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RESUMEN (en español) 

 
 
 
Esta tesis está enfocada en la construcción de soluciones de supergravedad con factores AdS 
y sus descripciones putativas de las teorías de campo a través de la correspondencia 
AdS/CFT. Enfatizamos en teorías de bajas dimensiones, específicamente en geometrías con 
subespacios AdS3 y AdS2 con cuatro supersimetrías de Poincaré.  
 
Varias técnicas son discutidas acerca de la construcción de soluciones en supergravedad, 
desde dualidades en teorías de cuerdas, como T-dualidad o su generalización a grupos no 
Abelianos, así como también en continuaciones analíticas y técnicas de G-structures. Con 
respecto a la interpretación de las soluciones obtenidas en la teoría de campo, se estudian 
aspectos geométricos de las soluciones, llevando a proponer teorías de campos duales que 
involucran productos de grupos de gauge y campos de materia, es decir, teorías de campo 
quiver cuyo contenido es determinado por Dp- y NS5-branas. Verificamos estas dualidades con 
diferentes observables usando holografía.      
 
La tesis contiene nueve capítulos. El primer capítulo constituye una introducción donde 
ponemos en contexto este trabajo. Revisamos en detalle la construcción de soluciones en 
supergravedad en el Capítulo 2. El Capítulo 3 contiene el estudio de un sistema de branas D4-
NS5-D6 como ejemplo de las construcciones en teoría de campo que son usadas en este 
trabajo. Un resumen de los principales resultados obtenidos en esta tesis es dado en el 
Capítulo 4. Capítulos 5, 6, 7 y 8 contienen los resultados completos de la tesis. Finalmente, las 
conclusiones están dadas en el Capítulo 9. 
 
 

 
RESUMEN (en Inglés) 

 
 

This thesis is focused on the construction of supergravity backgrounds with AdS factors and 
their putative field theory descriptions via the AdS/CFT correspondence. We put emphasis on 
lower-dimensional theories, specifically on geometries with AdS3 and AdS2 subspaces with four 
Poincaré supersymmetries.  

Diverse techniques concerning the construction of supergravity solutions are discussed, from 
string theory dualities, such as T-duality (ATD) or its generalization to non-Abelian groups 
(NATD), as well as double analytical continuations and G-structure techniques. Regarding the 
field theory interpretation of the obtained solutions, geometrical aspects of the backgrounds are 
studied, leading us to propose dual field theories involving products of gauge groups and matter 
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fields, namely, quiver field theories whose content is determined by Dp- and NS- branes. We 
test such dualities through different observables using holography.  

The thesis consists of nine chapters. The first chapter constitutes an introduction where the 
present work is set in context. We review in detail the construction of solutions in supergravity in 
Chapter 2. Chapter 3 contains the study of the D4-NS5-D6 brane system as an example of the 
field theoretical constructions used in the present work. A brief summary of the main results 
obtained in this work is given in Chapter 4. Chapters 5, 6, 7 and 8 contain the complete results 
of the thesis. Finally, the conclusions are provided in Chapter 9. 
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Abstract

This thesis is focused on the construction of supergravity backgrounds
with AdS factors and their putative field theory descriptions via the Ad-
S/CFT correspondence. We put emphasis on lower-dimensional theor-
ies, specifically on geometries with AdS3 and AdS2 subspaces with
four Poincaré supersymmetries.

Diverse techniques concerning the construction of supergravity solu-
tions are discussed, from string theory dualities, such as T-duality (ATD)
or its generalization to non-Abelian groups (NATD), as well as double
analytical continuations and G-structure techniques. Regarding the
field theory interpretation of the obtained solutions, geometrical as-
pects of the backgrounds are studied, leading us to propose dual field
theories involving products of gauge groups and matter fields, namely,
quiver field theories whose content is determined by Dp- and NS-
branes. We test such dualities through different observables using
holography.

The thesis consists of nine chapters. The first chapter constitutes an
introduction where the present work is set in context. We review in de-
tail the construction of solutions in supergravity in Chapter 2. Chapter
3 contains the study of the D4-NS5-D6 brane system as an example
of the field theoretical constructions used in the present work. A brief
summary of the main results obtained in this work is given in Chapter
4. Chapters 5, 6, 7 and 8 contain the complete results of the thesis.
Finally, the conclusions are provided in Chapter 9.





Resumen

Esta tesis está enfocada en la construcción de soluciones de supergra-
vedad con factores AdS y sus descripciones putativas de las teorı́as
de campo a través de la correspondencia AdS/CFT. Enfatizamos en
teorı́as de bajas dimensiones, especı́ficamente en geometrı́as con subes-
pacios AdS3 y AdS2 con cuatro supersimetrı́as de Poincaré.

Varias técnicas son discutidas acerca de la construcción de soluciones
en supergravedad, desde dualidades en teorı́as de cuerdas, como T-
dualidad o su generalización a grupos no Abelianos, ası́ como también
en continuaciones analı́ticas y técnicas de G-structures. Con respecto a
la interpretación de las soluciones obtenidas en la teorı́a de campo, se
estudian aspectos geométricos de las soluciones, llevando a proponer
teorı́as de campos duales que involucran productos de grupos de gauge
y campos de materia, es decir, teorı́as de campo quiver cuyo contenido
es determinado por Dp- y NS5-branas. Verificamos estas dualidades
con diferentes observables usando holografı́a.

La tesis contiene nueve capı́tulos. El primer capı́tulo constituye una in-
troducción donde ponemos en contexto este trabajo. Revisamos en de-
talle la construcción de soluciones en supergravedad en el Capı́tulo 2.
El Capı́tulo 3 contiene el estudio de un sistema de branas D4-NS5-D6
como ejemplo de las construcciones en teorı́a de campo que son usa-
das en este trabajo. Un resumen de los principales resultados obtenidos
en esta tesis es dado en el Capı́tulo 4. Capı́tulos 5, 6, 7 y 8 contienen
los resultados completos de la tesis. Finalmente, las conclusiones están
dadas en el Capı́tulo 9.
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1. Introduction

Since its origins in the sixties, string theory has expanded into a vast variety of

topics, while providing diverse mathematical and physical toolkits. A prominent

example is the AdS/CFT correspondence, which has outspread the traditional do-

main of string theory to areas such as condensed matter and quantum information

(to say a few). Besides that, the main role or string theory has been as providing the

best candidate to describe the theory of nature. The naive idea of replacing point

particles with one dimensional objets, strings, solves the problem of reconciling

general relativity with quantum mechanics, giving us a consistent joint description

of gravity with the other observed forces in nature (electromagnetic, weak nuclear

and strong nuclear forces).

String theory was born at the end of 1960 trying to tackle the strong nuclear

force problem. However, the interest was quickly lost due to the introduction of

quantum chromodynamics and the many troubles that it presented: hadrons had

to live in a 26 dimensional spacetime, the spectrum of the theory contained a ta-

chyon and predicted particles that were absent in the experiments. But the idea

of string theory did not cease at all. The inclusion of fermionic degrees of free-

dom in the worldsheet by Ramond, and independently by Neveu and Schwarz, led

to the idea of supersymmetry and superstrings [1, 2]. Later on, with the work of

Gliozzi, Scherk and Olive [3], the tachyon could be removed from the spectrum

and a consistent supersymmetric string theory could be formulated. Since then, ex-

tensive research has been performed around supersymmetry, as well as around its

local generalisation, the so-called supergravity, also known as the supersymmetric

extension of general relativity.

1



1 INTRODUCTION

At that stage, string theory provided a complex framework, with three consist-
ent superstring theories: one theory with open strings with N = 1 supersymmetry
and two theories of closed strings with extended N = 2 spacetime supersymmetry
and whose massless spectrum corresponded with two already known supergravity
theories, namely, the type IIA and type IIB supergravities. Not long after, two more
theories arrived: the heterotic string theories [4], leaving us with five consistent su-
perstring theories with open and closed strings as fundamental objects. Later on
it was realised that, the open strings required the existence of a second class of
extended objects, the D-branes. These are non-perturbative objects on which open
strings can end, which render these objects dynamical.

At the beginning of 1995, there were five superstring theories and none of them
was considered the right model. At that time, Witten showed in [5] that the five
theories are related among themselves by a web of dualities1 and also, inspired by
many preliminary works, with an eleven dimensional theory [6]. Such theory, in-
troduced twenty years before, was the so-called eleven dimensional supergravity
theory, the supergravity with the highest possible dimension that can be construc-
ted. At this point, M-theory was born, and two years later so was the AdS/CFT
correspondence, deeply connected to the double nature of D-branes, as end points
of open strings and as solutions to the supergravities arising as low energy limit of
superstrings theories [7].

In a (historical) nutshell, we have introduced the main concepts that appear in
this thesis. Now, we will dig a little deeper.

Supergravity

Let us start by describing the eleven dimensional theory previously alluded to,
from this theory type IIA supergravity can be extracted via dimensional reduction.
The bosonic content of the theory includes the metric and a three-form potential
Cµ⌫⇢, which appears in the action through its field strength F4 = dC3. The bosonic
part of the action reads

S11 =
1

211

Z
d11x
p�g(R� 1

48
F 2

4 )� 1

1211

Z
C3 ^ F4 ^ F4, (1.1)

1The term duality is widely used by physicists to refer to the relationship between two systems
with identical physics but described in a different way.

2



where 11 denotes the eleven dimensional gravitational coupling constant. This

theory has N = 1 supersymmetry, which in eleven dimensions corresponds to 32

supercharges. Notice the presence of a three-form gauge field, Cµ⌫⇢. These fields

couple to branes, which are sources of the potential. In this case, the three-form

couples electrically to an M2-brane and magnetically to an M5-brane.

The dimensional reduction of this theory leads us to a theory with N = 2

supersymmetries in ten dimensions. This reduction reads

ds2
11 = e2�/3ds2

10 + e4�/3(dz + C1)
2,

C11
µ⌫⇢ = C10

µ⌫⇢, C11
µ⌫z = Bµ⌫ .

(1.2)

From the decomposition of the eleven dimensional metric, ds2
11, one gets a ten

dimensional metric ds2
10, a gauge field C1, and a scalar field known as dilaton, �.

Besides, the three-form gives rise to a NSNS two-form, Bµ⌫ , and a RR three-form,

C10
µ⌫⇢. These fields, together with their Hodge duals, through

Fp = (�1)[n/2] ?10 F10�n, (1.3)

to produce a five- and a seven-form, C5, C7, comprise the bosonic sector of the

so-called, massless, type IIA supergravity.

An extension of massless type IIA supergravity can be formulated to include a

mass term in the action, called Romans’ mass, F0. In this way, it is easy to write

the action for both theories in a unique way and recover the massless theory setting

F0 = 0. The (bosonic sector of the) action, of both type IIA supergravities can be

written in a unique way, as

SIIA =
1

22
10

Z
d10x
p�g

✓
e�2�(R + 4@µ�@

µ�� H2
3

12
)� F 2

0

2
� F 2

2

4
� F 2

4

48

◆

� 1

42
10

Z ✓
dC3 ^ dC3 ^B +

F0

3
dC3 ^B3 +

F 2
0

20
B5

◆
,

(1.4)

in string frame, with the field strengths of the NSNS and RR potentials given by

H3 = dB, F2 = dC1 + BF0, F4 = dC3 �H3 ^H3 ^ C1 +
F0

2
B ^B. (1.5)

3



1 INTRODUCTION

The massless fermions of type IIA supergravity consist of two Majorana-Weyl

gravitinos of opposite chirality and two Majorana-Weyl dilatinos of opposite chir-

ality. Therefore, they describe a non-chiral N = 2 supersymmetric theory in ten

dimensions.

The second N = 2 supergravity, type IIB supergravity, cannot be obtained by

dimensional reduction from eleven-dimensional supergravity. They simplest way

to derive it is from type IIA supergravity via a T-duality transformation, as we will

see in Section 2.1. The fermionic massless spectrum of this theory consists of two

left-handed Majorana-Weyl gravitinos and two right-handed Majorana-Weyl dilati-

nos. Since it has two spinors with the same chirality, we have a chiral theory with

N = 2 supersymmetry in ten dimensions. The NSNS bosonic sector is composed

by the metric, the dilaton and a rank two antisymmetric tensor. The RR sector

contains the forms fields C0, C2 and C4, and the higher forms coming from Hodge

duality of the field strengths. The action for these fields is,

SIIB =
1

22
10

Z
d10x
p�g

✓
e�2�(R + 4@µ�@

µ�� H2
3

12
)� F 2

1

2
� F 2

3

12
� F 2

5

480

◆

+
1

42
10

Z ✓
dC2 ^H3 ^ (C4 +

1

2
B ^ C2)

◆
,

(1.6)

where the field strengths are,

H3 = dB, F1 = dC0, F3 = dC2 + H3C0, F5 = dC4 + H3 ^ C2. (1.7)

The e.o.m coming from the action have to be supplemented by a self-duality con-

dition on F5,

F5 = ?10F5. (1.8)

In both theories, the fermionic fields are two gravitinos,  A, and two dilatinos,

�A. The condition for unbroken symmetry is that the variations of these fermionic

fields vanish. That is, the bosonic part of the dilatino and gravitino is put to zero,

� M = 0, �� = 0. (1.9)

4



Explicitly, the supersymmetric variations of these fields can be written as [8],

�� =

✓
◆◆@�+

1

2
⇢⇢HP

◆
✏+

1

8
e�

X

n

(�1)n(5� n)��F nPn✏,

� M =rM✏+
1

4
⇢⇢HMP✏+

1

16
e�

X

n

��F n�MPn✏,

(1.10)

where ✏, � and  M are doublets of Majorana-Weyl spinors. The doublet  M =

( 1
M , 2

M) contains the two Majorana-Weyl spinors of opposite chirality in IIA and

the same chirality for IIB. The same for ✏ and �. P and Pn are matrices and they

are different in IIA and IIB. In type IIA, P = �11 and Pn = �
n/2
11 �

1. In type IIB,

P = ��3 and Pn = �1 or Pn = i�2, for n+1
2

even or odd respectively. Besides, the

RR fluxes are written as

��F p =
1

p!
�⌫1...⌫pF

⌫1⌫2...⌫p
p , (1.11)

where the slash means contraction with gamma matrices.

AdS/CFT correspondence

At the end of the nineties, a full new line of research with far reaching con-

sequences came up as a by-product of the so-called Maldacena conjecture [7].

Such conjecture set up a particular statement which relates a string theory in ten

dimensions with a quantum field theory in a flat spacetime. In general terms, the

argument considers that a set of D-branes in a given superstring (or M- ) theory ad-

mits a double description, and in a precise limit, both descriptions are equivalent.

In its original formulation, Maldacena conjectured that type IIB string theory in a

AdS5⇥S5 background is dual to 4d SYM theory with N = 4 supersymmetry. The

argument in this case is based in the double description of an array of N D3-branes.

In the first description, one starts with a type IIB superstring theory in a Minkowski

spacetime R1,9, where an array of N D3-branes is placed in the x0, x1, x2 and x3

directions, thus introducing as well open strings. In the low energy limit1, only

the massless modes of the string spectrum are meaningful, therefore, the system is

described by massless states of closed strings, open strings and the massless states

1That is, energies E << l�1
s , where ls is the string length scale.

5



1 INTRODUCTION

coming from the interaction between closed and open strings. Thus, the total action
reads,

S = Sclosed + Sopen + Sint. (1.12)

The Sopen action is obtained from the excitations of the stack of N coincident
D3-branes, that is the massless states of the open strings. For a single D3-brane the
massless fields are six scalar fields �i, a gauge field A� and an spinorial field. The
effective action that describes these fields is the Dirac-Born-Infeld action,

SDBI = � 1

(2⇡)3gsl4s

Z
d4x e��

q
� det

�
P [g]↵� + 2⇡↵0F↵�

�
. (1.13)

where we have set the Kalb-Ramond field to zero for simplicity. The worldvolume
fields are xµ with µ = 0, ..., 3. P [g] is the pullback of the metric to the worldvolume
of the D3-brane, and F↵� = @↵A� � @�A↵. When one studies this system, for a
single D3-brane, at low energies one finds the following action to leading order in
↵0,

S = � 1

2⇡gs

Z
d4x

✓
F↵�F

↵�

4
+ O(↵0)

◆
. (1.14)

This is the Yang-Mills action with gauge group U(1) provided that we identify

g2
Y M = 2⇡gs. (1.15)

Generalising the action to the case of N coincident D3-branes, the strings at-
tached to the stack have freedom of having their endpoints in any of the coincident
branes in the stack. In this way the massless states induce a U(N ) gauge theory,
i.e. the scalars and gauge fields are U(N ) valued, �i = �iaTa, A� = Aa

�Ta. This
implies that the gauge kinetic term becomes F a

↵�F
a↵� to ensure gauge invariance.

Performing the ↵0 ! 0 limit, one finds that Sopen is just the bosonic part of the
action of N = 4 Super Yang-Mills (SYM) theory with gY M as in (1.15), namely
Sopen ! SN=4 SYM.

The U(N ) gauge group can be split as U(N) =SU(N)⇥U(1), where U(1) co-
difies the d.o.f. associated to the center of mass of the stack, which get decoupled
from the remaining d.o.f. Therefore, the U(1) can be frozen and one just considers
the SU(N) factor.

N = 4 SYM theory has a conformal group given by SO(4,2). Besides, the
theory preserves N = 4 supersymmetries, i.e. sixteen Poincaré supercharges and

6



sixteen superconformal supercharges. All of these supersymmetries form the su-

pergroup PSU(2, 2|4) under which N = 4 SYM is invariant.

The closed string states are described by the low energy limit of the closed

string theory, namely Sclosed is just the type IIB supergravity action (1.6), Sclosed !
SIIB. Finally, in [9], Gubser, Maldacena, et.al. showed that the interaction term

is Sint ⇠ gs↵
02, one then can see that Sint ! 0 in the low energy limit. Thus, the

total system decouples in two sectors: supergravity in 9+1 dimensions, SIIB, and

the excitations of D3-branes, where the massless states give the field content of a

four dimensional N = 4 vector supermultiplet, whose dynamics is described by the

N = 4 SYM theory with a gauge group SU(N), i.e. the action SN=4 SYM.

In the second description, the N D3-branes are described as black 3-branes,

that is, as solitonic solutions of the e.o.m. of type IIB supergravity, thus providing

a background where the closed strings can propagate. The black 3-branes in this

case are a source of RR 5-form flux and carry charge and mass:

ds2 = 1p
H(r)

⌘µ⌫dxµdx⌫ +
p

H(r)
�
dr2 + r2ds2

S5

�
, (1.16)

where H(r) = 1 + L4

r4 ,

and L4 = 4⇡gsNl4s . Besides, the solution includes a constant dilaton and a RR

flux, F5. If one takes L as a characteristic scale in the theory, one can distinguish

two regions in this solution. When r >> L then H(r) ⇠ 1 and the solution is a

Minkowski R9,1 spacetime. When r << L then H(r) ⇠ L4

r4 and (1.16) becomes

ds2 =
r2

L2
⌘µ⌫dxµdx⌫ +

L2

r2

�
dr2 + r2ds2

S5

�
,

=
L2

r2
(⌘µ⌫dxµdx⌫ + dz2) + L2ds2

S5 .

(1.17)

In the second line we have introduced a new coordinate z = L2/r. The metric

(1.17) corresponds to a product between an AdS space in five dimensions and an

S5 sphere, both with curvature radius L.

The black 3-brane excitations are closed strings in a ten dimensional asymptot-

ically flat spacetime and also closed strings in the region close to the throat. In the

low energy limit both sectors get decoupled. This may be seen as follows: consider

7
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an string excitation with energy Er measured at a fixed point close to the throat,

and the energy E1 measured at infinity, both energies are related by

E1 = H�1/4Er. (1.18)

For fixed Er, one finds that as r ! 0 the energy observed at infinity, E1, goes

to zero, i.e. the observer at infinity is in the low energy regime. From this point

of view, the observer at infinity sees two different low energy states, supergravity

modes in flat 9+1 dimensional spacetime (type IIB supergravity) and closed string

excitations close to the r = 0 region, which corresponds to an AdS5⇥S5 spacetime

(so-called near horizon region). Summing up, in the low energy limit both types of

closed strings decouple from each other.

So far, an array of N D3-branes has been described in two different ways.

The two descriptions get decoupled in the low energy limit, and as an outcome of

the decoupling, both systems contain the type IIB supergravity theory in a flat ten

dimensional spacetime. This fact allows us to identify the remaining sectors as

follows:

An N = 4 SYM theory with gauge group SU(N) is dual to a string theory in

type IIB supergravity living in an AdS5 ⇥ S5 background.

This is known as the Maldacena conjecture. Nowadays the statement has been

enlarged as a duality between a conformal field theory in p dimensions and a string

theory living in an AdSp+1⇥M9�p background.

As a trivial test of the correspondence, we can analyse the symmetries in both

sides of the conjecture. As we mentioned before, the N = 4 SYM theory contains

PSU(2, 2|4) as symmetry group. On the other side, the AdS5⇥S5 theory is invariant

under the isometry groups of AdS5 and S5, that is SO(4,2) and SO(6), and if we

add the fermionic sector, the isometry group is extended to PSU(2, 2|4). This is just

one of the many ways to check the conjecture.

Ever since the advent of the AdS/CFT correspondence in the context of type

IIB string theory, it has become increasingly important the study of supersymmetric

and conformal field theories in diverse dimensions. The last two decades witnessed

8



a large effort to extend our encyclopedic knowledge of supergravity backgrounds,

Type II or M-theory, involving AdS factors.

For instance, an infinite family of six-dimensional N = (1, 0) SCFTs has

been discussed both from the field theoretical and holographic points of view in

[10, 11, 12, 13, 14, 15]. For d = 5, the works [16, 17, 18, 19, 20, 21] presented

backgrounds with an AdS6 factor and their UV-dual SCFTs. For N = 2 SCFTs in

four dimensions, the field theories studied in [22] have holographic duals discussed

in [23, 24, 25]. The case of d = 3 SCFTs and the dual AdS4 backgrounds is studied

in [26, 27, 28].

The correspondence for the case of two-dimensional and one-dimensional (half-

maximal BPS) low-energy SCFTs is particularly rich and has received a lot of atten-

tion recently. For instance, two dimensional CFTs play a prominent role in string

theory and in other areas of theoretical Physics (condensed matter and quantum

information systems are clear examples), besides the wide landscape of two di-

mensional CFTs. This does of 2d superconformal algebras a perfect theoretical lab

to test the AdS/CFT correspondence.

Furthermore, low dimensional AdS spaces can also be studied in the context

of defect conformal field theories. The defect CFTs usually arise when a brane

intersection ends on a bound state which is known to be described by an AdS

vacuum in the near-horizon limit. These brane intersections break some of the

isometries of the vacuum, producing lower dimensional AdS backgrounds in the

near-horizon limit. These lower dimensional spaces are dual to low dimensional

CFTs, that retake a defect CFTs interpretation within the higher dimensional CFTs.

Some examples with these realisations can be found in [29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40]

Perhaps more interesting is the role that 1d and 2d CFTs are playing in the

microscopic description of black holes and black strings. It is well-known that an

infinitely deep AdS2(AdS3) throat arises as the near-horizon geometry of 4d(5d)

extremal black holes. Even if this limit is clear geometrically a microscopic un-

derstanding remains a demanding task [41, 42, 43]. Via the Maldacena conjecture

one might presume that there is a 1d (2d) conformal field theory dual to these AdS2

(AdS3) geometries. This motivated various attempts at finding classifications of

AdS2 and AdS3 backgrounds and studying their dual CFTs [35, 37, 38, 44, 45, 46,

9
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47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. In
particular, the study of AdS2 as a natural extension of AdS3, was discussed from
the field theory perspective in [68, 69, 70]. The authors prove the CFT1 arises
as a discrete light-cone compactification (DLC) of the 2d CFT dual to the AdS3

solution.
Nevertheless, the AdS2/CFT1 pairs pose well-known problems related to the

no-connectedness of the boundary of AdS2 [71] and the interpretations of the cent-
ral charge of a superconformal quantum mechanics.

It is clear that a deeper understanding of the AdS/CFT correspondence in low
dimensions is needed. One of the motivations of this thesis is to find and study
new AdS/CFT pairs in lower dimensions with N = 4 supersymmetry. As an start-
ing point, in the next section we show the techniques used to construct the AdS
solutions to type II supergravity.
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2. Solution Generating
Techniques

Since the original Maldacena conjecture was formulated there has been continuous

effort in the construction and classification of type II and M-theory solutions with

AdS factors. These backgrounds are conjectured to be dual to SCFT in different

dimensions and with different amounts of supersymmetry. We dedicate this Section

to explore a few techniques in the construction of AdS solutions.

2.1 Abelian T-Duality (ATD)
Dualities play a very important role in physics, especially in high energy physics.

One such role is as a solution generating technique in supergravity, in particular,

T-duality can be used in the construction of new AdS spaces. T-duality establishes

the equivalence between a string theory propagating on a Rq+1⇥S1 spacetime and

another, or the same, string theory propagating on Rq+1 ⇥ S̃
1
, where S1 and S̃

1
are

circles of radii R and R̃ ⇠ ↵0/R, respectively.

Consider a string theory propagating on a spacetime whose xq+1 direction is

compactified on a circle of radius R. For a closed string one takes periodic bound-

ary conditions in the xq+1 coordinate,

xq+1(⌧, � + 2⇡) ⌘ xq+1(⌧, �) + 2⇡R W, W 2 Z, (2.1)

where W is an arbitrary integer called winding number, that counts the number of

times that the string winds around the S1. Since the xq+1 direction is compactified

the momentum in this direction must be quantised as pq+1 = K/R, with K 2 Z,

11



2 SOLUTION GENERATING TECHNIQUES

the Kaluza-Klein, or momentum, number. The mass formula for the spectrum of
the closed string states is then

M2 =

✓
K

R

◆2

+

✓
WR

↵0

◆2

+ . . . . (2.2)

Notice that the closed string spectrum is invariant under the following substitutions,

R ! R̃ =
↵0

R
,

(K, W ) ! (W, K),
(2.3)

which suggests a remarkable feature, namely, that the compactification on a circle
of radius R is physically equivalent to a compactification on a circle of radius ↵0/R.

This behaviour arises due to the fact that in the presence of a compact dimension
the closed strings have new, so-called winding, states. A natural question to ask is
what happens with T-duality in a theory containing open strings, since open strings
do not have a winding sector. Indeed, for open strings the winding number does not
make sense since open strings can always be contracted to a point. As the winding
number is crucial in the identification of the mass spectrum one can naively think
that T-duality does not apply to theories containing open strings. Nevertheless, it
was shown in [72] that T-duality can be recovered including D-branes, where not
only the radius of the compact dimension changes but also the dimension of the
D-brane,

(D(q + 1)� brane, R) ! (Dq � brane, R̃ =
↵0

R
). (2.4)

In this case, T-duality maps an open string with Neumann boundary conditions
into an open string with Dirichlet boundary conditions, that is, into an open string
ending on a Dq-brane. In the first theory the open string momentum in the compact
direction xq+1 is quantised pq+1 = K/R and we do not have a winding number. In
the dual world, due to the Dirichlet boundary conditions, there are no momentum
states in the compact direction and besides, the endpoints of the string must be
attached to the points xq+1 = xq+1

0 +2⇡KR̃, with xq+1
0 the position of the Dq-brane

in the curled up direction. The crucial point is that we get winding states with the
Dirichlet boundary conditions. Therefore, the momentum states in the first theory
contribute to the mass spectrum in the same way as the winding states contribute
to the mass spectrum in the dual world, under the identification R̃ = ↵0/R.
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2.1 Abelian T-Duality (ATD)

2.1.1 Buscher’s rules
So far we saw that R, the radius of the S1 direction, gets interchanged with ↵0/R

under T-duality for strings propagating in a flat spacetime. The next question is if
it is possible to generalise the T-duality transformations to strings propagating in
curved spacetimes with an isometry. This idea was addressed in [73, 74] where a
path integral derivation of T-duality was put forward for backgrounds with a U(1)

isometry.
These works considered a string propagating on a background consisting on a

metric, an NSNS two-form and a dilaton. The string propagation is described by
the non-linear sigma model (i.e. the low energy effective field action),

S =

Z
d�d⌧

⇣p
hh↵�gMN@↵x

M@�x
N + ✏↵�BMN@↵x

M@�x
N + ↵0phR(2)(h)�

⌘
.

(2.5)

Considering the case where the sigma model has at least one U(1) isometry and
using the conformal invariance of the sigma model, the above action can be written
as,

S =

Z
d�2

�
Qµ⌫@+xµ@�x⌫ + Qµi@+xµ@�xi + Qj⌫@+xj@�x⌫ + Qij@+xi@�xj

�
+ S�,

(2.6)

where QMN = gMN + BMN and the coordinares have been split into isometry
directions, i, and spectator directions, µ, that is,

xM = (xµ, xi) and QMN =

✓
Qµ⌫ Qµj

Qi⌫ Qij

◆
. (2.7)

The contribution of the dilaton to the string sigma model is of higher order in ↵0

and therefore a quantum correction, for this reason we will discuss it later.
The so-called, Buscher’s rules, allow to construct a T-dual background, that

generalises the R ! ↵0/R transformation that defines T-duality in a flat space.
The construction proceeds in three steps. The first step is to gauge the isometries
introducing auxiliary U(1) gauge fields, Ai

±, that couple minimally to the fields xi,

@±xi ! D±xi = @±xi + Ai
± where Ai

± ! Ai
± � @±�

i under xi ! xi + �i.
(2.8)
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2 SOLUTION GENERATING TECHNIQUES

The second step is to introduce the Lagrange multipliers vi to enforce that the gauge
fields are non-dynamical, through a term

�iTr(vF±) where F± = @+A� � @�A+. (2.9)

Integrating out the Lagrange multipliers imposes that F± = 0, which forces A± to
be pure gauge. Choosing A± = 0 the original action (2.6) is then reproduced.

On the other hand, integrating out the gauge fields, A±, and gauge fixing xi = 0

one gets the following, dual, action,

S =

Z
d�2

⇣
Q̂µ⌫@+xµ@�x⌫ + Q̂µi@+xµ@�vi + Q̂j⌫@+vj@�x⌫ + Q̂ij@+vi@�vj

⌘
,

(2.10)

where the Lagrange multipliers have replaced the xi coordinates and the metric and
NSNS two-form are given by

✓
Q̂µ⌫ Q̂µj

Q̂i⌫ Q̂ij

◆
=

✓
Qµ⌫ �QµjQ

�1
ij Qj⌫ QµiQ

�1
ij

�Q�1
ij Qj⌫ Q�1

ij

◆
. (2.11)

For one U(1) isometry direction, N, the dual metric and the NS-NS antisymmetric
tensor may be obtained as,

ĝNN =
1

gNN
, ĝµN =

BµN
gNN

, ĝµ⌫ = gµ⌫ �
gµNg⌫N � BµNB⌫N

gNN
,

B̂µN =
gµN
gNN

, B̂µ⌫ = Bµ⌫ �
gµNB⌫N � g⌫NBµN

gNN
.

(2.12)

The dilaton transformation rule requires a more careful analysis. To obtain its
transformation one must take into account the first quantum correction induced by
the path integral integration of the gauge fields A±, which produces a change in
the measure. Thus, we can obtain this transformation requiring invariance of the
measure,

p
|g|e�2� Rules (2.12)������!

p
|ĝ|e�2�̂ =

p
|g|

gNN
e�2�̂, (2.13)

which implies a shift in the dilaton of the following form,

�̂ = �� 1

2
log gNN. (2.14)

The expressions (2.12) and (2.14) are referred as Buscher’s Rules.
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2.1 Abelian T-Duality (ATD)

2.1.2 Ramond-Ramond sector
Superstring theories contain as well bosonic fields in the so-called RR sector [75].
To understand the behaviour of these fields under T-duality we have to encode the
RR fields in the bispinors defined by equation (1.11), and use the fact that T-duality
twists the right and left movers, [76, 77, 78, 79].

The construction proceeds writing the 10 dimensional metric in terms of the
vielbeins GMN = ea

M⌘abe
b
N where a, b are Lorentz frame indices, and realising that

the T-dual solution allows for two sets of vielbeins, given by

(êM
b )± = (QM

N )±eN
a , (2.15)

where QM
N read

Q± =

✓
⌥gNN ⌥(G⌥ B)N⌫

0 I9

◆
. (2.16)

As both vielbeins are describing the same T-dual theory they have to be related
by a Lorentz transformation,

(êM
b )+ = (êM

a )�⇤
a
b , (2.17)

which using (2.16) is defined by

⇤a
b = �a

b � 2
ea
NeNb

gNN
with det⇤ = �1. (2.18)

In [76] it was shown that using the above Lorentz transformation one can define
an action on the spinors given by,

⌦�1�a⌦ = ⇤a
b�

b, (2.19)

with ⌦ the spinorial representation of ⇤. The previous equation is solved with

⌦ = �11�N, (2.20)

where �11 is the product of all 10d gamma matrices and (�11)2 = I.
Finally, in order to obtain the transformation of the RR fields, one constructs

the bispinors given by (1.11) and, from then

Podd =
e�

2

4X

n=0

��F 2n+1 for type IIB supergravity,

Peven =
e�

2

5X

n=0

��F 2n for type IIA supergravity,

(2.21)

15
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where we have used the Clifford map,

↵ ⌘
X

k

1

k!
↵i1...ike

i1 ^ ... ^ eik $ ⇢↵ ⌘
X

k

1

k!
↵i1...ik�

i1...ik . (2.22)

Using (2.20) one finds that

type IIB! type IIA P̂even = Podd · ⌦�1, (2.23)

type IIA! type IIB P̂odd = Peven · ⌦, (2.24)

where P̂ are the dual RR bispinors defined from the dual fields P̂ (F̂p, �̂). These
transformations imply that type IIA string theory is mapped under T-duality onto
type IIB and viceversa.

Moreover, the presence of just one �N in (2.20) tells us that T-duality transforms
a Dp-brane into a D(p ± 1)-brane, depending on whether the T-duality direction is
orthogonal to the Dp-brane or contained in its worldvolume.

Since we are interested in the effect that T-duality has in the low energy limit
of the superstring, the relations (2.12), (2.14) and (2.23) provide the transformation
rules to go from a solution (IIA/IIB) to another solution (IIB/IIA). In this spirit, we
can see T-duality as our first example of solution generating technique. We will use
extensively this transformation in Section 8.

In the next section we generalise the T-duality transformation to the case of
non-Abelian groups.

2.2 Non-Abelian T-Duality (NATD)
In this section we introduce the generalisation of Buscher’s rules to the case where
we have a background with a global G isometry, where G is a non-Abelian Lie
group. In the literature, this formulation is known as non-Abelian T-duality (NATD).

The generalisation of Buscher’s rules to non-Abelian isometry groups was done
in [80] and then NATD was first applied as a solution generating technique in su-
pergravity in [81], where the transformation rules of the RR fields were worked
out. Since then the dualisation has been carried out in supergravity with respect
to a freely acting SU(2) isometry group. Here, we study the cases G =SU(2) and
G =SL(2,R), following the review sections in [82, 83].
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2.2 Non-Abelian T-Duality (NATD)

Consider a bosonic string sigma model that supports a G isometry, such that

the NSNS fields can be written as,

ds2 =
1

4
gij(x)LiLj + Giµ(x)dxiLµ + Gµ⌫(x)dxµdx⌫ ,

B2 =
1

8
bij(x)Li ^ Lj +

1

2
Biµ(x)dxi ^ Lµ + Bµ⌫(x)dxµ ^ dx⌫ , � = �(x),

(2.25)

for µ, ⌫ = 1, 2, ..., 7 with xµ being the spectator coordinates, and Li the G left-

invariant Maurer-Cartan forms,

Li = �iTr(tig�1dg), which obey, dLi =
1

2
f i

jkL
j ^ Lk, (2.26)

where f i
jk are the structure constants of G.

Our first example is the SU(2) group. The generators of the SU(2) algebra are

ta = ⌧ap
2
, with ⌧a the Pauli matrices,

⌧1 =

✓
0 1
1 0

◆
, ⌧2 =

✓
0 �i
i 0

◆
, ⌧3 =

✓
1 0
0 �1

◆
. (2.27)

These generators satisfy,

Tr(tatb) = �ab, [ti, tj] = i
p

2✏ijkt
k . (2.28)

An arbitrary element of SU(2) can be defined using Euler’s parametrisation,

g = e
i
2
�⌧3e

i
2
✓⌧2e

i
2
 ⌧3 , with 0  ✓  ⇡, 0  � < 2⇡, 0   < 2⇡. (2.29)

In this parametrisation, the left-invariant forms (2.26) are given by,

L1 = � sin d✓ + cos sin ✓d�, L2 = cos d✓ + sin sin ✓d�,

L3 = cos ✓d�+ d .
(2.30)

The next example is G =SL(2,R). Here, the generators of the sl(2,R) algebra

are obtained by analytically continuing the su(2) generators as,

t̃a =
⌧̃ap
2
, with ⌧̃1 = i⌧1, ⌧̃2 = ⌧2, ⌧̃3 = i⌧3 . (2.31)
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These satisfy1,

Tr(t̃at̃b) = (�1)a�ab, [t̃1, t̃2] = i
p

2t̃3, [t̃2, t̃3] = i
p

2t̃1, [t̃3, t̃1] = �i
p

2t̃2.
(2.32)

The group element g̃ 2 SL(2,R) is parametrised as,

g̃ = e
i
2
t⌧̃3e

i
2
✓⌧̃2e

i
2
⌘⌧̃3 with 0  ✓  ⇡, 0  t <1, 0  ⌘ <1. (2.33)

From here, the left-invariant forms (2.26) are given by,

L1 = sinh ⌘d✓ � cosh ⌘ sin ✓dt, L2 = cosh ⌘d✓ � sinh ⌘ sin ✓dt,

L3 = � cos ✓dt� d⌘.
(2.34)

Notice that the group element g depends on the target space isometry directions,
realising either SU(2) or SL(2,R) group manifold. That is, the group manifold is
an S3 space for SU(2), or an AdS3 space for SL(2,R).

The non-linear sigma-model that describes the propagation of a string on these
backgrounds is given by

S =

Z
d�2(EijL

i
+Lj

�+Qiµ@+xiLµ
� + QµiL

µ
+@�xi + Qµ⌫@+xµ@�x⌫),

with Eij = gij + bij, Qiµ = Giµ + Biµ,

Qµi = Gµi + Bµi, Qµ⌫ = Gµ⌫ + Bµ⌫ ,

(2.35)

where Li
± are the left-invariant forms pulled back to the worldsheet. This sigma-

model is invariant under g ! ��1g for � 2 SU(2) or � 2 SL(2,R).
Following [80], in order to construct the non-Abelian T-dual background, the

global isometries are gauged, introducing covariant derivatives, @±g ! D±g =

@±g � A±g in the Maurer-Cartan forms and the condition that the gauge fields
are non-dynamical is imposed through the addition of a Lagrange multiplier term,
�iTr(vF±), where F± in this case is

F± = @+A� � @�A+ � [A+, A�] (2.36)

and v = {v1, v2, v3} is a Lagrange multiplier vector that takes values in the Lie
algebra of the group G. The resulting action is invariant under,

g ! ��1g, A± ! ��1(A±�� @±�), v ! ��1v�, (2.37)

1We take gµ⌫ = �Tr(t̃µt̃⌫) in order to have (+,�, +) signature.
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with � 2 SU(2) or � 2 SL(2,R). In the same way as the Abelian T-Dual, after
integrating out the Lagrange multipliers and fixing the gauge, the original non-
linear sigma-model is recovered.

On the other hand, the dual background is obtained integrating by parts the
Lagrange multiplier term and solving for the gauge fields. However, the new sigma-
model has redundancies since it still relies on the spectators, Lagrange multipliers,
vi, and the coordinates used to parametrise the group, (2.29) or (2.33). For this
reason, we need to remove the redundancy choosing a gauge fixing condition g = I,
as in the Abelian T-dual case.

The resulting action reads,

Ŝ =

Z
d�2

⇥
Qµ⌫@+xµ@�x⌫ + (@+vi + @+xµQµi)M

�1
ij (@�vj �Qj⌫@+x⌫)

⇤
,

(2.38)

with Mij = Eij + fk
ijvk.

