep. CERN,
1989.

[2] Lawrence Page et al. “The PageRank citation ranking: bringing order to the
web.” In: Stanford InfoLab (1999).

[3] Tim O’reilly. What is web 2.0. " O’Reilly Media, Inc.", 2009.

[4] Yunis Ali Ahmed et al. “Social media for knowledge-sharing: A systematic
literature review”. In: Telematics and Informatics 37 (2019), pp. 72–112. ISSN:
0736-5853. DOI: https://doi.org/10.1016/j.tele.2018.01.015. URL:
https://www.sciencedirect.com/science/article/pii/S0736585317306688.

[5] Lincoln Dahlberg. “Which social media? A call for contextualization”. In: So-
cial Media+ Society 1.1 (2015).

[6] Nancy K Baym. “Social media and the struggle for society”. In: Social Media+
Society 1.1 (2015).

[7] Daniel Gayo-Avello. “Social media: a definition”. In: Personal Blog (2022).

[8] Tracy L Tuten and Michael R Solomon. Social media marketing. Sage, 2017.

[9] Christopher Ifeanyi Eke et al. “A survey of user profiling: State-of-the-art,
challenges, and solutions”. In: IEEE Access 7 (2019), pp. 144907–144924.

[10] Punam Bedi and Chhavi Sharma. “Community detection in social networks”.
In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6.3
(2016), pp. 115–135.

[11] Daniel Gayo-Avello. “A meta-analysis of state-of-the-art electoral prediction
from Twitter data”. In: Social Science Computer Review 31.6 (2013), pp. 649–679.

[12] Sharath Chandra Guntuku et al. “Detecting depression and mental illness on
social media: an integrative review”. In: Current Opinion in Behavioral Sciences
18 (2017), pp. 43–49.

[13] Amaia Eskisabel-Azpiazu, Rebeca Cerezo-Menéndez, and Daniel Gayo-Avello.
“An ethical inquiry into youth suicide prevention using social media min-
ing”. In: Internet Research Ethics for the Social Age 227 (2017).

[14] J Brian Houston et al. “Social media and disasters: a functional framework for
social media use in disaster planning, response, and research”. In: Disasters
39.1 (2015), pp. 1–22.

[15] Sally M Gainsbury et al. “An exploratory study of gambling operators’ use
of social media and the latent messages conveyed”. In: Journal of Gambling
Studies 32.1 (2016), pp. 125–141.

[16] John Hani et al. “Social media cyberbullying detection using machine learn-
ing”. In: Int. J. Adv. Comput. Sci. Appl 10.5 (2019), pp. 703–707.

[17] Kai Shu et al. “Fake news detection on social media: A data mining perspec-
tive”. In: ACM SIGKDD explorations newsletter 19.1 (2017), pp. 22–36.

https://doi.org/https://doi.org/10.1016/j.tele.2018.01.015
https://www.sciencedirect.com/science/article/pii/S0736585317306688

200 Bibliography

[18] Daniel A González-Padilla and Leonardo Tortolero-Blanco. “Social media in-
fluence in the COVID-19 pandemic”. In: International braz j urol 46 (2020),
pp. 120–124.

[19] Roy Fielding et al. RFC2616: Hypertext Transfer Protocol–HTTP/1.1. 1999.

[20] Holger Knublauch and Dimitris Kontokostas. “Shapes constraint language
(SHACL)”. In: W3C Candidate Recommendation 11.8 (2017).

[21] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold Solbrig. “Shape
expressions: an RDF validation and transformation language”. In: Proceedings
of the 10th International Conference on Semantic Systems. 2014, pp. 32–40.

[22] David Šenkýř. “SHACL Shapes Generation from Textual Documents”. In: En-
terprise and Organizational Modeling and Simulation. Ed. by Robert Pergl et al.
Springer International Publishing, 2019, pp. 121–130. ISBN: 978-3-030-35646-
0.

[23] Razieh Baradaran, Razieh Ghiasi, and Hossein Amirkhani. “A survey on
machine reading comprehension systems”. In: Natural Language Engineering
(2020), pp. 1–50.

[24] Jose L Martinez-Rodriguez, Aidan Hogan, and Ivan Lopez-Arevalo. “Infor-
mation extraction meets the semantic web: a survey”. In: Semantic Web 11.2
(2020), pp. 255–335.

[25] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. “SHACL and ShEx in
the Wild: A Community Survey on Validating Shapes Generation and Adop-
tion”. In: Companion Proceedings of the Web Conference. Ed. by Anna Lisa Gen-
tile and Lisena Pasquale. WWW’22 Companion. ACM, 2022.

[26] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative knowl-
edgebase”. In: Communications of the ACM 57.10 (2014), pp. 78–85.

[27] Jens Lehmann et al. “DBpedia–a large-scale, multilingual knowledge base
extracted from Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–195.

[28] Alexandros Pappas et al. “Exploring importance measures for summarizing
RDF/S KBs”. In: European Semantic Web Conference. Springer. 2017, pp. 387–
403.

[29] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. In:
Scientific American 284.5 (2001), pp. 34–43.

[30] Tim Berners-Lee, Roy Fielding, and Larry Masinter. RFC2396: Uniform re-
source identifiers (URI): generic syntax. 1998.

[31] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data: The story
so far”. In: Semantic services, interoperability and web applications: emerging con-
cepts. IGI global, 2011, pp. 205–227.

[32] Dan Brickley, Ramanathan V Guha, and Brian McBride. “RDF Schema 1.1”.
In: W3C recommendation (2014).

[33] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology
language overview”. In: W3C recommendation (2004).

[34] Kurt Bollacker et al. “Freebase: a collaboratively created graph database for
structuring human knowledge”. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. ACM. 2008, pp. 1247–1250.

[35] Douglas B Lenat. “CYC: A large-scale investment in knowledge infrastruc-
ture”. In: Communications of the ACM 38.11 (1995), pp. 33–38.

Bibliography 201

[36] Barbara B Tillett. “A Virtual International Authority File.” In: ERIC. URL:
https: // eric. ed. gov/ ?id= ED459769 (2001).

[37] Dan Brickley and Libby Miller. “FOAF Vocabulary Specification 0.99”. In:
XMLNS (2014).

[38] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. “Yago 4: A
reason-able knowledge base”. In: European Semantic Web Conference. Springer.
2020, pp. 583–596.

[39] Andy Seaborne et al. “SPARQL 1.1 Federated Query”. In: W3C recommenda-
tion (2013).

[40] Linked Data. https://www.w3.org/DesignIssues/LinkedData.html. Ac-
cessed: 2022-05-09. 2009.

[41] W3C. “RDF”. In: W3C recommendation (2014).

[42] Jose Emilio Labra Gayo et al. “Validating RDF data”. In: Synthesis Lectures on
Semantic Web: Theory and Technology 7.1 (2017), pp. 1–328.

[43] Tim Berners-Lee and Dan Connolly. “Notation3 (N3): A readable RDF syn-
tax”. In: W3C recommendation (2011).

[44] Eric Prud’hommeaux and Gavin Carothers. “RDF 1.1 Turtle”. In: W3C recom-
mendation (2014).

[45] Gavin Carothers and Andy Seaborne. “RDF 1.1 N-Triples”. In: W3C recom-
mendation (2014).

[46] Manu Sporny et al. “JSON-LD 1.0”. In: W3C recommendation 16 (2014), p. 41.

[47] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. “Reifying RDF: What
Works Well With Wikidata?” In: SSWS@ ISWC 1457 (2015), pp. 32–47.

[48] Jeremy J Carroll et al. “Named graphs”. In: Journal of Web Semantics 3.4 (2005),
pp. 247–267.

[49] Edward W Schneider. “Course Modularization Applied: The Interface Sys-
tem and Its Implications For Sequence Control and Data Analysis”. In: ERIC.
URL: https: // eric. ed. gov/ ?id= ED088424 (1973).

[50] Amit Singhal. Introducing the Knowledge Graph: things, not strings. Google Blog.
2012. URL: https://www.blog.google/products/search/introducing-
knowledge-graph-things-not/.