Notice that in this action the parameters (�, ✓, ) or (t, ✓, ⌘) have been replaced by
the Lagrange multipliers vi, which live in the Lie algebra of the group G. From
(2.38) the dual NSNS sector, can be read,

✓
Q̂µ⌫ Q̂µj

Q̂i⌫ Êij

◆
=

✓
Qµ⌫ �QµjM

�1
ij Qj⌫ QµiM

�1
ij

�M�1
ij Qj⌫ M�1

ij

◆
, (2.39)

which generalises Buscher’s rules to the non-Abelian case.
At this point we remark that the solutions generated by NATD span non-compact

manifolds even in the case that the group used in the dualisation is compact (like
SU(2)). The reason is that the new variables live in the Lie algebra of the dualisa-
tion group. At the level of the metric and using a suitable parametrisation for the
Lagrange multipliers, the original S3 space is replaced by an S2 ⇥R+ space in the
case of G =SU(2). In turn, for G =SL(2,R), the AdS3 subspace is supplanted by
an AdS2 ⇥R+ space.

As in Abelian T-duality the dilaton receives a shift coming from the path integ-
ral analysis, that guarantees invariance of the integration measure. In this case we
have

�̂(x, v) = �(x)� 1

2
log(det M). (2.40)

where det M is playing the role of the metric component gNN.
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2.2.1 Ramond-Ramond fluxes
The transformation rules for the RR fields were worked out in [81] using the spinor
representation approach as in the Abelian T-dual case. That is, left and right movers
transform differently under NATD, and therefore lead to two different sets of frame
fields for the dual geometry,

ê+ = �M�T (dv + QT dx) + �dx,

ê� = M�1(dv �Qdx) + �dx,
(2.41)

where  and � come from defining the frame fields in the original target space as

ds2 = ⌘µ⌫e
µe⌫ + �ije

iej for SU(2)

ds2 = �µ⌫e
µe⌫ + �ije

iej for SL(2,R)

with eµ = eµ
↵dx↵, ei =i

aL
a + �i

bdxb, i
a

j
a = gij.

(2.42)

The two different sets of frame fields (2.41) define the same dual metric ob-
tained from (2.38), and must therefore be related by a Lorentz transformation as in
(2.17), where ⇤↵� is given by,

⇤ = �M�T M�1 with det⇤ = (�1)dimG. (2.43)

As in Section 2.1.2, the Lorentz transformation acts on spinors through the matrix
⌦, defined by the expression (2.19). In the NATD case the condition is solved for,

⌦ = �11
��123 + ⇣a�

a

p
1 + ⇣a⇣a

(2.44)

with ⇣a = a
i v

i/(
p

det g) for Bij = 0. Writing the RR fluxes as bispinors as in
(2.21) one then extracts their transformation rules by right multiplication with the
⌦�1 or ⌦ matrices as in (2.23) and (2.24). With these transformation rules it is
guaranteed that a solution to type IIA (IIB) supergravity is mapped onto a solution
of type IIB (IIA) supergravity [81].

We finish this subsection with some comments:

• Even if the expression for ⌦, given by (2.44), is more complicated than in
the Abelian case, the second term in (2.44) is proportional to (2.20) for each
component, which implies that a p-form is mapped to a (p±1)-form. In turn,
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2.3 G-structure techniques

the first term consists on a product of three � matrices, which means that the

p-form is mapped to a (p ± 3)-form. In other words, Fp ! Fp±1, Fp±3, with

the sign + or � depending on whether the duality directions are transverse

or tangential to the directions of the p-form.

• Unlike the Abelian counterpart, the NATD transformation is not an involution

since the transformation destroys the dualised isometries.

• Whilst the sigma model procedure to compute the non-Abelian T-dual of a

given geometry seems straightforward to follow, a subtlety arises in determ-

ining global aspects of the dual background. In the Abelian T-dual case,

the extension of the transformation beyond tree level in string perturbation

theory determines the global properties of the coordinate that replaces the

dualised direction. The extension beyond tree level is a long-standing open

problem of NATD [84, 85, 86, 87, 88, 89, 90], in such a way that a formalism

that allows compactifying the new coordinates is lacking.

• One can deduce the transformation rules for the 10d Majorana Weyl Killing

spinors, ✏1 and ✏2, from the ⌦ matrix

✏̂1 = ✏1, ✏̂2 = ⌦✏2. (2.45)

This transformation is well-known for G=SU(2), [81, 82], where it reduces

to a rotation of one of the Killing spinors with respect to the other. We expect

the same to happen in the G=SL(2,R) case, albeit this has not been shown.

2.3 G-structure techniques
An n-dimensional manifold M admits a G-structure if the structure group on M

gets reduced to the subgroup G. This reduction can be performed due to the ex-

istence of globally defined tensors or spinors in this manifold. In recent years, G-

structure techniques have been successfully used as solution generating techniques

in supergravity. Prominent examples to find supersymmetric AdS solutions of su-

pergravity with this technology are the works [8, 91, 92] for N = 1 backgrounds.
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2 SOLUTION GENERATING TECHNIQUES

Although in this thesis we focus in the study of AdS3 and AdS2 geometries, in
this section we illustrate the procedure with a particular example: a 10 dimensional
background consisting on a warped product of a 4d spacetime and a 6d compact
space M with N = 1 supersymmetry. That is, we take the following ansatz for the
metric,

ds2 = e2Agµ⌫dxµdx⌫ + gmndymdyn, (2.46)

for µ, ⌫ = 1, ..., 4 and m, n = 1, ..., 6, where eA is the warp factor, that depends on
the internal1 coordinates ym. In turn, 4d N = 1 supersymmetry implies that the RR
and NSNS fluxes must be non-trivial on M . Namely,

F = f + e2Avol4 ^ ?6�(f) where f = f0 + f2 + f4 + f6 IIA

f = f1 + f3 + f5 IIB
(2.47)

with �(Xn) = (�1)
n(n�1)

2 Xn and vol4 the volume form of the 4d spacetime. Since
we are interested in backgrounds preserving 4d N = 1 supersymmetry, these
should have a single 4d conserved spinor ⇣+, and the ten dimensional Majorana
Weyl spinors, ✏1, ✏2, have to be decomposed accordingly, as,

✏1 = ⇣+ ⌦ ⌘1
+ + ⇣� ⌦ ⌘1

�,

✏2 = ⇣+ ⌦ ⌘2
⌥ + ⇣� ⌦ ⌘2

±,

where we used + and - to indicate both four- and six-dimensional chiralities, in
such a way that the upper sign in ✏2 is for type IIA and the lower sign for type IIB.
In the rest of this section we will use this notation to distinguish type IIA and IIB
supergravity theories. Here, ⇣� is the Majorana conjugate of the 4d spinor ⇣+ and
we choose a 6d basis where complex conjugation changes the chirality, (⌘i

+)⇤ = ⌘i
�.

In the context of solution generating techniques in supergravity, it is useful to
construct two Cliff(d, d) pure spinors by tensoring the internal spinors ⌘i

±,

�+ = ⌘1
+ ⌦ ⌘2

+
†
, �� = ⌘1

+ ⌦ ⌘2
�

†
. (2.48)

Using then the Fierz identity and the Clifford map (2.22) the pure spinors can be
seen as polyforms,

⌘+ ⌦ ⌘†
± =

1

2[d/2]

dX

k=0

1

k!
(⌘†

±�a1...an⌘+)ea1 ^ ... ^ ean , (2.49)

1We are interested in backgrounds with the form AdSp⇥M10�p. The coordinates covering the
M10�p subspace are called internal coordinates and M10�p is known as internal space.
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2.3 G-structure techniques

where in our particular case d = 6.

The decomposition of the spinors in four and six dimensional factors allows

us to split the supersymmetry conditions (1.10) into 4d and 6d components. The

differential conditions that the pure Cliff(6, 6) spinors have to obey in order to pre-

serve N = 1 supersymmetry were derived in [91]. They are given by

(d�H^)(e2A���±) = 0

(d�H^)(e2A���⌥) = e2A��dA ^ �̄⌥ +
ie3A

8
?6 �(f).

(2.50)

In order to construct the two pure spinors (2.49) we need the explicit form of

the internal spinors ⌘i, which can be parametrised in terms of the spinors ⌘+ and

�+ in the following fashion,

⌘1
+ = a⌘+,

⌘2
+ = b(kk⌘+ + k?�+).

(2.51)

Here a and b are complex numbers related to the norms of the internal spinors. The

parameters kk and k? satisfy k2
k + k2

? = 1 and depending on their values one can

define different G-structures on the internal manifold M .

k? = 0, SU(3) structure

When k? = 0 the internal spinor becomes parallel, i.e. we only have one global

spinor on M , then the pure spinors define an SU(3) structure, which is characterised

by one two-form and one holomorphic three-form. These forms are defined in

terms of the following bilinears of the internal spinors,

Jmn = �i⌘+
†�mn⌘+ ⌦mnp = �i⌘�

†�mnp⌘+, (2.52)

which satisfy the conditions,

J ^ ⌦ = 0, J3 =
3

4
i⌦ ^ ⌦̄. (2.53)

Therefore, the corresponding pure spinors are,

�+ =
ab⇤
8

e�iJ , �� = �i
ab

8
⌦. (2.54)
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2 SOLUTION GENERATING TECHNIQUES

k? 6= 0, SU(2) structure

In this case the two internal spinors are independent and the M manifold is
said to admit an SU(2) structure. It is defined by a holomorphic one-form, zm =

⌫m�iwm, a real two-form j and a holomorphic two-form !. In terms of the internal
spinors,

(⌫m � iwm) = ⌘�
†�a�+, jmn = �i⌘+

†�mn⌘+ + i�+
†�mn�+,

!mn = ⌘�
†�mn�� .

(2.55)

These invariant forms satisfy the following structure contitions,

j2 =
1

2
! ^ !̄, j ^ ! = ! ^ ! = 0,

(⌫ � iw)x! = (⌫ � iw)xj = 0,
(2.56)

where bxA = 1
(p�1)!

bµ1Aµ1...µp�
µ2...µp . One can show that the pure spinors are,

�+ =
ab⇤
8

e�i⌫^w ^ !, �� =
ab

8
e�ij ^ (⌫ + iw). (2.57)

For k? 6= 0 we distinguish two subcases kk = 0 and kk 6= 0, the former is the
case that we discussed above and it is known as orthogonal SU(2) structure. The
latter, kk 6= 0, is called intermediate SU(2) structure.

2.4 Analytical continuations (AC)
In this section we study a ’trick’ to construct solutions with AdSp and Sq factors,
known in the literature as double or quadruple analytic continuation. In general, if
we have a AdSp⇥Sq warped geometry over a M10�p�q manifold one can write the
AdSp factor as

ds2
AdSp

= d⇣2 + sinh2 ⇣ ds2
p�1 = d⇣2 + sinh2 ⇣ (�d⌧ 2 + cosh2 ⌧ds2

S(p�2)), (2.58)

and perform the following two wick rotations,

⇣ ⌘ i , ⌧ ⌘ i
⇣⇡

2
� ↵

⌘
, (2.59)

to obtain,

�(d 2 + sin2  (d↵2 + sin2 ↵ ds2
S(p�2))) = �ds2

Sp . (2.60)
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2.4 Analytical continuations (AC)

The transformation (2.59) is known as a double analytical continuation. Notice
that, the opposite also works: starting from a ds2

Sq metric and doing the inverse
transformation of (2.59) we arrive to a �ds2

AdSq
factor. In this way, one can carry

out the four wick rotations and get the following swap,

AdSp ! �Sp , Sq ! �AdSq , (2.61)

leading to a tentative AdSq⇥Sp warped geometry over the same M10�p�q manifold.
We say tentative because it is necessary to complete this transformation with a
careful study of the signature of the metric and the behaviour of the supergravity
fields before we conclude that it gives rise to a well-defined supergravity solution.
For this purpose, it is useful to consider the analytical continuations of the volume
forms,

volAdSp ! i(p�1)volSp , volSq ! (�i)(q�1) volAdSq , (2.62)

which must be implemented in the background fluxes. As we can see, these forms
can be imaginary, so depending on the values of p and q the transformation given
by (2.61) needs to be supplemented with an analytical continuation of the fluxes
and the dilaton,

Fp ! iFp, e� ! ie�. (2.63)

Due to the lack of intuition of the resultant geometry, it is not possible to give a
concrete statement about the supersymmetry of the new geometry.

As we mentioned before we will employ the techniques reviewed in this section
to construct new AdS3 and AdS2 solutions with different amounts of supersym-
metry. In particular, we will use the G-structure technique in Sections 5.1 and 5.2
to construct new AdS3⇥ S2 solutions, that will be the ‘seed’ of most of the results
presented in this thesis.
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3. Brane Pictures and Quiver
Field Theories

In this Section, we review the brane picture studied by Witten in [93] (see also

[94]), realising 4d N = 2 supersymmetric gauge theories in D4-D6-NS5 brane

configurations in type IIA superstring theory1. These ideas form the ground of

our constructions of quiver field theories dual to our warped AdS2 and AdS3 back-

grounds.

Our starting point is the brane setup shown in Table 3.1. It consists of D4-

branes stretched between NS5- branes (we will explain this in a moment) and (pos-

sibly) orthogonal D6-branes. The NS5-branes are extended in the R1,3, x4, x5 dir-

ections, at different values in the x6 coordinate, while the D4-branes have their

worldvolume in the R1,3, x6 directions. The D6-branes cover the R1,3, x7, x8, x9

directions.

This brane intersection, known as a Hanany-Witten brane setup [95], is illus-

trated in Figure 3.1. In this brane picture the vertical lines represent the NS5-branes

and the horizontal ones the D4-branes, where the field theory lives (see below). No-

tice that, perpendicular D6-branes have been included, represented by crosses that

are introduced for free as they do not break any additional supersymmetries (see

below).

The ten dimensional Lorentz group is split in the four dimensional Lorentz

group and in the SO(2)⇥SO(3) factors, which are R-symmetries, geometrically

1The first example with these brane setups was described in [95] for 3d supersymmetric gauge
theories with N = 4 supersymmetry. Here we analyse the 4d example given in [93] because these
brane pictures realise theories in four dimensions. In four dimensions the theory is conformal and
straightforward in their study.
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3 BRANE PICTURES AND QUIVER FIELD THEORIES

0 1 2 3 4 5 6 7 8 9

D4 ⇥ ⇥ ⇥ ⇥ ⇥
D6 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
NS5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Table 3.1: The 1
4 -BPS intersection involving D4, D6 and NS5 branes. A 4d supercon-

formal field theory lives in the common x0, x1, x2, x3 directions. The corresponding
SO(2)R ⇥ SO(3)R R-symmetry is geometrically realised as rotations in the (x4, x5)

and (x7, x8, x9) coordinates, respectively.

F1 D6

K1 D4

FnD6

K2 D4

F2 D6

Kn D4

Fn+1D6

Kn+1D4

NS5 NS5 NS5 NS5 NS5 NS5

Figure 3.1: Brane picture of the system described in Table 3.1.

realised on (x4, x5) and (x7, x8, x9), respectively. Besides, it is well-known that

when we introduce Dp-branes in type II supergravities, half of the thirty two super

charges are preserved, according to the condition ✏L = �0,...,p✏R. Likewise, intro-

ducing NS5-branes, a further half of the supersymmetries are broken, according to

the type IIA conditions ✏L = �0,...,5✏L and ✏R = �0,...,5✏R. Thus, for the system in

Table 3.1 one finds eight supercharges that are undetermined. This means N = 2

supersymmetry in four dimensions.

Strictly speaking, the field theory living on the D4-branes is 5d. However, the

introduction of the NS5-branes restricts the extension of the D4-branes on the x6,

such that the field theory is rendered four dimensional at low energies

The gauge coupling of the theory living in the D4-branes can be extracted from

their DBI action (as it was briefly explained around equation (1.15) for D3-branes).
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SU(K1) SU(K2)

SU(F1) SU(F2) SU(Fn) SU(Fn+1)

SU(Kn+1)SU(Kn)

Figure 3.2: Four dimensional N = 2 quiver field theory living in D4-D6-NS5 brane
intersections.

It reads
1

g2
4

⇠ x6,n+1 � x6,n

ls
, (3.1)

this shows that if we are interested in a finite coupling constant at ls ! 0 (low

energies) the NS5-branes have to be close between themselves.

The field content that defines the field theory living in this brane intersection

arises from the quantisation of the open strings stretched between the different

branes. Open strings with both ends in the same stack of coincident Kn D4-branes

give an N = 2 vector multiplet. The total gauge group is then ⇧n SU(Kn), where

we have frozen the U(1)’s in each stack, as discussed in [93]. The strings con-

necting adjacent stacks of D4-branes across an NS5-brane (i.e. Kn�1, and Kn

D4-branes) are N = 2 hypermultiplets in the bifundamental representation of the

adjacent gauge groups. The presence of D6-branes in each interval introduces Fn

fundamental hypermultiplets. The gauge group living on the D6-branes becomes

a flavour group because in the low energy limit these strings have their excitations

decoupled, giving a global SU(Fn) group for each SU(Kn) gauge group.

The N = 2 field theory can be described by the quiver depicted in Figure 3.2.

In these representations circles represent gauge groups, boxes flavour groups and

lines fields in the bifundamental or fundamental representation of the symmetry

groups.

In [5], the expression for the one-loop �-function for the SU(Kn) gauge group

was calculated, and shown to be given by

b0,n = �2Kn + Kn�1 + Kn+1 + Fn. (3.2)
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3 BRANE PICTURES AND QUIVER FIELD THEORIES

Thus, for the field theory to be conformal, the following condition must hold

Fn = 2Kn � (Kn�1 + Kn+1), (3.3)

where the term in parenthesis counts the number of bifundamental hypermultiplets
that couple to the SU(Kn) gauge group.

The 4d CFT reviewed in this section illustrates the general way in which CFTs
living in Hanany-Witten brane intersections are constructed. In this thesis we will
encounter more involved 2d and 1d CFTs living in 1

8
-BPS brane configurations,

that we will study extending the construction just reviewed. In the next section, we
give a brief summary of the main results obtained in this thesis.
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4. Outline of the Thesis

In this section we summarise the content of the next Chapters, giving the reader a

wide outlook and a suggested sequence, which will help organise the goals of the

thesis.

In Chapter 5, we construct and study the main properties of two new classes of

AdS3⇥S2 solutions in type IIA and type IIB supergravities, with small N = (0, 4)

supersymmetry. These solutions are constructed using the Killing spinor tech-

niques described in subsection 2.3, where we sketched the basic technical pro-

cedure.

The small N = (0, 4) superconformal algebra contains the bosonic subalgebra,

sl(2)� su(2) (4.1)

that is realised geometrically by the ansatz,

ds2 = e2Ads2
AdS3

+ ds2
M7

, with

ds2
M7

= e2Cds2
S2 + ds2

M5
.

(4.2)

Here the warp factors e2A, e2C have support in M5, as so has the dilaton. In turn,

the fluxes depend on the AdS3 and S2 directions only through their volume forms.

The strategy that we follow in Chapter 5 is similar to the one explained in

subsection 2.3: we construct spinors by ensuring consistency with the bosonic sub-

algebra (4.1), and exploit an existing N = 1 AdS3 classification [96] to obtain

sufficient conditions on the geometry and fluxes for a solution with small N =

(0, 4) supersymmetry to exist in type II. Finally, we study the classes of solutions

that are consistent with our assumptions.
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4 OUTLINE OF THE THESIS

F1 D8 F2 D8

F̃1 D4 F̃2 D4

↵1 D2

µ1 D6 µ2 D6

↵2 D2

Figure 4.1: Hanany-Witten brane setup associated to the D2-D4-D6-D8-NS5 brane
intersection and that corresponds to the ‘seed’ geometries. The horizontal lines rep-
resent D2 and D6 colour branes, vertical lines represent NS5-branes and the crosses
are D4 and D8 flavour branes.

Our first assumption is small N = (0, 4) supersymmetry in massive type IIA

supergravity with SU(2) structure on the remaining internal space. With this as-

sumption we obtain two new classes of solutions of the form AdS3⇥S2⇥M4⇥I.

When M4=CY2, that we refer as class I, the family of solutions consist on warped

AdS3⇥S2⇥CY2⇥I geometries with warping functions h8, h4 and u with support

on the interval and the CY2. This class is a generalisation of the D4-D8 system that

includes additional branes. In turn, when M4 is a 4d Kähler manifold, that we refer

as class II, the family of solutions consist on warped AdS3⇥S2⇥M4⇥I geomet-

ries, which are a generalisation, up to T-duality, of the class of D3-branes wrapping

curves in the base of an elliptically fibered CY3 [49], with extra D5-branes. A sub-

set in class I, namely when the CY2 is compact, will be the main solutions discussed

in this thesis. This subset is characterised by the piecewise linear functions

h4 = ↵k+
�k

2⇡
(⇢� 2⇡k), h8 = µk+

⌫k

2⇡
(⇢� 2⇡k), (4.3)

where ↵k, �k, µk, ⌫k are integration constants directly related to the quantised

charges.

In Section 5.2, we extend our assumptions to consider all the AdS3⇥S2⇥M5

solutions to type II supergravities preserving small N = (0, 4) supersymmetry. Im-

posing this amount of supersymmetries constraints the solutions to have between
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0 and 3 a priori isometries in M5. In type IIA, the case with no a priori isomet-

ries is forced to have SU(2) structure, so it gives back the class of solutions that

we have just summarised. In turn, in type IIB, two general classes are obtained,

with and without D7-brane sources, and with identity structure in the internal five

dimensional space.

Section 5.3 is devoted to the study of the 2d CFTs dual to the ‘seed’ solu-

tions. These CFTs live in D2-D4-D6-D8-NS5 brane intersections, where D2- and

D6-branes play the role of colour branes and D4- and D8-branes play the role of

flavour branes. The detailed study of the configuration gives rise to the Hanany-

Witten brane setups, depicted in Figure 4.1. From these setups we construct a

precise family of quivers depicted in Figure 4.2, that flow to N = (0, 4) CFTs at

low energy. The field content of the proposed quiver field theories arises from the

quantisation of the open strings stretched between the branes, that we have sum-

marised in Table 4.1. As a test of the proposed duality, we pay special attention to

the gauge anomaly cancelation condition, which constraints the ranks of the differ-

ent groups, according to

Fk = 2µk � µk+1 � µk�1 = ⌫k�1 � ⌫k,

F̃k = 2↵k � ↵k+1 � ↵k�1 = �k�1 � �k.
(4.4)

These conditions are indeed satisfied by the quantised charges associated to our

solutions.

We also use the relation between the R-symmetry anomaly and the right moving

central charge in order to compute the latter

cR = 6(nhyp � nvec), (4.5)

where nhyp and nvec are the number of hypermultiplets and vector multiplets of the

quiver, that we compare with the holographic central charge, computed using the

Brown-Henneaux formula [97]. This gives for our solutions,

chol =
3⇡

2GN

VolCY2

Z 2⇡(P+1)

0

h4h8d⇢ =
3

⇡

Z 2⇡(P+1)

0

h4h8d⇢. (4.6)

A non-trivial check of our proposed quivers is that both expressions agree exactly

in the holographic limit, i.e. long quivers with large ranks.
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↵3 ↵K

µK

↵1

F1 F2 F3 FK

F̃1 F̃2 F̃3 F̃K

↵2

µ1 µ2 µ3

Figure 4.2: Quivers encoding the 2d field theories living in the D2-D4-D6-D8-NS5
brane intersections.

In Section 5.4, a concrete example in the class of the ‘seed’ solutions associated

to the precise choice of warping functions,

u = 4L4M2⇢, h4 = L2M4⇢, h8 = F0⇢ , (4.7)

is studied. This solution was obtained in [81] applying NATD with respect to freely

acting SU(2) group on the near horizon geometry of the D1-D5 system. Since the

solution is obtained via NATD, the dual geometry is non-compact, as we mentioned

at the end of Section 2.2. We exploit the fact that such background is in our class I

of solutions to propose two explicit global completions of this solution, giving rise

to well-defined (0,4) 2d CFTs.

A natural way to extend our work is to analyse its implications in M-theory.

By taking the massless limit described in Section 5.1, we perform the uplift to

M-theory –with the ansatz explained around equation (1.2). The new solutions that

arise are presented in Section 6. They are solutions of the form AdS3⇥S3/Zk⇥M4⇥I,

with M4=CY2 for class I and M4 a Kähler four manifold for class II, respect-

ing small (0,4) supersymmetry. We focus on class I, for a compact Calabi-Yau

two-fold, and find a M2-M5-KK-M5’ intersection underlying the geometry. This

brane setup is interpreted as KK-monopoles and M2-branes stretched between

M5’-branes, with extra M5-branes providing flavour groups. M2-branes suspen-

ded between parallel M5’-branes describe so-called M-strings, i.e. deformations
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String Interval Multiplet Representation

D2-D2 Same N = (0, 4) vector + N = (0, 4) hyper Adjoint
D2-D2 Adjacent N = (4, 4) twisted hyper bifundamental
D6-D6 Same N = (0, 4) vector + N = (0, 4) hyper Adjoint
D6-D6 Adjacent N = (4, 4) twisted hyper bifundamental
D2-D6 Same N = (0, 4) hyper bifundamental
D2-D6 Adjacent N = (0, 2) Fermi bifundamental
D2-D4 Same N = (4, 4) twisted hyper bifundamental
D4-D6 Same N = (0, 2) Fermi bifundamental
D2-D8 Same N = (0, 2) Fermi bifundamental
D6-D8 Same N = (4, 4) twisted hyper bifundamental

Table 4.1: Summary of the field content arising from the different strings stretching
between branes in the D2-D4-D6-D8-NS5 brane setup.

↵2 ↵3 ↵(P�1)↵1

k

↵P

�(P�1) � �P�(P�2) � �(P�1)�1 � �2�0 � �1 �2 � �3

k k k k

k k

Figure 4.3: Quiver field theory dual to the AdS3⇥S3/Zk⇥CY2⇥I solution in M-
theory.

of the self-dual strings living in M5’-branes away from criticality. Our class of

solutions provides, thus, the holographic duals of these configurations. A similar

analysis to the one performed in type IIA allows to construct the precise quivers

depicted in Figure 4.3, that flow to CFTs in the IR. These CFTs describe self-dual

strings in 6d (1,0) CFTs.

From these solutions a second set of backgrounds can be constructed via ana-
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↵1 D4 ↵2 D4 ↵P D4

⌫0 D8

�0 D40

⌫1 D8

�1 D40

⌫P�1 D8

�P�1 D40

µ1 D0 µ2 D0 µP D0

⇢

Figure 4.4: Hanany-Witten brane setups for the D0-F1-D4-D4’-D8 brane system.

lytical continuation,

AdS3  ! S3 , S3  ! AdS3 . (4.8)

The solutions obtained are foliations of AdS3/Zk⇥S3⇥M4 on an interval pre-
serving (0,4) supersymmetries. As these solutions come from analytical continu-
ations, they are associated to different brane intersections, to be more precise, they
are associated to M2-M5-M5’ brane setups with momentum charge, where a su-
perconformal quantum mechanics lives in the low energy limit.

In the same Section 6, we take these M-theory solutions and reduce them on the
Hopf-fibre of the AdS3/Zk subspace. The new class is a solution to massless type
IIA supergravity of the form AdS2⇥S3⇥M4 warped on an interval. These solutions
preserve four Poincaré supersymmetries and have SU(2) structure in the remaining
internal space. We show that these solutions are also obtained through analytical
continuations from the solutions constructed in Section 5.1, in the massless limit.
This fact suggests that, they can be extend to massive type IIA.

The detailed study of these solutions in massive type IIA is performed in Sec-
tion 7.1, again for a compact CY2. We show that the geometry is associated to the
D0-F1-D4-D4’-D8 Hanany-Witten brane setup depicted in Figure 4.4. We explain
in Section 7.1 that after a T-(S-duality)-T transformation and Hanany-Witten moves
the brane setup can be interpreted as describing U(↵k) and U(µk) Wilson lines in
their completely antisymmetric representations, in such a way that the two subsys-
tems, D4-D4’-F1 and D0-D8-F1, can be interpreted as backreacted D0-D4 baryon
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Figure 4.5: A generic one dimensional quiver field theory dual to the AdS2 solutions
in massive type IIA.

vertices within the 5d N = 1 QFT living in the worldvolume of a D4’-D8 system.
A set of disconnected quivers is proposed, see Figure 4.5, giving the SCQM dual
to our solutions in the IR. In these quivers the D0- and D4-branes are colour branes
and the D4’- and D8-branes are flavour branes. The dynamics is described in Table
4.2.

String Multiplet Representation

D0-D0 N = (4, 4) vector + N = (4, 4) hyper Adjoint
D4-D4 N = (4, 4) vector + N = (4, 4) hyper Adjoint
D0-D4 N = (4, 4) hyper bifundamental
D0-D4’ N = (4, 4) twisted hyper bifundamental
D4-D8 N = (4, 4) twisted hyper bifundamental
D0-D8 N = (0, 2) Fermi bifundamental
D4-D4’ N = (0, 2) Fermi bifundamental

Table 4.2: Field content of the SCQM described by the quivers in Figure 4.5.

From these AdS2⇥S3 geometries one can analyse explicit examples, as the one
studied in Section 7.2. This example is obtained acting with non-Abelian T-duality
–on a non-compact group SL(2,R)– on the D1-D5 near horizon geometry, as is
explained in Section 2.2. As this solution is in the class described in Section 7.1,
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we are able to make a concrete proposal for its dual SCQM in terms of backreacted

baryon vertices described by a concrete quiver QM.

At this stage, we have one family of AdS3⇥S2 and one family of AdS2⇥S3

backgrounds of massive type IIA supergravity, from which we can construct new

classes of solutions in type IIB acting with (Abelian or non-Abelian) T-duality.

In this spirit, we construct three new classes of solutions to type IIB supergravity

preserving eight supercharges of the form AdS2⇥S2⇥CY2⇥⌃2, where ⌃2 is a two

dimensional Riemann surface. We referred to these solutions as Type A, Type B

and Type C. They are analysed in detail in Chapter 8.

The solutions in Section 8.2, referred as Type A, are obtained acting with ATD

on the Hopf-fibre of AdS3 of the solutions discussed in Section 5.1 A brane in-

tersection is obtained consisting of colour D1- and D5-branes extended between

NS5-branes and orthogonal D3 and D7 flavour branes. The quantum mechanics

associated to these geometries arise by dimensional reduction along the spacetime

direction of the two dimensional mother QFTs. For the coordinates that we use to

T-dualise in AdS3, the dimensional reduction can be seen as a discrete light-cone

quantisation (DLCQ) of the two dimensional CFT. In turn, we inherit the quiver

field theories from those of the ‘seed’ geometries, depicted in Figure 4.2. In this

case the gauge groups are associated to D1- and D5-branes, and the flavour groups

to D3- and D7-branes, and the matter and vector fields are N = 4 multiplets.

Our second solutions, Type B, are studied in Section 8.2. They have the same

warped form as the previous ones but are obtained T-dualising the solutions given

in Section 7.1 on the Hopf-fibre of the S3. The brane intersection is again a D1-

D3-D5-D7-NS5-F1 system but its quantum mechanics can be interpreted as back-

reacted D1-D5 baryon vertices within the four dimensional N = 2 QFT living in

D3-D7 branes.

The third class of solutions that we construct in type IIB, Type C, are studied as

well in Section 8.2. These are obtained acting with NATD with respect to a freely

acting SL(2,R) subgroup of the AdS3 subspace of our original ‘seed’ geometries.

The dual geometry is an AdS2⇥S2⇥CY2 ⇥⌃2 solution where in this case ⌃2 is an

infinite strip.

In the same section, we discuss various features of the AdS2⇥S2 geometries

constructed in type IIB. We notice that, as the backgrounds Type A and Type B are
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Figure 4.6: Connections between the infinite families of AdS2 and AdS3 solutions in
M-theory, massive type IIA and type IIB supergravities studied in the thesis.

derived from type IIA solutions, related by analytical continuation, they are also
connected via the analytical continuations, AdS2 $S2 and S2 $AdS2. Second,
we show that both solutions extend the class of AdS2⇥S2⇥CY2 ⇥ ⌃2 solutions
constructed in [47, 48] to include D3- and D7-branes sources. We show that, the
solution referred as Type C also fits in the class of [47], in the absence of sources,
this time for an infinite strip. Finally, we analyse a connection between the holo-
graphic central charge and a computation carried out in the RR sector of the Type A
and Type B solutions. Our computation allows to reproduce the holographic cent-
ral charge with the sum of the products of the RR electric and magnetic charges
of the solutions, extending previous results in AdS2 gravity with electric flux in
[98]. Second, we use the RR field strengths to construct a functional from which
the central charge can be derived from an extremisation principle in the line of
[99, 100].

Figure 4.6 contains a summary of the geometries discussed in this thesis. We
have completed this study with a detailed analysis of the 2d and 1d CFTs dual to
these classes of solutions.

After this summary, in the following Chapters, we present the articles that com-
pose this thesis.
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5. AdS3/CFT2 in Massive Type IIA

5.1 AdS3⇥S2⇥M5 solutions in massive type IIA with
SU(2) structure
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1 Introduction

Two dimensional CFTs play a prominent role in string theory and provide the best arena

to test the AdS/CFT correspondence. The conformal group in two dimensions is infinite

dimensional and this makes two dimensional CFTs much more tractable than their higher

dimensional counterparts, in some cases even exactly solvable [1]. In turn, certain AdS3

solutions involve only NS-NS fields, and constitute exactly solvable string theory back-

grounds [2, 3]. As such there is clear motivation to study the AdS3/CFT2 duality in as

much detail as possible.
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The canonical example of AdS3 geometry is the near horizon limit of D1 and D5

branes [4] which gives rise to an AdS3 ⇥ S3 ⇥ CY2 geometry realising small N = (4, 4)

superconformal symmetry. The CFT dual is believed to be the free symmetric product

orbifold SymN (CY2) for CY2 = T4 or K3 [5]. In recent years there has been renewed

interest in its study and strong support for this proposal has been provided [6, 7, 9–11].

Despite this early success, small N = (4, 0) AdS3 solutions in 10 and 11 dimensions are

rare in the literature, with known cases mostly following from [4] via orbifoldings and/or

string dualities. These describe the near horizon limit of D1 and D5 branes intersecting

with KK-monopoles [12–15] or D9-branes [16]. These systems play a prominent role in

the microscopical description of five dimensional black holes [17–22]. 2d (4,0) CFTs are

also central in the description of self-dual strings in 6d (1,0) CFTs, realised in M and F

theory [23–28]. The AdS3 duals of D3-branes wrapped on complex curves in F-theory have

been recently constructed in [28], and will play an important role in this work. More general

(4,0) 2d CFTs such as the ones described by the quivers constructed in [23, 24, 26, 30], are

however still lacking a holographic description. One of the motivations of this work will be

to fill this gap.

This dearth of holographic duals is symptomatic of the limited classification e�ort

aimed at AdS3 in general,1 which mostly focuses on di�erent superconformal algebras and

restrictive ansätze (see for instance [31–39]). Bucking this trend are [41, 42] and [28] which

do study small N = (4, 0) solutions in M-theory and IIB respectively, though they still

take a restricted ansatz for the fluxes. In this work we shall focus on small N = (4, 0) in

massive IIA, we will make no restriction on the allowed fluxes, though we will also make

some assumptions.

Our approach to finding AdS3 solutions with small N = (4, 0) superconformal sym-

metry is to construct Killing spinors which manifestly transform in the (2,2 � 2) of the

bosonic sub-algebra sl(2)� su(2) — the same as the bosonic generators of the algebra [29].

The first factor is realised by Killing spinors on AdS3 which transfrom in the 2 of sl(2),

while the second is an SU(2) R-symmetry SU(2)R that suggests a local description of the

geometry and fluxes in which this SU(2)R is realised by a 2-sphere, that we shall assume

is round. We then realise the 2 � 2 representation of SU(2)R by taking certain products

of Killing spinors on S2 and spinors on the internal 5-manifold. The fundamental building

block in this construction, which builds on earlier work in [43–47], are the SU(2) doublets

one can form from the Killing spinors on S2.

A major advantage of this R-symmetry based approach to constructing spinors on the

internal space is that it is possible to show that N = (4, 0) supersymmetry is actually

implied by an N = 1 sub-sector through the action of SU(2)R. As such we are able to

exploit an existing geometric classification of N = 1 AdS3 solutions [38] to extract necessary

conditions on the geometry and fluxes. Of course there should rather be a lot of solutions

of the form AdS3⇥ S2⇥M5, so in this work we will focus on those for which M5 supports

an SU(2)-structure.2 We do this in part to try and ensure that we realise small N = (4, 0)

1See however [40] for some systematic work addressing this from a 3d gauged supergravity perspective.
2A similar restriction was taken in [48] for N = 2 AdS4 in massive IIA.
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rather than some larger superconformal algebra which contains this. That SU(2)-structure

implies the small algebra and no more is certainly not a theorem but experience suggests

to us that algebras that cointain this (such as large N = (4, 0)) will require an Identity-

structure on M5. Another reason to focus on SU(2)-structure is to keep this work focused,

and leave the more generic case with M5 supporting an identity structure for the future.

The layout of the paper is as follows: in section 2 (with supplementary material in

appendix A) we perform the technical ground work of constructing spinors transforming

in the 2 � 2 representation of SU(2)R, and extracting necessary and su�cient conditions

on the geometry and fluxes for a solution to realise small N = (4, 0). We find two classes

of solutions.

Class I is a warped product of the form AdS3⇥S2⇥CY2⇥R that we study in section 3.

The class is summarised and derived in sections 3.1 and 3.2 respectively. In section 3.3 (up

to T-duality) we find a generalisation of the D1–D5 near horizon with source D5 branes

back reacted on CY2. In section 3.4 we find several new compact local solutions in massive

IIA that are foliations of AdS3 ⇥ S2 ⇥ CY2 over a bounded interval.

Class II is a warped product of the form AdS3⇥S2⇥M4⇥R, where M4 is now a Kahler

four-manifold. The class is summarised in section 4.1 and derived in section 4.2. Exploiting

T-duality, in section 4.3, we find a generalisation of the class of D3 branes wrapping curves

in the base of an elliptically fibered CY3 [28] — with non trival 3-form flux turned on. In

section 4.4 we then find further local AdS3 ⇥ S2 ⇥ CY2 foliations that are compact.

In section 5 we establish that the local solutions found in sections 3.4 and 4.4 may

be used to construct a significantly richer variety of globally compact solutions by using

defect branes to glue local solutions together.

Finally in section 6 we summarise and discuss some future directions.

2 AdS3 �S2 solutions with small N = (4, 0) supersymmetry and SU(2)-

structure

In this section we derive geometric conditions for a class of warped AdS3 solutions preserv-

ing small N = (4, 0) supersymmetry in massive IIA.

The small N = (4, 0) super-conformal algebra contains a bosonic sub-algebra

sl(2)� su(2) (2.1)

that should be realised geometrically by the solutions we are interested in. The sl(2) factor

is simply realised by AdS3. The su(2) factor is an R-symmetry, we shall denote SU(2)R,

that should be realised by the 7 dimensional internal space M7. This indicates that M7

should admit a local description that contains a 2-sphere, that may be round or appear as

part of an SU(2)⇥U(1) preserving squashed 3-sphere, foliated over the remaining directions.

In this work we shall assume the former and seek solutions with metric decomposing as

ds2 = e2Ads2(AdS3) + ds2(M7), ds2(M7) = e2Cds2(S2) + ds2(M5), (2.2)

where the warp factors e2A, e2C and dilaton � have support in M5, and the fluxes de-

pend on the AdS3 and S2 directions only through their respective volume forms vol(AdS3)
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and vol(S2). This is su�cient to ensure that we respect the isometries of AdS3 and S2.

However to guarantee small N = (4, 0) supersymmetry we must solve the supersymmetry

constraints. Our strategy to achieve this is as follows

1. Construct spinors on that transform in the (2,2�2) representation of SL(2)⇥SU(2),

ensuring consistency with the bosonic sub-algebra of small N = (4, 0) superconformal

symmetry.

2. Reduce our considerations to an N = 1 sub-sector of this spinor that manifestly

implies N = (4, 0) through the action of the R-symmetry — this requires the bosonic

supergravity fields to be SL(2)⇥ SU(2) singlets.