[51] Lisa Ehrlinger and Wolfram Wöß. “Towards a definition of knowledge graphs.”
In: SEMANTiCS (Posters, Demos, SuCCESS) 48.1-4 (2016), p. 2.

[52] Piero Andrea Bonatti et al. “Knowledge Graphs: New Directions for Knowl-
edge Representation on the Semantic Web”. In: Dagstuhl Seminar 18371. Ed.
by Piero Andrea Bonatti et al. Vol. 8. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, pp. 29–111.

[53] Michael K. Bergman. A Common Sense View of Knowledge Graphs. Adaptive
Information, Adaptive Innovation, Adaptive Infrastructure Blog. 2019. URL:
http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-

graphs/.

[54] Aidan Hogan et al. Knowledge Graphs. English. Synthesis Lectures on Data, Se-
mantics, and Knowledge 22. Morgan & Claypool, 2021. ISBN: 9781636392363.

[55] Xiao Wang et al. “Heterogeneous graph attention network”. In: The world wide
web conference. 2019, pp. 2022–2032.

https://eric.ed.gov/?id=ED459769
https://www.w3.org/DesignIssues/LinkedData.html
https://eric.ed.gov/?id=ED088424
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/
http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/

202 Bibliography

[56] Justin J Miller. “Graph database applications and concepts with Neo4j”. In:
Proceedings of the southern association for information systems conference, Atlanta,
GA, USA. Vol. 2324. 2013.

[57] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “RDF and Property
Graphs Interoperability: Status and Issues”. In: AMW. Aug. 2019.

[58] R. J. Pittman et al. Cracking the Code on Conversational Commerce. eBay Blog.
2017. URL: https://www.ebayinc.com/stories/news/cracking-the-code-
on-conversational-commerce/.

[59] Natasha Noy et al. “Industry-scale Knowledge Graphs: Lessons and Chal-
lenges”. In: ACM Queue 17.2 (2019).

[60] Arun Krishnan. Making search easier: How Amazon’s Product Graph is helping
customers find products more easily. Amazon Blog. 2018. URL: https://blog.
aboutamazon.com/innovation/making-search-easier.

[61] Saurabh Shrivastava. Bring rich knowledge of people, places, things and local busi-
nesses to your apps. Bing Blogs. 2017. URL: https://blogs.bing.com/search-
quality-insights/2017-07/bring-rich-knowledge-of-people-places-

things-and-local-businesses-to-your-apps.

[62] Ferras Hamad, Isaac Liu, and Xian Xing Zhang. Food Discovery with Uber Eats:
Building a Query Understanding Engine. Uber Engineering Blog. 2018. URL:
https://eng.uber.com/uber-eats-query-understanding/.

[63] Gregory Karvounarakis et al. “RQL: A functional query language for RDF”.
In: The Functional Approach to Data Management. Springer, 2004, pp. 435–465.

[64] Michael Sintek and Stefan Decker. “TRIPLE—A query, inference, and trans-
formation language for the semantic web”. In: International semantic web con-
ference. Springer. 2002, pp. 364–378.

[65] Sebastian Schaffert and François Bry. “Querying the Web Reconsidered: A
Practical Introduction to Xcerpt.” In: Extreme Markup Languages®. 2004.

[66] Eric Prud’hommeaux. “Algae RDF Query Language”. In: W3C draft (work in
progress) (2004).

[67] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and com-
plexity of SPARQL”. In: ACM Transactions on Database Systems (TODS) 34.3
(2009), pp. 1–45.

[68] Thomas R Gruber. “A translation approach to portable ontology specifica-
tions”. In: Knowledge acquisition 5.2 (1993), pp. 199–220.

[69] Deborah L McGuinness and Frank van Harmelen. “OWL Web Ontology Lan-
guage. Document Overview”. In: W3C Recommendation (2004).

[70] W3C OWL Working Group. “OWL 2 Web Ontology Language. Document
Overview (Second Edition)”. In: W3C Recommendation (2012).

[71] Zhongli Ding and Yun Peng. “A probabilistic extension to ontology language
OWL”. In: 37th Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the. IEEE. 2004, 10–pp.

[72] Jeff Z Pan and Ian Horrocks. “OWL FA: a metamodeling extension of OWL
D”. In: Proceedings of the 15th international conference on World Wide Web. 2006,
pp. 1065–1066.

https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://eng.uber.com/uber-eats-query-understanding/

Bibliography 203

[73] David Martin et al. “Bringing semantics to web services: The OWL-S ap-
proach”. In: International Workshop on Semantic Web Services and Web Process
Composition. Springer. 2004, pp. 26–42.

[74] Grégory Alary et al. “Comp-O: an OWL-S Extension for Composite Service
Description”. In: International Conference on Knowledge Engineering and Knowl-
edge Management. Springer. 2020, pp. 171–182.

[75] Mark D Wilkinson et al. “Addendum: The FAIR Guiding Principles for sci-
entific data management and stewardship”. In: Scientific data 6 (2019), p. 6.

[76] Sandra Collins et al. Turning FAIR into reality: Final report and action plan from
the European Commission expert group on FAIR data. 2018.

[77] María Poveda-Villalón et al. “Coming to terms with FAIR ontologies”. In:
International Conference on Knowledge Engineering and Knowledge Management.
Springer. 2020, pp. 255–270.

[78] G Cota et al. “Best practices for implementing fair vocabularies and ontolo-
gies on the web”. In: Applications and Practices in Ontology Design, Extraction,
and Reasoning 49 (2020), p. 39.

[79] Simon JD Cox et al. “Ten simple rules for making a vocabulary FAIR”. In:
PLoS computational biology 17.6 (2021), e1009041.

[80] Stuart Weibel et al. “Dublin core metadata for resource discovery”. In: Internet
Engineering Task Force RFC 2413.222 (1998), p. 132.

[81] Dan Brickley and Libby Miller. “FOAF vocabulary specification 0.98”. In:
Namespace document 9 (2012).

[82] Yves Raimond et al. “The Music Ontology.” In: ISMIR. Vol. 2007. Citeseer.
2007, 8th.

[83] Kevin Donnelly et al. “SNOMED-CT: The advanced terminology and coding
system for eHealth”. In: Studies in health technology and informatics 121 (2006),
p. 279.

[84] Libby Miller and Dan Brickley. Schemarama. URL: https://danbri.org/
words/2005/07/30/114. 2005.

[85] Libby Miller. “RDF Squish query language and Java implementation”. In:
Institute for Learning and Research Technology, University of Bristol, disponible en
ligne sur: http://ilrt. org/discovery/2001/02/squish (2001).

[86] Damian Steer and Libby Miller. “Validating RDF with TreeHugger and Schema-
tron. Position Paper”. In: FOAF-Galway. FOAF. 2004.

[87] James Clark, Steve DeRose, et al. XML path language (XPath). 1999.

[88] Holger Knublauch. “SPIN-modeling vocabulary”. In: W3C Member Submis-
sion 22 (2011).

[89] Christian Fürber and Martin Hepp. “Using SPARQL and SPIN for data qual-
ity management on the semantic web”. In: International Conference on Business
Information Systems. Springer. 2010, pp. 35–46.

[90] Shawn Simister and Dan Brickley. “Simple application-specific constraints
for rdf models”. In: RDF Validation Workshop. Practical Assurances for Quality
RDF Data, Cambridge, Ma, Boston. 2013.

[91] Dimitris Kontokostas et al. “Test-driven evaluation of linked data quality”.
In: Proceedings of the 23rd international conference on World Wide Web. 2014,
pp. 747–758.

https://danbri.org/words/2005/07/30/114
https://danbri.org/words/2005/07/30/114

204 Bibliography

[92] Jiao Tao et al. “Integrity constraints in OWL”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 24. 1. 2010, pp. 1443–1448.

[93] Peter F Patel-Schneider. “Using description logics for RDF constraint check-
ing and closed-world recognition”. In: Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence. 2015.

[94] Kendall Clark and Evren Sirin. “On RDF validation, stardog ICV, and as-
sorted remarks”. In: RDF Validation Workshop. Practical Assurances for Quality
RDF Data, Cambridge, Ma, Boston. 2013.

[95] Arthur G Ryman, Arnaud Le Hors, and Steve Speicher. “OSLC Resource
Shape: A language for defining constraints on Linked Data.” In: LDOW 996
(2013).

[96] Karen Coyle and Tom Baker. “Dublin core application profiles. separating
validation from semantics”. In: RDF Validation Workshop. Practical Assurances
for Quality RDF Data, Cambridge, Ma, Boston. 2013.

[97] Peter M Fischer et al. “RDF constraint checking”. In: (2015).

[98] Eric Van der Vlist. Relax ng: A simpler schema language for xml. " O’Reilly Me-
dia, Inc.", 2003.

[99] Eric Prud’hommeaux et al. “Shape Expressions Language 2.1”. In: W3C Com-
munity Group Report (2019).

[100] Eric Prud’hommeaux. “Shape Expressions (ShEx) JSON Formats”. In: (2019).

[101] Tim Bray. “The javascript object notation (json) data interchange format”. In:
(2014).

[102] Eric Prud’hommeaux et al. “Development of a FHIR RDF data transforma-
tion and validation framework and its evaluation”. In: Journal of Biomedical
Informatics 117 (2021), p. 103755.

[103] “The Gene Ontology resource: enriching a GOld mine”. In: Nucleic acids re-
search 49.D1 (2021), pp. D325–D334.

[104] Guillermo Facundo Colunga et al. “ShEx-Lite: Automatic generation of do-
main object models from a shape expressions subset language?” In: CEUR
Workshop Proceedings. 2020.

[105] Herminio Garcia-Gonzalez and Jose Emilio Labra-Gayo. “XMLSchema2ShEx:
Converting XML validation to RDF validation”. In: Semantic Web 11.2 (2020),
pp. 235–253.

[106] Gustavo Candela et al. “A shape expression approach for assessing the qual-
ity of linked open data in libraries”. In: Semantic Web Preprint (2021), pp. 1–
21.

[107] Petri Leskinen, Eero Hyvönen, and Jouni Tuominen. “Members of Parliament
in Finland Knowledge Graph and Its Linked Open Data Service”. In: Further
with Knowledge Graphs. IOS Press, 2021, pp. 255–269.

[108] Holger Knublauch and Vladimir Alexiev. “SHACL Compact Syntax”. In: W3C
Draft Community Group Report (2018).

[109] Holger Knublauch, Dean Allemang, and Simon Steyskal. “SHACL Advanced
Features”. In: W3C Working Group Note (2017).

[110] Holger Knublauch, TopQuadrant, and Pano Maria. “SHACL JavaScript Ex-
tensions”. In: W3C Working Group Note (2017).

Bibliography 205

[111] Martin Leinberger et al. “Type checking program code using SHACL”. In:
International Semantic Web Conference. Springer. 2019, pp. 399–417.

[112] Blerina Spahiu, Andrea Maurino, and Matteo Palmonari. “Towards Improv-
ing the Quality of Knowledge Graphs with Data-driven Ontology Patterns
and SHACL.” In: ISWC (Best Workshop Papers). 2018, pp. 103–117.

[113] Jesse Wright et al. “Schímatos: a SHACL-based web-form generator for knowl-
edge graph editing”. In: International Semantic Web Conference. Springer. 2020,
pp. 65–80.

[114] Sander Stolk and Kris McGlinn. “Validation of IfcOWL datasets using SHACL”.
In: Proceedings of the 8th Linked Data in Architecture and Construction Workshop
(LDAC2020) at Dublin, Ireland. 2020.

[115] Ranjith K Soman. “Modelling construction scheduling constraints using Shapes
Constraint Language (SHACL)”. In: 2019 European Conference on Computing in
Construction, Chania, Greece. 2019, pp. 351–358.

[116] Umutcan Şimşek et al. “Domain-specific customization of schema. org based
on SHACL”. In: International Semantic Web Conference. Springer. 2020, pp. 585–
600.

[117] Andreas M Kaplan and Michael Haenlein. “Social media: back to the roots
and back to the future”. In: Journal of systems and information technology (2012).

[118] Dan O’Sullivan. Wikipedia: a new community of practice? Routledge, 2016.

[119] Denny Vrandecic. “Capturing meaning: Toward an abstract Wikipedia”. In:
(2018).

[120] Fernanda B Viégas, Martin Wattenberg, and Kushal Dave. “Studying cooper-
ation and conflict between authors with history flow visualizations”. In: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems. 2004,
pp. 575–582.

[121] Diana Maynard, Kalina Bontcheva, and Isabelle Augenstein. “Natural lan-
guage processing for the semantic web”. In: Synthesis Lectures on the Semantic
Web: Theory and Technology 6.2 (2016), pp. 1–194.

[122] Toms Bergmanis and Sharon Goldwater. “Context sensitive neural lemmati-
zation with lematus”. In: Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). 2018, pp. 1391–1400.

[123] Atefeh Farzindar and Diana Inkpen. “Natural language processing for so-
cial media”. In: Synthesis Lectures on Human Language Technologies 8.2 (2015),
pp. 1–166.

[124] Joseph Weizenbaum. “ELIZA—a computer program for the study of natural
language communication between man and machine”. In: Communications of
the ACM 9.1 (1966), pp. 36–45.

[125] Pablo N Mendes et al. “DBpedia spotlight: shedding light on the web of doc-
uments”. In: Proceedings of the 7th international conference on semantic systems.
2011, pp. 1–8.

[126] Shijie Wu and Mark Dredze. “Beto, Bentz, Becas: The Surprising Cross-Lingual
Effectiveness of BERT”. In: EMNLP. 2019.

[127] Przemyslaw Dymarski. Hidden Markov models: Theory and applications. BoD–
Books on Demand, 2011.

206 Bibliography

[128] Charles Sutton, Andrew McCallum, et al. “An introduction to conditional
random fields”. In: Foundations and Trends® in Machine Learning 4.4 (2012),
pp. 267–373.

[129] Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In:
Pattern Recognition 77 (2018), pp. 354–377.

[130] Yong Yu et al. “A review of recurrent neural networks: LSTM cells and net-
work architectures”. In: Neural computation 31.7 (2019), pp. 1235–1270.

[131] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural infor-
mation processing systems 30 (2017).

[132] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edi-
tion). USA: Prentice-Hall, Inc., 2009. ISBN: 0131873210.

[133] Yuri Lin et al. “Syntactic annotations for the google books ngram corpus”. In:
Proceedings of the ACL 2012 system demonstrations. 2012, pp. 169–174.

[134] Mark Davies. “The Corpus of Contemporary American English as the first
reliable monitor corpus of English”. In: Literary and linguistic computing 25.4
(2010), pp. 447–464.

[135] Bing Liu and Lei Zhang. “A survey of opinion mining and sentiment analy-
sis”. In: Mining text data. Springer, 2012, pp. 415–463.

[136] Tommi Jauhiainen et al. “Automatic language identification in texts: A sur-
vey”. In: Journal of Artificial Intelligence Research 65 (2019), pp. 675–782.

[137] Charu C Aggarwal and ChengXiang Zhai. “A survey of text classification
algorithms”. In: Mining text data. Springer, 2012, pp. 163–222.

[138] Balaji Krishnapuram et al. “Sparse multinomial logistic regression: Fast al-
gorithms and generalization bounds”. In: IEEE transactions on pattern analysis
and machine intelligence 27.6 (2005), pp. 957–968.

[139] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Ma-
chine learning 20.3 (1995), pp. 273–297.

[140] David Meyer and FT Wien. “Support vector machines”. In: The Interface to
libsvm in package e1071 28 (2015).

[141] Abhishek Kumar, Jyotir Moy Chatterjee, and Vicente García Díaz. “A novel
hybrid approach of SVM combined with NLP and probabilistic neural net-
work for email phishing”. In: International Journal of Electrical and Computer
Engineering 10.1 (2020), p. 486.