3. Exploit an existing N = 1 AdS3 classification [38] to obtain su�cient conditions on

the geometry and fluxes for a solution with small N = (4, 0) and SU(2)-structure in

IIA to exist.

4. Study the classes consistent with our assumptions, and simplify them as much as

possible in a coordinate patch away from the loci of possible sources.

We will deal with points 1–2 in section 2.1, which is the most technical part of the paper

and can be skipped on a first reading. Section 2.2 deals with point 3. For point 4 there are

2 classes of solutions to study with SU(2)-structure, specialised to conformal Calabi-Yau

and Kahler structure. We present these and study them in sections 3 and 4. Those readers

merely interested in the results can find summaries of these classes in sections 3.1 and 4.1.

Following 1–4 leads to necessary and su�cient conditions for two classes of solutions

to exist in the absence of localised sources. When these are present, the derivation is still

completely valid away from their loci, but at these specific points we must solve some

additional constraints. Namely that the source corrected Bianchi identities hold and that

the sources have a supersymmetric embedding — i.e. they must be calibrated [52, 53].

We shall come back to this issue in section 5. However, from a practical perspective one

should appreciate that it is often not necessary to check these conditions explicitly. In

particular, if the warp factors and relevant parts of the fluxes reproduce the behaviour of

known localised supersymmetric sources (i.e. branes, O-planes and their generalisations) at

some point in the geometry, then one knows that these additional conditions must follow.

We will exploit this fact in sections 3.4 and 4.4.

In the next section we shall construct N = (4, 0) spinors that manifestly transform

under the action of SU(2). We shall then be able to identify an N = (1, 0) sub-sector,

which when solved, implies the full N = (4, 0) under the action of SU(2)R.

2.1 Realising an SU(2) R-symmetry

Supersymmetric solutions of type II supergravity come equipped with associated Majorana-

Weyl Killing spinors �1, �2, that ensure the vanishing of the dilatino and gravitino variations.

As we seek solutions with an AdS3 factor that preserve N = (4, 0) supersymmetry we can
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decompose these spinors as

�1 =
4X

I=1

�I ⌦ v+ ⌦ �I
1, �2 =

4X

I=1

�I ⌦ v⌥ ⌦ �I
2 (2.3)

where �I are 4 independent Majorana Killing spinors on unit radius AdS3 and �I
1,2 each

contain 4 independent Majorana spinors on M7. The remaining factors v± are auxiliary

vectors that are required to make �1,2 2 Cli�(1, 9) as we decompose in terms of spinors in 3

and 7 dimensions. They also take care of 10 dimensional chirality, so the upper/lower signs

are taken in IIA/B. The 10 dimensional gamma matrices undergo a similar decomposition as

�M = eA�
(3)
M ⌦ �3 ⌦ I, �A = I⌦ �2 ⌦ �

(7)
A (2.4)

where �
(3)
M are real and defined on unit radius AdS3, and �

(7)
A are defined on M7. �i are the

Pauli matrices so the 10 dimensional chirality matrix is �̂ = I⌦�1⌦I, so that �1v± = ±v±.

The intertwiner, defining Majorana conjugation as �c = B(10)�⇤, is B(10) = I⌦B(7) so that

v± are real and B(7)�1�
(7)
A B(7) = ��(7)⇤

A , B(7)B(7)⇤ = 1.

There are actually several distinct types of superconformal algebras corresponding to

N = (4, 0) (see [49] for a classification). One way to ensure that we have (at least3) small

N = (4, 0) is to demand that the internal parts of our N = (4, 0) spinors are charged under

an SU(2) R-symmetry, specifically transforming in the 2 � 2 representation. Then since

the spinors on AdS3 are charged under SL(2) we manifestly realise the bosonic sub-algebra

of small N = (4, 0) superconformal symmetry (2.1). If the internal spinors are charged

under SU(2)R it should be possible to construct a �I
1,2 realising a 4d basis of the SU(2) Lie

algebra i
2�i, when acted on by the spinoral Lie derivative — i.e.

LKi�
I
1,2 =

i

2
(�i)

I
J�

J
1,2 (2.5)

where Ki are the 3 Killing vectors of SU(2). Let us now construct such SU(2) spinors.

As we decompose the internal space as M7 = S2 ⇥M5, we anticipate that the Killing

spinors on S2 will realise SU(2)R. For a unit norm 2-sphere, the Killing spinors � can be

taken to obey

rS2

µ � =
i

2
�µ�, |�|2 = 1, (2.6)

where µ are flat indices on the unit sphere and �µ are the first 2 Pauli matrices. The

chirality matrix is �3 and Majorana conjugation is defined as �c = �2�
⇤. To incorporate

this into M7 we further decompose the gamma matrices as

�(7)
µ = eC�µ ⌦ I, �(7)

a = �3 ⌦ �a, B(7) = �2 ⌦B, (2.7)

with �a gamma matrices in 5d and BB⇤ = �1, B�1�aB = �⇤a. As established in [43], the

S2 Killing spinors so defined may be used to construct two independent SU(2) doublets

�↵ =

�
�

�c

�↵

, �̂↵ =

�
i�3�

i�3�
c

�↵

, (2.8)

3The small N = (4, 0) superalgebra is a sub-algebra of several larger ones — notably the large N = (4, 0)

superalgebra D(2, 1,�) [50]. We will not be concerned with this subtlety in this paper.
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that transform under SU(2) as

LKi�
↵ =

i

2
(�i)

↵
��
� , LKi �̂

↵ =
i

2
(�i)

↵
� �̂
� , (2.9)

with i
2�i a 2d representation of the SU(2) Lie algebra and where the 1-forms dual to the

Killing vectors can now be taken to be

Ki = �ijkyjdyk, (2.10)

for yi embedding coordinates on the unit 2-sphere. One can form 7 dimensional spinors

giving rise to a 4 dimensional representation of SU(2) in terms of a spinor on M5, �, that

is an SU(2) singlet, with which one defines

�↵ =

�
�

�c

�↵

. (2.11)

One can then contract the S2 and M5 doublets to form a 7-dimensional SU(2) spinor

�I = MI
↵��

↵ ⌦ �� , MI = (�2�1,�2�2,�2�3,�i�2)
I , (2.12)

where all components of �I are Majorana.4 Using (2.9) and Pauli matrix identities it is

not hard to show that �I transforms as (2.5) with specific 4 dimensional representation

�i = (�2 ⌦ �1,��2 ⌦ �3, I⌦ �2)i, (2.13)

which is equivalent to the 2 � 2 representation of SU(2).5 Since S2 only preserves 2

supercharges, it is perhaps not obvious that (2.12) will give rise to 4. However, since (2.3)

couples the 7 dimensional SU(2) spinors to 4 independent AdS3 spinors, this is guaranteed

as long as the components of �I are independent — making use of appendix A it is not

hard to establish that

�I†�J = |�|2�IJ (2.15)

which confirms this. Let us stress that although we used �↵ to form �I , we can also use

�̂↵, which gives a further 7 dimensional SU(2) spinor independent of the first.

The most general expressions we can write for the 7 dimensional SU(2) charged factors

of (2.3) are then

�I
1 =

1p
2
e

A
2 MI

↵�

�
�↵ ⌦ ��1 + �̂↵ ⌦ �̂�1

�
, �I

2 =
1p
2
e

A
2 MI

↵�

�
�↵ ⌦ ��2 + �̂↵ ⌦ �̂�2

�
, (2.16)

4Demanding this actually fixes the second component of (2.11) in terms of the first. Note that the form

of (2.12) is very similar to that of the SO(4) spinors constructed in [39].
5Specifically the similarity transformation

S �

�
����

0 0 s �is

is �s 0 0

0 0 s is

is s 0 0

�
���� , (2.14)

for s = ei �
4 is such that i

2
S�iS

�1 = i
2
�i �

�
i
2
�i

��
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where we introduced 4 spinors on M5 (�1, �̂1, �2, �̂2). The 10 dimensional spinors of (2.3)

contain 4 independent N = 1 sub-sectors, i.e. each term in the sums. Because the solutions

we seek have an AdS3 factor, d = 10 supersymmetry is implied by 4 sets of reduced d = 7

conditions — 1 for each component of (�I
1,�

I
2). As such, each component of the internal

spinors is such that [38]

e⌥A|�1|2 ± |�2|2 = c±, (2.17)

for c± constant. This relates the norms of these components to the AdS3 warp factor,

in such a way that the later can only be an SU(2) singlet if the former are. Setting the

charged parts of |�I
1,2| to zero imposes the following conditions on the 5d spinors

�̂c†
1 �1 = Im(�̂†

1�1) = �̂c†
2 �2 = Im(�̂†

2�2) = 0, (2.18)

for the S2 zero form bi-linears that give rise to these charged terms (see appendix A). In

what follows we will fix c� = 0 as this is requirement for non zero Romans mass. We can

then take c+ = 2 without loss of generality. As such the 5d spinors should also obey

|�1|2 + |�̂1|2 = |�2|2 + |�̂2|2 = 1. (2.19)

There is one final property of the SU(2) spinors we have constructed which it is important

to stress. The 4 independent N = 1 sub-sectors contained in (2.16) each couple to the

same spinors in 5 dimensions, and the action of SU(2)R in (2.5) provides a map between

each sub-sector. Specifically, one can write �I
1,2 in terms of a single component and its

spinoral Lie derivative

�I
1,2 =

�
����

�1,2

2LK3�1,2

�2LK2�1,2

2LK1�1,2

�
����

I

. (2.20)

As such, the N = 1 Killing spinor equations following from each of �2
1,2,�

3
1,2,�

4
1,2 are

implied by �1
1,2 whenever LKi commutes with the dilatino and gravitino variations. This

is guaranteed by imposing that all bosonic supergravity fields are singlets under SU(2)R.6

Thus it is su�cient to solve for the N = 1 sub-sector involving just �1
1,2 to know that

N = (4, 0) is realised by a solution.7

Clearly, there should be rather a lot of distinct classes of solutions consistent with

AdS3⇥ S2. In particular, while (2.18)–(2.19) do constrain the 5 dimensional spinors some-

what, they will still lead to many branching possibilities, many of which will have supercon-

formal algebras for which small N = (4, 0) is only a subgroup. To mitigate this issue, for

the rest of this paper we will constrain our focus to the particular case where M5 supports

6The proof is analogous to that in appendix B of [39].
7As a redundant check we also performed the analysis of section 2.2 for the other 3 N = 1 sub-sectors

in �I
1,2. All that changes is some signs in the components of the charged SU(2) forms on S2 (yi, Ki etc.) as

they appear in (2.29a)–(2.29b) — no signs changes happen for the SU(2) singlet terms. After factoring out

the S2 data one left with the same necessary and su�cient conditions in 5 dimensions irrespective of which

N = 1 sub-sector you start with — as expected.
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an SU(2)-structure — rather than an identity-structure as would be the case generically.

We also focus on IIA, leaving IIB for future work.

In the next section we derive necessary and su�cient geometric conditions for super-

symmetry when M5 supports an SU(2)-structure.

2.2 Geometric conditions for supersymmetry

In the previous section we constructed spinors realising N = (4, 0) and an SU(2) R-

symmetry. We further argued that it is su�cient to solve for an N = 1 sub-sector, as

the rest of the N = (4, 0) conditions are implied by this through the action of SU(2)R,

provided that the bosonic fields are SU(2) singlets. In this section we will derive necessary

and su�cient conditions for supersymmetry in IIA under the assumption that M5 supports

an SU(2)-structure. We shall thus take our N = 1 sub-sector to be

�1 =
e

A
2p
2
(�2�1)↵�

✓
sin

✓
�1 + �2

2

◆
�↵ + cos

✓
�1 + �2

2

◆
�̂↵

◆
⌦ ��1

�2 =
e

A
2p
2
(�2�1)↵�

✓
sin

✓
�1 � �2

2

◆
�↵ + cos

✓
�1 � �2

2

◆
�̂↵

◆
⌦ ��2 , (2.21)

with �1,2 functions on M5, and where

�1 = �, �2 = ei��, |�|2 = 1, (2.22)

with � another function on M5. This is the most general parametrisation solving (2.17)–

(2.19) that gives rise to an SU(2)-structure.8

Geometric conditions that imply N = 1 for warped AdS3 solutions were recently

derived in [38]. These are given in terms of a bi- spinor (that is mapped to a poly-form

under the Cli�ord map) constructed from a pair of Majorana spinors (�1,�2) defined on

the internal M7 as

�+ + i�� = �1 ⌦ �2† =
1

8

7X

n=0

1

n!
�†

2�
(7)
an,...,a1

�1dxa1 ^ . . . ^ dxan , (2.23)

where �± are real poly-forms of even/odd degree. Under the assumption of equal internal

spinor norm, one has |�1|2 = |�2|2 = eA and the NS 3-form has no electric component. In

turn, the RR flux can be expressed as a poly-form

F = f + e2Avol(AdS3) ^ �7�(f) (2.24)

8Actually one could take �2 = a� + b�c with |a|2 + |b|2 = 1 and still achieve this. However when one

plugs this ansatz into the supersymmetry conditions it eventually becomes clear that when (Reb, Imb, Ima)

are expressed in polar coordinates all the angles must be constant. They can then be set to any value with

rotations of yi and the vielbein on M5. One can use this freedom to fix b = 0 and |a| = 1 without loss of

generality. We suppress this subtly.
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with f the sum of the magnetic components of the democratic fluxes. Supersymmetry for

unit radius AdS3 in type IIA is then implied by the following geometric conditions

dH(eA����) = 0, (2.25a)

dH(e2A���+)� 2eA���� =
e3A

8
�7 �(f), (2.25b)

eA��(f,��)� 1

2
vol(M7) = 0, (2.25c)

where �(Xn) = (�1)
n
2
(n�1)Xn and (X, Y ) is the d = 7 Mukai pairing, defined as (X, Y ) =

(�(X)^Y )7. The twisted exterior derivative is defined as dH = d�H^. Let us now return

to the assumption of equal spinor norm made below (2.18). Had we taken 7d spinors with

non equal norm instead of (2.21), the r.h.s. of (2.25a) would have become c�f [38]. This

leads to the necessary condition f0c� = 0, so a Romans mass is only possible when c� = 0

— i.e. when the spinor norms are equal as in (2.21).

Plugging (2.21) into (2.23) and making use of the bi-linear on S2 and M5 defined in

appendix A it is possible to construct �±. However, the completely general expressions

for these poly-forms are rather unwieldy. Let us sketch how we simplify them to a more

tractable form, by solving some necessary conditions. Upon computing the general form

of �1, i.e. the 1-form part of ��, one finds that it contains the term

�1 = �1

8
cos�1 sin�K3 + . . . (2.26)

for Ki the 1-forms dual to the SU(2) Killing vectors defined in (2.10). This term is prob-

lematic for (2.25b) as there is no way to generate it under d from the forms that span the

S2 bi-linears (A.5), and making it part of the RR flux would make them charged under

SU(2) — thus one necessarily has cos�1 sin� = 0. To determine which factor must vanish

one can examine the general form of �2 and �3. In particular the latter can only contain

Ki when the former does, due again to (2.25b) and the fact the NS 3-form and RR sector

should be SU(2) singlets. We find

�2 = �eC

8
sin�1 sin�K3 ^ V + . . . ,

�3 =
eC

8
cos�1(K1 ^ j1 + K2 ^ j2 + cos�K3 ^ j3) + . . . , (2.27)

where V is a real vector and (j1, j2, j3) are real 2-forms that together span the SU(2)-

structure in 5 dimensions, as in appendix A.2. As such we fix

cos�1 = 0, �2 = �, (2.28)

which we achieve by setting �1 = ⇡
2 without loss of generality. The 7 dimensional bi-spinors
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are then given by

8�+ =
�
sin� + cos�e2Cvol(S2)

�
^
�
y1j1 + y2j2 � y3Im�)

+
�
cos�� sin�e2Cvol(S2)

�
^ Re� +�eC

�
K1 ^ j1 + K2 ^ j2 �K3 ^ Im�) ^ V,

(2.29a)

8�� =
�
cos�� sin�e2Cvol(S2)

�
^
�
y1j1 + y2j2 � y3Im�

�
^ V

�
�
sin� + cos�e2Cvol(S2)

�
^ Re� ^ V � eC

�
dy1 ^ j1 + dy2 ^ j2 � dy3 ^ Im�

�
,

(2.29b)

where to ease notation we introduced the exponentiated 2-form

� = e�i�e�ij3 . (2.30)

�± can generically be expressed in terms of an SU(3)-structure in 7 dimensions, but in this

case doing so is not particularly illuminating, and (2.29a)–(2.29b) give far more compact

expressions.

We now want to insert (2.29a)–(2.29b) into (2.25a)–(2.25c) and derive 5 dimensional

conditions that imply these. To do so we decompose

H = H3 + e2CH1 ^ vol(S2), (2.31)

and assume that the RR fluxes only depend on the S2 directions through vol(S2), and

that (eA, eC , e�) are independent of these directions. Making use of the expressions that

map (yi, Ki, vol(S2)) under the exterior derivative and wedge-product in (A.5), and after

significant massaging one arrives at necessary and su�cient conditions for supersymmetry.

Those independent of the RR forms that follow from (2.25a)–(2.25b) are

2eC + sin�eA = 0, (2.32a)

d(e3A�� sin� sin�)� 2e2A�� cos� sin�V = 0, (2.32b)

e2CH1 +
eA

2
V � 1

4
d(e2A sin� cos�) = 0, (2.32c)

d(eA�� sin� cos�) ^ V = 0, (2.32d)

d(e3A�� sin��)� 2e2A�� cos�V ^ � = 0, (2.32e)

d(e3A�� sin� cos�J)� 2e2A�� cos� cos�V ^ J � e3A�� sin� sin�H3 = 0, (2.32f)

(sin�e2Ad(e�2AJ) + cos�H3) ^ V = 0, (2.32g)

� ^H3 = (sin�dJ + cos�H3) ^ J = 0, (2.32h)

where we have repackaged ji as the more standard SU(2)-structure forms J,�

J = j3, � = j1 + ij2, J ^ � = 0, J ^ J =
1

2
� ^ �. (2.33)
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From (2.25b) we are also given the following definitions for the RR fluxes

e3A�7f6 = d(e3A�� cos� cos�)+2e2A�� sin� cos�V, (2.34a)

e3A�7f4 = (d(e3A�� cos� sin�J)�2e2A�� sin� sin�V ^J�e3A�� cos� cos�H3) (2.34b)

+vol(S2)^
�
d(e3A+2C�� sin� cos�)�e3A+2C�� cos� cos�H1+2e2A+2C�� cos� cos�V

�
,

e3A�7f2 = �d

✓
e3A��

2
cos� cos�J^J

◆
�e2A�� sin� cos�V ^J^J+e3A�� cos� sin�J^H3,

+vol(S2)^
✓

d(e3A+2C�� sin� sin�J)+e3A+2C�� cos� sin�H1^J (2.34c)

�2e2A+2C�� cos� sin�V ^J+e3A+2C�� sin� cos�H3

◆
,

e3A�7f0 = �1

2
vol(S2)^

✓
d(e3A+2C�� sin� cos�J^J)�2e3A+2C�� sin� sin�J^H3 (2.34d)

+e3A+2C�� cos� cos�H1^J^J�2e2A+2C�� cos� cos�V ^J^J

◆
.

Finally (2.25c) gives the pairing constraints

eA��(f, [(sin� + cos�e2Cvol(S2)) ^ Re� ^ V ]) + 2e2Cvol(S2) ^ V ^ J ^ J = 0,

(f, [cos�� sin�e2Cvol(S2)) ^
�
y1j1 + y2j2 � y3Im�

�
^ V ] = 0. (2.35)

Equations (2.32a)–(2.35) are necessary and su�cient for supersymmetry, but to ensure that

we actually have a solution one must impose the Bianchi identities of the magnetic parts

of the RR and NS fluxes. Away from localised sources these are

dH3 = 0, d(e2CH1) = 0, dHf = 0. (2.36)

In the presence of sources the left hand side of these expressions may be modified by �-

function sources — we shall comment on this when it becomes relevant. Supersymmetry

and (2.36) have been shown to imply the remaining equations of motion following from the

IIA action [51].

The conditions (2.32a)–(2.32h) contain two physically distinct classes of solutions,

namely for sin� = 0 and sin� 6= 0, that we explore in sections 3 and 4. To briefly illustrate

the di�erence one can consider (2.32b)^J and (2.32f). These may be combined to show in

general that

sin2 �

✓
H3 � d

✓
cos�

sin�
J

◆◆
= 0. (2.37)

When sin� 6= 0 this condition gives a unique definition of H3, while when sin� = 0 the

condition is trivialised and (2.32g)–(2.32h) merely constrain H3 such that it should give

zero when wedged with each of (J,�, V ).

Despite there being two classes, they do contain some common features. We first note

that (2.32c) defines e2C1H1 in such a way that its Bianchi identity can only be obeyed away

from sources if

d(eAV ) = 0. (2.38)
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We solve this condition by introducing a local coordinate � such that

eAV = d�, (2.39)

which enables us to locally decompose the internal 5-manifold as ds2(M5) = ds2(M4) +

e�2Ad�2. The second commonality is (2.32a), which fixes the warp factor of S2 uniquely as

eC = �eA

2
sin�. (2.40)

Together these conditions allow us to locally refine the metric ansatz of (2.2) as

ds2 = e2A

�
ds2(AdS3) +

1

4
sin2 �ds2(S2)

�
+ ds2(M4) + e�2Ad�2, (2.41)

where M4 supports an SU(2)-structure.9

Let us now summarise the main results of this section: in section 2.1 we derived

general N = (4, 0) spinors on AdS3 ⇥ S2⇥ M5 that are manifestly charged under an

SU(2) R-symmetry, and compatible with type II supergravity. Any solution consistent

with this spinor realises small N = (4, 0) superconformal symmetry. We then established

that when one imposes that the physical fields of a solution (metric, dilaton and fluxes)

respect SU(2)R, it is su�cient to solve for an N = 1 sub-sector of this spinor to know

that N = (4, 0) is realised, as the remaining supercharges are implied by the action of the

R-symmetry. In section 2.2 we zoomed in on solutions for which M5 supports an SU(2)-

structure in massive IIA. We exploited an existing N = 1 AdS3 classification of [38] to

derive necessary and su�cient conditions on the geometry and fluxes of an AdS3 solution

preserving small N = (4, 0). Finally we established that there are two classes of such

solutions, those for which sin� = 0 and sin� 6= 0.

In the next section we study the first class of solutions, where M4 is a conformal

Calabi-Yau manifold.

3 Class I: conformal Calabi-Yau 2-fold case

In this section we study the first class of solutions that follows from the necessary conditions

in section 2.2 with sin� = 0. We find that they are warped products of AdS3⇥S2⇥CY2⇥R
with all possible massive IIA fluxes turned on.

In section 3.1 we present a summary of class I and interpret the types of solutions that

lie within it. In section 3.2, we spell out precisely how class I is derived from the necessary

conditions of section 2.2. Then, in section 3.3 we exploit T-duality to obtain a class of

solutions in IIB with D5 branes back reacted on AdS3 ⇥ S3⇥CY2, with S3 foliated over

CY2, that generalises the D1–D5 near horizon. We also show how to realise the sub-class

with no fibration as a near horizon limit. Finally, in section 3.4 we focus on explicit local

solutions in massive IIA that are foliations of AdS3 ⇥ S2⇥CY2 over an interval.

9Strictly speaking (2.41) holds in a region of space away from NS sources that do not wrap S2. Including

such objects is in principle still possible, but they must lie at the intersection of two coordinate patches

with local metrics of the form (2.41).
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3.1 Summary of class I

The solutions of class I have the following NS sector

ds2 =
up
h4h8

✓
ds2(AdS3) +

h8h4

4h8h4 + (u0)2
ds2(S2)

◆
+

�
h4

h8
ds2(CY2) +

p
h4h8

u
d�2, (3.1)

e�� =
h

3
4
8

2h
1
4
4

p
u

p
4h8h4 + (u0)2, H =

1

2
d

✓
�� +

uu0

4h4h8 + (u0)2

◆
^ vol(S2) +

1

h8
d� ^H2.

Here � is the dilaton, H the NS 3-form and ds2 is in string frame. The warping h4 has

support on (�, CY2) while u and h8 have support on �, with u0 = �⇢u. As shall become

clear below, the reason for the notation h4, h8 is that these functions may be identified

with the warp factors of D4 and D8 branes when u = 1, the interpretation for generic u is

more subtle.

The 10 dimensional RR fluxes are

F0 = h0
8, (3.2a)

F2 = �H2 �
1

2

✓
h8 �

h0
8u

0u
4h8h4 + (u0)2

◆
vol(S2), (3.2b)

F4 =

✓
d

✓
uu0

2h4

◆
+ 2h8d�

◆
^ vol(AdS3)

� h8

u
(�̂4d4h4) ^ d�� �⇢h4vol(CY2)�

uu0

2(4h8h4 + (u0)2)
H2 ^ vol(S2), (3.2c)

with the higher fluxes related to these as F6 = � �10 F4, F8 = �10F2, F10 = � �10 F0.

Supersymmetry holds whenever

u00 = 0, H2 + �̂4H2 = 0, (3.3)

which makes u a linear function (i.e. an order 1 polynomial), and where �̂4 is the Hodge

dual on CY2. In a canonical frame on CY2 the associated closed-forms Ĵ , �̂ read,

Ĵ = ê1 ^ ê2 + ê3 ^ ê4, �̂ = (ê1 + iê2) ^ (ê3 + iê4), (3.4)

and then H2 may be express in terms of 3 arbitary functions g1,2,3 on CY2 as

H2 = g1(ê
1 ^ ê2 � ê3 ^ ê4) + g2(ê

1 ^ ê3 + ê2 ^ ê4) + g3(ê
1 ^ ê4 � ê2 ^ ê3). (3.5)

The Bianchi identities of the fluxes then impose

h00
8 = 0, dH2 = 0 (3.6)

h8

u
r2

CY2
h4 + �2

⇢h4 +
2

h3
8

(g2
1 + g2

2 + g2
3) = 0,

away from localised sources.
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To better understand this class of solutions it is instructive to consider the case with

u = 1 and g1 = g2 = g3 = 0, so that H2 = 0. The metric and PDEs of (3.6) then reduce

to those of a D4 brane wrapped on AdS3 ⇥ S2 and backreacted on CY2, that is inside the

world volume of a D8 wrapped on AdS3⇥ S2⇥CY2. One can compare this to the localised

flat space D4–D8 system of [55] and see that indeed, the warp factors and PDEs match

when CY2 = R4. Of course here there are additional fluxes turned on, but this should

be no surprise as what was R1,4 in [55] has become AdS3 ⇥ S2. Thus one should expect

additional fluxes to accommodate the fact that this space is no longer flat. More generally,

turning on H2 and u 6= 1 is essentially a deformation of this system.

In section 3.3 we establish that when one imposes that �⇢ is an isometry, class I reduces

to the T-dual of D5 branes back reacted on AdS3⇥S3⇥CY2 — with S3 foliated over CY2. It

is worth stressing that class I actually also contains the non-Abelian T-dual of this system

as well. To extract this, one can fix

u = L��, h8 = c�, h4 =
�4

c
�h5 (3.7)

where h5 depends on CY2 only and should be interpreted as a D5 brane warp factor before

the duality. For h5 = 1, H2 = 0 this reproduces the non-Abelian T-dual of the D1–D5

near horizon solution [56], which is of course non compact. Class I then provides a general

class in which this non compact solution may be embedded. This allows to find a compact

completion of this solution in the vein of [57–60], as shown in [68].

In the next section we will show how class I is obtained from the necessary supersym-

metry conditions derived in section 2.1.

3.2 Derivation of class I

To derive class I we begin by fixing sin� = 0. We can in fact fix � = 0 without loss of

generality. We begin by refining (2.32a)–(2.32h) by expanding the exterior derivative in

terms of the local coordinate � introduced in (2.39), as

d = d4 + d� ^ �⇢. (3.8)

This reduces (2.32e)–(2.32f) to

d4(e
3A�� sin�J) = d4(e

3A�� sin��) = 0, (3.9a)

�⇢(e
3A�� sin�J)� 2eA�� cos�J = �⇢(e

3A�� sin��)� 2eA�� cos�� = 0. (3.9b)

Using both equations we establish that d4(e
�2A cot�) ^ J = d4(e

�2A cot�) ^ � = 0, from

which it follows that d4(e
�2A cot�) = 0. We can solve this and (2.32d) as

eA�� sin� = h8(�), e�2A cot� =
1

2
�⇢ log u(�), (3.10)

for h8, u arbitrary functions. We can then define

Ĵ = e�3A+� u

sin�2
J, �̂ = e�3A+� u

sin�2
�, (3.11)
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which are such that

dĴ = d�̂ = 0, (3.12)

so that M4 is conformally Calabi-Yau. In turn, the conditions (2.32f)–(2.32h) constrain

H3 as

H3 =
eA

h8
V ^H2, J ^H2 = � ^H2 = 0, (3.13)

with H2 otherwise free and the factor of eA

h8
is chosen for later convenience. A consequence

of these conditions is the useful identity �5H3 = � eA

h8
H2 which holds because the J ^H2 =

� ^H2 = 0 implies that H2 is anti self dual, and vice versa.

We now turn our attention to the RR fluxes. Using what has been derived thus far,

and the fact that

�5 1 =
1

2
V ^ J ^ J, �5 V =

1

2
J ^ J, �5 J = V ^ J, (3.14)

it is possible to take the Hodge dual of (2.34a)–(2.34d) and arrive at

f0 = h0
8+

e4Au0u00

4u2
, (3.15a)

f2 = �H2�
1

2

�
��h8�

e4Au(u0)2
⇣

h8
u�

⌘0

4u2+e4A(u0)2

�
�� vol(S2), (3.15b)

f4 = �e3Ah2
8

u2
�5d

✓
u2

e4Ah8

◆
�1

2
e4A uu0

4u2+e4A(u0)2
H2^vol(S2)�e4Ah8u

0u00

8u2
J^J, (3.15c)

f6 =
1

2

�
� e7Ah2

8u
0

u(4u2+e4A(u0)2)
�5d

✓
u2

e4Ah8

◆
+

1

2

✓
h8+

e4Ah8uu00

u(4u2+e4A(u0)2)

◆
J^J

�
^vol(S2).

(3.15d)

Using these definitions we can now solve (2.35), which imposes simply

u00 = 0. (3.16)

At this point the supersymmetry conditions are completely solved. What remains is to

solve the Bianchi identities of the fluxes. Away from localised sources these impose10

h00
8 = 0, dH2 = 0 (3.18)

h8

u
r2

CY2
h4 + �2

⇢h4 �
1

h3
8

�̂4(H2 ^H2) = 0.

10In deriving the last of these we make use of the identity

h
5
4
8

h
3
4
4

�
u
�5 dh4 =

h8

u
(�̂4d4h4) � d� + ��h4vol(CY2), (3.17)

and that �2
CY2

h4 = �̂4d4�̂4d4h4.
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Therefore, any solution to (3.3) and (3.6) gives a solution in IIA away from localised sources.

When these are included, (3.6) will have additional �-function source terms on the l.h.s.

and these sources should also be calibrated. We shall return to this in section 5.

In the next section we will derive a class of solutions with D5-branes backreacted on

AdS3 ⇥ S3⇥CY2, with S3 fibered over CY2.

3.3 D5 branes wrapped on AdS3 � S3 and backreacted on CY2

In this section we derive a class of solutions in IIB with D5 branes and formal KK monopoles

that generalises the D1–D5 near horizon. We begin with the class of solutions in section 3.1

and impose that �⇢ is an isometry. We can achieve this without loss of generality by fixing

u = L�, h8 = c, h4 =
�4

c
h5, (3.19)

where h5 depends only on the coordinates on CY2 and (L,�, c) are arbitrary constants

chosen in this specific combination for convenience. The class then reduces to

ds2 =
L2

p
h5

✓
ds2(AdS3)+

1

4
ds2(S2)

◆
+�2

p
h5ds2(CY2)+

p
h5

L2
d�2, e� = Lh

� 1
4

4 , (3.20)

B =

✓
1

2
�+

1

c
A
◆
^d�, F2 = �H2�

c

2
vol(S2), F4 = 2cvol(AdS3)^d�� c�

L2
�̂4dh5^d�,

where we have introduced 1-form potentials � and A such that

d� = �vol(S2), dA = H2, (3.21)

to write the 2-form NS potential B in a form respecting the isometry �⇢.

We now T-dualise on � (see for instance [61]), which we take to have period 2�, and

arrive at the dual IIB solution

ds2 =
L2

p
h5

�
ds2(AdS3) +

1

4

✓
D�2 + ds2(S2)

◆�
+ �2

p
h5ds2(CY2), e� = L2h

� 1
2

5 , (3.22)

F3 = 2c

�
vol(AdS3) +

1

8
D� ^ vol(S2)

�
+

1

2
D� ^ dA� c�

L2
�̂4dh5,

where �̂4 is the Hodge dual on CY2, the NS 3-form and the remaining RR forms are now

all trivial and we define

D� = d� + � +
2

c
A, (3.23)

for � now the isometry direction. Supersymmetry requires that

dA + �̂4dA = 0, (3.24)

where Ĵ , �̂ are the 2 and 3 forms on CY2, and the Bianchi identity of the RR 3-form

imposes

r2
CY2

h5 �
L2

c2�2
�̂4(dA ^ dA) = 0, (3.25)
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away from localised sources. When A = 0 and � has period 4� this gives a class of solutions

with D5 branes wrapped on AdS3 ⇥ S3 and backreacted in an arbitrary CY2. Note that

one is also free to replace this S3 by a Lens space, by changing the period of �, as � is

an uncharged isometry generically. The e�ect of turning on A is then to formally place

a Kaluza-Klein monopole into this set-up. The assumption of equal spinor norm made

in section 2.1, means that this solution is in fact not the most general one of this type.

However the latter can be reached by performing an SL(2, R) transformation11 of (3.22),

which will generically turn on F1 and H3 fluxes. In this regard (3.22) is a specific duality

frame of this more general solution.

Clearly (3.22) is closely related to the near horizon limit of coincident D5 and D1 branes

that respectively wrap or are smeared on CY2 [4, 5]. In particular if A = 0, h5 = constant

and � ⇠ � + 4�, so that there is a round S3, we recover this class and supersymmetry

is enhanced to N = (4, 4). Replacing S3 with a Lens space yields the D1–D5-KK near

horizon, which has also been systematically studied [12–15] and preserves only N = (4, 0).

Of course when they are non trivial, both A and the �̂4dh5 term in F3 break supersymmetry

to N = (4, 0) irrespective of the period of �.

Of course a viable CFT dual demands a compact internal space which restricts CY2 to

be either T4 or K3 for the near horizon of D1–D5s and D1–D5-KK. This is no longer the

case for generic h5, as the warp factor can cause a non compact space to be restricted to

a finite subregion when embedded in 10d. A simple example in this class exhibiting such

behaviour was already given in [39], where a compact solution with D5s and an O5 plane

backreacted on AdS3 ⇥ S3 ⇥ R4 was found.

Interestingly, it turns out that the A = 0 limit of (3.22) can also be realised as a near

horizon limit of intersecting branes. One begins by compactifying R1,9 ! R1,5 ⇥ CY2,

which preserves 1
2 of maximal supersymmetry. For the standard D1–D5 system giving rise

to AdS3 in the near horizon, D5 branes would then be wrapped on R1,1⇥CY2 and D1

branes placed on R1,1 (smeared across CY2). This breaks supersymmetry to 1
4 of maximal

— enhanced to 1
2 at the horizon. However, one can also place additional D5s on R1,1 and

the common co-dimensions of the other branes at the cost of breaking supersymmetry to
1
8 of maximal. This leads us to a metric of the form

ds2 =
1p

H1H5h5
ds2(R1,1) +

�
H5H1

h5

�
dr2 + r2ds2(S3)

�
+

�
h5H1

H5
ds2(CY2) (3.26)

where the warp factors are, respectively,

H1 = 1 +
Q1

r2
, H5 = 1 +

Q5

r2
, h5 : r2

CY2
h5 = 0, (3.27)

away from the h5 sources. One can then take the near horizon limit of D1s and the D5s

11Equal spinor norm is in 1-to-1 correspondence with having no electric component of the NS 3 form.

Such a term, when present, can always be turned o� (i.e. mapped to the RR 3-form) with an SL(2, R)

transformation, which maps to the case of equal spinor norm we are studying.
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corresponding to H5 by expanding about r = 0. The metric becomes

ds2 =
1p
h5

�
r2

p
Q1Q5

ds2(R1,1) +
p

Q1Q5
dr2

r2
+
p

Q1Q5ds2(S3)

�
+

�
Q1

Q5

p
h5ds2(CY2),

(3.28)

at leading order, which is a solution by itself with supersymmetry enhanced to 1
4 of maximal.

Clearly there is an AdS3 factor of radius (Q1Q5)
1
4 , and in fact the entire metric can be

easily mapped to that of (3.22) (with unit radius AdS3) for A = 0 by redefining Q1, Q5 and

rescaling R1,1, h5. The same is true of the fluxes, the details of which we have suppressed.

Despite how seemingly obvious this near horizon is, as far as the authors are aware, it is

absent from the literature. Given that a near horizon limit is known, and that the class is

relatively simple it would be fruitful to study it in the future.

In the next section we study a class of local solutions in massive IIA following from

class I that are a foliation of AdS3 ⇥ S2 ⇥ CY2 over an interval.

3.4 Local solutions with AdS3 � S2 � CY2 foliated over an interval

In this section we study the sub-class of local solutions that follow from section 3.1 by

imposing that the symmetries of CY2 are respected by the full solution. This means that

the warp factors cannot depend on the directions on CY2 and we must fix H2 = 0. As

such, the only way to realise a compact internal space is if CY2 is itself compact. This

restricts our considerations to

CY2 = T4 or CY2 = K3. (3.29)

The supersymmetry condition (3.3) and Bianchi identities (3.6) are then all completely

solved for h8, u, h4 arbitrary linear functions in �. We parametrise these in general by

introducing five arbitrary constants (c1, . . . , c5) such that

h8 = c1 + F0�, u = c2 + c3�, h4 = c4 + c5�, (3.30)

at which point the local form of a general solution in this class may be written explicitly.12

The NS sector of the general solution is

ds2 =
(c2+c3�)p

c1+F0�
p

c4+c5�

�
�ds2(AdS3)+

1

4+
c23

(c1+F0⇢)(c4+c5⇢)

ds2(S2)

�
�+

�
c4+c5�

c1+F0�
ds2(CY2)

+

p
c1+F0�

p
c4+c5�

(c2+c3�)
d�2, e�� =

(c1+F0�)
3
4

p
c2
3+4(c1+F0�)(c4+c5�)

2
p

c2+c3�(c4+c5�)
1
4

,

H = dB2, B2 =
1

2

✓
2n���+ c3(c2+c3�)

c2
3+4(c4+c5�)(c1+F0�)

◆
^vol(S2), (3.31)

where we have added the closed form n�vol(S2) to B2 that parametrises large gauge trans-

formations — so n is an integer. The 10 dimensional RR fluxes follow from substitut-

ing (3.30) and H2 = 0 into (3.2a)–(3.2c). However, in what follows we will find it more

12At least when CY2 = T4. The metrics on K3 manifolds are not know explicitly, but they are known to

exist by Yau’s theorem.
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useful to know the magnetic parts of the Page fluxes explicitly, i.e. f̂ = f ^ e�B2 , where f

encloses the magnetic components of the 10 dimensional RR fluxes. We find

f̂0 = F0, f̂2 = �1

2
(c1 + 2n�F0)vol(S2), (3.32a)

f̂4 = �c5vol(CY2), f̂6 =
1

2
(c4 + 2n�c5)vol(CY2) ^ vol(S2). (3.32b)

Flux quantisation for Dp brane like objects requires that the Page charges, Np = 1
(2⇡)7�p

�
�8�p

·f̂8�p, are integer. This requires that one tunes

2�F0 = N8, � c5

(2�)3

Z

CY2

vol(CY2) = N4,

�c1 = n6,
c4

(2�)4

Z

CY2

vol(CY2) = n2, (3.33)

where ni 2 Z, so that we have the integer Page charges N8, N4 and

N6 = n6 � nN8, N2 = n2 � nN4. (3.34)

Of course, as they are defined in terms of arbitrary constants, not all these integers need

to be non-zero in a given solution. The holographic central charge of a generic solution in

this class at leading order is then given by

chol =
3

24�6

Z

M7

eA�2�vol(M7) =
3

4�3

Z
d�(2�n2 �N4�)(N8�� 2�n6), (3.35)

where we have converted the formula of [28] to string frame. However one needs to know

the range of � to perform the final integration — which depends on how ci are tuned.