[142] C Jashubhai Rameshbhai and Joy Paulose. “Opinion mining on newspaper
headlines using SVM and NLP”. In: International Journal of Electrical and Com-
puter Engineering (IJECE) 9.3 (2019), pp. 2152–2163.

[143] Yuling Chen and Zhi Zhang. “Research on text sentiment analysis based on
CNNs and SVM”. In: 2018 13th IEEE Conference on Industrial Electronics and
Applications (ICIEA). IEEE. 2018, pp. 2731–2734.

[144] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943),
pp. 115–133. ISSN: 1522-9602.

[145] Mohammad-Parsa Hosseini et al. “Deep learning architectures”. In: Deep learn-
ing: concepts and architectures. Springer, 2020, pp. 1–24.

[146] Katherine Elkins and Jon Chun. “Can GPT-3 pass a writer’s Turing Test?” In:
Journal of Cultural Analytics 5.2 (2020), p. 17212.

Bibliography 207

[147] Tomas Mikolov et al. “Distributed Representations of Words and Phrases
and Their Compositionality”. In: NIPS’13. Lake Tahoe, Nevada: Curran As-
sociates Inc., 2013, 3111–3119.

[148] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP). 2014, pp. 1532–
1543.

[149] Diana Maynard, Kalina Bontcheva, and Dominic Rout. “Challenges in devel-
oping opinion mining tools for social media”. In: Proceedings of the@ NLP can
u tag# usergeneratedcontent (2012), pp. 15–22.

[150] Amelia M Jamison, David A Broniatowski, and Sandra Crouse Quinn. “Ma-
licious actors on Twitter: A guide for public health researchers”. In: American
journal of public health 109.5 (2019), pp. 688–692.

[151] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[152] Rolandos Alexandros Potamias, Georgios Siolas, and Andreas-Georgios Stafy-
lopatis. “A transformer-based approach to irony and sarcasm detection”. In:
Neural Computing and Applications 32.23 (2020), pp. 17309–17320.

[153] Palak Verma, Neha Shukla, and AP Shukla. “Techniques of sarcasm detec-
tion: A review”. In: 2021 International Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE). IEEE. 2021, pp. 968–972.

[154] Roberto González-Ibánez, Smaranda Muresan, and Nina Wacholder. “Iden-
tifying sarcasm in twitter: a closer look”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies. 2011, pp. 581–586.

[155] Po-Yao Huang et al. “Multimodal filtering of social media for temporal mon-
itoring and event analysis”. In: Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval. 2018, pp. 450–457.

[156] Donald Metzler, Congxing Cai, and Eduard Hovy. “Structured event retrieval
over microblog archives”. In: Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. 2012, pp. 646–655.

[157] Jiawei Han, Micheline Kamber, and Jian Pei. “Data Mining: Concepts and
Techniques Third Edition [M]”. In: The Morgan Kaufmann Series in Data Man-
agement Systems 5.4 (2011), pp. 83–124.

[158] Manoj Kumar Gupta and Pravin Chandra. “A comprehensive survey of data
mining”. In: International Journal of Information Technology 12.4 (2020), pp. 1243–
1257.

[159] Sara Radicati and J Levenstein. “Email Statistics Report, 2021-2025”. In: Rad-
icati Group, Palo Alto, CA, USA, Tech. Rep (2021).

[160] Giang Nguyen et al. “Machine learning and deep learning frameworks and
libraries for large-scale data mining: a survey”. In: Artificial Intelligence Review
52.1 (2019), pp. 77–124.

[161] Ahmed Shihab Albahri et al. “Role of biological data mining and machine
learning techniques in detecting and diagnosing the novel coronavirus (COVID-
19): a systematic review”. In: Journal of medical systems 44.7 (2020), pp. 1–11.

208 Bibliography

[162] Xin-She Yang. Introduction to algorithms for data mining and machine learning.
Academic press, 2019.

[163] Han Wen et al. “Exploring user-generated content related to dining experi-
ences of consumers with food allergies”. In: International Journal of Hospitality
Management 85 (2020), p. 102357.

[164] Thien Hai Nguyen, Kiyoaki Shirai, and Julien Velcin. “Sentiment analysis on
social media for stock movement prediction”. In: Expert Systems with Applica-
tions 42.24 (2015), pp. 9603–9611.

[165] Archana Gupta et al. “Stock market prediction using data mining techniques”.
In: 2nd International Conference on Advances in Science & Technology (ICAST).
2019.

[166] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. “A review on ge-
netic algorithm: past, present, and future”. In: Multimedia Tools and Applica-
tions 80.5 (2021), pp. 8091–8126.

[167] Haoyuan Hong et al. “Applying genetic algorithms to set the optimal com-
bination of forest fire related variables and model forest fire susceptibility
based on data mining models. The case of Dayu County, China”. In: Science
of the total environment 630 (2018), pp. 1044–1056.

[168] Ricardo JGB Campello et al. “Hierarchical density estimates for data cluster-
ing, visualization, and outlier detection”. In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 10.1 (2015), pp. 1–51.

[169] YH Dovoedo and Subha Chakraborti. “Boxplot-based outlier detection for
the location-scale family”. In: Communications in statistics-simulation and com-
putation 44.6 (2015), pp. 1492–1513.

[170] Mingchen Feng et al. “Big data analytics and mining for effective visualiza-
tion and trends forecasting of crime data”. In: IEEE Access 7 (2019), pp. 106111–
106123.

[171] Ahmed Hussein Ali and Mahmood Zaki Abdullah. “Recent trends in dis-
tributed online stream processing platform for big data: Survey”. In: 2018 1st
Annual International Conference on Information and Sciences (AiCIS). IEEE. 2018,
pp. 140–145.

[172] Zainab Salih Ageed et al. “Comprehensive survey of big data mining ap-
proaches in cloud systems”. In: Qubahan Academic Journal 1.2 (2021), pp. 29–
38.

[173] Albert Bifet et al. “Streamdm: Advanced data mining in spark streaming”. In:
2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE.
2015, pp. 1608–1611.

[174] Francesco Corcoglioniti et al. “Processing billions of RDF triples on a single
machine using streaming and sorting”. In: Proceedings of the 30th Annual ACM
Symposium on Applied Computing. 2015, pp. 368–375.

[175] Pritam Gundecha and Huan Liu. “Mining social media: a brief introduction”.
In: New directions in informatics, optimization, logistics, and production (2012),
pp. 1–17.

[176] Muhammad Aqib Javed et al. “Community detection in networks: A mul-
tidisciplinary review”. In: Journal of Network and Computer Applications 108
(2018), pp. 87–111.

Bibliography 209

[177] Xing Su et al. “A comprehensive survey on community detection with deep
learning”. In: IEEE Transactions on Neural Networks and Learning Systems (2022).

[178] Huimin Huang et al. “Community-based influence maximization for viral
marketing”. In: Applied Intelligence 49.6 (2019), pp. 2137–2150.

[179] Amir Moghaddam. “Detection of malicious user communities in data net-
works”. PhD thesis. 2011.

[180] Fei Tan, Yongxiang Xia, and Boyao Zhu. “Link prediction in complex net-
works: a mutual information perspective”. In: PloS one 9.9 (2014), e107056.

[181] Aron Culotta and Jennifer Cutler. “Mining brand perceptions from twitter
social networks”. In: Marketing science 35.3 (2016), pp. 343–362.

[182] Muhammad Al-Qurishi et al. “User profiling for big social media data us-
ing standing ovation model”. In: Multimedia Tools and Applications 77.9 (2018),
pp. 11179–11201.

[183] Rajesh Bose et al. “Analyzing political sentiment using Twitter data”. In: In-
formation and communication technology for intelligent systems. Springer, 2019,
pp. 427–436.

[184] Anitha Anandhan et al. “Social media recommender systems: review and
open research issues”. In: IEEE Access 6 (2018), pp. 15608–15628.

[185] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. “How al-
gorithmic confounding in recommendation systems increases homogeneity
and decreases utility”. In: Proceedings of the 12th ACM Conference on Recom-
mender Systems. 2018, pp. 224–232.

[186] Ghayda Hassan et al. “Exposure to extremist online content could lead to
violent radicalization: A systematic review of empirical evidence”. In: Inter-
national journal of developmental science 12.1-2 (2018), pp. 71–88.

[187] Timothy La Fond and Jennifer Neville. “Randomization tests for distinguish-
ing social influence and homophily effects”. In: Proceedings of the 19th interna-
tional conference on World wide web. 2010, pp. 601–610.

[188] Luis V Casaló, Carlos Flavián, and Sergio Ibáñez-Sánchez. “Influencers on
Instagram: Antecedents and consequences of opinion leadership”. In: Journal
of business research 117 (2020), pp. 510–519.

[189] Felipe Bonow Soares, Raquel Recuero, and Gabriela Zago. “Influencers in
polarized political networks on Twitter”. In: Proceedings of the 9th international
conference on social media and society. 2018, pp. 168–177.

[190] Marijke De Veirman, Liselot Hudders, and Michelle R Nelson. “What is in-
fluencer marketing and how does it target children? A review and direction
for future research”. In: Frontiers in psychology 10 (2019), p. 2685.

[191] Mariah L Wellman et al. “Ethics of authenticity: Social media influencers and
the production of sponsored content”. In: Journal of Media Ethics 35.2 (2020),
pp. 68–82.

[192] Xueting Liao et al. “Should We Trust Influencers on Social Networks? On In-
stagram Sponsored Post Analysis”. In: 2021 International Conference on Com-
puter Communications and Networks (ICCCN). IEEE. 2021, pp. 1–8.

[193] Xun Zhu, Youllee Kim, and Haseon Park. “Do messages spread widely also
diffuse fast? Examining the effects of message characteristics on information
diffusion”. In: Computers in human behavior 103 (2020), pp. 37–47.

210 Bibliography

[194] Xueqin Chen et al. “Modeling microscopic and macroscopic information dif-
fusion for rumor detection”. In: International Journal of Intelligent Systems 36.10
(2021), pp. 5449–5471.

[195] K Nalini and L Jaba Sheela. “A survey on datamining in cyber bullying”. In:
International Journal on Recent and Innovation Trends in Computing and Commu-
nication 2.7 (2014), pp. 1865–1869.

[196] Noriko Hara, Pnina Shachaf, and Khe Foon Hew. “Cross-cultural analysis of
the Wikipedia community”. In: Journal of the American Society for Information
Science and Technology 61.10 (2010), pp. 2097–2108.

[197] Sanmay Das, Allen Lavoie, and Malik Magdon-Ismail. “Manipulation among
the arbiters of collective intelligence: How Wikipedia administrators mold
public opinion”. In: ACM Transactions on the Web (TWEB) 10.4 (2016), pp. 1–
25.

[198] Emily M Bender et al. “Annotating social acts: Authority claims and align-
ment moves in wikipedia talk pages”. In: Proceedings of the Workshop on Lan-
guage in Social Media (LSM 2011). 2011, pp. 48–57.

[199] Daniel Fernández-Álvarez et al. “Approaches to measure class importance in
Knowledge Graphs”. In: PLOS ONE 16.6 (June 2021), pp. 1–35.

[200] Mark Craven, Johan Kumlien, et al. “Constructing biological knowledge bases
by extracting information from text sources.” In: ISMB. Vol. 1999. 1999, pp. 77–
86.

[201] Stephen P Borgatti and Martin G Everett. “A graph-theoretic perspective on
centrality”. In: Social networks 28.4 (2006), pp. 466–484.

[202] Jon M Kleinberg. “Authoritative sources in a hyperlinked environment”. In:
Journal of the ACM (JACM) 46.5 (1999), pp. 604–632.

[203] Heiko Paulheim and Christian Bizer. “Type inference on noisy rdf data”. In:
International Semantic Web Conference. Springer. 2013, pp. 510–525.

[204] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “Yago: a core
of semantic knowledge”. In: Proceedings of the 16th international conference on
World Wide Web. ACM. 2007, pp. 697–706.

[205] Douglas Foxvog. “Cyc”. In: Theory and Applications of Ontology: Computer Ap-
plications. Springer, 2010, pp. 259–278.

[206] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[207] Collin F Baker, Charles J Fillmore, and John B Lowe. “The berkeley framenet
project”. In: COLING 1998 Volume 1: The 17th International Conference on Com-
putational Linguistics. 1998.

[208] Matteo Lissandrini et al. “Knowledge Graph Exploration: Where Are We and
Where Are We Going?” In: SIGWEB Newsl. Summer 2020 (July 2020). ISSN:
1931-1745.

[209] Dhavalkumar Thakker et al. “A note on intelligent exploration of semantic
data”. In: Semantic Web 10.3 (2019), pp. 525–527.

[210] Šejla Čebirić et al. “Summarizing semantic graphs: a survey”. In: The VLDB
Journal 28.3 (2019), pp. 295–327.

[211] Seyedamin Pouriyeh et al. “Ontology Summarization: Graph-Based Meth-
ods and Beyond”. In: International Journal of Semantic Computing 13.02 (2019),
pp. 259–283.

Bibliography 211

[212] Paulo Orlando Queiroz-Sousa, Ana Carolina Salgado, and Carlos Eduardo
Pires. “A method for building personalized ontology summaries”. In: Journal
of Information and Data Management 4.3 (2013), p. 236.

[213] Georgia Troullinou et al. “RDFDigest+: A Summary-driven System for KBs
Exploration.” In: International Semantic Web Conference (P&D/Industry/BlueSky).
2018.

[214] Giannis Vassiliou et al. “Wbsum: workload-based summaries for RDF/S kbs”.
In: 33rd International Conference on Scientific and Statistical Database Manage-
ment. 2021, pp. 248–252.

[215] Jimao Guo and Yi Wang. “Summarizing RDF graphs using Node Importance
and Query History”. In: 2021 International Conference on Service Science (ICSS).
2021, pp. 51–58.

[216] William Webber, Alistair Moffat, and Justin Zobel. “A Similarity Measure for
Indefinite Rankings”. In: ACM Trans. Inf. Syst. 28.4 (Nov. 2010). ISSN: 1046-
8188.

[217] Pavel Berkhin. “A survey on pagerank computing”. In: Internet Mathematics
2.1 (2005), pp. 73–120.

[218] P Sargolzaei and F Soleymani. “Pagerank problem, survey and future re-
search directions”. In: International Mathematical Forum. Vol. 5. Citeseer. 2010,
pp. 937–956.

[219] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[220] Stanislav Malyshev et al. “Getting the most out of wikidata: Semantic tech-
nology usage in wikipedia’s knowledge graph”. In: International Semantic Web
Conference. Springer. 2018, pp. 376–394.

[221] Charles Spearman. “The proof and measurement of association between two
things”. In: The AmericanJournal of Psychology 15 (1904), pp. 72–101.

[222] David F Gleich. “PageRank beyond the Web”. In: SIAM Review 57.3 (2015),
pp. 321–363.

[223] K Sparck Jones. “Automatic indexing”. In: Journal of documentation 30.4 (1974),
pp. 393–432.

[224] Atish Das Sarma et al. “Fast distributed pagerank computation”. In: Inter-
national Conference on Distributed Computing and Networking. Springer. 2013,
pp. 11–26.

[225] Blerina Spahiu et al. “ABSTAT: ontology-driven linked data summaries with
pattern minimalization”. In: European Semantic Web Conference. Springer. 2016,
pp. 381–395.

[226] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. “RDF graph sum-
marization for first-sight structure discovery”. In: The VLDB Journal 2 (2020).

[227] Ioana Manolescu. “Exploring RDF Graphs through Summarization and An-
alytic Query Discovery.” In: DOLAP. 2020, pp. 1–5.

[228] Carlos Eduardo Pires et al. “Summarizing ontology-based schemas in PDMS”.
In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW
2010). IEEE. 2010, pp. 239–244.