For similar reasons the charge associated to H, which is defined on (�, S2) needs to be

computed on a case by case basis.

A brief glance at (3.31) makes it clear that the generic solution in this section is not

regular, though regularity can be achieved by tuning ci. A regular solution requires the

AdS3 warp factor to be either constant, or constant at the boundaries of the interval

spanned by �. Only the former leads to a compact space in this case, and requires tuning

h8 � u � h4. We thus set

c2 = L2�2c1, c3 = L2�2F0, c4 = �4c1, c5 = �4F0, (3.36)

without loss of generality. The metric then reduces to

ds2 = L2ds2(AdS3) + �2ds2(CY2) +
1

L2
d�2 +

L2(c1 + F0�)
2

L4F 2
0 + 4(c1 + F0�)2

ds2(S2). (3.37)

This solution is regular: when F0 = 0 the warp factors are constant so this point is trivial,

�⇢ becomes an isometry and the metric is compact if we make it parametrise a circle. For

generic F0, � is bounded from below at � = � c1
F0

, where the sub-manifold spanned by (�, S2)

vanishes as R3 in polar coordinates. However � is not bounded from above, with � =1 at
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infinite proper distance, so the metric is non compact. In fact when F0 = 0 (3.37) is the

metric of the T-dual of the D1–D5 near horizon geometry, and taking 0 < � < 2� in the

formula for the central charge (3.35) yields chol = 6N2N6, as one expects for this class. In

turn, for F0 6= 0 it is the non-Abelian T-dual of this system.13 These observations extend

to the fluxes and dilaton as well. As such, the solution defined by (3.36) is somewhat

novel, in that it gives a hybrid solution containing both the T and non-abelian T-duals of

a known solution.

For choices of ci other than (3.36), the metric in (3.31) will necessarily contain singular

loci, making the solution non regular. However non regularity is not always a reason to

worry. Indeed, there are situations in which one can trust a singularity in a supergravity

solution, namely when it signals the presence of a physical object in string theory and when

the radius of divergent behaviour about this object, where the supergravity approximation

does not hold, can be made arbitrarily small by tuning parameters. Given the form of (3.31)

we anticipate D brane and O plane sources. Thus, we will allow � to terminate at a singular

point of the space when the solution reduces to the behaviour of these objects at this loci,

i.e. if the leading order behaviour of the metric and dilaton are di�eomorphic to one of the

following forms

Dp brane : ds2 � r
7�p
2 ds2(M1,p)+r

�7+p
2

�
dr2+r2ds2(B8�p)

�
, e� � r

(3�p)(�7+p)
4 ,

Dp smeared

on B̃s
: ds2 � r

7�p�s
2 ds2(M1,p)+r

�7+p+s
2

�
dr2+ds2(B̃s)+r2ds2(B8�p�s)

�
, e� � r

(3�p)(�7+p+s)
4 ,

Op plane : ds2 � 1�
r
ds2(M1,p)+

�
r

�
dr2+r2

0ds2(B8�p)

�
, e� � r

3�p
4 . (3.38)

Here M1,p is some manifold that the object wraps, B8�p a compact base, on which one

integrates to get the associated charge of this object, and B̃
s

is the manifold over which

a brane is smeared. We have included smeared D branes but not O planes, because the

former is dynamical in string theory while the latter is not. We shall also allow for coincident

objects such as a Dp-brane inside the world volume of a D(p+4)-brane.14 If M1,p were flat,

the only magnetic flux near a Dp/Op singularity would be f8�p — but here M1,p will

not be flat, so one should expect additional fluxes to be turned on at the singularity to

accommodate this.

13This is perhaps made more obvious if one defines r = c1 + F0� and substitutes for � in favour of r.
14Both must depend on the same radial variable for this behaviour to occur, hence the Dp-brane is

smeared over the remaining world volume directions of the D(p+4)-brane.

– 20 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
9

By tuning the constants ci we are able to find a rich variety of physical boundary

behaviours, namely

Source Minimal tuning M1,p B̃
s

Loci

D8/O8 c3 = 0 all but � — � = � c1
F0

D6 c3 6= 0 c4 = bc2, c5 = bc3 AdS3 ⇥ CY2 — � = � c2
c3

O6 generic ci AdS3 ⇥ CY2 — � = � c1
F0

Smeared D4 c3 = 0 AdS3 ⇥ S2 CY2 � = � c4
c5

Smeared D21 c2 = bc1, c3 = bF0 6= 0 AdS3 CY2 � = � c2
c3

Smeared D22 generic ci AdS3 S2 ⇥ CY2 � = � c4
c5

D4 in D8 c3 = 0, c4 = bc1, c5 = bF0 D8 : all but � D4 : CY2 � = � c1
F0

D2 in D6 generic ci D6 : AdS3 ⇥ CY2 D2 : CY2 � = � c2
c3

O2 in O6 c4 = bc1, c5 = bF0 O6 : AdS3 ⇥ CY2 O2 : S2 ⇥ CY2 � = � c4
c5

T/NATD hybrid (3.36) — — —

Here b is an arbitrary constant, and we have included the T-dual and non-Abelian T-

dual hybrid solution, which is regular, as well as smeared O2 inside an O6 plane, for

completeness. Note that when the D4, D2 branes are delocalised on all directions but

�, one could also interpret them as smeared O4 and O2 planes respectively. To realise

a compact solution from (3.31) beyond the F0 = 0 limit of (3.37), we need two of these

boundary behaviours to exist for the same tuning of ci. There are in fact several such

solutions for various tunings of ci. In summary, we see that the following behaviours can

exist simultaneously

Tuning Boundary behaviours Loci: � =

generic ci O6 | D2 in D6 | D22 � c1
F0

| � c2
c3

| � c4
c5

(c4 = bc1, c5 = bF0, c3 6= 0) O2 in D6 | D2 in O6 � c2
c3

| � c1
F0

(c2 = bc4, c3 = bc5, c3 6= 0) D6 | O6 � c2
c3

| � c1
F0

(c2 = bc1, c3 = bF0, c3 6= 0) D21 | D22 � c1
F0

| � c4
c5

c3 = 0 D8/O8 | D4 � c1
F0

| � c4
c5

,

(3.39)

making for a total of 7 independent compact solutions of this type.15 In the interest of

(relative) brevity we are going to look only at the two simplest cases explicitly, those with

interval bounded between D8s/O8 and D4s, and those between D6 and an O6.

Interval bounded between D8/O8s and D4s. To realise the first compact example

with sources, one should tune c3 = 0. Then one of (c1, c4) can also be set to zero with a

15Really 14, as we can take CY2 = T4 or K3 for each.
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coordinate transformation of �. Here we take c4 = 0. The resulting NS sector is

ds2 =
c2p

c5
p
�
p

c1+F0�

�
ds2(AdS3)+

1

4
ds2(S2)

�
+

p
c5
p
�p

c1+F0�
ds2(CY2)+

p
c5
p
�
p

c1+F0�

c2
d�2,

e�� =
c

1
4
5 �

1
4 (c1+F0�)

5
4

p
c2

, B2 =
⇣
n���

2

⌘
^vol(S2), (3.40)

and the magnetic RR Page fluxes are given by (3.32a)–(3.32b) with c3 = c4 = 0. It should

not be hard to see that close to � = � c1
F0

= 2⇡n6
N8

the metric and dilaton are consistent

with D8 and O8 behaviour, while at � = 0 they signal D4 branes wrapped on AdS3 ⇥ S3

and smeared on CY2. This bounds the interval as 0 < � < 2⇡n6
N8

, assuming 2⇡n6
N8

> 0. This

solution is also under parametric control, with the supergravity approximation holding for

c5 ⇠ N4 � 1, with the radius of divergent behaviour about the poles scaling inversely with

this parameter. Given the flux quantisation conditions (3.33), the Page charges are then

N8, N4, N6 = n6 � nN8, N2 = �nN4, N5 =
n6

N8
, (3.41)

where N5 = 1
(2⇡)2

�
(⇢,S2) dB2 is the charge associated to NS5 branes. We now turn our

attention to the large gauge transformations parameterised by n in the definition of the NS

2-form. As (�, S2) defines a cycle at each of the singular loci, we should impose that b =

� 1
(2⇡)2

�
S2 B2 should be an integer at these points. This may be achieved by constraining

b =
�

2�
� n s.t. 0  b < 1, (3.42)

which implies that � is partitioned into segments of length 2�. At � = 0, b = n so we can

take n = 0 fixing b = 0. One should then perform a large gauge transformation sending

n! n+1 each time � increases by 2�. At � = 2⇡n6
N8

one has b = N5 +m for m the number

of gauge transformations required to traverse the interval. Finally we can integrate the

expression for the holographic central charge at leading order (3.35), which yields

chol = n6N4N
2
5 . (3.43)

At first sight this may appear confusing as the (left) central charge of small N = (4, 0) CFTs

should be related to the level of the a�ne SU(2) algebra as c = 6k. Here (3.43) contains

no factor of 6, but one should recall that chol is the central charge in the supergravity limit

N5 � 1, which only gives the leading order contribution to c, neglecting sub-leading terms

in N5. We believe that one will recover c = 6k if one includes the 1-loop correction to

chol — however to our knowledge this corrections is not yet known for massive IIA, so one

cannot yet check this explicitly. Adding support to this claim is [62], where in section 4 the

central charges of several concrete CFTs and geometries that are locally of the form (3.32)

are compared. The CFTs obey c = 6k, but to leading order in some parameter(s), where

it makes sense to compare to supergravity, the factor of 6 is lost in many cases — non the

less c = chol in these limits.
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Interval bounded between D6s and an O6. One can get the second compact solution

by tuning c2 = bc4, c3 = bc5. One can then set c4 = 0 without loss of generality with a

di�eomorphism. This results in the following NS sector

ds2 =
b
p

c5
p
�p

c1+F0�

�
ds2(AdS3)+

�(c1+F0�)

b2c5+4�(c1+F0�)
ds2(S2)

�
+

p
c5
p
�p

c1+F0�
ds2(CY2)+

p
c1+F0�

b
p

c5
p
�

d�2,

e�� =

p
c1+F0�

p
b2c5+4�(c1+F0�)

2
p

bc
1
4
5 �

3
4

, B =

✓
n�� 2�2(c1+F0�)

b2c5+4�(c1+F0�)

◆
^vol(S2), (3.44)

where again n is an integer parametrising large gauge transformations and the magnetic

RR Page fluxes are given by (3.32a)–(3.32b) with c2 = c4 = 0, c3 = bc5. This time one can

show that the behaviour close to � = � c1
F0

= 2⇡n6
N8

corresponds to an O6 plane wrapped on

AdS3⇥ CY2, while that of � = 0 is a D6 brane — bounding the interval as � 2
⇣
0, 2⇡n6

N8

⌘
.

The supergravity approximation is valid this time for F0 � c1 ⇠ n6 � 0. The Page

charges are

N8, N4, N6 = n6 � nN8, N2 = �nN4, N5 = 0, (3.45)

with the major di�erence with respect to the previous example being that the NS charge

N5 = 0. We should again constrain

b = � 1

(2�)2

Z

S2
B2 s.t. 0 < b < 1. (3.46)

The form of B2 means that the � dependence vanishes at the boundaries and reaches an

extrema in between at � = �0, which depends non trivially on the charges. As at � = 0

one sets n = 0, then as one traverses the interval 0 < � < �0 successive large gauge

transformations are needed to keep 0 < b < 1. But once one crosses � = �0 one needs

to start undoing the gauge transformations to keep b bounded until n = 0, once more at

� = 2⇡n6
N8

. From this we conclude that the charge of both the D6s and the O6 is equal to

n6, which gives a problem. Weak curvature requires n6 � 0, but the charge of the O6 is

fixed to be ±4. As such, the solution is strongly curved everywhere. Nonetheless, for the

sake of comparison we compute the holographic central charge from (3.35), and find

chol =
n3

6N4

N2
8

. (3.47)

Summary of this section. To summarise, in this section 3.4 we have studied the

local solutions of class I that respect the symmetry of CY2 — they are foliations of

AdS3 ⇥ S2 ⇥ CY2 over an interval. We have found that the general solution can be given

explicitly and depends on parameters (c1, . . . c5, F0), with all necessary conditions solved.

Di�erent behaviours can be achieved by tuning these parameters, and we have found an

array of physical boundary behaviours for the interval. We have established that there are

8 independent compact solutions: the T-dual of the D1–D5 near horizon, which is regu-

lar, and the 7 independent combinations one can form from (3.39) with various physical

singularities. We have chosen two of these solutions for a more detailed study, where the

interval is bounded between either D8/O8s and D4 or D6s and an O6. We have shown
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that only the former has a good interpretation in supergravity, with the latter requiring

higher curvature corrections.

Before moving on let us first stress that the general solution of this section is only

a local one. What this really means is that every coordinate patch of a global solution

can be expressed in the form of (3.31) and (3.32a)–(3.32b), but the specific values of

(F0, c1, . . . , c5) in each of these patches may di�er in principle. This fact was exploited

in [54] to construct infinite classes of globally compact AdS7 solutions in massive IIA, by

glueing together various non compact solutions with defect branes. We shall return to this

issue in section 5, where we will establish that this is also possible for the local solutions

of this section. We delay a detailed analysis of such solutions until [62, 68].

In the next section we shall begin our analysis of the second class of solutions we

consider in this paper, namely those containing a family of Kahler four-manifolds.

4 Class II: Kahler four-manifold case

In this section we study the second class of solutions following from the necessary conditions

of section 2.2 for sin� 6= 0. We find that the solutions decompose as a warped product of

AdS3 ⇥ S2 ⇥ M̂4 ⇥ R where M̂4 is a family of Kahler manifolds with metrics that depend

on the interval.

In section 4.1 we summarise class II and discuss some of its general features, deferring

its derivation to section 4.2. In section 4.3 we T-dualise class II along the interval and arrive

at a generalisation of [28] with non trivial 3-form flux. And finally in section 4.4 we expand

up section 3.4 and present further local solutions that are foliations of AdS3 ⇥ S2⇥CY2

over an interval.

4.1 Summary of class II

The solutions in class II have the following NS sector

ds2 =
up

hw2�v2

�
ds2(AdS3)+

hw2�v2

4(hw2�v2)+(u0)2
ds2(S2)

�
+

p
hw2�v2

u

� u

hw
ds2(M̂4)+d�2

�
,

H =
1

2
d

✓
��+ uu0

4(hw2�v2)+(u0)2

◆
^vol(S2)+d

⇣ v

wh
Ĵ
⌘

,

e�� =
wh

1
2

p
4(hw2�v2)+(u0)2

2
p

u(hw2�v2)
1
4

. (4.1)

Here M̂4 is a family of Kahler manifolds parameterised by �, with an integrable complex

structure that is � independent. Ĵ is a two-form defined on the Kahler four-manifold (the

details are given below). The functions u, v, w depend on � only, while h has support

in (�, M̂4). In fact w is actually redundant, as it can be absorbed into h and M̂4. We

keep it for convenience as it simplifies the derivation of the classes in sections 4.3 and 4.4.

Supersymmetry is ensured by the following di�erential conditions

u00 = 0, �⇢

�
ĝ

1
2

h

�
= 0, i�� log h = R̂, (4.2)
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for R̂ the Ricci form and ĝ the determinant of the metric on M̂4. �, � are Dolbeault

operators expressed in terms of complex coordinates on M̂4 such that d4 = � + �. The 10

dimensional RR fluxes of this class take the form

F0 = v0,

F2 = �w2

u
d� ^ �̂4(d4h ^ Ĵ)� �⇢(wĴ) +

vv0

hw
Ĵ � 1

2

✓
v � v0uu0

4(hw2 � v2) + (u0)2

◆
vol(S2),

F4 =
1

2
vol(AdS3) ^

✓
d

✓
vuu0

hw2 � v2

◆
+ 4vd�

◆
+

v

2h

✓
vv0

hw2
� �⇢ log(v�1hw2)

◆
Ĵ ^ Ĵ

� vw

u
d� ^ �̂4d log h +

1

2

✓
uu0

4(hw2 � v2) + (u0)2
F2 +

hw2 � v2

hw
Ĵ

◆
^ vol(S2), (4.3)

where again F6 = � �10 F4, F8 = �10F2. The Bianchi identities are then solved away from

localised sources when

v00 = 0, 2i��h = �2
⇢(wĴ). (4.4)

The conditions (4.2) and (4.4) are necessary and su�cient for a solution to exist in the

absence of sources. When these exist one should also check the source corrected Bianchi

and calibration conditions at their loci.

To better understand this second class of solutions one can consider the limit u = w = 1

and v = 0 with �⇢ an isometry. The result coincides with the Hopf fibre T-dual of the class

of solutions found in [28]. These solutions are of the form AdS3 ⇥ S3 ⇥ B, for B the base

of an elliptically fibered Calabi-Yau 3-fold. They are characterised by varying axio-dilaton

with D3 branes wrapped on a curve within B, but have no 3-form flux. If we instead

consider a similar limit with v = constant rather than zero, we find a generalisation of this

class with non trivial 3-form flux, as we shall demonstrate in section 4.3. In addition to

containing the T-dual of this IIB class, class II also contains its non-Abelian T-dual, which

one can realise by fixing w � u � v and taking J and M̂4 to be � independent. This in

fact gives another hybrid solution similar to (3.37), that realises the T-dual of section 4.3

when F0 = 0 and the non-Abelian T-dual for generic F0.

In the next section we show how class II is derived from the necessary and su�cient

conditions for supersymmetry found in section 2.1.

4.2 Derivation of class II

For class II we assume sin� 6= 0, and as such we are free to divide by sin� which enables

us to put (2.32a)–(2.32h) in the form

d(eA�� sin� cos�) ^ V = d(e3A�� sin� sin�)� 2µe2A�� cos� sin�V = 0, (4.5)

2eC + eA sin� = d

✓
1

sin�
�

◆
= d

✓
e�2A

sin2 �
J

◆
^ V = 0, (4.6)

e2CH1 = � 1

2µ
eAV +

1

4
d(e2A sin� cos�), H3 = d

✓
cos�

sin�
J

◆
. (4.7)
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We can solve (4.5) in general by introducing two functions u(�), v(�) such that

e3A�� sin� sin� = u, 2eA�� cos� sin� = u0, eA�� sin� cos� = v. (4.8)

In contrast to case I the conditions supersymmetry imposes on (J,�) do not imply that

M̂4 is conformally Calabi-Yau in general. We will see instead that it must be a family of

� dependent Kahler four-manifolds. Taking [64] as a guide it is useful to introduce the

rescaled forms and metric

J =
sin�p

h
Ĵ, � =

sin�p
h
�̂, ds2(M̂4) =

sin�p
h

ds2(M̂4), (4.9)

where we have also introduced

1

h
= e4A sin2 �w2u�2, (4.10)

with h a function of � and the coordinates on M̂4. Here w = w(�) is an arbitrary function

that is actually redundant, as it can be absorbed into the definition of h and M̂4, but

extracting it now simplifies later exposition. Expanding d = d4 + d� ^ �⇢ as before (4.6)

implies the following conditions

d4Ĵ = 0, (4.11a)

d4�̂ =
1

2
d4 log h ^ �̂, (4.11b)

�⇢�̂ =
1

2
�⇢ log h�̂. (4.11c)

The first two conditions (4.11a)–(4.11b) imply that ds2(M̂4) is a family of Kahler manifolds

parameterised by �, with an associated complex structure that is � independent. Since M̂4

is Kahler (4.11b) can be expressed as

d4�̂ = iP̂ ^ �̂, P̂ = �1

2
d4 log h�Ĵ , d4P̂ = R̂, (4.12)

where R̂ is the Ricci form on ds2(M̂4), with components R̂ij = 1
2R̂ijklĴ

kl, for R̂ijkl the

Riemann curvature tensor on ds2(M̂4) computed at constant �. The condition (4.11c) then

just serves to constrain the � dependence of the Kahler metric such that its determinant ĝ

satisfies

�⇢

�
ĝ

1
2

h

�
= 0. (4.13)

We now turn our attention to the paring conditions (2.35). Although it is not possible

to explicitly take the Hodge dual of every term in (2.34a)–(2.34d), it is still possible to

solve (2.35) explicitly by making use of (4.11a)–(4.11c), (3.14), and the following identities

involving an arbitrary 1-form in 5 dimensions U = U4 + u0V :

j1 ^ �5(U ^ j2) = �j2 ^ �5(U ^ j1) = U ^ V ^ j3 and cyclic in 123 (4.14)

j1 ^ �5(U ^ j1) = j2 ^ �5(U ^ j2) = j3 ^ �5(U ^ j3) = �5U4 + u0j3 ^ j3, (4.15)
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where J = j3, � = j1 + ij2. After a lengthy calculation we find that (2.35) imposes simply

u00 = 0. (4.16)

Having now dealt with the geometric supersymmetry constraints we turn our attention to

Bianchi identities of the RR fluxes. In general the RR fluxes are rather involved, but as is

often the case, the Page fluxes f̂ = e�B ^ f , where dB = H, are rather more simple, so let

us first study these. The conditions defining H1, H3 in (4.7) can be locally integrated with

ease giving rise to the NS potential

B =
1

2

✓
�� +

uu0

4(w2h� v2) + (u0)2

◆
^ vol(S2) +

v

wh
Ĵ, (4.17)

in terms of which the Page fluxes take the following form16

f̂0 = f0 = v0, (4.19a)

f̂2 = �w2

u
d� ^ �̂4(d4h ^ Ĵ)� �⇢(wĴ) +

1

2
(�v0 � v)vol(S2), (4.19b)

f̂4 =
v0

2h
Ĵ ^ Ĵ +

1

2

✓
�f̂2 + wĴ

◆
^ vol(S2), (4.19c)

f̂6 =

✓
�

2
f̂4 �

v

4h
Ĵ ^ Ĵ

◆
^ vol(S2). (4.19d)

Away from localised sources the Bianchi identities of the RR fluxes hold if and only if the

Page fluxes are closed. Imposing this yields the conditions

v00 = 0, (4.20a)

w2

u
d4�̂4(d4h ^ Ĵ) = �2

⇢(wĴ), (4.20b)

that follow from the parts of f̂0, f̂2 that are orthogonal to vol(S2) — closure of the rest

is implied by these and supersymmetry. We can make further progress by introducing

complex coordinates z1, z2 on M̂4 and Dolbeault operators � = dzi�zi , � = dzi�zi in terms

of which we can expand d4 = � + �. We then have

�̂4(d4g ^ Ĵ) = d4 log g�Ĵ = �i(� � �)g, (4.21)

for g an arbitrary function. This can be used to simplify some of the necessary conditions,

allowing us to present the class in the form given in section 4.1.

In the next section we will derive a class of solutions in IIB that generalise the solutions

in [28] to include non trivial 3-form flux.

16We have significantly simplified f̂2, f̂4 by making use of (4.14) and

��Ĵ =
1

2
�� log hĴ + H2, H2 + �̂4H2 = 0, (4.18)

where J �H2 = ��H2 = 0, which follows from (4.11c) and the allowed torsion classes of SU(2)-structures

in 5 dimensions [63].
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4.3 Generalisation of the F-theory solutions in [28] with non trivial 3-form flux

In this section we derive a generalisation of a class of solutions in IIB found in [28]. These

are characterised by varying axio-dilaton with D3-branes wrapped on complex curves within

the base of an elliptically fibered CY3, and vanishing 3-form flux. Our generalisation will

include a non-trivial 3-form flux.

We begin with class II of section 4.1 and impose that �⇢ is an isometry. This can be

achieved without loss of generality by fixing

u = L4, w = L4�2 v = cL2, (4.22)

with the Kahler manifold and structure assumed to be � independent. We also rescale h

for convenience as

h! h

L4�4
, (4.23)

for (L,�, c) all constant. The NS sector then becomes

ds2 =
L2

p
h� c2

�
ds2(AdS3) +

1

4
ds2(S2)

�
+

p
h� c2

L2
d�2 + L2�2

p
h� c2

h
ds2(M̂4),

B = �1

2
d� ^ � + cL2�2h�1Ĵ , e�� = L

p
h(h� c2)

1
4 , (4.24)

as before, d� = �vol(S2) and dB = H — we have chosen a gauge for B that makes the �⇢
isometry explicit. The RR sector becomes

F2 = id� ^ (� � �)h� L2c

2
vol(S2), (4.25)

F4 = 2cL2vol(AdS3) ^ d� + cL2�2(�̂4d log h) ^ d� +
L4�2

2

h� c2

h
Ĵ ^ vol(S2), (4.26)

with F0 = 0. The first thing we note is that the only Bianchi identity that is not solved

automatically is that of the RR 2-form, due to the first term. Whenever this is satisfied

away from localised sources there exists a local function C0 with support on M̂4 such that

dC0 = i(� � �)h, (4.27)

which holds precisely when the following complex function is holomorphic

� = C0 + ih, (4.28)

i.e. �� = 0 implies (4.27) and vice-versa. This is already very reminiscent of [28]. Indeed

if we fix c = 0 we reproduce the result of T-dualising that class on the Hopf fibre of the

S3, with � = � the modular parameter of IIB. Generic c 6= 0 is a parametric deformation

of this that obeys the same supersymmetry constraint, namely that

i�� log h =
1

2
d

✓
dC0

h

◆
= R̂, (4.29)
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which reproduces the geometric condition the base of the elliptically fibered CY3 manifolds

of [28] must obey. After performing the T-duality on �⇢, under the assumption it has period

2�, the IIB string frame solution becomes

ds2 =
L2

p
h� c2

�
ds2(AdS3) + ds2(S3)

�
+ L2�2

p
h� c2

h
ds2(M̂4),

B̂ = c�2L2h�1Ĵ , e��̂ =
p

h
p

h� c2,

F1 = dC0, F3 = �2cL2vol(AdS3)� cL2�2�̂4d log h + 2cL2�2vol(S3),

F5 = �2L4�2 h� c2

h
(1 + �10)Ĵ ^ vol(S3), (4.30)

with �̂ and B̂ the dilaton and NS 2-form potential in IIB, and where in particular c = 0

fixes H = F3 = 0 as in [28]. Although we choose to write this solution with an S3, this

is meant just locally. One could equally well replace the S3 with a Lens space without

breaking any further supersymmetry, as is done in [28] by sending S3 ! S3/Zk.

In summary, we find a parametric deformation of the solutions of [28] with 3-form flux

turned on that still preserves N = (4, 0) supersymmetries. Converting to Einstein frame,

in which the SL(2, R) invariance of IIB is manifest, and replacing the S3 with a Lens space,

we arrive at the IIB solution

ds2
E = L2

�
h

1
4

(h�c2)
1
4

�
ds2(AdS3)+ds2(S3/Zk)

�
+�2 (h�c2)

3
4

h
3
4

ds2(M̂4)

�
, (4.31)

� = C0+i
p

h
p

h�c2, B = c�2L2h�1Ĵ , F5 = �2L4�2 h�c2

h
(1+�10)Ĵ^vol(S3/Zk)

F3 = �2cL2vol(AdS3)�cL2�2�̂4d log h+2cL2�2vol(S3/Zk).

This coincides locally with the class in [28] when c = 0, so that � = C0 + ih,17 with AdS

radius m = 1. The complex 3-form is defined as G = i(Im�)�1(�dB�F3). Supersymmetry

and the Bianchi identities away from sources, simply require

�(C0 + ih) = 0,
1

2
d

✓
dC0

h

◆
= R̂. (4.32)

Thus, as solutions were argued to exist when c = 0, further solutions must exist for c 6= 0

(at least formally) as the necessary conditions for their existence are c independent. A

di�erence is that now the physical region of M̂4 when embedded into 10 dimensions is the

portion for which h � c2 is satisfied, with the lower bound a singular loci in the full space.

The warp factors appear consistent with D5 branes wrapped on S3 at this loci,18 however

17The specific map is L � eA,� � m�1
B .

18We rule out a 3-cycle in M̂4 because the cycle on which the D5s are wrapped should be calibrated. This

ultimately means that the DBI action of the 5 brane should be equal to the pull back of some combination

of the structure forms wedged with themselves, vol(AdS3) and B̂. But since the structure group of M̂4 is

SU(2) we only have two forms at our disposal — thus any supersymmetric brane, D5 or otherwise, must

wrap the S3.
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confirming this seems dependent on the specifics of the Kahler Manifold. Let us stress

that, similar to the class of solutions in section 3.3, this is not the most general class of

this type. Rather this is a specific SL(2, R) duality frame of this most general solution —

see the discussion below (3.25).

It would be interesting to study the solutions in this class, but as with the c = 0

limit, the permissible metrics on M̂4 are the possible bases of an elliptically fibered CY3,

which are not explicitly known.19 In particular, it would be interesting to find their explicit

F-theory realisation [27, 28].

4.4 Further local AdS3 � S2 � CY2 foliations

In this section we shall explore the solutions contained in class II that are foliations of

AdS3 ⇥ S2 ⇥ CY2 over the interval spanned by �, similar to those found in section 3.4

— here we will be more brief. Such solutions should respect the isometries of CY2, which

means the warp factors must be independent of the directions on CY2. Again CY2 should be

compact, which reduces our considerations to CY2 = T4 or CY2 = K3. The supersymmetry

conditions and Bianchi identities of the fluxes (away from the loci of sources) then just

impose that (v, u, w) are linear functions, that we choose as

v = c1 + F0�, u = c2 + c3�, w = c4 + c5�, h = 1 (4.33)

where ci are all constants. The NS sector is then

ds2 =
c2 + c3�p

(c2 + c3�)2 � (c1 + F0�)2

�
�ds2(AdS3) +

1

4 +
c23

(c2+c3⇢)2�(c1+F0⇢)2

ds2(S2)

�
�

+

p
(c2 + c3�)2 � (c1 + F0�)2

c2 + c3�

�
c2 + c3�

c4 + c5�
ds2(CY2) + d�2

�
,

e�� =
((c4 + c5�)

2 � (c1 + F0�)
2)

3
4

q
4 +

c23
(c4+c5⇢)2�(c1+F0⇢)2

q
1 + (c1+F0⇢)2

(c4+c5⇢)2�(c1+F0⇢)2

2
p

c2 + c3�
,

B = n�vol(S2)� c1 + F0�

c4 + c5�
Ĵ � 1

2

✓
�� c3(c2 + c3�)

4((c4 + c5�)2 � (c1 + F0�)2) + c2
3

◆
vol(S2),

(4.34)

where n is an integer with which we parametrise potential large gauge transformations of

the NS 2-form B. The magnetic Page fluxes, f̂ = e�B ^ f , for f the magnetic components

of the 10 dimensional RR fluxes, are

f̂0 = F0, f̂2 = �c5Ĵ �
1

2
(c1 + 2�nF0)vol(S2), (4.35)

f̂4 = F0Ĵ ^ Ĵ +
1

2
(c4 + 2�nc5)Ĵ ^ vol(S2), f̂6 = �1

2
(c1 + 2�nF0)Ĵ ^ Ĵ ^ vol(S2) (4.36)

with F0 non trivial generically, and where Ĵ is the Kahler form of CY2 (so dĴ = 0).

19Strictly speaking this base could be CY2, in which case one could take T4 as an explicit metric. However

constancy requires that h is constant whenever the Kahler manifold is Ricci flat.
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As was the case in section (3.4), the only way to have a regular solution is if the AdS3

warp factor is constant. We can achieve this by fixing

u = L4, w = L4�2 v = cL2, h =
1

L4�4
(4.37)

without loss of generality. The resulting metric takes the form

ds2 =
L2

p
1� c2

�
ds2(AdS3) +

1

4
ds2(S2)

�
+

p
1� c2

L2
d�2 + L2�2

p
1� c2ds2(CY2). (4.38)

When F0 = 0 this reproduces the metric of (4.24), in the limit h = 1 and M̂4 = CY2,

which is the T-dual of the same limit of the IIB solution derived in the previous section —

this solution is compact when CY2 and �⇢ are assumed to be. For generic values of F0 6= 0

the solution is the non abelian T-dual of this IIB solution, where the interval spanned by

� becomes semi infinite, with a regular zero at � = � c1
F0

. These statements all hold true

for the fluxes also.

Allowing for D brane and O plane behaviour at the boundaries of the interval as

in (3.38), as well as composite objects, we find that it is possible to realise the following

physical boundary behaviours

Source Minimal tuning M1,p B̃
s

Loci

Smeared D4 c3 = 0 AdS3 ⇥ S2 CY2 � = ±c1�c4
c5⌥F0

Smeared D2 Generic ci AdS3 CY2 ⇥ S2 � = ±c1�c4
c5⌥F0

D2 inside D6 Generic ci D6: AdS3 ⇥ CY2 D2: CY2 � = � c2
c3

O2 inside O6 c1 = bc4, F0 = bc5 O6: AdS3 ⇥ CY2 O2: CY2 ⇥ S2 � = � c4
c5

T/NATD hybrid (4.37) — — —

where b are arbitrary constants and we include the T-dual/non-Abelian T-dual hybrid,

which is regular, for completeness. As before, one can also interpret the D branes smeared

on all their compact co-dimensions as smeared O planes.

As in section (3.4), we need two of these boundary behaviours to exist for the same

tuning of ci to realise a compact local solution beyond the F0 = 0 limit of (4.38). We find

the following possibilities

Tuning Boundary behaviours Loci: � =

generic ci D2 | D2 in D6 | D2 +c1�c4
c5�F0

| � c2
c3

| �c1�c4
c5+F0

(c4 = bc1, c5 = bF0, c3 6= 0) D2 in D6 | O2 in O6 � c2
c3

| � c1
F0

(c2 = bc1, c3 = bF0, c3 6= 0) D2 | D2 � c1
F0

| � c4
c5

c3 = 0 D4 | D4 c1�c2
c5�F0

| �c1�c2
c5+F0

(4.39)

Together with (3.39) this gives a total of 13 distinct foliations of AdS3⇥S3⇥ CY2 over

intervals bounded between a rich variety of D brane and O plane behaviours. They are
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compact whenever CY2 = T4 or K3, which really doubles the number of distinct solutions

to 26.

As was true of section (3.4), the general solution of this section is only local. One can

actually construct more general globally compact solutions by glueing these local solutions

together with defect branes. In the next section we will explore this possibility.

5 Glueing local solutions together with defect branes

In sections 3.4 and 4.4 we found several local compact solutions that are foliations of

AdS3⇥S2⇥CY2 over a finite interval bounded by various D brane an O plane behaviours.

In this section we show that these compact local solutions, and more generally any local

solution in these classes, may be used as the building blocks of a far larger class of globally

compact solutions. This can be achieved by using defect branes to glue the various local

solutions together. This follows the spirit of [54], where an infinite family of globally

compact AdS7 solutions in massive IIA was found, that utilised D8 brane defects to glue

various non compact local solutions together (see also [39] for an AdS3 example).

Through out most of this paper we have derived our various classes of solution under

the assumption that we are in a region of the internal space away from the loci of sources.

This was actually su�cient to find solutions with sources on the boundary of the internal

space — as then one can explicitly see known brane/plane behaviour appearing in the

physical fields. However to realise defect branes, that lie on the interior of the internal

space, we will have to explicitly solve the source corrected Bianchi identities and make sure

the sources are supersymmetric.

Various types of defect branes are possible in supergravity, with various signatures —

the most simple is probably the D8. The singularity signalling a D8 brane defect is rather

mild, giving rise only to a discontinuity in the derivatives of the metric and dilaton, with the

fields themselves continuous. The NS 2-form on the other hand needs only be continuous

up to a large gauge transformation. The remaining fluxes can be discontinuous across such

a defect provided that this is induced by a shift in the D8 brane flux F0 — which should

naturally shift as one crosses a D8 brane stack. In what follows this will be one defect we

use to perform glueings. The others are a D4 brane defect and a D6 defect that are both

smeared over their compact co-dimensions. Such objects behave in a completely analogous

way to the D8 defect, indeed for CY2 = T4 they are mapped into each other via T-duality,

only now it is the charge of D4s/D6s rather than F0 that experiences a discontinuity as we

cross the defect.

Having set the scene, it will now be helpful to look at the two cases individually to

show that such glueing of local solutions is possible. Let us first look at global solutions

following from section 3.4.

5.1 Towards global solutions with defects from section 3.4

In this section we will study the possibility of gluing the local solutions of section 3.4

together with defect branes.
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As explained in section 3.4, the general local form of the NS sector and RR Page fluxes

are given exactly by (3.31) and (3.32) respectively. However these expressions depend on

constants (ci, F0) that can change as we cross a defect brane, so for a global solution it is

more helpful to consider the form of NS sector given in (3.1), we remind the reader that

here we fix H2 = 0 so as to respect the symmetry of CY2 and (h8, h4, u) are all functions

of � only, the latter being linear and the behaviour of the former two determined by the

Bianchi identities of the fluxes. As we shall see (h8, h4) end up being piece-wise linear

so that

F0 = h0
8, G0 = h0

4 (5.1)

are not globally defined, but can change between local patches of a global solution. For

the RR sector it will be most useful to know the magnetic component of the Page flux

polyform

f̂ = h0
8 �

1

2
(h8 � �h0

8)vol(S2)�
✓

h0
4 �

1

2
(h4 � �h0

4)vol(S2)

◆
^ vol(CY2). (5.2)

Recall the Page flux is defined in terms of the NS 2-form B as F̂ = e�B^F , for simplicity we

do not consider large gauge transformations in B — however we stress that their inclusion

changes nothing substantive about what follows.

Let us first consider a single D8 brane defect: the Bianchi identity of the entire magnetic

flux in the presence of a generic D8 brane stack takes the form

(d�H)f =
n8

2�
�(�� �0)e

F ^ d� (5.3)

where �0 is the loci of the stack, and n8 its charge. As usual F = B + 2�f̃2 for f̃2 a

world-volume flux that may be turned on — this should not to be confused with the RR

2-form! As B ⇠ vol(S2) for the local solutions of section 3.4, we anticipate that this

D8 brane is actually (at least) a D8–D6 bound state — however exactly what branes are

bounded together will depend on the form of f̃2 that we determine by actually solving (5.3).

Following [54], we do this in terms of f̂ , for which (5.3) is equivalent to

df̂ =
n8

2�
�(�� �0)e

2⇡f̃2 ^ d� . (5.4)

As we move across this defect the NS sector (3.31) should be continuous (B can shift by a

large gauge transformation, but for simplicity we shall assume it does not), while only F0

should shift. Thus h8, h4, h
0
4, h

00
4 should be continuous across the defect while F0 = h0

8 will

be discontinuous. As such integrating (5.4) across the D8 stack gives rise to

�F0e
1
2
⇢0vol(S2) =

n8

2�
e2⇡f̃2 (5.5)

for �F0 the di�erence between the values of F0 for � < �0 and � > �0. We thus see that

the Bianchi identity merely fixes

�F0 =
n8

2�
, f̃2 =

1

4�
�0vol(S2), � F =

uu0

8h4h8 + 2(u0)2
vol(S2) (5.6)

confirming that the defect is actually a D8–D6 bound state.
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For the D4 brane defect wrapped on AdS3⇥S2 and smeared over CY2 things are rather

similar. The Bianchi identity of such a D4 brane stack takes the from

(d�H)f

����
CY2

= (2�)3n4�(�� �0)e
F ^ d� ^ vol(CY2) (5.7)

where (�0, n4) are the loci and charge of the stack — the notation on the l.h.s. means we

only consider the components parallel to vol(CY2). This time it should be only G0 = h0
4

which is discontinuous across the defect, so integrating the Page form avatar of (5.7) gives

rise to

�G0e
1
2
⇢0vol(S2) = �(2�)3n4e

2⇡f̃2 , (5.8)

where the volume of CY2 has been factored out of both sides of this expression. We need

then only fix

�G0 = �(2�)3n4, f̃2 =
1

4�
�0vol(S2), � F =

uu0

8h4h8 + 2(u0)2
vol(S2) (5.9)

for the Bianchi identity to be solved — which implies that like the D8, the D4 is also a

bound state, this time D4–D2.