212 Bibliography

[229] Georgia Troullinou et al. “Exploring RDFS kbs using summaries”. In: Inter-
national Semantic Web Conference. Springer. 2018, pp. 268–284.

[230] Michael Färber et al. “Linked data quality of dbpedia, freebase, opencyc,
wikidata, and yago”. In: Semantic Web 9.1 (2018), pp. 77–129.

[231] Andreas Thalhammer and Achim Rettinger. “PageRank on Wikipedia: To-
wards General Importance Scores for Entities”. In: The Semantic Web: ESWC
2016 Satellite Events, Heraklion, Crete, Greece, May 29 – June 2, 2016, Revised
Selected Papers. Cham: Springer International Publishing, Oct. 2016, pp. 227–
240. ISBN: 978-3-319-47602-5.

[232] Andreas Thalhammer and Achim Rettinger. “Browsing DBpedia entities with
summaries”. In: European Semantic Web Conference. Springer. 2014, pp. 511–
515.

[233] Andreas Thalhammer, Nelia Lasierra, and Achim Rettinger. “LinkSUM: us-
ing link analysis to summarize entity data”. In: International Conference on Web
Engineering. Springer. 2016, pp. 244–261.

[234] Eun-kyung Kim and Key-Sun Choi. “Identifying global representative classes
of DBpedia Ontology through multilingual analysis: A rank aggregation ap-
proach”. In: International Semantic Web Conference. Springer. 2016, pp. 57–65.

[235] Vooi Keong Boo and Patricia Anthony. “Agent for Mining of Significant Con-
cepts in DBpedia”. In: Knowledge Technology. Springer, 2012, pp. 313–322.

[236] Giuseppe Pirrò. “Explaining and suggesting relatedness in knowledge graphs”.
In: International Semantic Web Conference. Springer. 2015, pp. 622–639.

[237] Silvio Peroni, Enrico Motta, and Mathieu d’Aquin. “Identifying key concepts
in an ontology, through the integration of cognitive principles with statistical
and topological measures”. In: Asian Semantic Web Conference. Springer. 2008,
pp. 242–256.

[238] Eleanor Rosch. “Principles of categorization”. In: Concepts: core readings 189
(1999).

[239] Michael Färber et al. “A Comparative Survey of DBpedia, Freebase, Open-
Cyc, Wikidata, and YAGO”. In: Semantic Web Journal, July (2015).

[240] Sungchan Park et al. “A Survey on Personalized PageRank Computation Al-
gorithms”. In: IEEE Access 7 (2019), pp. 163049–163062.

[241] Sepandar Kamvar et al. “Exploiting the block structure of the web for com-
puting pagerank”. In: Stanford University Technical Report (2003).

[242] Andrei Z Broder et al. “Efficient PageRank approximation via graph aggre-
gation”. In: Information Retrieval 9.2 (2006), pp. 123–138.

[243] Antonio J Roa-Valverde and Miguel-Angel Sicilia. “A survey of approaches
for ranking on the web of data”. In: Information Retrieval 17.4 (2014), pp. 295–
325.

[244] Li Ding et al. “Swoogle: a search and metadata engine for the semantic web”.
In: Proceedings of the thirteenth ACM international conference on Information and
knowledge management. ACM. 2004, pp. 652–659.

[245] Zaiqing Nie et al. “Object-level ranking: bringing order to web objects”. In:
Proceedings of the 14th international conference on World Wide Web. ACM. 2005,
pp. 567–574.

Bibliography 213

[246] Aidan Hogan, Stefan Decker, and Andreas Harth. “Reconrank: A scalable
ranking method for semantic web data with context”. In: 2nd Workshop on
Scalable Semantic Web Knowledge Base Systems. 2006.

[247] Wang Wei, Payam Barnaghi, and Andrzej Bargiela. “Rational research model
for ranking semantic entities”. In: Information Sciences 181.13 (2011), pp. 2823–
2840.

[248] Roberto Mirizzi et al. “Ranking the linked data: the case of DBpedia”. In:
International Conference on Web Engineering. Springer. 2010, pp. 337–354.

[249] Thomas Franz et al. “Triplerank: Ranking semantic web data by tensor de-
composition”. In: International semantic web conference. Springer. 2009, pp. 213–
228.

[250] Anila Sahar Butt, Armin Haller, and Lexing Xie. “DWRank: Learning concept
ranking for ontology search”. In: Semantic Web 7.4 (2016), pp. 447–461.

[251] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet alloca-
tion”. In: Journal of machine Learning research 3.Jan (2003), pp. 993–1022.

[252] Daniel Fernandez-Álvarez, Jose Emilio Labra-Gayo, and Daniel Gayo-Avello.
“Automatic extraction of shapes using sheXer”. In: Knowledge-Based Systems
(2021), p. 107975.

[253] Daniel Fernández-Alvarez, Jose Emilio Labra-Gayo, and Herminio Garcıa-
González. Inference and serialization of latent graph schemata using shex. 2016.

[254] Daniel Fernández-Álvarez et al. “Inference of Latent Shape Expressions As-
sociated to DBpedia Ontology.” In: International Semantic Web Conference (P&D
/ Industry). 2018.

[255] Jose Emilio Labra-Gayo et al. “Challenges in RDF validation”. In: Current
Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, pp. 121–
151.

[256] Iovka Boneva et al. “Shape designer for ShEx and SHACL constraints”. In:
ISWC 2019-18th International Semantic Web Conference. 2019.

[257] Nandana Mihindukulasooriya et al. “RDF shape induction using knowledge
base profiling”. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. 2018, pp. 1952–1959.

[258] Harshvardhan J Pandit, Declan O’Sullivan, and Dave Lewis. “Using Ontol-
ogy Design Patterns To Define SHACL Shapes.” In: WOP@ ISWC. 2018, pp. 67–
71.

[259] Andrea Cimmino, Alba Fernández-Izquierdo, and Raúl García-Castro. “As-
trea: automatic generation of SHACL shapes from ontologies”. In: European
Semantic Web Conference. Springer. 2020, pp. 497–513.

[260] Pouya Ghiasnezhad Omran et al. “Towards SHACL Learning from Knowl-
edge Graphs.” In: ISWC (Demos/Industry). 2020, pp. 94–99.

[261] Francisco Cifuentes-Silva, Daniel Fernández-Álvarez, and Jose Emilio Labra-
Gayo. “National Budget as Linked Open Data: New Tools for Supporting the
Sustainability of Public Finances”. In: Sustainability 12.11 (2020), p. 4551.

[262] Andra Waagmeester et al. “A protocol for adding knowledge to Wikidata:
aligning resources on human coronaviruses”. In: BMC biology 19.1 (2021),
pp. 1–14.

214 Bibliography

[263] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: a flexible data processing
tool”. In: Communications of the ACM 53.1 (2010), pp. 72–77.

[264] Jose Emilio Labra Gayo, Dimitris Kontokostas, and Sören Auer. “Multilin-
gual linked data patterns”. In: Semantic Web 6.4 (2015), pp. 319–337.

[265] Renzo Arturo Alva Principe et al. “ABSTAT-HD: a scalable tool for profiling
very large knowledge graphs”. In: The VLDB Journal (2021), pp. 1–26.

[266] Harshvardhan J Pandit, Declan O’Sullivan, and Dave Lewis. “An Argument
for Generating SHACL Shapes from ODPs”. In: Advances in Pattern-Based On-
tology Engineering. IOS Press, 2021, pp. 134–141.

[267] H Knublauch. “SHACL and OWL compared”. In: URL: https://spinrdf. org/shacl-
and-owl. html (2017).

[268] Pouya Omran et al. Active knowledge graph completion. Tech. rep. Tech. rep.,
Australian National University, 2020. https://openresearch . . ., 2020.

[269] Ji-Woong Choi. “Automatic Construction of SHACL Schemas for RDF Knowl-
edge Graphs Generated by R2RML Mappings”. In: Journal of the Korea Society
of Computer and Information 25.8 (2020), pp. 9–21.

[270] Thomas Delva et al. “RML2SHACL: RDF Generation Taking Shape”. In: Pro-
ceedings of the 11th on Knowledge Capture Conference. 2021, pp. 153–160.

[271] Anastasia Dimou et al. “RML: A Generic Language for Integrated RDF Map-
pings of Heterogeneous Data”. In: Proceedings of the 7th Workshop on Linked
Data on the Web. Ed. by Christian Bizer et al. Vol. 1184. CEUR Workshop Pro-
ceedings. Apr. 2014.

[272] Adrien Basse et al. “DFS-based frequent graph pattern extraction to charac-
terize the content of RDF Triple Stores”. In: Web Science Conference 2010 (Web-
Sci10). 2010.

[273] Eva Blomqvist et al. “Statistical Knowledge Patterns for Characterising Linked
Data.” In: WOP. Citeseer. 2013.

[274] Jenny Rose Finkel, Trond Grenager, and Christopher D Manning. “Incorpo-
rating non-local information into information extraction systems by gibbs
sampling”. In: Proceedings of the 43rd annual meeting of the association for com-
putational linguistics (ACL’05). 2005, pp. 363–370.

[275] Marius-Gabriel Butuc. “Semantically enriching content using opencalais”. In:
Editia 9 (2009), pp. 77–88.

[276] David Milne and Ian H Witten. “Learning to link with wikipedia”. In: Pro-
ceedings of the 17th ACM conference on Information and knowledge management.
2008, pp. 509–518.

[277] Andrea Moro, Alessandro Raganato, and Roberto Navigli. “Entity linking
meets word sense disambiguation: a unified approach”. In: Transactions of the
Association for Computational Linguistics 2 (2014), pp. 231–244.

[278] Ce Zhang et al. “Big data versus the crowd: Looking for relationships in all
the right places”. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2012, pp. 825–834.

[279] Daojian Zeng et al. “Relation classification via convolutional deep neural net-
work”. In: Proceedings of COLING 2014, the 25th international conference on com-
putational linguistics: technical papers. 2014, pp. 2335–2344.

Bibliography 215

[280] Aldo Gangemi et al. “Semantic web machine reading with FRED”. In: Seman-
tic Web 8.6 (2017), pp. 873–893.

[281] Isabelle Augenstein, Sebastian Padó, and Sebastian Rudolph. “Lodifier: Gen-
erating linked data from unstructured text”. In: Extended Semantic Web Con-
ference. Springer. 2012, pp. 210–224.

[282] Isabelle Augenstein, Diana Maynard, and Fabio Ciravegna. “Distantly super-
vised web relation extraction for knowledge base population”. In: Semantic
Web 7.4 (2016), pp. 335–349.

[283] Francesco Corcoglioniti, Marco Rospocher, and Alessio Palmero Aprosio. “Frame-
based ontology population with PIKES”. In: IEEE Transactions on Knowledge
and Data Engineering 28.12 (2016), pp. 3261–3275.

[284] Jose L Martinez-Rodriguez, Ivan Lopez-Arevalo, and Ana B Rios-Alvarado.
“Mining information from sentences through Semantic Web data and Infor-
mation Extraction tasks”. In: Journal of Information Science (2020), p. 0165551520934387.

[285] Nicolas Heist and Heiko Paulheim. “Language-Agnostic Relation Extraction
from Wikipedia Abstracts”. In: The Semantic Web – ISWC 2017. Ed. by Claudia
d’Amato et al. Springer International Publishing, 2017, pp. 383–399.

[286] Xin Dong et al. “Knowledge vault: A web-scale approach to probabilistic
knowledge fusion”. In: Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. 2014, pp. 601–610.

[287] William W Cohen. “Fast effective rule induction”. In: Machine learning pro-
ceedings 1995. Elsevier, 1995, pp. 115–123.

[288] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[289] The Linguistic Society of Korea. “Linguistics in the Morning Calm”. In: Cog-
nitive Linguistics Bibliography (CogBib). De Gruyter Mouton, 2010.

[290] Clyde Holsapple. Handbook on knowledge management 1: Knowledge matters.
Vol. 1. Springer Science & Business Media, 2013.

[291] Hans Kamp. “A theory of truth and semantic representation”. In: Truth, inter-
pretation and information 277 (1984), p. 322.

[292] Johan Bos. “Open-domain semantic parsing with boxer”. In: Proceedings of
the 20th nordic conference of computational linguistics (NODALIDA 2015). 2015,
pp. 301–304.

[293] Christopher D Manning et al. “The Stanford CoreNLP natural language pro-
cessing toolkit”. In: Proceedings of 52nd annual meeting of the association for com-
putational linguistics: system demonstrations. 2014, pp. 55–60.

[294] Paolo Ferragina and Ugo Scaiella. “Tagme: on-the-fly annotation of short text
fragments (by wikipedia entities)”. In: Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management. 2010, pp. 1625–1628.

[295] Karin Kipper Schuler. VerbNet: A broad-coverage, comprehensive verb lexicon.
University of Pennsylvania, 2005.

[296] Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: Building a very large
multilingual semantic network”. In: Proceedings of the 48th annual meeting of
the association for computational linguistics. 2010, pp. 216–225.

[297] Eneko Agirre and Aitor Soroa. “Personalizing pagerank for word sense dis-
ambiguation”. In: Proceedings of the 12th Conference of the European Chapter of
the ACL (EACL 2009). 2009, pp. 33–41.

216 Bibliography

[298] Silvio Peroni, Aldo Gangemi, and Fabio Vitali. “Dealing with markup se-
mantics”. In: Proceedings of the 7th International Conference on Semantic Systems.
2011, pp. 111–118.

[299] Sebastian Hellmann et al. “Integrating NLP using linked data”. In: Interna-
tional semantic web conference. Springer. 2013, pp. 98–113.

[300] John Gruber. “Markdown: Syntax”. In: URL http://daringfireball. net/projects/-
markdown/syntax. Retrieved on June 24 (2012), p. 640.

[301] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hypertex-
tual web search engine”. In: Computer networks and ISDN systems 30.1 (1998),
pp. 107–117.

[302] Andrius Vabalas et al. “Machine learning algorithm validation with a limited
sample size”. In: PloS one 14.11 (2019), e0224365.

[303] Denny Vrandečić. “Building a Multilingual Wikipedia”. In: Commun. ACM
64.4 (2021), 38–41. ISSN: 0001-0782.

[304] Ángel Obregón Sierra and Jorge Oceja Castanedo. “University students in
the educational field and Wikipedia vandalism”. In: Proceedings of the 14th
International Symposium on Open Collaboration. 2018, pp. 1–7.

[305] Juan R Martinez-Rico, Juan Martinez-Romo, and Lourdes Araujo. “Can deep
learning techniques improve classification performance of vandalism detec-
tion in Wikipedia?” In: Engineering Applications of Artificial Intelligence 78 (2019),
pp. 248–259.

[306] Ammar Ismael Kadhim. “Survey on supervised machine learning techniques
for automatic text classification”. In: Artificial Intelligence Review 52.1 (2019),
pp. 273–292.

[307] David Šenkỳr and Petr Kroha. “Patterns in textual requirements specifica-
tion”. In: Proceedings of the 13th International Conference on Software Technolo-
gies. 2018, pp. 197–204.

[308] Esra A Abdelnabi, Abdelsalam M Maatuk, and Mohammed Hagal. “Generat-
ing UML Class Diagram from Natural Language Requirements: A Survey of
Approaches and Techniques”. In: 2021 IEEE 1st International Maghreb Meeting
of the Conference on Sciences and Techniques of Automatic Control and Computer
Engineering MI-STA. IEEE. 2021, pp. 288–293.

[309] Eman S Btoush and Mustafa M Hammad. “Generating ER diagrams from
requirement specifications based on natural language processing”. In: Inter-
national Journal of Database Theory and Application 8.2 (2015), pp. 61–70.

[310] Sutirtha Ghosh et al. “Automated generation of ER diagram from a given text
in natural language”. In: 2018 International Conference on Machine Learning and
Data Engineering (iCMLDE). IEEE. 2018, pp. 91–96.