We have shown that both D8 and smeared D4 brane defects can be placed at arbitrary

points along the interval of the AdS3⇥S2⇥CY2 foliations in section 3.4 and still solve the

source corrected Bianchi identities — provided they come as part of a bound state (D8–D6

and D4–D2). To guarantee that we actually have a solution at these loci however the

branes must have a supersymmetric embedding — then supersymmetry is preserved on

the defects and the remaining EOM are implied [51]. A major advantage of the approach

we took to constructing solutions in section 2.2 is that it allows us to determine this in

the language of generalised calibrations [52]. This is relatively simple for us because the

fundamental object of this approach is the 7d bi spinors already given in (2.29a)–(2.29b). A

D brane source extended along AdS3 is supersymmetric if it obeys a calibration condition

— namely the DBI Lagrangian LDBI = d�de��
p
� det(g + F) is equal to a calibration

form. In IIA this calibration form is given by the pull back of e3A��vol(AdS3) ^�+ ^ eF

onto the relevant D brane world-volume. It is not hard to show that both our D8 and D4

brane defects obey this condition precisely when F is tuned as the Bianchi identity of each

defect requires.

Thus we have established that one can place defects at arbitrary points along the

interval of the AdS3⇥S2⇥CY2 foliation and still have a supersymmetric solution — we

need only impose that (h4, h8) are continuous. This fact can be used to glue two local

solutions of section 3.4 together provided they share a common tuning for u (u00 = 0 by

supersymmetry, so u is globally linear). There is no limit to the number of defects one can

place in a global solution, indeed in general (h4, h8) need only be piece-wise linear with a

change in slope of the former (latter) indicating the presence of a D4 (D8) brane at that

loci. One can therefore construct infinite classes of global solutions for each tuning of u in

section 3.4. We delay a detailed exploration of these possibilities and their interpretation

in terms of the AdS3/CFT2 correspondence until [62, 68].

In the next section, we explore the possibility of constructing global solutions with

defects from the solutions in section 4.4.
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5.2 Towards global solutions with defects from section 4.4

In this section we will show that it is possible to glue the local solutions of section 4.4

together with defect branes. As most of the details of this procedure are covered in the

previous section, we encourage the reader to go over that first, as here we shall be brief.

As before the local solutions of section 4.4 depend on constants (ci, F0). However, as

these constants can shift between local patches in a global solution, it is more helpful to

consider the NS sector in the form of (4.1), with h = 1 and M̂4 = CY2 — recall (u, v, w)

are functions of � only and that u is such that globally u00 = 0 due to supersymmetry.

Conversely v, w are only linear functions away from localised sources — globally they need

only be piecewise linear provided that the resulting �-functions appearing in their second

derivatives gives rise to a source corrected Bianchi identity, and this source is calibrated.

The magnetic Page flux polyform associated to these solutions is

f̂ = v0 � 1

2
(v � �v0)vol(S2)�

✓
w0 � 1

2
(w � �w0)vol(S2)

◆
^ Ĵ

+

✓
v0 � 1

2
(v � �v0)vol(S2)

◆
^ vol(CY2). (5.10)

Given the form of this expression it might be tempting to interpret a shift in v0 as coincident

D8–D6 and D4–D2 bound states — however such configurations fail to obey the calibration

condition discussed in the previous section at generic points along the interval — so cannot

be used to glue solutions together without breaking supersymmetry.20 Shifts in w0 on

the other hand are di�erent and give rise to something new. To interpret it consider

the following: if we take a D8–D6 brane defect wrapping CY2 =T4, we can express Ĵ =

dx1^dx2+dx3^dx4 with xi the directions on T4 which are all isometries. If one T-dualises

such an object on both (x1, x2) it would generate the part of �
�
w0� 1

2(w��w0�vol(S2)
�
^ Ĵ

with legs in (x1, x2) — this is a D6–D4 brane wrapping AdS3⇥S2 and (x3, x4) which is

smeared on (x1, x2). If instead one T-dualised the D8–D6 bound state on (x3, x4), the

part of the previous expression with legs in (x1, x2) would be generated, which should

be interpreted as a D6–D4 wrapping (x1, x2) and smeared on (x3, x4). To generate the

entire w dependent term in (5.10) then, one should have both of these smeared D6–D4s

simultaneously. Generalising to generic CY2, a shift in w0 gives rise to a D6–D4 bound

state that wraps a curve in CY2 and are smeared on its co-cycle and another D6–D4 that is

on smeared and wraps the opposite cycles. The Bianchi identities of each bound state are

essentially the same as the D4–D2 of the previous section, only this time pulled back onto

the relevant curve rather than the entire of CY2 — they are solved as before with world

volume gauge field 4�f̃2 = �0vol(S2) and D6 brane charge proportional to �w0 across the

defect. Finally, it is not hard to establish that each of the D6–D4 bounds states are indeed

calibrated at generic points in the space.

We have now established that D6–D4 defect branes can be placed at generic points

along the interval of the AdS3⇥S2⇥CY2 foliation of section 4.4. It would be interesting

20They do obey the calibration condition when w = v, where the metric blows up, so they still cannot be

interpreted as defect branes, like in the previous section.
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to explore what global solutions may be constructed by glueing the local solutions already

found together with these defects. We leave that for future work.

In the next and final section we summarise this work and discuss some future directions.

6 Summary and future directions

In this paper we have found two classes of warped AdS3 ⇥ S2 ⇥M5 solutions in massive

IIA that preserve small N = (4, 0) supersymmetry in terms of an SU(2) structure on M5.

These classes are exhaustive for solutions of this type when one assumes that the associated

spinors on S2 ⇥M5 have equal norm, a requirement for non vanishing Romans mass. For

class I M5 decomposes as CY2 ⇥ R and we are able to give explicit local expressions for

the metric and fluxes up to simple Laplace like PDEs. This class contains a generalisation

of the flat space system of D4s inside the world volume of D8s contained in [55], with flat

space replaced by AdS3 ⇥ S2 ⇥CY2 ⇥R. For class II we find M5 = M4 ⇥R where M4 is a

class of warped Kahler manifolds with metrics that depend on the interval.

Performing T duality on the IIA classes, we find new classes of solutions in IIB that,

modulo SL(2, R) transformations, exhaust N = (4, 0) solutions of the type AdS3⇥S3⇥M4,

with M4 an SU(2) structure manifold. The first is a generalisation of the near horizon limit

of D1–D5 branes [4], where the S3 becomes fibered over CY2 and D5 branes are backreacted

on top of this. It is possible to turn o� the fibre and then realise the resulting system as

a near horizon limit with a modification of the D1–D5 intersection. The second class of

IIB solutions is a generalisation of D3 branes wrapped on a curve inside the base of an

elliptically fibered CY3 [28]. The generalisation depends on the same necessary geometric

conditions as [28], but has an additional parameter turned on which is related to the charge

of 5-branes, absent in the original construction, which tunes the 3-forms to zero.

In sections 3.4 and 4.4, we have found several new local solutions in massive IIA that

are foliations of AdS3 ⇥ S2 ⇥ CY2 over an interval, bounded between a variety of D brane

and O plane behaviours. Then in section 5 we show how these may be used as the building

blocks of infinite families of global solutions. These utilise defect branes to glue the various

local solutions together in the vein of [54]. We will explore some possible global solutions

containing defect branes and their holographic interpretation in [62, 67].

An interesting open problem that our classification of (0,4) supersymmetric solutions

leaves is the identification of their 2d dual CFTs. On the other hand, as stressed in the

introduction, there are large classes of 2d (0,4) linear quivers, such as the ones constructed

in [23, 24, 26, 30], which lack a holographic description. In [62] we will partially fill this gap,

and provide the explicit connection between AdS3 ⇥ S2 solutions in class I with compact

CY2 and 4d (0,4) quivers.

Another interesting avenue to explore as a consequence of this work is the connection

between our solutions and the AdS7 solutions to massive IIA constructed in [54], in particu-

lar whether a generalisation to AdS3 solutions exists of the flows constructed in [65, 66, 69].

We will report progress in this direction in [67, 68].
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A Spinors and bi spinors on S2 and M5

In this appendix we provide details of the spinors and bi spinors on S2 to supplement

section 2.2. Specifically when deriving the 7 dimensional bi spinors (2.23) from (2.21),

it is useful to know the 2 and 5 dimensional bi spinors on S2 and M5, which (2.23) will

decompose in terms of. In fact given our decomposition of the gamma matrices (2.7), a

bi spinor constructed out of tensor products of spinors in 2 and 5 dimensions (�i and �i

respectively) necessarily decomposes as
⇥
�1 ⌦ �1

⇤
⌦

⇥
�2 ⌦ �2

⇤†
= (�1 ⌦ �2†)+ ^ (�1 ⌦ �2†) + (�1 ⌦ �2†)� ^ (�3�

1 ⌦ �2†) (A.1)

where ± denotes the even/odd degree components of a form only, which can be repeatedly

used when computing (2.23) — and proves that it is built from bi spinors in 2 and 5

dimensions.

In the next section we present details of spinors and bi spinors on unit norm S2.

A.1 Spinors and bi spinors on S2

There are two types of Killing spinor on unit radius S2, �±, that are solutions to the Killing

spinor equations

ra�± = ± i

2
�a�±, a = 1, 2, (A.2)

where we take the first 2 Pauli matrices as two dimensional gamma matrices. Unlike the

�± equivalents on S3, these are not really independent and in fact one can take �� = �3�+
without loss of generality. We identify �+ = � in the main text, and one has in general

that both � and �3� transform in the same fashion under the SU(2) global symmetry on

S2. The bi spinors that follow from �, under the assumption they have unit norm, are [43],

� ⌦ �† =
1

2
(1 + k3 � iy3vol(S2)), � ⌦ �c† = �1

2
(k1 + ik2 � i(y1 + iy2)vol(S2)),

�3� ⌦ �† =
1

2
(y3 + idy3 � ivol(S2)), �3� ⌦ �c† = �1

2
(y1 + iy2 � id(y1 + iy2)), (A.3)
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where yi are coordinates embedding S2 into R3 and Ki are one forms dual to the Killing

vectors of SU(2), which may be parameterised as

Ki = �ijkyjdyk. (A.4)

Note that (A.3) are spanned entirely by the (yi, dyi, Ki, yivol(S2)) which transform as SU(2)

triplets, and vol(S2), that is an SU(2) singlet. These form a closed set under the action of

d and wedge product, namely

dyi ^ vol(S2) = Ki ^ vol(S2) = 0, dKi = 2yivol(S2) (A.5)

as well as the more obvious relations. We use this fact to reduce the 7d conditions that

follow from inserting (2.29a)–(2.29b) into (2.25a)–(2.25c) to a set of 5d conditions no longer

involving S2, (2.32a)–(2.35).

In the next section we give details on the bi spinors in 5d.

A.2 Spinors and bi spinors on M5

In (2.22) we decompose the independent 5d spinors appearing in (2.21) in terms of a single

unit norm spinor in 5d, �. The bi-linears that follow from � are given in [65], and read:

� ⌦ �† =
1

4
(1 + V ) ^ e�ij3 , � ⌦ �c† =

1

4
(1 + V ) ^ �,

� = w ^ u, j3 =
i

2
(w ^ w + u ^ u), (A.6)

where

v, w1 = Rew, w2 = Imw u1 = Reu, u2 = Imu (A.7)

defines a vielbein in five dimensions. It then follows that if one decomposes

� = j1 + ij2, (A.8)

we have

ja ^ jb =
1

2
�abvol(M4) (A.9)

where V ^ vol(M4) is the volume form in 5d.
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[24] B. Haghighat, C. Kozçaz, G. Lockhart and C. Vafa, Orbifolds of M-strings,

Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].

[25] J. Kim, S. Kim and K. Lee, Little strings and T-duality, JHEP 02 (2016) 170

[arXiv:1503.07277] [INSPIRE].

[26] A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d String Chains,

JHEP 02 (2018) 143 [arXiv:1504.04614] [INSPIRE].
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T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406]

[INSPIRE].

– 41 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
9
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1 Introduction and summary

Two dimensional superconformal algebras come in a wide variety of di�erent types [1] which
should be contrasted with their higher dimensional counterparts. The classification and
construction of supersymmetric AdS3 string vacua realising these algebras1 is a rich topic
that is still mostly unknown. This is unfortunate because such solutions have rather broad
applications with relevance to the AdS3/CFT2 correspondence, duals to surface defects
in higher dimensional SCFTs and the near horizons of black strings. A particular case of
some importance are small N = (4, 0) AdS3 vacua in 10 dimensions. The construction and
classification of these is the focus of this work. See [3–20] for related small N = (4, 0) work2
and [21–37] for some works realising other algebras.

1The algebras that can be embedded into d = 10/11 supergravity are classified in [2].
2AdS2 with small N = (4, 0) was also considered in [38–43].
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The small N = (4, 0) algebra is su(1, 1|2)/u(1) which has an SU(2) R-symmetry and
comes equipped with a multiplet of supercurrents in the 2 � 2̄ representation of this group.
To construct an AdS3 solution realising this algebra it is necessary that its internal space M7
realises the R-symmetry. Specifically the bosonic supergravity fields should be SU(2) singlets
while the internal spinors should transform in the 2 � 2̄. This leads quite naturally to M7
being a foliation of a 2-sphere over some M5, which can be fibered over the S2 provided SU(2)
is preserved. In this work we shall assume M7 = S2�M5 is warped product which enables
us to use a set of general SU(2) spinors already constructed on this space in [10]. Under
mild assumptions3 IIA solution on this space with M5 supporting an SU(2)-structure were
completely classified in [10], leading to an interesting proposal for a particular AdS3/CFT2
correspondence in [11–13]. A main goal of this work is to move beyond SU(2)-structure and
consider more generic classes of solutions where M5 supports an identity-structure, with a
view towards similar AdS3/CFT2 applications.

Generalising from SU(2) to Identity-structure significantly complicates matters, the
reason is many of the at least 1

4 BPS superconformal algebras contain an R-symmetry for
which SU(2) is a subgroup — the most obvious being the large N = (4, 0) algebra which
contains two copies of the small algebra. It just so happens that these other algebras are
inconsistent with the assumption of SU(2)-structure — for Identity-structure this is no
longer the case. Rather than attempting to brute force ones way through the classification
of all warped AdS3� S2 solutions, it would be beneficial to have some way to identify
exactly what algebra a class of solution is realising before descending down a rabbit hole of
computation. Another main motivation of this work is to provide precisely such a tool.

The lay out of the paper is as follows: in section 2 we spell out how we realise small
N = (4, 0) supersymmetry for warped AdS3 solutions of type II supergravity. We begin in
section 2.1 by reviewing the necessary geometric conditions for N = (1, 0) supersymmetric
AdS3 [29]. In section 2.2 we explain how this may be used as a stepping stone to construct
solutions with at least small N = (4, 0) supersymmetry. We also give details of the ansatz we
are taking, namely that the internal space decomposes as a foliation of the round S2 over M5,
and construct general spinors on this space spinors consistent with an SU(2) R-symmetry —
generically these give rise to an identity-structure on M5. This section is supplemented by
appendices A and B where we derive totally general geometric conditions on M5 that imply
N = (4, 0) supersymmetry. In general these conditions are rather unwieldy, so in section 2.3
we introduce a new method to aid in the construction of AdS3 solutions with extended
supersymmetry: we introduce a matrix bilinear of Killing vectors which the spinors of
an AdS3 solution with at least N = (2, 0) supersymmetry are necessarily charged under.
This allows us to identify several things about a class of solutions a priori, first it makes
clear under what conditions S2 will experience an enhancement to S3, second it tells us
how many a priori isometries (0, 1, 2, 3) supersymmetry demands M5 must contain, third it
establishes exactly which algebra is being realised. We decide to focus specifically on the
classes that realise exactly small N = (4, 0) rather than large N = (4, 0) or some other
more supersymmetric algebra. We also focus on the cases where S2 is not enhanced to S3

3Consistency with a non trivial Romans mass and the presence of simple D brane and O plane sources.
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because all such solutions can be generated with string dualities from solutions with round
2-spheres. We prove this in section 2.4 where we also comment on the generality, modulo
duality, of assuming that the S2 realising the required SU(2) R-symmetry does not appear
with additional U(1) isometries fibred over it as it could generically.

Finding all classes of solution on AdS3�S2�M5 preserving small N = (4, 0) super-
symmetry is a significant undertaking. We begin this process in section 3, by classifying
solutions for which supersymmetry imposes no a priori isometries in M5, as modulo duality
these likely represent the most general classes. We leave the classification of solutions with
1–3 isometries in M5 for future work. It turns out that imposing no a priori isometries in
IIA restricts the ansatz to SU(2)-structure, already considered in [10], as such the focus of
the rest of this work will be on type IIB where M5 necessarily supports an identity-structure.
The conditions for supersymmetry in appendix B truncate considerably, and we are able to
establish that there are 2 classes of solution: for class I (section 3.2) the Bianchi identity of
the RR 1-form is implied by supersymmetry while for class II (section 3.3) it is not, making
only the latter compatible with co-dimension 2 sources (D7 branes etc).

We reduce the conditions for the existence of solutions in these classes to locally
expressions for the supergravity fields and a set of PDEs which imply supersymmetry and
the type IIB equations of motion. As this is an involved process, we begin by classifying
a sub-class of class I in section 3.1, which is simple enough for us to explicitly explain
the methods we apply more broadly. Once the Bianchi identities are also considered this
sub-class branches into 2 cases i) D5 branes ending on NS5 branes both wrapping AdS3�
S2, ii) The T-dual of a IIA solution with a round 3-sphere. We then study class I in full
generality in section 3.2, where the Bianchi identities no longer impose an obvious branching
of solutions generically. Clearly the general class is more complicated, however the governing
PDEs are still reminiscent of intersecting brane scenarios. We take the T-dual of a sub-case
that yields a now squashed and fibred 3-sphere IIA class in section 3.2.1 which significantly
generalises a class of solutions found in [17].

In section 3.3 we derive the second class of solutions with no a priori isometry in M5.
This class turns out to be significantly more involved, leading to a rather intimidating set
of governing PDEs. Experience suggests to us that this indicates the class contains many
physically distinct cases, and also that there are likely better local coordinates to express
the system in terms of, at least once restrictions are made. We consider one such restriction
in section 3.3.1 — that the metric is diagonal. In terms of a new set of coordinates we
find two cases i) A deformed D5-NS5 brane intersection T-dual to a squashed and fibered
3-sphere. ii) A case with no necessary isometry governed by a system of PDEs generalising
the D8-NS5-D6 Mink6 system of [50], albeit this case is in IIB and with D7-NS5-D5 branes
extended in AdS3� S2.

Although we do not consider this here, the classification of solutions with no a priori
isometry in M5 should also be supplemented by the classification of solution with at least 1
isometry: ultimately although supersymmetry does not, the Bianchi identities of the fluxes
impose an isometry in M5 in several of the cases we consider. It is possible that such cases
are restrictions of more general classes of solution where supersymmetry does indeed impose
an isometry. Also it is entirely possible that one needs to consider such classes to capture
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the T-dual of every round 3-sphere class. We shall return to these issues in [52], where we
shall also populate the classes of solution we find here.

2 Realising small N = (4, 0)

In this section we illiterate how classes of AdS3 solutions in type II supergravity realising
N = (4, 0) can be constructed. We begin by reviewing some features of supersymmetric
AdS3 in general in section 2.1. In section 2.2 we find the general form of N = (4, 0) spinors
on warped AdS3� S2�M5 that transform in 2 � 2 of SU(2) and are also consistent with
physical fields that are SU(2) singlets. In section 2.3 we introduce a method to analysis
the isometry structure the spinors an AdS3 solution imply, allowing us to focus on small
N = (4, 0) classes specifically. Finally in section 2.4 we explore the generality of the AdS3�
S2�M5 ansatz we make throughout this section. We comment on what happens when we
allow M5 to be fibred over S2, and identify exactly what is not contained in our ansatz
modulo duality.

2.1 Supersymmetric AdS3 in type II supergravity
We are interested in supersymmetric AdS3 solutions of type II supergravity. As such we
restrict our attention to solutions for which the bosonic fields decompose as

ds2 = e2Ads2(AdS3)+ds2(M7), H10 = cvol(AdS3)+H, F10 = f±+e3A(AdS3)��7�(f±),
(2.1)

where in IIA f+ = f0 + f2 + f4 + f6 or IIB f� = f1 + f3 + f5 + f7 is the magnetic part of
the RR poly form F10, H10 is the NS 3-form and �Xn = (�1)[n2 ]Xn for any n-form. The
fields (eA, f±,H3) and the dilaton Φ have support on M7 only and c is a constant. The RR
fluxes should obey dF10 = H � F10 away from sources, necessitating

dHf± = 0, dH(e3A �7 �(f±)) = cf±, (2.2)

in regular parts of a solution, where we define the twisted derivative dH = d � H�. An
immediate consequence is that in IIA cf0 = 0 in general, so either the NS 3-form is purely
magnetic, or there is no Romans mass. In IIB one can always exploit SL(2,R) duality to
move to a duality frame with c = 0. In either IIA or IIB if we assume only space-time
filling sources, the magnetic flux Bianchi identity gets modified in their presence but the
electric one does not: taking dH of the later then implies that for c �= 0, a RR source is
only possible when an NS sources is also present at its loci — ie there can be no simple
D brane or O plane sources when c �= 0, only more exotic objects composite objects. For
these reasons we shall fix

c = 0, (2.3)
where more general solutions can be generated via duality, or, when they are in IIA, would
be better studied from a d=11 perspective.

When an AdS3 solutions preserve at least N = (1, 0) supersymmetry it may be defined
in terms of two real bi-spinors Ψ± [29], themselves defined in terms of two d = 7 Majorana
spinors �1,2 as

Ψ+ + iΨ� = �1 � �†2, (2.4)
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the r.h.s. of this expression is defined in (B.3). These bi-spinors are related to the supergravity
fields by the geometric conditions4

dH(eA��Ψ�) = 0, (2.5a)

dH(e2A��Ψ±) � 2meA��Ψ� = e3A

8 �7 �(f±), (2.5b)

(Ψ�, f±)7 = �m

2 e
��vol(M7), (2.5c)

where ± should be taken in IIA/IIB, we share the conventions of [33] and |�1|2 = |�2|2 = eA.
These condition are necessary and su�cient for supersymmetry, but not to have a solution
of type II supergravity in general, for that one needs to also impose the RR and NS flux
Bianchi identities and that, if sources are present, they have a supersymmetric embedding
— the remaining EOM are then implied.

2.2 An ansatz for at least small N = (4, 0) supersymmetry
To have N = (4, 0) supersymmetry we must have 4 independent sets of Majorana spinors
on the internal space (�I1,�I2) for I = 1, . . . , 4, that each solve (2.5a)–(2.5c) for the same
bosonic fields, ie the same metric, dilaton and fluxes. To realise small N = (4, 0) specifically
it is necessary that �I1,2 transform in the 2 � 2 representation of SU(2), the R-symmetry of
the small N = (4, 0) — the bosonic fields should be singlets under its action. This means
that for Ki, i = 1, 2, 3, the SU(2) Killing vectors we must have

LKi�
I
1,2 = i

2(Σi)IJ�J1,2, LKi(A,Φ, g(M7), f,H3) = 0, (2.6)

where i
2Σi span the 2 � 2 of su(2). This provides a map between each of the 4 N = 1

sub-sectors of (�I1,�I2), and one can show that if a single one of these solves a set of su�cient
conditions for N = 1 supersymmetry the other 3 also necessarily solve these conditions [34].
The non trivial part is constructing a set of spinors such that (2.6) holds.

Given that we need an SU(2) R-symmetry it should not be hard to convince oneself
that M7 needs to decompose in terms of a 2-sphere and some 5 manifold M5. The 2-sphere
could be the round one, or M5 could be fibered over it such that SU(2) is preserved. We
will make the ansatz that this 2-sphere is the round one, and discuss the generality of this
assumption in section 2.4. We shall thus refine (2.1) in terms of a unit radius 2-sphere as

ds2(M7) = e2Cds2(S2)+ds2(M5), H = e2CH1�vol(S2)+H3, f+ = g1±+e2Cg2±�vol(S2),
(2.7)

where (eA, eC ,Φ, g1, g2,H1,H3) have support on M5 alone which does not depend on the
S2 coordinates. A general set of Majorana SU(2) spinors transforming in the 2 � 2 were
already derived on this geometry in [10], they are

�I1 = e
A
2�
2
(MI)��

�
�� � ��

11 + i�3�� � ��
12

�
, �I2 = e

A
2�
2
(MI)��

�
�� � ��

21 + i�3�� � ��
22

�
,

(2.8)
4These conditions hold for c = 0, the general conditions were only recently derived in [36].
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where MI = (�2�1,�2�2,�2�3,�i�2)I . Here ��,�3�� are independent SU(2) doublets of
Killing spinors on S2 (see appendix B.2) and ��

ij are two component vectors with spinorial
entries: specifically there are 4 independent spinors on M5 namely �11, �12, �21, �22 and
��
ij depend on these and their Majorana conjugates �cij (see appendix B.1). The specific

representation appearing in (2.6) for these spinors is

Σi = (�2 � �1, � �2 � �3, I � �)i, (2.9)

which one can confirm is equivalent to the 2 � 2. In what follows we shall take our N = 1
sub-sector to be

�1 = �2
1, �2 = �2

2 (2.10)

Inserting (2.10) into the supersymmetry conditions (2.5a)–(2.5c) leads to a set of 5d bi-linear
constraints that we derive in appendix B resulting in a su�cient but highly degenerate
system of constraints (B.15a)–(B.18) for IIA and (B.20a)–(B.23) in IIB. These conditions
are rather crude, and the main purpose of this and the next section is to refine them. First
using (2.10) to compute |�1,2|2 it becomes apparent they generically depend on the SU(2)
embedding coordinates yi, which are SU(2) triplets. Fixing |�1,2|2 = eA as supersymmetry
demands requires that we impose

�c†12�11 = Im
�
�†12�11

�
= �c†22�21 = Im

�
�†22�21

�
= 0,

|�11|2 + |�12|2 = |�21|2 + |�22|2 = 1. (2.11)

In order to solve these it is helpful to decompose the spinors in a common basis in terms of
a single unit norm spinor �. Such a 5d spinor defines an SU(2)-structure in 5d as

� � �† = 1
4 (1 + V ) � e�iJ , � � �c† = 1

4(1 + V ) � Ω, (2.12)

where J is a (1,1)-form and Ω as (3,0)-form, they are defined on the sub-manifold M4 � M5
orthogonal to the real 1-form V , and obey

J3 = 3i
4 Ω � Ω, J � Ω = 0. (2.13)

This leads to a natural decomposition of the internal 5-manifold as

ds2(M5) = V 2 + ds2(M4). (2.14)

We can decompose a generic spinor �̃ in terms of �, a holomorphic 1-form on M4 Z and
some complex functions p1, p2, p3 as

�̃ = p1� + p2�c + |p3|
2 Z�, Z� = 0. (2.15)

Using these facts, and after a lengthy calculation one can show that a set of general 5d
spinors solving (2.11) are given by

�11 = sin
�

�1 + �2
2

�
�, �12 = cos

�
�1 + �2

2

� �
cos�1 + sin �1

1
2Z1

�
�

�21 = sin
�

�1 � �2
2

�
�1, �22 = cos

�
�1 � �2

2

�
(cos�2�1 + sin �2 (d1�2 + d2�c2)) (2.16)
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where

�1 =
�
1 � c2(a� + b�c) + c

2Z2�, �2 = c
�
a� + b�c

� �
�
1 � c2

1
2Z2�. (2.17)

Here we have to introduce two generic holomorphic 1-forms Z1, Z2, several real functions of
M5 (�1,2,�1,2, c) for |c| � 1 and some complex ones constrained as

|a|2 + |b|2 = |d1|2 + |d2|2 = 1. (2.18)

We can assume that �11 never vanishes without loss of generality, but the other spinors
contain some redundancy when certain parts of the other spinors are turned o�. For instance
when c = 1 we can fix (d1 = |d1|, d2 = 0) without loss of generality, while when �12 = 0
we may also fix �2 = 0 without further cost. The presence of (Z1, Z2) in (2.16) indicates
that M4 generically supports an identity-structure, however when (c = 0 = �1 = �2 = 0)
the 1-forms drop out and this becomes an SU(2)-structure- in IIA this case was already
completely classified in [10]. Generically (Z1, Z2) are neither parallel nor orthogonal, rather
in general they may be used to define 2 complex functions (z, z̃) as

z = 1
2 �Z1

Z2, z̃ = 1
4 �Z1

�Z2
Ω, |z|2 + |z̃|2 = 1, (2.19)

which vanish when the 1-forms are respectively orthogonal and parallel. Only when z = 0
do (Z1, Z2) define a vielbein on M4, otherwise one can assume that (Z1,

1
2 �Z1Ω) do with out

loss of generality with Z2 defined along each of these. At this point one can proceed to try
to solve d = 5 supersymmetry conditions derived in the appendix B. A first import thing to
note is that these contain several algebraic constraints: in IIA (B.15a)–(B.18) imply the
following conditions

�c†21�11 = �c†22�12, Im(�†21�11) = Im(�†22�12),
(1 + 2meC�A)�c†22�11 = (1 � 2meC�A)�c†21�12,

(1 + 2meC�A)Im(�†22�11) = (1 � 2meC�A)Im(�†21�12).
(2.20)

In IIB on the other hand (B.20a)–(B.23) imply

�c†22�11 = �c†21�12, Im(�†22�11) = Im(�†21�12),
(1 +meC�A)�†21�11 = (1 � meC�A)�†22�12,

(1 +meC�A)Im(�c†21�11) = (1 � meC�A)Im(�c†22�12).
(2.21)

Unfortunately plugging our spinor ansatz into the IIA or IIB algebraic conditions leads to a
lot of branching possibilities, and the constraints are rather intractable in general — though
progress can be made making assumptions. Rather than attempting a brute force approach
it would be beneficial to have some additional guiding principle. Here it is opportune to
make one point clear: there are rather a lot of superconformal algebras consistent with
AdS3, and many of those preserving at least 8 chiral super charges can admit solutions
consistent with the ansatz taken so far. It makes sense to attempt to zoom in on those
preserving the small algebra specifically, that is what we seek after all. Additionally what

– 7 –



J
H
E
P
0
4
(
2
0
2
2
)
1
4
3

remains would be better tackled with a more specialised ansatz. For example, large N = 4
is consistent with the ansatz taken thus far, but for that we know M5 must contain a 2 or
3-sphere and it simplify matters to assume its presence from the start.

In the next section we shall narrow our focus to solutions that specifically realise the
small N = (4, 0) algebra rather than something larger.

2.3 Isolating the small algebra and a priori isometries in M5

In this section we introduce a method to restrict the internal spinors of an AdS3 solution
with extended supersymmetry to those that realise a particular superconformal algebra, in
this case small N = (4, 0), though let us stress that this technique could be applied to any
algebra with at least N = (2, 0) extended supersymmetry.

In [44] generic supersymmetric solutions of type II supergravity are classified, one of
their findings is that supersymmetry implies that the following d = 10 bi-linear

K(10) = 1
64(�1ΓM �1 + �1ΓM �1)�M , (2.22)

is a Killing vector with respect to all the bosonic fields. Additionally the d = 10 Majorana
Weyl spinors �1,2 are singlets with respect to it. Taking an N = (2, 0) AdS3 spinor ansatz
for �1,2 involving two sets of d = 7 spinors (�1

1,2,�
2
1,2) it then necessarily follows that

K(N=2) = �i(�1
1(�(7))a�2

1 � �1
2(�(7))a�2

2)�a, a = 1, . . . , 7 (2.23)

defines a Killing vector on the internal space under which (�1
1,2,�

2
1,2) are charged and the

bosonic fields are singlets. The computation is similar to that appearing in [45], and will
appear for the AdS3 case in [46]. For a set of N = (n, 0) spinors one can define n

2 (n � 1)
such N = (2, 0) sub-sectors, so it follows that

KIJ = �i(�I†1 (�(7))a�J1 � �I†2 (�(7))a�J2 )�a, (2.24)

defines an antisymmetric matrix of Killing vectors under which the bosonic fields are singlets,
and �I1,2 are charged. The entries of KIJ (modulo antisymmetry) are not however necessarily
independent.5 It is thus natural to identify KIJ with the Killing vectors associated to the
R-symmetry, this is almost correct, but generically KIJ could be a linear combination of
these and a number of flavour isometries.

We shall now turn our attention to our N = (4, 0) spinors (2.8). For these (2.24) must
decompose in terms of vector bi-linears on S2 and M5, one can show that the former are

��†�� = ��� , ��†�3�� = �yi(�i)�� ,

��†�µ2 ���µ = (ki)µ�µ(�i)�� , ��†�µ2 �3���µ = �i(dyi)µ�µ(�i)�� ,

where �µ2 are curved 2d gamma matrices, Ki = �ijkdyjyk are the 1-forms dual to the SU(2)
Killing vectors on S2 and yi are unit norm embedding coordinates. The relevant 5d bi-linears

5If it is not clear this is not a weakness: small N = (4, 0) comes with 3 independent Killing vectors, a
generic antisymmetric 4 � 4 matrix 6 independent components, so we need half of them to be dependent in
this case.
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can be expressed in terms of the following 0 and 1-form bi-linears

F1 = 2eA�C
�
�†12�11 � �†22�21

�
,

F2 = eA�C
�
|�11|2 � |�12|2 �

�
|�21|2 � |�22|2

��
,

V = eA
�
�†11�a�11 + �†12�a�12 �

�
�†21�a�21 + �†22�a�22

��
ea, (2.25)

Ui = 2eA
�
Re

�
�c†11�a�12 � �c†21�a�22

�
ea , Im

�
�c†11�a�12 � �c†21�a�22

�
ea ,

Im
�
�†11�a�12 � �†21�a�22

�
ea

�
i
, (2.26)

where a is a flat index on M5. Equipped with these definitions we find for our ansatz
that (2.24) becomes

KIJ = 2
�

� yiVa�a + F1 (dyi)µ �µ + F2 (Ki)µ �µ

� �
i

2Σ
i
�IJ

+ 2Uai �a

�
i

2 Σ̃
i
�IJ

, (2.27)

where Σ̃i = (�2 � I, �1 � �2, �3 � �2)i is another SU(2) representation. Clearly that this
object should be Killing imposes some constraints, as (Ki)µ are the Killing vectors on the
2-sphere one might imagine that we should arrange for all the rest of the terms to vanish.
However, the ansatz we take is consistent with S2 becoming enhanced to a round 3-sphere as

e2Cds2(S2) + ds2(M5) = e2C
�
d�2 + sin2 �ds2(S2)

�
+ ds2(M̃4). (2.28)

When this is the case both (Ki)µ�µ and

K̃i = yi�� + cot �(dyi)µ�µ, (2.29)

are SU(2) Killing vectors of respectively the anti-diagonal and diagonal SU(2) subgroups
of SO(4) = SU(2)L�SU(2)R. As such when S2 � S3, the R-symmetry Killing vectors are
(Ki)µ�µ + K̃i. None the less we shall impose

V = F1 = 0, F2 = constant �= 0, (2.30)

by doing so we are excluding the possibility of round 3-sphere solutions. The reasons for
doing this are the following: first solutions with a round S3 can be mapped to those with a
round S2 via duality, as we explain in more detail in section 2.4 — so all AdS3�S3 solutions
can be generated from a full classification of AdS3�S2 solutions. Second a main benefit of
AdS3�S3 vacua is that they can support N = (4, 4) supersymmetry. However we are blind
to this using the chiral N = (1, 0) conditions of (2.5a)–(2.5c). The N = (1, 1) conditions
of [36] are better suited to addressing this, as such we leave a study of N = (4, 4) AdS3�S3

for future work and focus on solutions satisfying (2.30).
The final term Uai �a is a bit more subtle, it is not charged under the SU(2) of S2 but it

still generically defines a 3 Killing vectors, this time in M5. Let us stress however that Uai �a
need not span all isometries in M5 just the number of a priori isometries supersymmetry
demands, more may get imposed by the Bianchi identities or one could choose to impose
additional isometries in a more general class. When the d = 5 spinors are not charged under
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Uai �a, the solution still preserves the small N = (4, 0) algebra. If the 5d spinors are charged
under Uai �a then the algebra experiences some enhancement: for example, if these Killing
vectors span a 3-sphere then the ansatz becomes consistent with large N = (4, 0) on S2�S3.
For small (4, 0) specifically then we should impose that Uai �a are flavour isometries, but
not that they should be zero in general. Instead one should be able to construct several
di�erent types of solution classes, distinguished by the number of a priori isometries M5
necessarily comes equipped with (ie 0,1,2,3). That these should be uncharged isometries
means that one is free to T-dualise on them: this suggests that one can generate much of
what is contained in the small N = (4, 0) classes with a priori isometries from the classes
with no such isometries via duality.

2.4 On the generality of the round S2 ansatz modulo duality

In this section we shall comment on the generality of the ansatz we have made thus far. In
particular we shall illustrate how much of what is omitted by the round 2-sphere ansatz we
have made can actually be generated with duality starting from a round S2 classification of
both IIA and IIB.

In (2.7) we have made the assumption that the SU(2) R-symmetry is realised by a
round S2. Generically one could look for solutions where M5 is fibered over the S2 such
that SU(2) is preserved. However the SU(2) of the 2-sphere is only lifted to an isometry of
this full space if the connection 1-forms that mediate this transform as gauge fields with
respect to SU(2) [34]. As we also need spinors transforming in the 2 � 2 this restricts the
additional possibilities to M7 containing a torus fibration over S2 with spinors that are
singlets under of the U(1)s of the torus,6 ie the metric must decompose as

ds2 (M7) =
1
4

�
�

n�

q=1
e2CqD�2

q + e2Cds2
�
S2

�
�
� + ds2 (M5�n) ,

D�q = (d�q � � +Aq) , d� = vol
�
S2

�
,

(2.31)

where (eA, eCq , eC ,Φ,Aq) depend on M5�n only and the fluxes may only depend on the Tn

and S2 directions via (D�q, vol(S2)) only. We would now like to establish when a solution
of this type can be generated from a round 2-sphere solution by duality. For simplicity let
us just assume that n = 1 so that we have simply an SU(2)�U(1) squashed 3-sphere. The
case of generic n works analogously, one simply needs to apply T-duality more times. Such
solutions may be distinguished by the form the NS 3-form takes, in general this can depend
on the SU(2)�U(1) invariants as

H3 = h0D� � vol(S2) +D� � H2 + e2C2H1 � vol(S2) + H̃3 (2.32)

where h0 is a constant. Since �� should be a flavour isometry one is free to T-dualise on it
without breaking the (4, 0) supersymmetry. When h0 = 0 this maps a solution in IIA/IIB

6To be more precise we mean the N = (4, 0) spinors, a geometry might also support additional spinors
charged under one or more of the U(1)s, but they would need to be (0, n) spinors that are singlets of SU(2).
Thus they are auxiliary to this argument.
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to IIB/IIA with a round 2-sphere. When h0 �= 0 T-duality maps one between solutions
with squashed 3-spheres and non trivial h0. However, in the IIA duality frame of such a
solution, we must have that the magnetic RR 2-form decomposes as

f2 = g̃0vol(S2) + g̃1 � D� + g̃2, (2.33)

none of which give rise to D� � vol(S2) under d. Thus similar to our discussion below (2.2),
the Bianchi identity of the RR 2-form imposes

f0h0 = 0. (2.34)

If we take f0 = 0 we can lift this solution to d = 11. Generically such a solution would
have a T2 (spanned by � and the M-theory circle) fibered over S2, but if (g̃0 = 0, g̃1 = 0)
the M-theory circle is not fibered over the S2, so if we reduce back to IIA now on � we
arrive at a round S2 in IIA. Note in particular that this means that all solutions with a
round S3 can be mapped by duality to solutions in type II with a round S2 justifying our
assumption (2.30). More generally one can cover almost all small N = (4, 0) solutions of
type II supergravity modulo duality, by considering a round S2 in each of IIA and IIB, what
remains is rather constrained and could be studied modulo duality from an 11d perspective.

In the next section we shall classify AdS3�S2 solutions containing no a priori isome-
try in M5.

3 Classes of solution with no a priori isometry

In this section we classify solutions on AdS3�S2� M5 that preserve small N = (4, 0)
supersymmetry and contain no a priori isometry in M5. As we shall see, only in IIB does
this lead to new classes of solution, specifically 2 distinguished by their compatibility with
D7 brane (like) sources. Class I, for which dF1 = 0 globally, can be found in section 3.2
while class II, for which dF1 = 0 need only hold away from the loci of sources, can be
found in section 3.3. For both classes we reduce the conditions that define the existence of
supersymmetric solutions to local expressions for the supergravity fields and a number of
PDEs. We illiterate the methods we employ to achieve this by deriving a sub-class of class
I in explicit detail in section 3.1. The general classes are rather broad, so we also consider
some restricted cases of interest in sections 3.2.1 and 3.3.1.

In the previous sections we give criteria to classify solutions on AdS3�S2 � M5, namely
we define a set of Killing vector bi-linears (2.27) which can be used to establish when

1. S2 does not experience an enhancement to S3: V = F1 = dF2 = 0

2. M5 contains additional a priori isometries: spanned by independent components of Ui

We reiterate that we discard 3-sphere solutions as they can all be mapped to round 2-sphere
solutions with duality. A class of solutions preserves small N = (4, 0) rather than large
N = (4, 0) or some more supersymmetric algebra when Ui is spanned by flavour isometries
in M5. This is a little tricky to impose on our spinor ansatz a priori, so a practical approach
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is to classify solutions with 0,1,2,3 a priori isometries one at a time. When we simply fix
Ui = 0, there are no a priori isometries in M5 to worry about so solutions certainly preserve
just small N = (4, 0). The focus of the rest of this work will be to classify all such solutions,
leaving Ui �= 0 for future work. We expect that much of what can be derived for the cases of
1, 2, 3 flavour isometries can be generated from classes with no a priori isometry via duality,
though we are not claiming that it all can: for instance the round S2 element of the duality
orbit of some 3-sphere classes may necessitate 1 a priori isometry. None the less classifying
Ui = 0 is a sensible place to start as, mod duality, these are likely the most general classes
with exactly7 small N = (4, 0).

In both IIA and IIB it is possible to solve both the 2-sphere and no a priori isometry
constraints in general. For IIA, we already know that the SU(2)-structure classes of [10],
contain no a prior isometry in M5. Under the assumption that the functions appearing
in (2.16) are not tuned so as to necessarily reduce the ansatz to SU(2)-structure, it is
possible to show that (2.20), (2.30) and Ui = 0 can be solved as

a = d1 = 1, Z1 = Z2, b = d2 = 0, �2 = 1
2(�1 + �2) =

�

2 ,

c = sin�1 sin �2�
cos�2

2 + sin2 �1 sin2 �2
, d(eA�C sin�1) = 0 (3.1)

and sin�1 �= 0 without loss of generality. Unfortunately this ansatz dies o� very quickly
once the remaining supersymmetry conditions are considered. This can easily be seen from
the 1-form part of (B.15c) which demands that

c cos�1 = 0 (3.2)

for this tuning of the functions of the spinor ansatz. Setting either factor in the above to
zero reduces the spinors to an SU(2)-structure ansatz anyway. Thus under our assumptions
we can conclude that

IIA + no apriori isometry in M5 � SU(2)-structure (3.3)

as these solutions are already classified we shall not comment on them further here.
For our purposes the status of IIB is more promising: it is possible to show that (2.21),

(2.30) and Ui = 0 can be solved without loss of generality as

a = d1 = c = 1, Z1 = Z2 = Z, b = d2 = 0, �1 = �

2 �2 = ��1 = �, d(eA�C cos�) = 0
(3.4)

where cos�2 = cos� �= 0 — note we are dropping the indices on (�2,�1). Unlike IIA this
tuning of the spinor ansatz necessarily yields an identity-structure, and does not collapse once
the rest of the supersymmetry constraints are considered. Plugging the spinors (2.16) for
the tuning (3.4) into (B.20a)–(B.23) one finds that these conditions truncate rather a lot, to
show this we find it convenient to redefine the vielbein on M5 in terms of {U, e1, e2, e3,K} as

ReZ = � cos�K + sin �U, V = cos�U + sin �K,

e1 = �1
2 Im�ZΩ, e2 = 1

2Re�ZΩ, e3 = ImZ, (3.5)

7More correctly at most 8 left chiral supercharges, there could be additional right chiral supercharges.
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with orientation vol(M7) = e2Cvol(S2)�vol(M5) for vol(M5) = U �e123 �K. One then finds
that the IIB avatars of (2.5a)–(2.5b) are implied by the following conditions independent
of the RR fluxes

eC = 1
2meA cos�, 2me2CH1 =�d

�
eA+C cos� sin�

�
�eA (cos�U�cos� sin�K) , (3.6a)

d(eA (cos�U�cos� sin�K) = d
�
e2A�� cos�U �K

�
= 0, (3.6b)

d
�
e�A�C+� sin� sin�

�
�e�A�2C+� sin2 � sin�U = d

�
e2A+C��ei

�
+e2A�� sin�U �ei = 0,

(3.6c)
1
2�ijk

�
d

�
e2A+C��ej �ek�(cos� sin�U+cos�V )

�
+e2A�� cos� sin�ej �ek�U �K

�

= e2A+C��H3 �ei,
d

�
e2A��e123 �(cos�cos�U�sin�K)

�
= e2A�� cos�U �K�H3, (3.6d)

and define the components of the magnetic portions of the RR fluxes that are respectively
orthogonal and parallel to vol(S2) as

e3A+2C �5 �g1+ = d(e3A+2C��(sin�U+cos�cos�K)) (3.7a)
�e3A+2C�� sin�H1 �K+2me2A+2C�� cos� sin�U �K
�d(e3A+2C�� cos�e123)+e3A+2C��(sin�U+cos�cos�K)�H3

+e3A+2C�� cos� sin�H1 �e123+2me2A+2C�� sin�e123 �U,
e3A �5 �g2+ =�d(e3A�� sin�K)+2me2A�� cos�U �K�e3A�� sin�K�H3 (3.7b)

+d(e3A�� cos� sin�e123)+2me2A��e123 �(cos�cos�U�sin�K).

Given these, one can eliminate the flux terms from (2.5c) arriving at a single condition8

�
d

�
e2A cos� cos� sin�

�
� (sin �U + cos� cos�K) (3.8)

� sin (2�)
�
d

�
e2A cos�

�
+meA sin�U

�
� K

�
� e123 = 0.

Of this system of su�cient conditions for supersymmetry, (3.6a) and (3.7a)–(3.7b) just
act as definitions for certain physical fields — it is (3.6b)–(3.6d) and (3.8) that we must
actively solve. To this end one first needs to define local coordinates and a vielbein from
the conditions in (3.6b)–(3.6c), then plug this into the remaining conditions, extracting H3
and PDEs that imply the remaining conditions. Of course this only fixes the local form
of the physical fields up to some PDEs that imply supersymmetry, in addition to solving
these, to actually have a solution we must also solve the Bianchi identities of the NS and
magnetic RR fluxes which imply additional PDEs. The conditions (3.6a)–(3.8) actually
give rise to 2 physically distinct classes; sin � = 0 or not. To establish this one must solve
the supersymmetry conditions under the assumptions that sin � �= 0 and cos� �= 0, one

8Generically (2.5c) decomposes in terms of SU(2) singlet and triplet contributions, but in this case the
latter are implied.
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finds that the Bianchi identity of F1 is implied by supersymmetry in the former case but
not the latter — ie source D7 branes are only possible when sin � = 0. A special limit is
when cos� = 0, though this is part of the more general sin � �= 0 class, in this limit the
PDEs governing the system give rise to a harmonic function constraint common to partially
localised brane intersections [48].

In the next section we give the local form of the class of solution with cos� = 0 turning
our attention to the general case in section 3.2.

3.1 cos � = 0: A sub-class of class I with harmonic function rule
In this section we derive the class of solutions that follows from fixing cos� = 0, we can
set � = �

2 without loss of generality. This is actually a limit of the more general class I
with sin � �= 0 in the next section but classifying that in this limit has value as it gives
is relatively simple class, which the general classes are not. First it serves as a warm up
illustrating how we reduce the supersymmetry constraints and Bianchi identities to physical
fields and PDEs — in the more general classes we use the same methods but give a less
detailed derivation. Second it gives some understanding of the types of solutions that
class I contains.

We begin by noting that the second of (3.6c) implies d(e�C sin�U) = 0. One might
be tempted to use this to define a local coordinate, however this would not be valid when
sin� = 0. In general it implies that we can introduce a function f on M5 and then integrate
the second of (3.6c) as follows

e�C sin�U = d log f � e2A+C��fei = dzi (3.9)

where zi for i = 1, 2, 3 are local coordinates on M5, which fixes 3 components of the vielbein.
We define the final 2 components with (3.6b): we integrate the first of these in terms of a
local coordinate y as

eA cos�K = �dy (3.10)
so that the second condition becomes d(eA��U) � dy. One can show that this can be
integrated in general in terms of a final local coordinate x and � = �(x, y, zi) as

eA��U = dx+ �dy, (3.11)

at which point a set of local coordinates and vielbein on M5 are determined without loss of
generality. Plugging this back into (3.6c) we find first that P = P (x, y), and then

2m tan� = e2A���x log f, d(f�2�xf) = 0, �yf = ��xf. (3.12)

In general these imply cf�1 = x+ g(y) for c a constant, and � = �yg — however we then
have that U � d(x+ g), so up to a change in coordinates we can simply fix

� = 0, f�1 = u(x), u�� = 0, (3.13)

making the metric diagonal. Next we note that the first of (3.6d) wedged with vi is
independent of H3, so gives rise to constraints on the local functions derived thus far: this
and (3.8) respectively imply

�y
�
e2A��

�
= 0, �x

�
e4Au�1 cos2 �

�
= 0, (3.14)
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which together with (3.13) are actually all the PDEs supersymmetry demands that we solve
as shall be come clear momentarily. Supersymmetry also demands that we solve (3.6d)
so to proceed we take a general ansatz for H3 in terms of our local coordinates and 10
functions with support on M5

H3 = H0dz1 �dz2 �dz3 +H0
i dx�dy�dzi+

1
2H

x
i �ijkdx�dzj �dzk+

1
2H

y
i �ijkdy�dzj �dzk.

(3.15)
Inserting this into (3.6d), making use of what has been derived thus far, we find that it
just implies

H0 = 8m3�x

� 1
e8A�2� cos4 �

�
,

H0
i = Hy

i = 0, Hx
i = �2m�zi(e�4A+2�u). (3.16)

What remains to be dealt with is (3.6a) and (3.7a)–(3.7b), which are all just definitions of
physical fields. We do however still need to take the hodge dual of the latter to construct
the magnetic RR fluxes — this is not di�cult as we have an explicit vielbein to work with,
we find

f1 = f7 =0, e2CH1 =� 1
2mdy,

f3 =� 1
4m2

�
e2A�� cos�sin��2mx

�
�vol(S2)+m�ijk�zi

�
u

e4A cos2 �

�
dzj�dzk�dy

�8m3e�4A+2�(u�)2�y(
u

e4A cos2 �
)dz1�dz2�dz3, (3.17)

f5 =
e4A�2�

4m2 cos2 �u2

�
e2A��utan��ijk�zi

�
e�4A+2�u2

�
dzj�dzk�dx

u

e4A cos2 �

�
16m4e�4A+2�u4�8m2e�2A+�u3 tan��x

�
e�4A+2�u

��
dz1�dz2�dz3

�
�vol(S2).

We have now reduced the supersymmetry conditions to definitions of the physical fields and
3 PDEs (3.13)–(3.14), but we still need to solve the Bianchi identities of the fluxes to have
a solution. If we assume only (at least partially) localised sources, away from the loci of
these this amounts to solving dH3 = 0 and dHf� = 0 which must hold in all regular regions
of a solution with or without sources. Our approach to deal with the Bianchi identities
will be to assume we are in a local regular region and reduce the Bianchi identities to a
set of PDES that define the class. For specific solutions one then needs to check whether
this local region can be extended to potential singular loci, ie one must additionally check
that the PDEs give appropriate �-function sources and that these have a supersymmetric
embedding. Away from the loci of sources the Bianchi identities of H3 and f3 impose

�y

�
u

e4A cos2 �

�
�x

�
e�4A+2�u2

�
= 0,

�2
zi

�
e�4A+2�u2

�
+ 4m2 u2

e4A cos2 �
�2
x

�
e�4A+2�u2

�
= 0,

�2
zi

�
u

e4A cos2 �

�
+ 4m2e�4A+2�u2�2

y

�
u

e4A cos2 �

�
= 0 (3.18)
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The first of these is a harmonic function rule that induces a splitting of the class into 2
cases, depending on which factor vanishes. The Bianchi identity for f5 is implied by these
and the supersymmetry conditions. At this point we have reduced the conditions to have a
supersymmetric solution to some PDEs — but we can express the class in a more concise
fashion in terms of some new functions as

P = 4m2u

e4A cos2 �
, G = 4m2e�4A+2�u2, (3.19)

in terms of which (3.14) become simply G = G(x, zi), P = P (y, zi). At this point the
class is defined by just the Bianchi identities. This completes our derivation of the PDEs
governing this class.

In summary the class of solutions in this section has an NS sector of the form

ds2 = 2m

�
�

�

1+ (u�)2
G

�
�

�
u

P
ds2 (AdS3)+

G

4m2�
u

� 1�
Pu

dx2+
�
Pdz2

i

�
+ 1
4m2

�
P

u
dy2

�
�

+ 1

4m2
�
1+ (u�)2

G

�
u

P
ds2

�
S2

�
�
�,

e�� =
����

Pu

G
�
1+ (u�)2

G

� ,

2mH =�dy�vol
�
S2

�
� 1
2u�ijk�ziGdx�dzj �dzk+P�xGdz123, (3.20)

where G = G (x, zi), P = P (y, zi), u is a linear function of x and we use the short hand
notation dz123 = dz1 � dz2 � dz3. The non trivial ten dimensional RR fluxes are

F3 =
1
2md

�
uu�

G+(u�)2 �x

�
�vol(S2)+ 1

4m�ijk�ziPdy�dzj�dzk� 1
2mG�yPdz123, (3.21)

F5 =(1+�10)f5,

f5 =
1

8m3(G+(u�)2)

�
mu��ijk�ziGdx�dzj�dzk+2mP

�
G2�u�u2�x(Gu�1)

�
dz123

�
�vol(S2).

One has a solution whenever the Bianchi identities of the fluxes are satisfied, away from
possible sources these impose

�xG�yP = 0, �2
ziP +G�2

yP = 0, �2
ziG+ uP�2

xG = 0. (3.22)

More generically the latter two of these could have �-function sources, when this is the case
they should have a supersymmetric embedding for the remaining equations of motion of a
solution to necessarily follow. The first condition is a harmonic function rule: it states that
either �xG = 0, or �yP = 0 yielding two cases.

Case 1. For the first case, when �xG = 0, the Bianchi identities reduce to those of D5
branes ending on NS5 branes smeared over 1 direction in flat space [48] (see section 4.5).
Comparing to this suggests that this case formally describes localised D5 branes of world
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volume (AdS3,S2, x) ending at NS5 branes on (AdS3,S2, y) that are delocalised in x. Unlike
the flat space case, �x is not an isometry of the solution in general, the warping in G is more
complicated and additional fluxes and flux components are turned on. The latter di�erence
is to be expected as Mink5 is replaced by AdS3�S2. Though the warping in G is more
complicated than the flat space case, notice that as G becomes large it does tend to what
one would expect in the flat space case. The dependence of the metric on u(x) is essentially
a deformation of this system: when u = 1, the warp factors becomes precisely what one
would expect for this D5-NS5 system and x becomes an isometry, so we can take it to be a
compact direction. When u �= 1, as nothing else depends on x this direction is unbounded.

Case 2. For the second case when �yP = 0 the Bianchi identities do not reduce to those
of a simple flat space brane intersection, though they are not far removed — the issue is
the function u. As P is the only object with y dependence generically, this now becomes an
isometry for this case. Examining the metric and NS and RR fluxes, it should not be hard
to see that performing T-duality on �y maps to a class of solutions in IIA with a round
3-sphere (locally) and non trivial fluxes (H,F2, F4). In IIB when u = 1 the Bianchi identities
reduce to what one would expect for localised NS5 branes of world volume (AdS3,S2, y)
ending on D5 brane of world volume (AdS3, S2, x) that are smeared over y, when u �= 1 we
have a deformation of this system. Even when u �= 1 for large G the functions P,G appear
where one would expect for D5 and NS5 brane warp factors respectively, but the additional
u dependence in the metric further deforms this picture. As we shall explain at greater
length in section 3.2.1 this case represents a of a class derived in [17], which is actually
related to an SU(2)-structure class in IIA via duality.

Having derived and interpreted the class with cos� = 0, we shall now move onto its
generalisation with sin � �= 0 in the next section.

3.2 sin � �= 0: Class I

The class of the previous section is actually a sub-case of the more general class we consider
in this section, this is consistent with fixing cos� = 0 but does not require it. The method
of reducing this class to PDEs is analogous to that of the previous section, so we will be
more brief.

We again use (3.6b)–(3.6c) to define the vielbein and dilaton in terms of local coordinates
(x, y, zi), this time as

eA(cos�U �cos� sin�K) = dy,
eA�� cos�

cos2 �+cos2 � sin2 �
(cos� sin�U+cos�K) = dx+�dy,

e2A+C��fei = dzi, (3.23)

without loss of generality — note that this makes the metric on M5 non diagonal generically
becoming diagonal for cos� = 0. Plugging this ansatz into what remains non trivial
in (3.6b)–(3.6c), fixes � to a value we shall quote momentarily and up to di�eomorphisms
imposes

2m tan� sin � = �e2A���x log u(x), u�� = 0, (3.24)
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which we can take to define �. Now as it simplifies the final result we find it convenient to
introduce functions (G,P,Q) with support on M5 as

GP∆2 cot2 � =Q2u, e4AP∆1 =4m2u

�
1+ (u�)2

G

�
, e4A�2�G∆1

�
1+ (u�)2

G

�
=4m2u∆2,

∆1 =1�uQ2

GP
, ∆2 =∆1+

(u�)2
G

. (3.25)

With these definitions the expression for � that follows from (3.6b)–(3.6c) is simply

� = Qu

G
. (3.26)

Thus when Q = 0 the class reduces to the previous section. We then essentially follow the
same steps as in the previous section to reduce (3.6a)–(3.8) to physical fields and PDEs.
The computation is of course more demanding but in essence the only real di�erence is that
supersymmetry demands that the following PDEs are satisfied

�yQ = �xP, �yG = u�xQ, (3.27)

which are less trivial than those of the previous section. There the PDEs could simply
be integrated while now the possible geometries depend on how (3.27) are solved. Note
that (3.27) gives a definition for �y�xQ and �x�yQ whose consistency implies

�2
yG = u�2

xP, (3.28)

at least for a su�ciently smooth Q. In addition to this we find that the NS sector must
take the form

ds2 = 2m
�

1 + (u�)2
G

��
u

P∆1

�
ds2(AdS3) +

1
4m2

∆1
∆2

ds2(S2)
�

+ 1
4m2

��
P

u∆1
Dy2 +G

�
∆1
u

� 1�
Pu

dx2 +
�
Pdz2

i

� ��
,

e�� =

�
Pu
G

�
∆2

1 + (u�)2
G

(3.29)

2mH = �d
�
Quu�

GP∆2
+ y

�
� vol(S2)

� 1
2�ijk

�1
u

�ziGdx+ �ziQdy

�
� dzj � dzk + �x(GP∆1)dz123,

where we define the following to make the expressions more compact

∆1 = 1 � uQ2

GP
, ∆2 = ∆1 +

(u�)2
G

, Dy = dy + Q

P
dx, dz123 = dz1 � dz2 � dz3 (3.30)

clearly the metric on M5 contains cross terms in (x, y) generically — we remind the reader
that u is a linear function of x. In addition to this, the class has all possible ten dimensional
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RR fluxes non trivial, they take the form

F1 = dC0, C0 =� Qu

(G+(u�)2) , F5 = (1+�10)f5 (3.31)

F3 =�C0H+ 1
2m

�
d

�
uu�

G∆2
�x

�
�vol(S2)

+ 1
2�ijk (�ziQdx+�ziPdy)�dzj �dzk��y(GP∆1)dz123

�
,

f5 =
P

4m2G∆2

�
u�

2 �ijk

�
u�zi(QP�1)dy+

�
P�1�ziG� u

2P 2 �zi(Q2)
�
dx

�
�dzj �dzk

+P�2
�
G2P 2∆2

1+uu�
�
G�2�y(G3PQ)�P 2�xG�2uQ2�xP �uG�x(u�1P 2)

� �
dz123

�

�vol(S2)
The definitions of the physically fields in (3.29)–(3.31) along with the PDEs of (3.27) imply
supersymmetry. Again to have a solution we need to solve the Bianchi identities of the
fluxes, although the fluxes are a little complicated their Bianchi identities are not especially
as many components are implied by (3.27). First o� clearly dF1 = 0 is implied, so we can
have no D7 brane sources in this class. As with the previous case the Bianchi identities of
(H,F3) imply that of F5, in regular regions of a solution these impose the following

�2
ziQ+ �x�y(GP∆1) = 0, �2

ziG+ u�2
x(GP∆1) = 0, �2

ziP + �2
y(GP∆1) = 0, (3.32)

which are clearly more exotic generically than the PDEs one would expect of a simple
brane intersection, but are still reminiscent of this. Solutions in this class are in 1 to 1
correspondence with the solutions to the combined systems of (3.27) and (3.32).

In the next section we shall derive a class of solutions in type IIA with a squashed
and fibred 3-sphere that follows from imposing that �y is an isometry direction and then
T-dualising on it.

3.2.1 A IIA class with fibered 3-sphere
In this section we derive a new class of solutions in IIA via T-duality from class I. Clearly
there is generically no isometry to perform this duality on, so we must impose one on the
class — we shall take �y to be an isometry. This means that the metric (3.29) should be y
independent — examining the various metric components and given (3.27) this reduces the
conditions for a solution to

P = P (zi), Q = Q(zi), G = G(x, zi), �2
ziP = 0, �2

ziQ = 0, �2
ziG+ uP�2

xG = 0
(3.33)

Performing T-duality on the �y direction in (3.29)–(3.31) then results in the following NS
sector

ds2

2m =

�

1 + (u�)2
G

�
�

�
u

P∆1
ds2 (AdS3) +

1
4m2G

�
∆1
u

� 1�
Pu

dx2 +
�
Pdz2

i

��
�

+ 1
4m2

1�
1 + (u�)2

G

�
u∆1
P

�
D�2 + G+ (u�)2

G∆2
ds2

�
S2

��
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e2� = 2mG
∆2

���� ∆1
uP 3

�
1 + (u�)2

G

�3

,

B2 = B � 1
2m� � d

�
Quu�

GP∆2

�
+ Q

2mP dx � D�, (3.34)

where we introduce 1-forms (D�, �,A) and 2-form B such that

D� = d� +A+ �, with dA = �1
2�ijk�ziQdzj � dzk, d� = vol(S2),

dB = 1
2m

�
�x(PG∆1)dz123 � 1

2�ijk
�ziG

u
dx � dzj � dzk

�
, (3.35)

here � is the dual coordinate to y after a rescaling. Notice that (D�, S2) now span an
SU(2)�U(1) preserving squashed and fibered 3-sphere. In addition, the background is
supported by the RR fluxes

F0 =0, F2 =
1
4m�ijk (�ziP+C0�ziQ)dzj�dzk+

C0
2mvol(S2)+ 1

2mD��dC0,

F4 =2m Quu�

GP∆1
(P�ziQ�Q�ziP )dzi�vol(AdS3)+

Puu�

8m2G∆2
�ijk �zi(QP�1)dzj�dzk�vol(S2)

+ 1
4m2

�
C0 �x(PG∆1)dz123+

1
2�ijk

�
C0

�
Q

P
�ziQ� �ziG

u

�
��

�ziQ+Q

P
�ziP

��
dx�dzj�dzk

+
�
dx�d

�
uu�

G∆2

�
�C0 d

�
Quu�

QP∆2

��
�vol(S2)

�
�D�, (3.36)

where C0,∆1 and ∆2 are defined as in (3.30)–(3.31).
To interpret this class it is instructive to first fix Q = 0 and u = 1 so that ∆1 =

1, G∆2 = G+(u�)2 and the 3-sphere spanned by (D�, S2) becomes the round one. We then
find that the governing PDE of the system reduces to �2

ziG+ P�2
xG = 0, the same PDEs

as the system of fully localised NS5 branes inside the world volume of D6 branes derived
in [49]. Here however, rather than Mink6, the branes share the world volume directions
AdS3�S3 with the D6 further extended in x. In this limit P and G appear where one would
expect for the warp factors of such D6 and NS5 branes, this is also true when u �= 1 but
G is large. The e�ect of turning on Q appears to be to place formal KK monopoles into
this D6-NS5 brane system which squashes the 3-sphere. The e�ect of turning on u is then
a deformation.

This case actually generalises an known class of solutions: in [10], there is a class of
solution with D4 branes extended on AdS3�S2 and localised in CY2 times an interval, that
lie inside the world volume of D8 branes. This set up can actually be realised as a near
horizon limit of intersecting branes, however the class in [10] is a generalisation of this
which depends on a linear function of the interval ũ that cannot be so realised.9 Upon
setting the Romans mass to zero this class may be lifted to an AdS3�S3�CY2 class in d=11
with source M5 branes and this additional ũ deformation (see [14]). If one then imposes

9Or at least has not yet been so realised. Additionally this class depends in on a primitive (1, 1) on CY2

that we assume is set to zero here.
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that CY2 = R4 expressed in polar coordinates, and assumes SO(4) rotational symmetry for
the M5 brane warp factors, one can reduce back to IIA, but this time on the Hopf fibre of
a second 3-sphere S̃3 � R4. Upon fixing ũ = 1 the resulting class is a system of localised
D6 branes with localised NS5 branes inside them both extended in AdS3�S3 under the
assumption that their common co-dimensions preserve an SO(3) isometry (see appendix B
of [17]). Generically the presence of ũ deforms this system. This sounds quite similar to
the Q = 0 limit of what we have here if we impose an SO(3) isometry in the directions
zi. Indeed the SO(3) preserving Q = 0 limit of the case we present here can be precisely
mapped to the class of [17].

We have thus constructed a broad generalisation of a class of AdS3�S3 solutions found
in [17], such that formal KK monopoles are included and the internal space has no SO(3)
isometry generically.

3.3 sin � = 0: Class II

In this section we derive the class of solutions that follows from fixing sin � = 0 in the
supersymmetry conditions, specifically we will fix � = 0 without loss of generality.

Fixing � = 0 in (3.6b)–(3.6c) changes the character of the solutions some what as we
shall see. We can still take the same terms in (3.6b)–(3.6c) to define the vielbein, this
time as

eAU = dx, eA�� cos�K = dy + �̃dx, e2A+C��fei = 1
2mdzi, (3.37)

for �̃ and f functions of all the coordinates on M5. Again (3.6b)–(3.6c) contain additional
constraints which allow us to fix

f = u�1, tan� = � 1
2me2A�x log u(x), u�� = 0, (3.38)

without loss of generality. We now find it helpful to introduce functions h, g,� with support
on (x, y, zi) such that

e2A�� = 2m
�
uΞ
g
, e4A = gu2

h
, �̃ = �

g
, Ξ = 1 + g(u�)2

4m2h
. (3.39)

This reduces (3.6d) to a single PDE and definition of H3, namely

�y� = �xg, 4m2H3 = �1
2�ijk(�zigdy + �zi�dx) � dzj � dzk + �yhdz123. (3.40)

What remains of the supersymmetry conditions just defines H1 and the Hodge dual of the
magnetic parts of the RR fluxes — the Hodge dual can be taken with respect to (3.37)
without di�culty. Let us just explain how we extract the Bianchi identities before then
summarising our results for this class. First (3.40) clearly implies that away from sources,
where dH3 = 0 should hold we must have

�2
zig + �2

yh = 0, �2
zi� + �x�yh = 0. (3.41)
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Moving onto the RR sector, we find that the 1-form is

f1 = �d
�

�

g

�
+ dx

�
�x

�
�

g

�
� 1

2�y

�
�2

g2

�
� 4m2u

g
�y

�
h

g2u2

� �
. (3.42)

As such, away from the loci of sources we must have that the coe�cient of dx in this
expression is a function of x only for df1 = 0 to hold. We can thus introduce a function
w = w(x) and identify f1 = dC0 for

C0 = w � �

g
. (3.43)

The remaining magnetic RR fluxes can then be more compactly expressed in terms of the
following auxiliary functions

S = w�yh � �xh, T = � � wg, X = 4m2hu�1 + �T
g

. (3.44)

We find that only the magnetic part of the RR 3-form orthogonal to S2 gives a Bianchi
identity not implied by what has been derived thus far — this takes the form

g31 + C0H = 1
4m2

�1
2�ijk(�ziT dy + �ziXdx) � dzj � dzk + Sdz123

�
. (3.45)

The Bianchi identity of this flux components is implied when the r.h.s. of this expression is
closed, which requires that

�yX = �xT , �2
ziT = �yS, �2

ziX = �xS, (3.46)

however only the last of these is not implied by the supersymmetry and Bianchi identity
PDEs derived thus far.

In summary the class of solutions we derive in this section has an NS sector of the form

ds2 =
�
g

h
u

�
ds2(AdS3) +

1
4m2Ξds

2(S2)
�

+
�
h

g

dx2

u
+ g

3
2

4m2
�
h

�
dy + �

g
dx

�2
+ 1

4m2
�
gh(dzi)2,

e�� = 2m
g

�
hΞ
u
,

2mH = d

�
guu�

4m2hΞ � x

�
� vol(S2) � 1

2m

�1
2�ijk(�zigdy + �zi�dx) � dzj � dzk � �yhdz123

�
.

It also has the following non trivial ten dimensional RR fluxes

F1 = dC0, C0 = w � �

g
, F5 = (1 + �10)f5 (3.47)

F3 = �C0H + 1
4m2

�1
2�ijk(�ziT dy + �ziXdx) � dzj � dzk + Sdz123

�

� 1
2m

�
d

� T uu�

4m2hΞ + y

�
+ wdx

�
� vol(S2),
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f5 = g2

2m5hΞ

�
�ijk

�
uu�

2 �zi

�
�

g

�
dy +

�
2m2u�

g
�zi

�
h

g

�
+ uu�

4 �zi

�
�2

g2

��
dx

�
dzj � dzk

+
�
4m2h2

g2 � u2u�

g
�x(u�1h) + uu��

g
�yh

�
dz123

�
� vol(S2).

Solutions in this class are in 1-to-1 correspondence with the solutions to the following PDEs:
first supersymmetry demands that we impose

�y� = �xg. (3.48)

Second, away form the loci of sources, the Bianchi identities impose

w� = �x

�
�

g

�
� 1

2�y

�
�2

g2

�
� 4m2u

g
�y

�
h

g2u2

�
,

�2
zig + �2

yh = 0, �2
zi� + �x�yh = 0, �2

ziX = �xS. (3.49)

Clearly the system of constraints that needs to be solved for this class is in general very
complicated. This indicates two things: first that the class is likely quite broad, containing
sub-classes with qualitatively di�erent physics;10 Second it suggests that there probably
exists a better set of local coordinates on M5 that simplifies these conditions some what.
We have not made progress on the second point in general, but we evidence the first point
by deriving 2 simplified cases in the next section, assuming a diagonal metric ansatz.

3.3.1 2 interesting cases with diagonal metric
The general sin � = 0 class is rather complicated, so here we shall derive some simplified
sub-classes. It is a generic feature of local classifications of supergravity solutions that
those with the simplest PDES governing them come with a diagonal metric, so this is
what we shall pursue. The most obvious way to achieve this is to set � = 0, however it is
possible to be more general than this: while it is true that the definition of (3.37) integrates
d(eA�� cot�K) � dx without loss of generality, one could equally well take

eA�� cos�K = a(x, y)(b(y)dy + �̂dx), (3.50)

the di�erence is a di�eomorphism in (x, y) that turns on (a, b), setting �̂ = 0 here or �̃ = 0
in (3.37) both give a diagonal metric, but the former is more general. We shall then take
(U, ei) as defined in (3.37), �, f, u as in (3.38) and redefine the physical fields in terms of
auxiliary functions as

e2A�� = 2m
�
auΞ̃
g

, e4A+3ua = gu2

h
, Ξ̃ = 1 + g(u�)2

4m2ah
, �̂ = 0, (3.51)

the last of these being the diagonal ansatz. Repeating the same steps as the previous section
we find that supersymmetry requires �xg = 0 and

4m2H3 = � b

2�ijk�zigdzj�dzk�dy+ 1
ab

�yhdz123, f1 = b�xady�4m2u

bg
�y

�
ag

gu2

�
dx. (3.52)

10A similarly complicated system derived for Mink4�S2 in [47] was shown to contain all (known) half
BPS AdS5,6,7 solutions modulo duality, as well as compact Minkowski vacua.
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In order for these flux components to satisfy their respective Bianchi identities we must
have that

�x

�1
a

�yh

�
= 0, �zi

� 1
bg

�y

�
ag

gu2

� �
= 0. (3.53)

These conditions do not have a unique general solution instead they represent a branching
of possible classes of solution — ie the solutions that follow from fixing �y

�
ag
gu2

�
= 0 are

distinct from those not obeying this constraint and so on. We have not found every branch
that follows from (3.53), but shall provide 2 that result in interesting physical systems.
These follow from fixing the functions of our local ansatz as

case 1 : h = 4m2RT, g = 4m2T, a = k, b = 1 (3.54)

case 2 : h = 12m2T 2S, g = 12
�
3m2T, a =

�
3k 5

3 �yS, b = 1
3k

4
3 ,

where the assumption comes with the choice of (h, g, a), we are free to fix b as we choose
with di�eomorphisms. In all cases v = v(y) and k = k(x), R = R(x, zi), S = S(x, y) and
T = T (zi). We will now present the cases that follow from these tunings

Case 1: A deformed D7-D5-NS5 brane intersection. For case 1 �y is actually an
isometry direction and the local form of solutions reduces to

ds2 = u�
kR

�
�ds2 (AdS3)+

1
4m2

1
1+ (u�)2

4m2kR

ds2
�
S2

�
�
�+

�
kR

u
dx2+T

�
�

�
k

R
dy2+

�
R

k
(dzi)2

�
�

e�� = k
�
R�
Tu

�

1+ (u�)2
4m2kR

,

2mH = d

�
��

uu�

4m2kR
�
1+ (u�)2

4m2kR

� �x

�
���vol

�
S2

�
�m�ijk�ziTdzj�dzk�dy,

F1 = k�dy, F5 =(1+�10)f5 (3.55)

F3 =
1
2m

�
�k+ uu�k�

4m2kR+(u�)2

�
dy�vol

�
S2

�
+ k

2u�ijk�ziRdzj�dzk�dx��xRTdz123,

f5 =
1

4mkR+(u�)2
�
ku�

4m�ijk�ziRdzj�dzk�dx

� 1
2mTR

�
4m2k+u��x

�
uR�1

��
dz123

�
�vol(S2).

Solutions in this case are defined entirely in terms of the Bianchi identities of the fluxes
which impose the following system of PDEs away from the loci of sources

k�� = 0, �2
ziT = 0, k�2

ziR+ uT�2
xR = 0. (3.56)

If we fix u = k = 1 this is the system of PDEs of a flat space intersection of D5 branes
ending on NS5 branes that are smeared over y [48]. The warp factors T,R appear where
one would expect if they are to be identified NS5 and D5 branes extended in AdS3�S2 and

– 24 –



J
H
E
P
0
4
(
2
0
2
2
)
1
4
3

x or y respectively. The e�ect of turning on k is clearly to add D7 branes smeared on y to
this system. When u is non trivial, this cannot simply be interpreted as the warp factor of a
brane, rather u represents a deformation of this system, where the roles that (R,T, k) play
depend on the details of how (3.56) is solved. Finally we note T-dualising of �y maps us to
a solution in massive IIA with an SU(2)� U(1) preserving squashed and fibred 3-sphere.

Case 2: An Imamura-like case with D7-NS5-D5. For case 2 not only is �y not
generically an isometry, it is manifestly never an isometry. The solutions in this case all
take the local form

ds2 = u
�
S�ySTv

5
6

�
ds2 (AdS3)+

1
4m2Ξ̃

ds2
�
S2

��
+

�
S�yST

v
5
6u

dx2

+ T

v
5
6

�
�

�
�yS

ST

dy2

v
+3

�
ST

�yS
(dzi)2

�
� ,

e�� =
�
S�ySv

5
3�

3�
u

�
Ξ̃, Ξ̃=1+ (u�)2

4m2S�ySTv
5
3

(3.57)

2mH = d

�
uu�

4m2Sv
5
3T Ξ̃

�x

�
�vol

�
S2

�
�

�
3m
v

4
3

�
�ijk�ziTdzj�dzk�8vT 2dz123

�
,

F1 =
1�
3
d

�
v

1
3 �xS

�
+ v�

3
�
3

�
v2S�yS

u
dx� �xS

v
2
3
dy

�
, F5 =(1+�10) f̃3�vol

�
S2

�
,

F3 =
S�ySv

5
3

2u �ijk�ziTdzj�dzk�dx�3T 2�xSdz123� v
1
3

2
�
3m

�ySdy�vol
�
S2

�

+ v
1
3

8
�
3m3S�ySTv

5
3Ξ

�
uu��x�ySdy+

1
3u

�
�
S�ySv

5
3 v�+3u�2

xS
��

dx�vol(S2),

f̃3 =
1

8m3S�ySTv
5
3 Ξ̃

�
�1
2S�ySv

5
3u��ijk�ziTdzj�dzk�dx+3T 2

�
4m2S�ySTv

5
3 +S�x(uu�S�1)

�
dz123

�
,

where v is a non zero but otherwise arbitrary linear function of y. The Bianchi identities of
the fluxes impose

�2
ziT = v�T 2, u�2

x(
�
vS) + v

13
6 �2

y((
�
vS)2) = 0 (3.58)

away from the loci of sources, there are no other conditions to be solved — we note that
v�� = 0 is implied by the first of these, even in the presence of sources. When T = v = u = 1
the system of PDEs becomes very much like those of the D8-D6-NS5 system of [50], a 1

4 BPS
Mink6 class in IIA (see also [51] for a version without an SO(3) isometry). Of course here
we are in IIB, so the interpretation must be a little di�erent. Examining the warp factors
in the metric in this limit �yS appears to play the role of a localised D7 brane warp factor
while S that of D5 branes smeared on zi. Turning on T and defining hD7 = �yS, hNS5 = T

and hD5 = ST we see that these quantities appear in the metric where one would formally
expect the warp factors of a D7-D5-NS5 brane intersection to appear, however S would
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need to be independent of x for this interpretation. Additionally all these putative branes
would have AdS3� S2 in their world volume and zi in their co dimensions, making this
more closely resemble the generalisation of [50] presented in [51], T-dualised on a spacial
direction in Mink6 to get Mink5 in IIB then compactified to AdS3�S2. The e�ect of further
turning on (u, v) is to deform this system.

We have found that class II is really rather broad and that, even when rather draconian
constraints are imposed on it, it is possible to extract interesting physical cases. We plan to
explore the solutions contained here, in class II more broadly and in class I in forthcoming
work [52].
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A Gamma matrices on M7

To find the supersymmetric solutions given in the main text, we use the bispinor approach,
thus, we start by taking a basis of 7d gamma matrices, �

(7)
A , that respect a 2+5 split (on

S2�M5) which decompose as,

�
(7)
i = eC�i � I, �(7)

a = �3 � �a, where i�
(7)
1234567 = 1. (A.1)

Here, �i (with i = 1, 2) are the gamma matrices on S2 with chirality matrix �3, i.e. �1,2,3
are the Pauli matrices. In turn, �a are the gamma matrices in 5d, namely a = 1, . . . , 5, such
that the 5d intertwiner, B5, satisfies

B5B
�
5 = �I, B5�aB

�1
5 = ��

a. (A.2)

Finally, the intertwiner in 7d is defined as and satisfies

B(7) = �2 � B5 with B(7)B(7)� = I, B(7)�
(7)
A (B(7))�1 = ��

(7)
A

�
(A.3)

and A = 1, . . . , 7.