[311] Marcin Michał Mirończuk. “Information Extraction System for Transforming
Unstructured Text Data in Fire Reports into Structured Forms: A Polish Case
Study”. In: Fire Technology 56.2 (2020), pp. 545–581. ISSN: 1572-8099.

[312] Chetan Arora et al. “Extracting Domain Models from Natural-Language Re-
quirements: Approach and Industrial Evaluation”. In: MODELS ’16. Saint-
malo, France: Association for Computing Machinery, 2016, 250–260. ISBN:
9781450343213.

Bibliography 217

[313] Mihai Surdeanu et al. “Multi-instance multi-label learning for relation extrac-
tion”. In: Proceedings of the 2012 joint conference on empirical methods in natural
language processing and computational natural language learning. 2012, pp. 455–
465.

[314] Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa. “Reducing wrong la-
bels in distant supervision for relation extraction”. In: Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2012, pp. 721–729.

[315] Sebastian Riedel, Limin Yao, and Andrew McCallum. “Modeling relations
and their mentions without labeled text”. In: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer. 2010, pp. 148–
163.

[316] André Freitas et al. “A Semantic Best-Effort Approach for Extracting Struc-
tured Discourse Graphs from Wikipedia.” In: WoLE@ ISWC 906 (2012), pp. 70–
81.

[317] Peter Exner and Pierre Nugues. “REFRACTIVE: An open source tool to ex-
tract knowledge from syntactic and semantic relations”. In: Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC’14).
2014, pp. 2584–2589.

[318] Peter Exner and Pierre Nugues. “Entity Extraction: From Unstructured Text
to DBpedia RDF triples.” In: WoLE@ ISWC. 2012, pp. 58–69.

[319] Daniel Gerber and Axel-Cyrille Ngonga Ngomo. “Extracting multilingual
natural-language patterns for rdf predicates”. In: International Conference on
Knowledge Engineering and Knowledge Management. Springer. 2012, pp. 87–96.

[320] Feng Niu et al. “DeepDive: Web-scale Knowledge-base Construction using
Statistical Learning and Inference.” In: VLDS 12 (2012), pp. 25–28.

[321] Ce Zhang. “DeepDive: a data management system for automatic knowledge
base construction”. PhD thesis. The University of Wisconsin-Madison, 2015.

[322] Julia Hockenmaier and Mark Steedman. “CCGbank: a corpus of CCG deriva-
tions and dependency structures extracted from the Penn Treebank”. In: Com-
putational Linguistics 33.3 (2007), pp. 355–396.

[323] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed comput-
ing in practice: the Condor experience”. In: Concurrency and computation: prac-
tice and experience 17.2-4 (2005), pp. 323–356.

[324] Dipanjan Das et al. “Frame-semantic parsing”. In: Computational linguistics
40.1 (2014), pp. 9–56.

[325] Anders Björkelund, Love Hafdell, and Pierre Nugues. “Multilingual seman-
tic role labeling”. In: Proceedings of the Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009): Shared Task. 2009, pp. 43–48.

[326] Martha Palmer, Daniel Gildea, and Paul Kingsbury. “The proposition bank:
An annotated corpus of semantic roles”. In: Computational linguistics 31.1 (2005),
pp. 71–106.

[327] Claire Bonial et al. “Propbank: Semantics of new predicate types”. In: Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14). 2014, pp. 3013–3019.

218 Bibliography

[328] Adam Meyers et al. “The NomBank Project: An Interim Report”. In: HLT-
NAACL 2004 Workshop: Frontiers in Corpus Annotation. Ed. by A. Meyers. Boston,
Massachusetts, USA: Association for Computational Linguistics, 2004, pp. 24–
31.

[329] Oren Etzioni et al. “Open information extraction from the web”. In: Commu-
nications of the ACM 51.12 (2008), pp. 68–74.

[330] Francesco Piccinno and Paolo Ferragina. “From TagME to WAT: a new entity
annotator”. In: Proceedings of the first international workshop on Entity recogni-
tion & disambiguation. 2014, pp. 55–62.

[331] Jose L Martinez-Rodriguez, Ivan López-Arévalo, and Ana B Rios-Alvarado.
“Openie-based approach for knowledge graph construction from text”. In:
Expert Systems with Applications 113 (2018), pp. 339–355.

[332] Sebastian Krause et al. “Sar-graphs: A language resource connecting linguis-
tic knowledge with semantic relations from knowledge graphs”. In: Journal
of Web Semantics 37 (2016), pp. 112–131.

[333] Jose L Martinez-Rodriguez et al. “NLP and the Representation of Data on the
Semantic Web”. In: Handbook of Research on Natural Language Processing and
Smart Service Systems. IGI Global, 2021, pp. 393–426.

	Abstract
	Resumen
	Acknowledgements
	Agradecimientos
	Introduction
	Motivation
	Research Questions
	Summary of contributions
	Document structure

	Theoretical Framework
	Semantic Web and Linked Data
	Linked Open Data

	RDF
	Different syntaxes
	Extending the expressiveness of basic triples
	`Schemaless' character

	Knowledge Graphs
	SPARQL
	Ontology
	Assertion Box and Terminological Box

	RDF Shapes
	Shape Expressions
	Shape Constraint Language
	Brief comparison between SHACL and ShEx

	Social Media
	Wikipedia

	Natural Language Processing
	NLP on social media

	Data mining
	Data mining in social media

	Importance metrics in RDF graphs
	Introduction
	Metrics
	Importance metrics applied over schema structures
	Degree
	Betweenness
	Bridging Centrality
	Closeness and Harmonic Centrality
	Radiality

	Importance metrics applied over the whole graph structure
	Instance counting
	PageRank
	HITS
	ClassRank

	Adapted importance metrics

	Experiments
	Methodology
	Reference rankings: human-generated traffic vs machine-generated traffic
	How to compare the rankings

	Sources
	DBpedia
	Wikidata

	Results

	Discussion
	Best performing techniques
	General performing of techniques in different sources
	EH vs HH results
	OTT, AAT and adapted metrics
	Configuration of class-pointers
	Computational cost vs performance

	Related work
	Scoring entities or classes in graphs
	Alternative centrality measures based in PageRank

	Conclusions
	Future Work

	Mining triples to extract shapes
	Introduction
	System description
	Graph Iterator
	Instance tracker
	Feature Tracker
	Shape Adapter
	Extending cardinalities
	Sorting triple constraints
	Removing empty shapes

	Shape Serializer
	Computational complexity analysis

	Experiments
	Limiting the number of instances used
	Limiting the number of target shapes
	Limiting the amount of triples
	Convergence w.r.t. number of instances used
	Discussion on execution times

	sheXer working modes
	Input types
	Formats
	Input types
	Independent class-instance file
	Working with endpoints

	Target entities and shapes
	Finding target entities in endpoints
	Compatibility between modes

	Management of instantiation property
	Namespaces management
	Configuring output
	Acceptance threshold
	Inverse paths
	All-compliant mode
	Removing empty shapes
	Cardinality prioritization
	Adaptation to Wikidata model
	Readable results
	Handling qualifiers

	Related work
	Conclusions
	Future work

	Mining shapes from social media
	Introduction
	Architecture description
	Prototypes
	Prototype 1: SEITMA-L
	LAREWA
	SEITMA-L implementation

	Prototype 2: SEITMA-F
	FRED
	SEITMA-F implementation

	Experiments
	Experiments with SEITMA-L
	Inputs and settings
	Outputs
	Discussion about SEITMA-L features

	Experiments with SEITMA-F
	Inputs and settings
	Outputs
	Discussion about SEITMA-F features

	Discussion on use cases
	Use cases for Wikipedia
	Automatic generation of templates
	Content suggestion
	Vandalism detection

	Use cases out of Wikipedia
	Text validation and class summarization in formal environments
	Automatic types or tags
	Application in text streams

	Related work
	Conclusions
	Future work

	Conclusions
	Conclusions (English version)
	Conclusiones (Versión en castellano)

	Prefix definitions
	Bibliography