B Geometric 5d conditions for supersymmetry

In this appendix we derive a set of geometric constraints for the five-dimensional manifold
which are su�cient for supersymmetry. To be precise, we express these supersymmetric
conditions in terms of five-dimensional bi-linears.
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B.1 Matrix bi-linears on M5

We introduce four matrix bi-linears expressed in terms of the four 5d spinors, �, and their
Majorana conjugates, namely

(���)�� = ��
1� � ��†

2� , �� =
�

�

�c

��

. (B.1)

Note that,

��
1 � ��†

2 =
�

�1 � �†2 �1 � �c†2
(��1 � �c†2 )� (�1 � �†2)�

�
(B.2)

= Re�1 � �†2�ab + iIm�1 � �c†2 (�1)ab + iRe�1 � �c†2 (�2)�� + iIm�1 � �†2(�3)��

here the fundamental object is the 5 dimensional bi-spinor, which can be computed with
following definition,

�1 � �†2 = 1
2[d/2]

d�

n=0

1
n!�

†
2�a1...an�1e

a1 � . . . � ean , (B.3)

in this case �1 and �2 are two d dimensional spinors, �a a basis of the flat space gamma
matrices in d dimensions and ea are the vielbein on the d dimensional space.

In the next sub-section we present details of the bi-spinors on S2.

B.2 Matrix bi-linears on S2

On S2, there exist Killing spinors, �, which obey

�µ� = i

2�µ� (B.4)

where we used the Pauli matrices to represent the Cli�ord algebra on S2, µ = 1, 2 is a flat
index on the unit sphere and the 2d intertwiner defining Majorana conjugation is �2, such
that �c = �2��. As shown in [47], the SU(2) doublets take the following form,

�� =
�

�

�c

��

, �3�� =
�

�3�

�3�c

��

(B.5)

where � and other Greek indices run over 1,2. We can form matrix bi-linears out of these
doublets,

Ξ�� = �� � ��†, Ξ̂�� = �3�� � ��†, (B.6)
�3�� � (�3��)† = Ξ��

+ � Ξ��
� , �a � (�3��)† = Ξ̂��

+ � Ξ̂��
� ,

here Ξ��
± , Ξ̂��

± are poly-forms containing only even/odd forms, which arise from the de-
composition of Ξ�� and Ξ̂�� via (B.3). In addition, Ξ�� is linearly independent of Ξ̂��,
component by component and at every form degree. Further one can show that, the only
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mixings of the S2 bi-linears, which appear in the N = 1 supersymmetry constraints and are
di�erent to zero under d and wedge product are

dReΞ��
1 = �2ImΞ��

2 , dImΞ��
1 = 2ReΞ��

2 , dReΞ̂��
0 = ImΞ̂��

1 ,

dImΞ̂��
0 = �ReΞ̂��

1 , Ξ��
0 vol(S2) = �ImΞ̂��

2 , ReΞ̂��
0 vol(S2) = �ImΞ��

2 ,

ImΞ̂��
0 vol(S2) = ReΞ��

2 ,

(B.7)

and the only singlets are contained in the terms,

Ξ��
0 = 1

2��� , ImΞ̂��
2 = �1

2vol(S2)��� , (B.8)

which give rise to contributions to the RR fluxes. Notice that ImΞ��
0 = ReΞ̂��

2 = 0.
In the next sub-section we will use the previous expressions to factor out the S2 matrix

bi-linears from the 7d bi-linears constraints leaving us with 5d conditions.

B.3 7d bi-linears as matrix bi-linear contractions
In this section, we express the 7d bi-linears, as contractions of the S2 and M5 data. We
take the representative N = 1 sub-sector of the N = 4 Majorana spinors as follows,

�1 = e
A
2�
2

�
�� � ��

11 + i�3�� � ��
12

�
, �2 = e

A
2�
2

�
�� � ��

21 + i�3�� � ��
22

�
. (B.9)

Using the general feature that the bi-spinor can be decomposed as

�1 � �†2 =Ψ+ + iΨ� (B.10)

and using the results established in the previous sections of this appendix, we can compute
the following 7d bi-linears,

Ψ+ = eA

2

�
Ξ��

0 Re
�
�

(��)
11 +�

(��)
22

�
+
+e2CImΞ̂��

2 �Re
�
�

(��)
12 ��

(��)
21

�
+

+ReΞ̂��
0 Im

�
�

(��)
12 ��

(��)
21

�
+
+ ImΞ̂��

0 Re
�
�

[��]
12 ��

[��]
21

�
+

+eCReΞ��
1 � Im

�
�

(��)
12 +�

(��)
21

�
�
+eCImΞ��

1 �Re
�
�

[��]
12 +�

[��]
21

�
�

�eCReΞ̂��
1 �Re

�
�

[��]
11 ��

[��]
22

�
�
+eCImΞ̂��

1 � Im
�
�

(��)
11 ��

(��)
22

�
�

+e2CReΞ��
2 �Re

�
�

[��]
11 +�

[��]
22

�
+

�e2CImΞ��
2 � Im

�
�

(��)
11 +�

(��)
22

�
+

�
,

(B.11a)

Ψ� = eA

2

�
�Ξ��

0 Re
�
�

(��)
12 ��

(��)
21

�
�
+e2CImΞ̂��

2 �Re
�
�

(��)
11 +�

(��)
22

�
�

+ReΞ̂��
0 Im

�
Ψ(��)

11 +Ψ(��)
22

�
�
+ ImΞ̂��

0 Re
�
Ψ[��]

11 +Ψ[��]
22

�
�

+eCReΞ��
1 � Im

�
�

(��)
11 ��

(��)
22

�
+
+eCImΞ��

1 �Re
�
�

[��]
11 ��

[��]
22

�
+

+eCReΞ̂��
1 �Re

�
�

[��]
12 +�

[��]
21

�
+

�eCImΞ̂��
1 � Im

�
�

(��)
12 +�

(��)
21

�
+

�e2CReΞ��
2 �Re

�
�

[��]
12 ��

[��]
21

�
�
+e2CImΞ��

2 � Im
�
�

(��)
12 ��

(��)
21

�
�

�
(B.11b)
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in terms of the symmetric and antisymmetric parts of Ψ��
ij . These expressions, along

with (B.7)–(B.8), will be useful in the next section, in the computations of the supersym-
metric constraints.

B.4 From 7d to 5d supersymmetry constraints

An N=1 supersymmetric AdS3 solution in type II supergravity, with purely magnetic NS
flux, must obey the conditions [33]

dH(eA��Ψ�) = 0, (B.12a)

dH(e2A��Ψ±) � 2meA��Ψ� = e3A

8 �7 �(f), (B.12b)

(Ψ�, f)7 = �m

2 e
��vol(M7), (B.12c)

where (Ψ�, f±)7 � (Ψ� � �(f±))7 with (X,Y )7 denoting the projection to the seven-form
component. In (B.12a)–(B.12c), an upper sign applies to type IIA and a lower one to type
IIB. The twisted exterior derivative is defined as dH = d�H�, and in turn we are assuming
a purely magnetic NS flux

H = e2CH1 � vol(S2) +H3. (B.13)

Thus, one can write the RR flux poly-form term appearing in (B.12b) as following

�7�f± = ��5�g2±+e2Cvol(S2)��5�g1± = ���(�Ξ�� ��5�g2±+ie2CΞ̂�� ��5�g1±). (B.14)

B.4.1 IIA 5d conditions
One can show that given the 7d bi-linears in (B.11a)–(B.11b) and making use of the
expressions (B.7) the supersymmetric constraints (B.12a)–(B.12b), independent of the RR
forms, are equivalent to the following conditions in 5d,

dH3

�
e2A��Re(�(��)

12 � �
(��)
21 )�

�
= 0, (B.15a)

dH3

�
e2A+C��Re(�[��]

12 + �
[��]
21 )+

�
+ e2A��Re(�[��]

11 + �
[��]
22 )� = 0, (B.15b)

dH3

�
e2A+C��Im(�(��)

12 + �
(��)
21 )+

�
+ e2A��Im(�(��)

11 + �
(��)
22 )� = 0, (B.15c)

dH3

�
e2A+2C��Re(�(��)

11 + �
(��)
22 )�

� � e2A+2C��H1 � Re(�(��)
12 � �

(��)
21 )� = 0, (B.15d)

dH3

�
e2A+2C��Im(�(��)

12 � �
(��)
21 )�

�
+ e2A+2C��H1 � Im(�(��)

11 + �
(��)
22 )�

� 2e2A+C��Im(�(��)
11 � �

(��)
22 )+ = 0, (B.15e)

dH3

�
e2A+2C��Re(�[��]

12 � �
[��]
21 )�

�
+ e2A+2C��H1 � Re(�[��]

11 + �
[��]
22 )�

� 2e2A+C��Re(�[��]
11 � �

[��]
22 )+ = 0, (B.15f)

dH3

�
e3A+C��Re(�[��]

11 � �
[��]
22 )�

� � e3A��Re(�[��]
12 � �

[��]
21 )+

� 2me2A+C��Re(�[��]
12 + �

[��]
21 )+ = 0, (B.15g)

dH3

�
e3A+C��Im(�(��)

11 � �
(��)
22 )�

� � e3A��Im(�(��)
12 � �

(��)
21 )+

� 2me2A+C��Im(�(��)
12 + �

(��)
21 )+ = 0, (B.15h)
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dH3

�
e3A+2C��Re(�[��]

11 + �
[��]
22 )+

�
+ 2e3A+C��Re(�[��]

12 + �
[��]
21 )�

+ 2me2A+2C��Re(�[��]
12 � �

[��]
21 )� � e3A+2C��H1 � Re(�[��]

12 � �
[��]
21 )+ = 0, (B.15i)

dH3

�
e3A+2C��Im(�(��)

11 + �
(��)
22 )+

�
+ 2e3A+C��Im(�(��)

12 + �
(��)
21 )�

+ 2me2A+2C��Im(�(��)
12 � �

(��)
21 )� � e3A+2C��H1 � Im(�(��)

12 � �
(��)
21 )+ = 0, (B.15j)

and some more that are equivalent to,

Re(�[��]
12 + �

[��]
21 )+ � dH3 = Im(�(��)

12 + �
(��)
21 )+ � dH3 = 0, (B.16a)

e2CIm(�(��)
12 � �

(��)
21 )� � dH3 � d(e2CH1) � Im(�(��)

11 + �
(��)
22 )� = 0, (B.16b)

e2CRe(�[��]
12 � �

[��]
21 )� � dH3 � d(e2CH1) � Re(�[��]

11 + �
[��]
22 )� = 0 (B.16c)

Re(�[��]
11 � �

[��]
22 )� � dH3 = Im(�(��)

11 � �
(��)
22 )� � dH3 = 0, (B.16d)

e2CRe(�[��]
11 + �

[��]
22 )+ � dH3 + d(e2CH1) � Re(�[��]

12 � �
[��]
21 )+ = 0, (B.16e)

e2CIm(�(��)
11 + �

(��)
22 )+ � dH3 + d(e2CH1) � Im(�(��)

12 � �
(��)
21 )+ = 0. (B.16f)

These previous expressions are implied when the sourceless Bianchi identity of the NS
flux is obeyed and more broadly constrain exactly what source terms dH3 and de2CH1 we
can have.

Using (B.14), the RR field-strengths are derived from (B.11b),

e3A��� �5�g2 =�4dH3

�
e3A��Re(�(��)

11 +�
(��)
22 )+

��8me2A��Re(�(��)
12 ��

(��)
21 )�,

(B.17a)

e3A+2C��� �5�g1 =�4dH3

�
e3A+2C��Re(�(��)

12 ��
(��)
21 )+

�
+8me2A+2C��Re(�(��)

11 +�
(��)
22 )�

�4e3A+2C��H1�Re(�(��)
11 +�

(��)
22 )+. (B.17b)

Finally, considering �(f+) = ��g1+ � e2Cvol(S2) � �g2+ in the pairing equation (B.12c)
yields the additional restrictions,

����
Re

�
�

(��)
11 + �

(��)
22

�
� � �g1+ + Re

�
�

(��)
12 � �

(��)
21

�
� � �g2+

�
= �2µe�(�+A)vol(M5),

(B.18a)

Im
�
�

(��)
11 + �

(��)
22

�
� � �g2+ = Im

�
�

(��)
12 � �

(��)
21

�
� � �g1+, (B.18b)

Re
�
�

[��]
11 + �

[��]
22

�
� � �g2+ = Re

�
�

[��]
12 � �

[��]
21

�
� � �g1+. (B.18c)

The equations (B.15), (B.16), (B.17), (B.18) are su�cient constraints for the preservation
of supersymmetry in type IIA.

Some particularly important conditions are the matrix 0-form constraints coming
from (B.15), as these are purely algebraic namely

�c†21�11 = �c†22�12, Im(�†21�11) = Im(�†22�12),
(1 + 2meC�A)�c†22�11 = (1 � 2meC�A)�c†21�12,

(1 + 2meC�A)Im(�†22�11) = (1 � 2meC�A)Im(�†21�12).
(B.19)

We will use these to constrain the spinors in the main text.
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B.4.2 IIB 5d conditions
In IIB, the supersymmetric constraints (B.12a)–(B.12b), independent of the RR forms, are
equivalent to the following conditions in 5d,

dH3

�
e2A��Re(Ψ(��)

11 +Ψ(��)
22 )+

�
= 0, (B.20a)

dH3

�
e2A+C��Re(Ψ[��]

11 � Ψ[��]
22 )�

� � e2A��Re(Ψ[��]
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21 )+ = 0, (B.20b)

dH3
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11 � Ψ(��)
22 )�

� � e2A��Im(Ψ(��)
12 � Ψ(��)

21 )+ = 0, (B.20c)
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22 )+
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21 )� = 0, (B.20d)
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22 )+
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12 � Ψ(��)
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12 +Ψ(��)
21 )� = 0, (B.20e)
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22 )+ = 0, (B.20f)
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dH3
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22 )� = 0 (B.20j)

and some more expressions, which are implied when the sourceless Bianchi identity of the
NS flux is obeyed, that are equivalent to,

Re(Ψ[��]
11 � Ψ[��]

22 )� � dH3 = Im(Ψ(��)
11 � Ψ(��)

22 )� � dH3 = 0, (B.21a)

e2CIm(Ψ(��)
11 +Ψ(��)

22 )+ � dH3 + d(e2CH1) � Im(Ψ(��)
12 � Ψ(��)

21 )+ = 0, (B.21b)

e2CRe(Ψ[��]
11 +Ψ[��]

22 )+ � dH3 + d(e2CH1) � Re(Ψ[��]
12 � Ψ[��]

21 )+ = 0, (B.21c)

Re(Ψ[��]
12 +Ψ[��]

21 )+ � dH3 = Im(Ψ(��)
12 +Ψ(��)

21 )+ � dH3 = 0, (B.21d)

e2CRe(Ψ[��]
12 � Ψ[��]

21 )� � dH3 � d(e2CH1) � Re(Ψ[��]
11 +Ψ[��]

22 )� = 0, (B.21e)

e2CIm(Ψ(��)
12 � Ψ(��)

21 )� � dH3 � d(e2CH1) � Im(Ψ(��)
11 +Ψ(��)

22 )� = 0. (B.21f)

In turn, the flux equations derive from (B.11a) and (B.14) are,

e3A��� �5�g2 =4dH3

�
e3A��Re(Ψ(��)

12 �Ψ(��)
21 )�

��8me2A��Re(Ψ(��)
11 +Ψ(��)

22 )+,
(B.22a)
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and considering �(f�) = ��g1� � e2Cvol(S2) � �g2� in the pairing equation (B.12c) we
obtain the following restrictions,

����
Re
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�

(��)
11 + �

(��)
22

�
+ � �g2� � Re
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(��)
12 � �

(��)
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(B.23a)
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�
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(��)
12 � �

(��)
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�
+ � �g2� = �Im
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11 + �

(��)
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�
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Re
�
�

[��]
12 � �

[��]
21

�
+ � �g2� = �Re

�
�

[��]
11 + �

[��]
22

�
+ � �g1�. (B.23c)

The matrix 0-form constraints coming from (B.20) are,

�c†22�11 = �c†21�12, Im(�†22�11) = Im(�†21�12),
(1 +meC�A)�†21�11 = (1 � meC�A)�†22�12,

(1 +meC�A)Im(�c†21�11) = (1 � meC�A)Im(�c†22�12).
(B.24)

which will be used in the main text in order to find restrictions in the spinors.
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any medium, provided the original author(s) and source are credited.
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1 Introduction

The study of generic quantum field theories (QFTs) is one of the main topics of interest

in present-day theoretical Physics. Perturbative and non-perturbative investigations in

the recent decades have shown that remarkable progress can be achieved when the system

under study is symmetric enough.
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One major line of research that came as a by-product of the Maldacena conjecture [1],

is the study of supersymmetric and conformal field theories in diverse dimensions. Super-

conformal Field Theories (SCFTs) exist in space-time dimensions d < 7 [2]. The last two

decades witnessed a large e�ort in the classification of Type II or M-theory backgrounds

with AdSd+1 factors, see for example [3, 4]. The solutions are conjectured to be dual to

SCFTs in d dimensions with di�erent amounts of SUSY. In the case in which we have eight

Poincaré supercharges major progress has been achieved (the number of real supercharges

doubles by the presence of the conformal partner supercharges).

For the case of N = 2 SCFTs in four dimensions, the field theories studied in [5]

have holographic duals first discussed in [6], and further elaborated (among other works)

in [7]–[12]. The case of five dimensional SCFTs was analysed from the field theoretical

and holographic viewpoints in [13]–[18], among many other interesting works. An infinite

family of six-dimensional N = (1, 0) SCFTs was discussed from both the field theoretical

and holographic points of view in [19]–[27]. For three-dimensional N = 4 SCFTs, the field

theories presented in [28] were discussed holographically in [29]–[32], among other works.

The case of two-dimensional SCFTs and their AdS duals is particularly attractive.

The interest that CFTs in two dimensions and AdS3 solutions present in other areas of

theoretical Physics (condensed matter systems, black holes, etc), and the power of the

2-d super conformal algebra present us with a perfect theoretical lab to test various ideas

explicitly. This motivated various attempts at finding classifications of AdS3 backgrounds

and studying their dual CFTs — for a sample of papers see [33]–[47].

In this work we add a new entry to the dictionary between SCFTs and string back-

grounds with an AdS-factor described above. We deal with N = (0, 4) (small algebra)

SCFTs. We define our SCFTs as the IR fixed points of N = (0, 4) UV finite QFTs. These

QFTs are described by quivers, consisting of two long rows of gauge groups connected by

hypermultiplets and Fermi multiplets. There are also global (flavour) symmetry groups,

joined with the gauge groups by Fermi multiplets. Quantum theories of this kind (with

some di�erences regarding the field content and R-symmetry charges) have been proposed

in the study of solitonic strings in six-dimensional N = (1, 0) SCFTs, see for example [41].1

We show that the new background solutions to massive IIA supergravity constructed re-

cently in [47] contain the needed isometries to be dual to our SCFTs. These backgrounds

may be trusted when the number of nodes of the quiver is large and so are the ranks of

each gauge group.2 We show that they reproduce the central charge of our SCFTs in the

holographic limit.

The contents of this paper are distributed as follows. In section 2 we summarise the

general massive Type IIA backgrounds that we constructed recently in [47], and find new

solutions, also presented in [48]. These backgrounds have the structure

AdS3 ⇥ CY2 ⇥ S2 ⇥ I⇢. (1.1)

By I⇢ we denote an interval parametrised by a coordinate that we label �. There are warp

factors in front of each metric component (also for each of the RR and NS fluxes compatible

1See also [49] for realisations in terms of D3-brane boxes.
2See the recent paper [50] for long 5d quivers.
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with the isometries of the background). We discuss various observable quantities of these

backgrounds, like the Page charges, the explicit presence of branes (we map these data into

Hanany-Witten brane set-ups) and the holographic central charges. All these quantities

are described in terms of the functions that define the warp factors.

In section 3 we define the QFTs of our interest. In order to do this we take a small

detour through 2-d N = (0, 2) multiplets. In terms of them we write the field content of

our N = (0, 4) QFTs. We pay special attention to the cancellation of gauge anomalies.

We propose that these QFTs flow in the IR to strongly coupled N = (0, 4) SCFTs with

small superconformal algebra. We use this to link the R-symmetry anomaly (the level of

the Kac-Moody algebra) with the central charge (the leading coe�cient in the OPE of

energy-momentum tensors). We finally propose a generic duality between our SCFTs and

the backgrounds discussed in section 2.

In section 4 (of pedagogical character), we present a detailed set of examples that

serve as tests of our proposed duality. In those examples we show how the supergravity

backgrounds (with the predicted number of colour and flavour branes) have the precise

combinatorics to be dual to long quivers with non-anomalous gauge symmetries and flavour

symmetries. We calculate the central charge in the SCFT and the holographic central

charge in the gravity background showing a clean matching between both descriptions.

We close the paper with a brief summary and some ideas for further research in sec-

tion 5. The presentation is complemented by appendices of technical nature.

2 The holographic backgrounds

In this section we start by discussing the solutions to massive IIA supergravity (with

localised sources) obtained in the recent work [47]. We propose that these backgrounds are

holographic duals to two dimensional CFTs preserving N = (0, 4) SUSY. The particular

CFTs will be discussed in section 3. The Neveu-Schwarz (NS) sector of these bosonic

solutions reads,

ds2 =
up
ĥ4h8

�
ds2(AdS3) +

h8ĥ4

4h8ĥ4 + (u0)2
ds2(S2)

�
+

�
ĥ4

h8
ds2(CY2) +

p
ĥ4h8

u
d�2,

e�� =
h

3
4
8

2ĥ
1
4
4

p
u

q
4h8ĥ4 + (u0)2, H =

1

2
d

�
�� +

uu0

4ĥ4h8 + (u0)2

�
^ vol(S2) +

1

h8
d� ^H2,

(2.1)

here � is the dilaton, H = dB2 is the NS 3-form and ds2 is written in string frame. The

warping function ĥ4 has support on (�, CY2). On the other hand, u and h8 only depend

of �. We denote u0 = �⇢u and similarly for h0
8. The RR fluxes are

F0 = h0
8, F2 = �H2 �

1

2

✓
h8 �

h0
8u

0u

4h8ĥ4 + (u0)2

◆
vol(S2), (2.2a)

F4 =

✓
d

✓
uu0

2ĥ4

◆
+ 2h8d�

◆
^ vol(AdS3)

� h8

u
(�̂4d4ĥ4) ^ d�� �⇢ĥ4vol(CY2)�

uu0

2(4h8ĥ4 + (u0)2)
H2 ^ vol(S2), (2.2b)
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with the higher fluxes related to them as F6 = � �10 F4, F8 = �10F2, F10 = � �10 F0. It

was shown in [47] that supersymmetry holds whenever

u00 = 0, H2 + �̂4H2 = 0, (2.3)

where �̂4 is the Hodge dual on CY2. In what follows we will concentrate on the set of

solutions for which H2 = 0. The Bianchi identities of the fluxes then impose (away from

localised sources)

h00
8 = 0,

h8

u
r2

CY2
ĥ4 + �2

⇢ ĥ4 = 0.

A further restriction consists in assuming that ĥ4 = ĥ4(�). After this, the string frame

background reads,

ds2
st =

up
ĥ4h8

�
ds2(AdS3) +

h8ĥ4

4h8ĥ4 + (u0)2
ds2(S2)

�
+

�
ĥ4

h8
ds2(CY2) +

p
ĥ4h8

u
d�2,

e�� =
h

3
4
8

2ĥ
1
4
4

p
u

q
4h8ĥ4 + (u0)2, B2 =

1

2

�
�� + 2�k +

uu0

4ĥ4h8 + (u0)2

�
vol(S2),

F̂0 = h0
8, F̂2 = �1

2

✓
h8 � h0

8(�� 2�k)

◆
vol(S2),

F̂4 =

✓
�⇢

✓
uu0

2ĥ4

◆
+ 2h8

◆
d� ^ vol(AdS3)� �⇢ĥ4vol(CY2). (2.4)

We have written the Page fluxes F̂ = e�B2 ^ F that are more useful for our purposes.

Notice that we have also allowed for large gauge transformations B2 ! B2 + �kvol(S2),

for k = 0, 1, . . . , P . The transformations are performed every time we cross an interval

[2�k, 2�(k + 1)]. To motivate this consider the following: in the limit where ĥ4(�) and/or

h8(�) become large compared with u(�) the NS 2-form in the presence of k large gauge

transformations is approximately

B2 ⇠
1

2
(�� + 2�k)vol(S2) =� b̂0 = � 1

(2�)2

Z

S2
B2 ⇠

1

2�
(�� 2�k). (2.5)

This can be archived by tuning certain integration constants in the solutions presented

below, and in fact coincides with the limit of weak curvature where the supergravity ap-

proximation can be trusted. Demanding that b̂0 lies in the fundamental region b̂0 2 [0, 1)

partitions the real line spanned by � into segments of length 2�. A large gauge transforma-

tion (B2 ! B2 +�vol(S2)) is required as one crosses between these segments, such that the

NS 2-form quoted in (2.4) is valid in the segment 2k�  � < 2�(k + 1) with k = 0, 1, 2 . . ..

The background in (2.4) is a SUSY solution of the massive IIA equations of motion if

the functions ĥ4, h8, u satisfy (away from localised sources),

ĥ00
4(�) = 0, h00

8(�) = 0, u00(�) = 0. (2.6)

The three functions are thus linear. Various particular solutions were analysed in [47].

Here we will present an infinite family of solutions for which the functions are piecewise

continuous.

– 4 –
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2.1 The local solutions

We shall be interested in solutions that in the interval 2�k  �  2�(k + 1) (for k = 0,

1, . . . , P ) are of the form,

ĥ
(k)
4 = �

✓
�k +

�k

2�
(�� 2�k)

◆
, h

(k)
8 = µk +

�k

2�
(�� 2�k), u(k) = ak +

bk

2�
(�� 2�k).

Here (�,�k,�k, µk, �k, ak, bk) are arbitrary constants whose physical meaning we shall dis-

cuss below. In particular, we impose that these three functions vanish at � = 0 (where

the space begins) and that the space ends at � = 2�(P + 1), by considering the situation

for which ĥ4 and/or h8 vanish at this point. These conditions leave us with functions of

the form,

ĥ4(�) =�h4(�) =�

�
��
��

�0

2⇡� 0 � 2�

�k+ �k
2⇡ (��2�k) 2�k � 2�(k+1), k := 1, . . . ,P�1

�P + �P
2⇡ (��2�P ) 2�P  � 2�(P +1).

(2.7)

h8(�) =

�
��
��

⌫0
2⇡� 0 � 2�

µk+ ⌫k
2⇡ (��2�k) 2�k � 2�(k+1), k := 1, . . . ,P�1

µP + ⌫P
2⇡ (��2�P ) 2�P  � 2�(P +1).

(2.8)

u(�) =

�
��
��

b0
2⇡� 0 � 2�

ak+ bk
2⇡ (��2�k) 2�k � 2�(k+1), k := 1, . . . ,P�1

aP + bP
2⇡ (��2�P ) 2�P  � 2�(P +1).

(2.9)

If the function ĥ4(�) vanishes at � = 2�(P + 1), ending the space there, we need that

�P = ��P . Similarly if h8

�
2�(P + 1)

�
= 0, we must impose that �P = �µP .

Demanding that the metric, dilaton and B2 field are continuous across the di�erent

intervals imposes additional conditions on the various constants.3 The details are discussed

in appendix A. Here we quote one simple solution to these continuity equations,

µk =
k�1X

j=0

�j , �k =
k�1X

j=0

�j , bk = b0, ak = kb0. (2.10)

These conditions imply the continuity of the functions ĥ4, h8. Their derivatives can, how-

ever, present jumps. This will imply discontinuities in the RR sector, that we will interpret

as generated by the presence of branes in the background, that modify the Bianchi identi-

ties. In turn, notice that (2.10) implies that u(�) = b0
2⇡� in all intervals, which is consistent

with the supersymmetry requirement (2.3) that u00 = 0 globally.

These supergravity backgrounds can be trusted (with localised singularities) if the

numbers P,�k, µk are large. Indeed, the Ricci scalar only diverges at the points where the

sources are localised. Choosing the numbers �k,�k to be large controls this divergence. On

the other hand P is taken to be large to have these singularities separated enough that we

can trust the geometric description given here.

3We do not impose the continuity of H = dB2 since H = F (�)d� � vol(S2). This implies that dH = 0

and the continuity of H is not needed to avoid the presence of NS brane sources.
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2.2 The �-interval

Let us analyse more closely these solutions. The background functions defined in the first

interval [0, 2�] show that the space begins at � = 0 in a smooth fashion. On the other

hand, the �-interval ends at a generic point � = 2�(P +1) if any of the functions ĥ4 and/or

h8 vanish at that point. Let us analyse the behaviour of the metric and dilaton close to

the end of the space for the three possible cases:

• The space ends by virtue of the function ĥ4 whilst h8 is generically non-vanishing at

� = 2�(P + 1). In the last interval the functions defining the background are then

ĥ4 = �
⇣
�P �

�P

2�
(�� 2�P )

⌘
, h8 = µP +

�P

2�
(�� 2�P ), u =

b0

2�
�.

In this case, expanding the metric and the dilaton close to � = 2�(P +1) we find, for

small values of x = 2�(P + 1)� �,

ds2 ⇠ m1p
x

ds2(AdS3) +

p
x

m1

�
dx2 + m1m2ds2(S2) + m3m1ds2(CY2)

�
, e�4� =

m4

x
.

(2.11)

The numbers (m1, . . . ,m4) are written in terms of µP ,�P , �P , b0,�. This asymptotic

behaviour indicates that close to the end of the space we have a D2 brane that

extends on AdS3 and is delocalised (or smeared) on CY2⇥S2 — see [47] for a generic

analysis of singularities. Note that one could also view this as an O2 plane smeared

on CY2⇥S2 or a superposition of both D2s and O2s.

• The space ends by virtue of the function h8 while ĥ4 is generically non-vanishing at

� = 2�(P + 1). In the last interval the functions are then

h8 = µP �
µP

2�
(�� 2�P ), ĥ4 = �

✓
�P +

�P

2�
(�� 2�P )

◆
, u =

b0

2�
�.

For small x = 2�(P + 1)� �, the metric and dilaton scale as,

ds2 ⇠ 1p
x

�
n1ds2(AdS3) + n3ds2(CY2)

�
+

p
x

n1

�
dx2 + n1n2ds2(S2)

�
, e�4� = n4x

3.

(2.12)

The numbers (n1, . . . , n4) are written in terms of µP ,�P ,�P , b0,�. This asymptotic

behaviour indicates that at � = 2�(P + 1) we have an O6 plane that extends on

AdS3⇥CY2.

• Finally, consider the more symmetric case for which the space is closed by the simul-

taneous vanishing of ĥ4 and h8 at � = 2�(P + 1). In this case the functions in the

last interval read,

h8 = µP �
µP

2�
(�� 2�P ), ĥ4 = �

⇣
�P �

�P

2�
(�� 2�P )

⌘
, u =

b0

2�
�. (2.13)

For small values of x = 2�(P + 1)� �, the metric and dilaton scale as,

ds2 ⇠ s1

x
ds2(AdS3) + s3ds2(CY2) +

x

s1

�
dx2 + s1s2ds2(S2)

�
, e�4� = s4x

2. (2.14)
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The numbers (s1, . . . , s4) are written in terms of µP ,�P , b0,�. Notice that each quan-

tity above is the product of those in (2.11)–(2.12). This indicates the superposition

of O2-O6 planes.

This more symmetric way of ending the space is the one on which we will concen-

trate our forthcoming analysis. An important observation is that, from the gravity

perspective, the behaviour we are finding close to the end of the interval is the least

healthy of the three analysed, as the O2s need to be smeared. We believe that the

presence of smeared O-planes is an artifact of the supergravity approximation.

To be used below, let us quote the explicit expressions for the di�erent numerical

values of (s1, s2, s3, s4),

s1 =
4�2b0(P + 1)p

�P µP�
, s2 = 2�(P + 1)

p
�P µP�

b0
,

s3 =

�
��P

µP
, s4 =

b2
0µ

3
P

210�6�P (P + 1)2�
. (2.15)

Notice that in order for the CY2 space to be large compared with the string size, we

need that ��P ⇠ µP . Otherwise the gravity background is not trustable.

In the following section we study the Page charges and discuss the presence of branes

in our solutions. These are of the form given by eq. (2.4), with the functions (ĥ4, h8, u)

satisfying eq. (2.6), away from localised sources, and piecewise continuous, as in (2.7)–(2.9).

The condition for continuity of the defining functions ĥ4, h8 is given by (2.10). This implies

the continuity of the NS-sector of the solution. From all the possibilities to end the space

we focus on solutions whose last interval’s functions are given by (2.13). The non-compact

solution with ĥ4 ⇠ h8 ⇠ u ⇠ � all over the space will be discussed in detail in [51].

2.3 Page charges

The Page charges are important observable quantities characterising a supergravity solu-

tion. Since they are quantised they imply the quantisation of some of the constants defining

the solution in (2.7)–(2.9). The Page charge of Dp-branes is given by the integral of the

magnetic part of the Page F̂8�p form. This is,

(2�)7�pgs�
0(7�p)/2QDp =

Z

�8�p

F̂8�p. (2.16)

In what follows, we choose units consistent with �0 = gs = 1. Also, we will use that

ĥ4 = �h4, as seen in (2.7).

We find the following Page charges for our solutions in the interval [2�k, 2�(k + 1)],

QD8 = 2�F0 = 2�h0
8 = �k. (2.17)

QD6 =
1

2�

Z

S2
F̂2 = h8 � h0

8(�� 2�k) = µk.

QD4 =
1

8�3

Z

CY2

F̂4 = �
Vol(CY2)

16�4
�k,

QD2 =
1

32�5

Z

CY2�S2
F̂6 = �

Vol(CY2)

16�4
(h4 � h0

4(�� 2�k)) = �
Vol(CY2)

16�4
�k.

– 7 –
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We have used that the magnetic part of F̂6 is

F̂6,mag = f̂6 =
�

2

�
h4 � h0

4(�� 2�k)
�
vol(S2) ^ vol(CY2). (2.18)

We also have one NS-five brane every time we cross the value � = 2�k (for k = 1, . . . , P ).

The total number of NS-five branes is QNS = 1
4⇡2

�
⇢�S2 H3 = (P + 1).

In what follows, we choose the constant � to satisfy �Vol(CY2) = 16�4. This implies

that the constants �k,�k are integer numbers (like �k, µk are). They are directly related

with the number of branes in the associated Hanany-Witten brane set-up.

To understand which branes are present in our backgrounds, let us study the Bianchi

identities for the Page fluxes.

2.3.1 Hanany-Witten brane set-up

We now calculate the Bianchi identities for the Page fluxes. The goal is to determine which

branes are actually present in our background solutions, either as sources or dissolved

into fluxes.

Let us start with the flux F0 = h0
8(�). We calculate dF0 = h00

8(�)d�. Now, at a generic

point of the �-coordinate we will have h00
8 = 0, according to (2.6). However, due to our

definition of the functions ĥ4 and h8 — see (2.7)–(2.8), something special occurs at the

points where the functions change slope. In fact, for both ĥ4 and h8 we find,

h00
8 =

PX

k=1

✓
�k�1 � �k

2�

◆
�(�� 2�k), ĥ00

4 = �

PX

k=1

✓
�k�1 � �k

2�

◆
�(�� 2�k). (2.19)

As a consequence of this we have,

dF0 =

PX

k=1

✓
�k�1 � �k

2�

◆
�(�� 2�k)d�, (2.20)

dF̂4 = �
PX

k=1

✓
�k�1 � �k

2�

◆
�(�� 2�k)d� ^ vol(CY2),

indicating that at the points � = 2�k there may be localised D8 and semi-localised D4

branes. In fact, explicit D8 and D4 branes are present at � = 2�k when the slopes of h8, ĥ4

are di�erent at both sides.

Let us investigate the same about D2 and D6 branes. For the magnetic part of the

Page fluxes, we compute in the interval [2�k, 2�(k + 1)]

dF̂2 =
1

2
h00

8 ⇥ (�� 2�k)d� ^ vol(S2), (2.21)

dF̂6 = df̂6 =
1

2
ĥ00

4 ⇥ (�� 2�k)d� ^ vol(S2) ^ vol(CY2).

Using (2.19) and that x�(x) = 0, we then find that there are no sources for D2 or D6

branes present. This is precisely because a large gauge transformation of the NS two-form

– 8 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
0

0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 1. 1
8 -BPS brane intersection underlying our geometry. The directions (x0, x1) are the

directions where the 2d CFT lives (dual to our AdS3). The directions (x2, . . . , x5) span the CY2,

on which the D6 and the D8-branes are wrapped. The coordinate x6 is the direction associated

with �. Finally (x7, x8, x9) are the transverse directions realising an SO(3)-symmetry associated

with the isometries of S2.

is performed at the loci of the D8 and D4s, were this not the case a source term for D6

and D2 would be induced as in section 5.1 of [47].4

This study suggests that the D2 and D6 branes will play the role of colour branes,

while the D4 and D8 branes that of flavour branes. The global symmetry in the dual CFT

is gravitationally realised by the gauge fields that fluctuate on the D4 or D8 branes.

Studying the associated Hanany-Witten [52] set-up, we find that in flat space the

branes are distributed as indicated in table 1. Our proposal is that the geometries described

by (2.4), capture the near horizon, or decoupling limit, of the brane configuration, once a

suitable large number of NS and D-branes is considered.

Using our result for the Page charges in (2.17) and the modified Bianchi identities

in (2.20), we find that the number of D-branes in the interval [2�(k� 1), 2�k] (in between

two NS-five branes) is,

N
[k�1,k]
D8 = �k�1 � �k, N

[k�1,k]
D4 = �k�1 � �k, (2.22)

N
[k�1,k]
D6 = µk =

k�1X

i=0

�i, N
[k�1,k]
D2 = �k =

k�1X

i=0

�i. (2.23)

We then have a Hanany-Witten brane set-up, that in the interval [2�(k�1), 2�k] (bounded

by NS-five branes), has N
[k�1,k]
D6 , N

[k�1,k]
D2 colour branes and N

[k�1,k]
D8 , N

[k�1,k]
D4 flavour branes.

See figure 1.

2.4 Holographic central charge

To close our study of the background in (2.4) we will calculate the holographic central

charge associated with these solutions. The idea is to compare with the central charge of

the proposed dual conformal field theory, that we study in the coming sections.

4The D8 and D4 can also be shown to be supersymmetric by a small modification of the argument in [47].

There, it was assumed that no gauge transformations are performed on the brane, which lead to D8 and

D4 world volume gauge fields being required by supersymmetry and the source corrected Bianchi identities.

Here these gauge fields have been absorbed by the large gauge transformation of the NS two-form. The

branes now restricted to lie at � = 2�(k + 1), k = 0, 1, 2 . . .. We give some details in appendix B.
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8 D8 N [1,2]

8 D8

N [0,1]
4 D4 N [1,2]

4 D4

N [0,1]
2 D2

N [0,1]
6 D6 N [1,2]

6 D6

N [1,2]
2 D2

Figure 1. The generic Hanany-Witten set-up associated with our backgrounds. The vertical lines

are NS-five branes. The horizontal lines represent D2 and D6 branes. The crosses indicate D4 and

D8 branes.

The central charge is one of the important observables for conformal field theories. It

appears when calculating the trace of the energy-momentum tensor, for a theory defined on

a curved space. In the case of two dimensional conformal field theories, there is only one rel-

evant quantity — denoted by “c” — that appears when computing < Tµ
µ >= � c

24⇡R. Here

R is the Ricci scalar of the manifold on which the CFT is defined and c is the central charge.

The holographic calculation of this quantity has a very interesting history. It was first

obtained in [53] (before the Maldacena conjecture was formulated), then calculated in [54].

In the context of AdS-supergravity, it was holographically computed in [55] and [56]. In [57]

generic supergravity solutions were considered that were later generalised in [58]. This is

the formalism we will use. It basically boils down to computing the volume of the internal

space (excluding AdS3).

In a putative compactification to an e�ective 3-d supergravity this volume is the inverse

of the 3-d Newton constant. However, in general, it needs to be weighted by factors of the

dilaton and other warp factors. In fact, for a generic dilaton and background of the form,

ds2 = a(r, ��)(dx2
1,d + b(r)dr2) + gij(r, ��)d�

id�j , �(r, ��), (2.24)

one should calculate the auxiliary quantity [58]

Ĥ =

✓Z
d��

q
e�4� det[gij ]a(r, ��)d

◆2

.

With this, one computes the holographic central charge (see [58, 59] for the derivation)

to be,

chol = 3⇥ dd

GN

b(r)d/2(Ĥ)
2d+1

2

(Ĥ 0)d
. (2.25)

The factor of “3” in (2.25) is introduced as a normalisation, to coincide with the standard

result of [53].
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For the case at hand, comparing with the solutions in (2.4) and using Poincaré coor-

dinates for AdS3, we have

a(r,��) =
up
ĥ4h8

r2, b(r) =
1

r4
, d = 1,

det[gij ] = u

�
ĥ7

4

h8

sin2�
⇣
4ĥ4h8)+(u0)2

⌘2 ,
q

e�4�det[gij ]a =
r

4
ĥ4h8 sin�, (2.26)

Ĥ = N 2r2, N =�Vol(CY2)

Z 2⇡(P+1)

0
ĥ4h8d�.

We then obtain,

chol =
3

2GN
N =

3�

2GN
Vol(CY2)

Z 2⇡(P+1)

0
ĥ4h8d� =

3

�

Z 2⇡(P+1)

0
h4h8d�, (2.27)

where in the last equality we have used — see below (2.18),

�Vol(CY2) = 16�4, ĥ4 = �h4, GN = 8�6.

It is useful to express the holographic central charge in terms of the constants �k, �k,

µk, �k defining the solution,

chol =

PX

j=0

⇣
6�jµj + 3�j�j + 3�jµj + 2�j�j

⌘
. (2.28)

We shall come back to these expressions in section 4 when we discuss the matching be-

tween the holographic quantities studied in this section and the field theory observables

discussed below.

3 The N = (0, 4) SCFTs

As we advanced in the Introduction, the idea of this work is to propose a duality between

the new background solutions in massive IIA found in [47] (summarised in section 2) and

a set of CFTs. These CFTs are thought to be arising as low energy fixed points in the RG

flows of well defined N = (0, 4) two dimensional quantum field theories.

In this section we discuss the weakly coupled UV description of such quantum field

theories.

3.1 The UV description

Let us start with a brief discussion of the fields involved in the weakly coupled description.

It is usual to describe N = (0, 4) SUSY in terms of N = (0, 2) superfields. In this paper we

will not use the detailed structure of each (0, 2) multiplet. We shall content ourselves with

listing the degrees of freedom together with the R-charges for the fermions involved. As

we explain below, these are the details we need to discuss cancellation of gauge anomalies,

the R-charge anomaly and the central charge of the IR CFT.
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The superfields of N = (0, 2) two-dimensional SUSY are well described in various

references. We found particularly clear and enlightening the papers [60]–[64]. They contain

some of the results we summarise in this section.

As we advanced, instead of going into the details of the (0, 2) supermultiplets we

describe the degrees of freedom involved in each of them:

• Vector multiplet, U . It contains a gauge field Aµ and one left moving fermion ��.

• Chiral multiplet, �. It consists of a complex scalar � and a right moving fermion

�+. By the context, we hope the reader will be able to distinguish between the chiral

multiplet and the dilaton in massive IIA, that we denote with the same character �.

• Fermi multiplet, �. This is a constrained superfield for which only a left handed

fermion �� propagates. The constraint defining the Fermi superfield generates inter-

actions between the Fermi and the chiral multiplets. The field strength multiplet is

an example of a Fermi multiplet. It being constrained agrees with the fact that in

two dimensions, a gauge field has no propagating degrees of freedom.

We are interested in theories for which the amount of SUSY is N = (0, 4). In this case the

quantum field theories are formulated in terms of combinations of (0, 2) superfields. For

(0, 4) SUSY we have:

• (0, 4) vector multiplet. It is expressed as a combination of a (0, 2) vector multiplet

and a (0, 2) Fermi multiplet. There are two left handed fermions �a
� with a = 1, 2

and a gauge field Aµ.

• (0, 4) hypermultiplet. Defined as the combination of two chiral multiplets. The de-

grees of freedom are two complex scalars and two right handed fermions �a
+.

• (0, 4) twisted hypermultiplet. Also written as a superposition of two chiral multiplets.

The degrees of freedom are two right handed fermions �̃a
+ and two complex scalars.

The di�erence with the (non-twisted) hypermultiplet discussed above is in the R-

charge assignment. This is reflected in the interactions with other multiplets.

• (0, 4) Fermi multiplet. It is the superposition of two (0, 2) Fermi multiplets. As such,

it contains two left handed fermionic degrees of freedom, �a
�.

• (0, 2) Fermi multiplet. As explained in [61], it is compatible with (0, 4) SUSY to have

the single left handed fermion of the (0, 2) Fermi multiplet.

The couplings between these multiplets and the constraints on some of them determine the

interactions. These can be derived from a superpotential. See [60]–[62] for the details.

In a similar vein one can write the N = (4, 4) SUSY field content in terms of N = (0, 4)

fields. Notice that in both (0, 4) hypers, we have right handed fermions and in the (0, 4)

vector multiplet left handed ones. In fact, a (4, 4) vector multiplet contains a (0, 4) vector

multiplet and a (0, 4) twisted-hypermultiplet (this is: a vector, a Fermi and two chirals of

– 12 –
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(0,2) SUSY). A N = (4, 4) hypermultiplet contains a (0, 4) hypermultiplet and a (0, 4)

Fermi multiplet, hence containing two Fermi and two chiral multiplets of (0, 2) SUSY.

The R-symmetry of N = (0, 4) field theories is SU(2)L⇥SU(2)R. We single out a U(1)R

inside SU(2)R and quote the U(1)R charge of each fermion in the above multiplets. This

will be used below to calculate the anomaly of the global R-symmetry. See equation (3.13)

in the paper [63] for the same charge assignment.

For the (0, 4) vector multiplet we have that the left handed fermion inside the vector

has R[�v
�] = 0 while the left handed fermion inside the Fermi multiplet has R[�f

�] = 1.

Similarly, for the (0, 4) twisted hypermultiplet we have that for both right handed fermions

R[�̃a
+] = 0. For both right handed fermions inside the (0, 4) hypermultiplet we have

R[�a
+] = �1. Finally, the fermion inside the (0, 2) Fermi multiplet (allowed in theories

with (0, 4) SUSY) is such that R[�f
�] = 0.

Now, we explore the condition for cancellation of gauge anomalies.

3.2 Anomaly cancellation

We are dealing with chiral theories. Their consistency requires one to be careful with the

field content, so that gauge anomalies are vanishing. In this work we only need to use that

the anomaly of a (gauged or global) non-Abelian symmetry is given by the correlator of the

symmetry currents, < JA
µ (x)JB

⌫ (x) >⇠ k�A,B�µ⌫ . Notice that there is no mixing between

non-Abelian currents. On the other hand, Abelian currents can mix. The coe�cient k is

calculated by computing Tr[�3JSU(N)JSU(N)]. This should be read as the di�erence between

the right handed fermions times their charge squared and the left handed fermions times

their charge squared. Let us study in detail the contribution to the SU(N) anomaly coming

from the various N = (0, 2) multiplets mentioned above:

• Chiral multiplets. If they are in the adjoint representation of the symmetry group

SU(N), they contribute with a factor N . If they transform in the (anti) fundamental,

they contribute with a factor 1
2 .

• Fermi multiplets. If they are in the adjoint representation of the symmetry group

SU(N), they contribute with a factor �N . If they transform in the (anti) fundamen-

tal, they contribute with a factor �1
2 .

• Vector multiplets. They are in the adjoint representation of the symmetry group

SU(N). They contribute with a factor �N .

3.3 Building block of our theories

Let us discuss now what will be the ‘building block’ of our quantum field theories. See

figure 2. We have an SU(N) gauge group. In the gauge group the matter content is that

of a (4, 4) vector multiplet, namely — in (0, 2) notation, a vector, two twisted chirals and

a Fermi multiplet in the adjoint representation of SU(N). This gauge group is joined with

other (gauged of global) symmetry groups SU(P̂ ), SU(R) and SU(Q). The connection with

the SU(P̂ ) symmetry group is mediated by (4, 4) hypers. In (0, 2) notation, 2⇥N⇥P̂ Fermi

multiplets and 2 ⇥ N ⇥ P̂ chiral multiplets run over the black solid line. The connection
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Figure 2. The building block of our theories. The solid black line represents a (4, 4) hypermultiplet.

The grey line represents a (0, 4) hypermultiplet. The dashed line represents a (0, 2) Fermi multiplet.

Inside the gauge group SU(N) run (4, 4) SUSY vector multiplets. The groups SU(P̂ ), SU(Q) and

SU(R) can be gauge or global.

with the SU(R) symmetry group is via (0, 4) hypermultiplets. In (0, 2) notation 2⇥N ⇥R

chiral multiplets propagate over the grey lines. Finally, over the dashed line run N ⇥ Q

Fermi multiplets in (0, 2) notation. Notice that a similar (but not the same!) field content

to this was proposed in [41], in the study of the field theories associated with tensionless

strings in N = (0, 1) six-dimensional SCFTs.

Let us now calculate the anomaly of the gauged SU(N) symmetry group and impose

that it vanish. We focus only on the gauged SU(N) group, but a similar job should be

done for all other gauged symmetry groups. Let us spell the various contributions:

• The contribution of the adjoint fields is 2N � N � N = 0. This is expected, as the

field content is that of a (4, 4) vector multiplet.

• The contribution of the bifundamentals connecting with SU(P̂ ) is (1
2 � 1

2)2P̂N = 0.

Again, this vanishing contribution is expected as we are dealing with (4, 4) hypers.

• The link with the symmetry SU(R) contributes a factor 2⇥N ⇥R⇥ 1
2 = NR.

• Finally the bifundamentals running on the link with the SU(Q) symmetry group

contribute �1
2NQ.

Thus, in order to have a non anomalous gauged symmetry we need to impose that the four

contributions above add to zero, that is

2R = Q . (3.1)

This mechanism should apply to all other gauged symmetry groups. When we construct our

gauge theories, they will be represented by quivers obtained by ‘assembling’ the building

blocks of figure 2.

3.4 U(1) R-symmetry anomaly

It is instructive to compute the R-symmetry anomaly for our ‘building block’. Once again,

we focus the attention on the SU(N) gauge group. We use the values for the U(1)R
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charges quoted near the end of section 3.1. We find that the U(1)R anomaly, following

from Tr[�3Q
2
i ] is given by the sum of various contributions. In detail, we have,

• For the fields in the adjoint of the SU(N) gauge group, the only contribution is

from the fermions inside the Fermi multiplet (all the other fermions have zero U(1)R

charge). The contribution of these particular left handed fermions is �(N2�1). This

coincides with (minus) the number of (0, 4) vector multiples in SU(N).

• The contribution from the bifundamentals joining SU(N) with SU(P̂ ) is N⇥ P̂ . This

is the number of (0, 4) hypermultiplets in that link.

• The contribution coming from the fields running over the grey line, joining SU(N)

with SU(R), is N ⇥ R, once again, counting the number of (0, 4) hypers running on

the link.

• Finally, the fields running over the dashed line do not contribute as the R-charge of

the left handed fermion is zero, as we discussed above.

In summary, we find that

Tr[�3Q
2
i ] ⇠ (nhyp � nvec). (3.2)

Thus, the R-symmetry anomaly is proportional to the number of (0, 4) hypers minus the

number of (0, 4) vectors.

3.5 Central charge, R-anomaly and the superconformal algebra

Up to this point, we have found the condition for our building block to be non-anomalous,

see (3.1), and the contribution of the matter charged under SU(N) to the U(1)R anomaly,

see (3.2). If the theory becomes conformal and strongly coupled — as we shall propose

our quivers do when flowing to low energies — the coe�cients for the anomalies cannot be

computed by summing over fermions at the conformal point (as we do not have a particle-

like description of the CFT). But since these coe�cients are ‘t Hooft anomalies, they are

invariants under RG-flow. Hence UV-QFT calculations are good for the same IR-CFT

quantity (we are assuming that the proposed R-symmetry does not mix in the IR with

other Abelian symmetries). We propose that our quivers become conformal in the IR and

then the central charge of the quiver and the R-symmetry anomaly get related by the

superconformal algebra.

In our case the relevant superconformal algebra is the small N = (0, 4) algebra. This

consists of eight operators: the energy momentum tensor T (z), four fermionic superpartners

Ga(z) and three Kac-Moody currents J i(z). The dimensions of these operators are (2, 3
2 , 1)

respectively. The modes of these operators satisfy an algebra that can be derived from the

OPE’s of the small N = (0, 4) algebra. In particular among the various relations we have,

T (z)T (0) ⇠ c

z4
+ 2

T (0)

z2
+

�T

z
+ regular, J i(z)J l(0) ⇠ kil

z2
+ regular.
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A relation between c and kil = k�il appears by virtue of the algebra of (anti) commutators.

The relation is that c = 6⇥ k. In other words, for our building block

c = 6(nhyp � nvec). (3.3)

This relation — also derived in [63], is of importance to us. Let us briefly discuss it, as

well as the proposed duality and its implications.

3.6 The proposed duality

In what follows we shall define N = (0, 4) SUSY quiver field theories. These quivers

will consist of colour and flavour groups joined by hypermultiplets or N = (0, 2) Fermi

multiplets as indicated in our building block. We must be careful to have all anomalies of

gauged groups vanishing. We will also calculate the R-symmetry anomaly and the ‘central

charge’ via the relation in (3.3).5 The calculation will be performed in the weakly coupled

description of the field theory, in the UV before the conformal point is attained. But as we

mentioned, these are ‘t Hooft coe�cients, hence invariants of the RG flow. Importantly,

we assume that there is no mixing between the R-symmetry and other global symmetries.

If such mixing were to exist, an extremisation procedure like the one devised in [65, 66]

would be needed. It would be nice to prove that for our quivers there is no mixing between

the R-symmetry and other global symmetries. As a plausible argument for the non-mixing,

notice that the non-Abelian R-symmetry SU(2) cannot mix with U(1) global symmetries

in two dimensions. There is no other non-Abelian global R-symmetry to mix with. Let us

then focus on the end of the RG flow to low energies.

As advanced, we propose that our quivers flow to a strongly coupled CFT with

N = (0, 4) SUSY and central charge given by (3.3), as enforced by the superconformal

algebra. The second part of our proposal is that the holographic backgrounds are dual to

these CFTs. The holographic central charge calculated in (2.27) should coincide with the

result of (3.3), in the case of long quivers with large ranks (as this is the regime in which

we can trust the supergravity solutions).

Another check of our proposal will be the matching of global symmetries on both sides

of the duality. In fact the SCFTs have SO(2, 2) space-time and SU(2) R-symmetries. The

backgrounds in (2.4) match these with the isometries of AdS3 and S2 respectively. Also

eight supercharges are preserved both by the CFT and the background. Indeed, there

are four space-time (Q’s) and four conformal (S’s) supercharges. More interestingly, the

flavour symmetries of the SCFT are matched by the presence of ‘flavour branes’ in the

background (giving place to Bianchi identities modified by the presence of sources). The

counting of Page charges also coincides with the ranks of the colour and flavour groups,

or, analogously, with the numbers of (D2,D6) colour branes and (D4,D8) flavour branes in

the associated Hanany-Witten brane set-ups.

Let us be more concrete. A generic background of the form in (2.4) is defined by the

functions ĥ4, h8, u. In the type of solutions we consider in this paper (those where the

5Strictly speaking, we should not call this quantity central charge as (in the UV) we are not at a fixed

point of the RG flow. The relation in (3.3) is only valid at the fixed point.
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β0 + β1 β0 + β1 + β2 αK

ν0 + ν1 ν0 + ν1 + ν2 µK

β0

ν0

F0 F1 F2 FK−1

F̃0 F̃1 F̃2 F̃K−1

Figure 3. A generic quiver field theory whose IR is dual to the holographic background defined by

the functions in (3.4)–(3.5). As before, the solid black line represents a (4, 4) hypermultiplet. The

grey line represents a (0, 4) hypermultiplet and the dashed line represents a (0, 2) Fermi multiplet.

N = (4, 4) vector multiplets are the degrees of freedom in each gauged node.

space ends at �⇤ = 2�(P + 1), where we have ĥ4(�⇤) = h8(�⇤) = 0), we generically have —

see (2.7)–(2.8) and (2.13),

ĥ4(�) =�h4(�) =�

�
������
������

�0

2⇡� 0 � 2�

�0+ �1

2⇡ (��2�) 2� � 4�

(�0+�1)+
�2

2⇡ (��4�) 4� � 6�

(�0+�1+. . .+�k�1)+
�k
2⇡ (��2�k) 2�k � 2�(k+1), k := 3, . . . ,P�1

�P� ↵P
2⇡ (��2�P ) 2�P  � 2�(P +1).

(3.4)

h8(�) =

�
������
������

⌫0
2⇡� 0 � 2�

�0+ ⌫1
2⇡ (��2�) 2� � 4�

(�0+�1)+
⌫2
2⇡ (��4�) 4� � 6�

(�0+�1+. . .+�k�1)+
⌫k
2⇡ (��2�k) 2�k � 2�(k+1), k := 3, . . . ,P�1

µP� µP
2⇡ (��2�P ) 2�P  � 2�(P +1).

(3.5)

and

u =
b0

2�
�.

The background in (2.4) for the functions ĥ4, h8, u above is dual to the CFT describing the

low energy dynamics of a two dimensional quantum field theory encoded by the quiver in

figure 3 and the Hanany-Witten set-up of figure 4.

Let us see how the correspondence works. For the first two gauge groups SU(�0) and

SU(�0), the cancellation of gauge anomalies in (3.1) implies that,

F0 + �0 + �1 = 2�0 ! F0 = �0 � �1, F̃0 + �0 + �1 = 2�0 ! F̃0 = �0 � �1. (3.6)

This is precisely the number of flavour D8 and D4 branes predicted by the Bianchi identities

in the interval [0, 2�] — see (2.22) for k = 1. Similarly, the ranks of the first two gauge
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ν0D6

β0D2

F0D8 F1D8 F2D8 FPD8

F̃0D4 F̃1D4 F̃2D4 F̃PD4

(β0 + β1)D2

(ν0 + ν1)D6 (ν0 + ν1 + ν2)D6

(β0 + β1 + β2)D2 αPD2

µPD6

NS1 NS2 NS3 NS4 NSP NSP+1

Figure 4. Hanany-Witten set-up associated with our generic quiver in figure 3. The vertical lines

denote NS five branes, horizontal lines D2 and D6 colour branes. The crosses, D4 and D8 flavour

branes.

groups, namely �0 and �0, are precisely the numbers of D2 and D6 colour branes predicted

by eq. (2.23) in the first interval (for k = 1).

This works similarly for all other entries in the quiver. For example, for the SU(�k)

colour group, we obtain that in the interval [2�(k�1), 2�k] of the associated Hanany-Witten

set up in figure 4, there are �k D2 branes, with

�k =
k�1X

j=0

�j .

The cancellation of gauge anomalies for the SU(�k) gauge group imposes that,

Fk�1 + µk+1 + µk�1 = 2µk ! Fk�1 = �k�1 � �k, (3.7)

which, according to (2.22), is precisely the number of flavour D8 branes in the [2�(k�1), 2�k]

interval of the brane set-up. Things work analogously if we replace D2 for D6 (or �k ! µk)

and D8 for D4 (�k ! �k) and deal with the lower-row gauge group SU(µk).

We can calculate the field theory central charge by counting the number of (0, 4)

hypermultiplets, the number of (0, 4) vector multiplets and using (3.3). We find,

nvec =

PX

j=1

⇣
�2

j + µ2
j � 2

⌘
, nhyp =

PX

j=1

�jµj +

P�1X

j=1

⇣
�j�j+1 + µjµj+1

⌘
,

c = 6⇥

�
�

PX

j=1

⇣
�jµj � �2

j � µ2
j + 2

⌘
+

P�1X

j=1

⇣
�j�j+1 + µjµj+1

⌘
�
� . (3.8)

When the number of nodes is large P � 1, and the ranks of each gauge group �i, µi are large

numbers, the supergravity backgrounds are trustable and the holographic central charge

calculated according to (2.27) should coincide at leading order in these large parameters

with (3.8).

For pedagogical purposes, in the next section we present some explicit examples (in

increasing level of complexity) of quiver-supergravity dual pairs. We shall check the can-

cellation of gauge anomalies and the leading order matching of (2.27) and (3.8).
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Figure 5. The quiver encoding our first example of quantum field theory. The conventions for the

fields running along the di�erent lines are the same as those in section 3.

4 Various checks of our proposed duality

In this section we discuss various examples of dual holographic pairs. We check anomaly

cancellation and the leading order matching of the CFT and holographic central charges.

We start from the simplest possible example of a quiver field theory flowing to a supercon-

formal N = (0, 4) SCFT that admits a viable supergravity dual, and move on to examples

of increasing complexity. These will provide stringent checks of our proposal.6

4.1 Example I

Consider the quiver of figure 5, where we depict P gauge groups SU(�) and P gauge

groups SU(�). They are joined by bifundamentals, all complemented by flavour groups

(rectangular boxes). This quiver encodes the kinematical content of our first field theory.

We propose that this QFT flows in the IR to a CFT. Let us focus on the first gauge group

of the top row, SU(�). We compare with our building block in figure 2 to find that,

P̂ = �, Q = 2�, R = �. (4.1)

This is precisely what our formula (3.1) requires for the cancellation of the SU(�) gauge

anomaly. For the first SU(�) gauge group in the lower row, we have P̂ = �, Q = 2�, R = �

and (3.1) is also satisfied.

Similarly, one can calculate for the top and bottom gauge groups at the right end of the

figure and check that all of them satisfy (3.1). Finally, for any intermediate SU(�)-node,

we have P̂ = �, Q = 2�, R = �. Analogous statements hold true for the lower row groups.

Hence all of the gauge symmetries are non-anomalous.

We can now calculate the number of (0, 4) hypermultiplets and vector multiplets with

a view on computing the central charge of the IR CFT. We find,

nvec = P (�2 + �2 � 2), nhyp = (P � 1)(�2 + �2) + P��.

c = 6(nhyp � nvec) = 6��P

✓
1 +

2

��
� �

�P
� �

�P

◆
⇠ 6��P. (4.2)

In the last approximation we used that the ranks are large numbers (�,�) ! 1 and that

the quiver is long enough, hence P � 1, to meaningfully compare with the dual massive

IIA solution.
6In the examples that follow we write the function h4(�). As discussed above, the function that appears

in the background is ĥ4 = �h4. The value �Vol(CY2) = 16�4 is used to have well quantised charges in

terms of the integer numbers (�k,�k, µk, �k).
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The holographic background dual to this CFT is given in terms of the functions u = b0
2⇡�

and

h8(�) =

�
��
��

⌫
2⇡� 0  �  2�

� 2�  �  2�P
⌫
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.3)

h4(�) =

�
��
��

�
2⇡� 0  �  2�

� 2�  �  2�P
�
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.4)

The holographic central charge is found by the simple calculation in (2.27),

chol =
3

�

�Z 2⇡

0

��

4�2
�2d� +

Z 2⇡P

2⇡
��d� +

Z 2⇡(P+1)

2⇡P

��

4�2
(2�(P + 1)� �)2d�

�

chol = 6��P

✓
1� 1

3P

◆
⇠ 6P��. (4.5)

This coincides with the field theoretical result in (4.2). Finally, notice that the number

of D4 and D8 flavour branes, dictated by (2.22), precisely provide the flavour symmetries

at the beginning and end of the quiver. One finds the same by inspecting (2.23) for the

number of colour branes, coinciding with the ranks of the gauge groups of our quiver.

4.2 Example II

Let us slightly complicate our previous example. We consider now a quiver with two rows

of linearly increasing colour groups. These two rows are finished after P nodes by the

addition of a flavour group for each row. See figure 6. This type of quivers can be used as

a completion of the background obtained via the application of non-Abelian T-duality on

AdS3⇥S3⇥CY2, inspired by the treatments in [67]–[70]. See [51] for a careful discussion

of this. The anomalies of each of the gauge groups can be easily seen to vanish. In fact,

for any of the intermediate gauge nodes, say SU(k�) and referring to our building block

in figure 2, we have Q = 2k�, R = k�. This implies that (3.1) is satisfied and a generic

intermediate gauge group is not anomalous. If we refer to the last gauge group in the

upper-row SU(P�) we have that Q = (P + 1)� + (P � 1)� = 2P� and R = P�. As a

consequence (3.1) is satisfied and the gauged group SU(P�) is not anomalous. The same

occurs for the lower-row gauge groups.

We can easily count the number of (0, 4) hypers and the number of (0, 4) vector

multiplets,

nvec =

PX

j=1

⇣
j2(�2 + �2)� 2

⌘
, nhyp =

P�1X

j=1

j(j + 1)(�2 + �2) +

PX

j=1

j2��. (4.6)

The central charge of the IR CFT is,

c = 6(nhyp � nvec)

= 6��

✓
P 3

3
+

P 2

2
+

P

6

◆
� 3(�2 + �2)(P 2 + P ) + 12P ⇠ 2��P 3. (4.7)
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Figure 6. The quiver encoding our second example. There are P gauged nodes with increasing

rank in each row. The conventions for the fields running along the di�erent lines are the same as

those in section 3.

The holographic description of this system is in terms of the functions,

h8(�) =

�
⌫
2⇡� 0  �  2�P

⌫P
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.8)

h4(�) =

�
�
2⇡� 0  �  2�P

�P
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.9)

Using (2.27), we calculate the holographic central charge,

chol =
3

�

✓
��

4�2

◆�Z 2⇡P

0
�2d�+

Z 2⇡(P+1)

2⇡P
P 2(2�(P +1)��)2d�

�
= 2��P 3

✓
1+

1

P

◆
⇠ 2��P 3.

(4.10)

Again, we observe that in the limit of a long quiver, there is matching for the central charge

in the CFT — see (4.7), with that of the dual description — see (4.10).

Let us now discuss a more involved example, providing us with a much stringent check

of our proposed duality.

4.3 Example III

In this case we consider the more involved field theory encoded by the quiver in figure 7.

In this quiver we have a line of linearly increasing nodes SU(�)⇥SU(2�)⇥. . .⇥SU(K�)

followed by q ⇥ SU(K�) nodes. The gauge groups SU(Gl) have ranks

Gl = K�

✓
1� l

P + 1�K � q

◆
, l = 1, . . . , P �K � q. (4.11)

For the lower row we have analogous kinematics: Linearly increasing ranks SU(�) ⇥
SU(2�) ⇥ . . . ⇥ SU(K�), followed by q ⇥ SU(K�) nodes. The gauge groups SU(G̃l)

have ranks,

G̃l = K�

✓
1� l

P + 1�K � q

◆
, l = 1, . . . , P �K � q. (4.12)

Let us analyse anomalies for the upper row groups (the lower row ones work anal-

ogously). The linearly increasing chain is non-anomalous like our previous example in

section 4.2 was. Namely, for a generic SU(j�) node, we have Q = 2j� and R = j�.

The chain of q SU(K�) groups works exactly as any intermediate group in section 4.1,

namely for any generic (intermediate) node we have Q = 2K� and R = K�, satisfying (3.1).
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Figure 7. The quiver encoding our third example. There are K gauged nodes with linearly

increasing ranks in each row. These are followed by q � SU(K�) (top row) and q � SU(K�) nodes

(lower row). The ranks of the next SU(Gi) and SU(G̃i) nodes is given in the text. The conventions

for the fields running along the di�erent lines are the same as those in section 3.

More interesting are the first and last of these q-nodes. For the first node we have

Q = F1 + (K � 1)� + K� and R = K�. Observe that (3.1) forces

F1 = �.

For the last of these q-nodes we have Q = K�+ G̃1 +F2 and R = K�. Then the vanishing

of the gauge anomaly forces

F2 =
K�

P + 1�K � q
.

For any generic group SU(Gi) we have Q = G̃i�1 + G̃i+1 and R = G̃i. Using (4.12) we find

that Q = 2R as imposed in (3.1) for the vanishing of the gauge anomalies.

Analogously, for the lower row groups, we find that the vanishing of the gauge anomalies

imposes

F̃1 = �, F̃2 =
K�

P + 1�K � q
. (4.13)

To calculate the CFT central charge we need to compute the number of (0, 4) hypers and

vectors. We find

nvec =

KX

j=1

�
j2(�2 + �2)� 2

�
+ q(K2(�2 + �2)� 2)

+

P�K�qX

j=1

�
K2(�2 + �2)

✓
1� j

P + 1�K � q

◆2

� 2

�
,

nhyp =
K�1X

j=1

j(j + 1)(�2 + �2) +
KX

j=1

j2�� + K2q(�2 + �2 + ��)

+

P�K�q�1X

j=0

K2(�2 + �2)

✓
1� j

P + 1�K � q

◆✓
1� j + 1

P + 1�K � q

◆

+

P�K�qX

j=1

K2��

✓
1� j

P + 1�K � q

◆2

. (4.14)
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The field theory central charge is after a lengthy calculation,

c = 6(nhyp � nvec)

⇠

�
��
��

2��K2P + 12P + O(1, 1/P ), if P � 1,

4��K2q + O(1, 1/q), if q � 1,

2��K2(1 + 2q + P ) + O(1, 1/K), if K � 1.

(4.15)

We have expanded the exact result for the three possible ways in which the quiver may be

considered to be ‘long’. We also need to take (�,�) to be large numbers.

Now, let us compare with the holographic description. The functions h4 and h8 for

this case read,

h8(�) =

�
��
��

⌫
2⇡� 0  �  2�K

�K 2�K  �  2�(K + q)
⌫K

2⇡(P+1�K�q)(2�(P + 1)� �) 2�(K + q)  �  2�(P + 1).

(4.16)

h4(�) =

�
��
��

�
2⇡� 0  �  2�k

�K 2�K  �  2�(K + q)
�K

2⇡(P+1�K�q)(2�(P + 1)� �) 2�(K + q)  �  2�(P + 1).

(4.17)

The holographic central charge is given by (2.27), that after some algebra yields

chol = 2��K2(P + 2q + 1) =

�
��
��

2��K2P if P � 1

4��K2q if q � 1

2��K2(P + 2q + 1) if K � 1.

(4.18)

The comparison with (4.15) shows that this is a very stringent check of our proposal.

Finally, the reader can check, using (2.22), that the numbers of flavour D8 and D4

branes coincide with the numbers F1, F2 and F̃1, F̃2 quoted above — see (4.13). The same

happens with the gauge groups and the numbers of D2 and D6 branes in the associated

brane set-up calculated using (2.23), and comparing with (4.11)), (4.12).

Let us now study a qualitatively di�erent example. It will raise a puzzle with an

instructive resolution.

4.4 Example IV: a puzzle and its resolution

Qualitatively, the QFTs discussed above share the fact that the lower row gauge groups

‘mirror’ the behaviour of the upper row ones. The groups both grow, stabilise and decrease

at the same points. It is interesting to consider an example for which this is not the case.

Let us consider the quiver in figure 8.

We can easily calculate the number of (0, 4) hypermultiplets, vector multiplets and the

central charge,

nvec = P (�2 � 1) +
PX

j=1

⇣
j2�2 � 1

⌘
, nhyp =

PX

j=1

j�� +
P�1X

j=1

j(j + 1)�2 + �2(P � 1),

c = 3P 2(�� � �2) + (12 + 3�� � 3�2)P � 6�2. (4.19)
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Figure 8. The quiver encoding our fourth example. The conventions for the fields running along

the di�erent lines are the same as those in section 3.

We can anticipate troubles with the holographic description. Indeed, if we were to take

� > � and large P , we could get a negative central charge.

Let us write the functions h4, h8 describing holographically the IR dynamics of this

quiver (as usual u = b0
2⇡�),

h8(�) =

�
⌫
2⇡� 0  �  2�P

⌫P
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.20)

h4(�) =

�
��
��

�
2⇡� 0  �  2�

� 2�  �  2�P
�
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1).

(4.21)

The holographic central charge is calculated using (2.27). After some algebra this results in,

chol = 3P 2��

✓
1 +

2

3P
� 1

3P 2

◆
⇠ 3P 2��. (4.22)

Comparing the expressions for the field theoretical and holographic central charges

in (4.19), (4.22), we see a mismatch if we keep the leading order in P, �,�. This raises a

puzzle. The resolution to this puzzle is given by (2.15). The last interval of the functions

h4, h8 in this example is written as

hP,P+1
4 =

�P

2�
(2�(P + 1)� �), �P = �,

hP,P+1
8 =

µP

2�
(2�(P + 1)� �), µP = P�.

Using (2.15), this implies that the CY2 space is of sub-stringy size, for large P . This

invalidates the supergravity solution which does not include the dynamics of massless

states due to strings or branes wrapping the CY2 — see the comment below (2.15). The

way out of this puzzle is to decouple these light states (by making them heavy and hence

the supergravity solution valid). To do this, one must scale � ⇠ �̂⇥P . Then, both the field

theoretical and the holographic central charges in (4.19), (4.22) coincide to c ⇠ 3�̂�P 3.

We close this section here. A more involved example is discussed in appendix C.
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5 Conclusions

This paper presents a new entry in the mapping between SCFTs and AdS-supergravity

backgrounds, for the particular case of two-dimensional small N = (0, 4) SCFTs and

backgrounds with AdS3⇥S2 factors. The most general solutions of this type that support

an SU(2)-structure on the internal space were recently classified in [47].

We have constructed new solutions of the type AdS3⇥S2⇥CY2, belonging to class

I in the classification in [47], with compact CY2, whose defining functions are piecewise

continuous. We elaborated on their regime of validity and on various general aspects of their

mapping with SCFTs. In particular, we matched the background isometries and the global

symmetries (both space-time and flavour) of the SCFTs. We computed Page charges and

put them in correspondence with the putative colour and flavour branes in the Hanany-

Witten set-ups associated to our SCFTs. The CFTs are defined as the IR limit of UV

well-behaved long quivers with (0, 4) SUSY, that generalise 2-d (0,4) quivers previously

discussed in the literature — see [41, 49]. Our (0, 4) quivers consist of two families of

(4, 4) quivers coupled by (0, 4) and (0, 2) matter fields. The (4, 4) quivers are associated

to D2-NS5-D4 and D6-NS5-D8 brane systems, the latter wrapped on the CY2, which by

themselves do not give rise to 2d CFTs in the IR. Our work shows that the coupling

between the two families of quivers through matter fields that reduce the supersymmetry

to (0, 4) renders a 2d CFT in the IR, which admits an AdS3 dual. After presenting our

proposed duality we discussed a number of examples of increasing complexity that together

constitute a stringent test of our proposal. These examples exhibit perfect agreement

between the holographic and field theoretical central charges (in the regime where both

descriptions are valid), gauge-anomaly cancellation and matching between isometries and

‘flavour’ symmetries on both sides of the duality.

It is clear that this paper just scratches the surface of a rich line of work. In the

forthcoming paper [51] we will apply the developments in this paper to (among other

things) construct a symmetric solution that can be thought of as a completion of the

background obtained via non-Abelian T-duality on AdS3⇥S3⇥CY2. Indeed, non-Abelian

T-duality has been one of the inspirations of the exhaustive classification presented in [47],

and further discussed in this work. This classification provides one more example that

shows the huge impact of non-Abelian T-duality as a solution generating technique in

supergravity — see for example [71]–[77]. One can speculate that an approach similar to

the one in [47] can be used to classify generic backgrounds in di�erent dimensions and with

di�erent amounts of SUSY from particular solutions generated through this technique.

More related to the present paper a number of interesting problems can be tackled.

For example, operators of spin two have been studied in correspondence with certain fluc-

tuations of the background metric [78, 79]. It would be interesting to study the analog

operators in our CFTs. Similarly, long operators like those in [18] should exist in our

CFTs and their associated backgrounds. An obvious open problem is to discuss the CFTs

dual to the solutions terminated by the two types of boundary conditions discussed in

section 2, not tackled in this paper. In the same vein, it would be interesting to explore

the CFT duals of the solutions referred as class II in [47], where the CY2 is replaced by a
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4-d Kahler manifold. It would be nice to explore other tests and (more interestingly) find

predictions of our proposed duality. The richness of the 2-d SCFTs suggests that stringy

tests and mappings along the lines of [80]–[85] should be possible. We hope to report on

these projects soon.
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A Continuity of the NS sector of our solutions

In this section we study the conditions imposed by the continuity of the NS-sector, on

the constants (ak, bk,�k,�k, µk, �k) defining our solutions in section 2.1. In particular, we

consider solutions that in the interval [2�k, 2�(k + 1)] are given by,

ĥ
(k)
4 = �

✓
�k +

�k

2�
(�� 2�k)

◆
, h

(k)
8 = µk +

�k

2�
(�� 2�k), u(k) = ak +

bk

2�
(�� 2�k).

(A.1)

Below, we quote the value of each component of the metric, e�4� and B2-field when cal-

culated at the point � = 2�(k + 1) in terms of the general decomposition

ds2 = e2Ads2(AdS3) + e2Cds2(S2) + e2Dds2(CY2) + e�2Ad�2, B = B0vol(S2). (A.2)

If using the solution in (A.1) we denote them with a superscript �. Then, we calculate the

NS quantities at the same point � = 2�(k + 1), but using the solution in the next interval

(with �k ! �k+1, etc), we denote this with a supra-index +. Imposing the continuity

of each element of the metric and other NS fields, we find conditions for the numbers

(ak, bk,�k,�k, µk, �k).
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In more detail, we find,

e2A�
=

(ak+bk)p
�(�k+�k)(µk+�k)

, e2A+
=

ak+1p
��k+1µk+1

. (A.3)

e2D�
=

�
�(�k+�k)

(µk+�k)
, e2D+

=

�
��k+1

µk+1
.

e2C�
= 4�2 (ak+bk)

p
�(�k+�k)(µk+�k)

b2
k+16�2�(�k+�k)(µk+�k)

, e2C+
= 4�2 ak+1

p
��k+1µk+1

b2
k+1+16�2��k+1µk+1

.

e�4��
=

(µk+�k)
3
⇥
b2
k+16�2�(�k+�k)(µk+�k)

⇤2

256�4�(�k+�k)(ak+bk)2
,

e�4�+
=

(µk+1)
3
⇥
b2
k+1+16�2��k+1µk+1

⇤2

256�4��k+1(ak+1)2
.

B�
0

�
=

akbk�16�2�(�k+�k)(µk+�k)

b2
k+16�2�(�k+�k)(µk+�k)

,
B+

0

�
=

ak+1bk+1�b2
k+1�16�2��k+1µk+1

b2
k+1+16�2��k+1µk+1

.

Continuity across � = 2�(k +1) imposes the matching of the analog quantities above. One

possible solution is,

ak+1 = ak + bk, bk = bk+1 = b0, �k+1 = �k + �k, µk+1 = µk + �k. (A.4)

These are precisely the same conditions that result from imposing the continuity of ĥ4, h8, u

across each interval. Notice that (A.4) is equivalent to (2.10).

B A general analysis of Bianchi identities and counting branes in our

Hanany-Witten set-ups

In this appendix we study the charges of D2 and D6 branes induced on D8 and D4 flavour

branes. We finish by presenting expressions to calculate the total number of D8, D6, D4

and D2 branes in a generic Hanany-Witten set-up.

As in the main body of the paper, we denote by fp the magnetic part of the form Fp

and with f̂p the magnetic part of the Page field strength F̂p = F ^ e�B2 . In the presence

of N4 D4 and N8 D8 branes on which we switch a gauge field strength f̃2 and form the

combination F2 = B2 + 2�f̃2. The Bianchi identities read,

dF0 =
N8

2�
�(���0)d�, (B.1)

df2�H3F0 =
N8

2�
�(���0)F2^d�,

df4�H3^f2 = (2�)3N4�(���0)�
4(�y��y0)d�^d4�y+

1

2

N8

2�
�(���0)F2^F2^d�,

df6�H3^f4 = (2�)3N4�(���0)�
4(�y��y0)F2^d�^d4�y+

1

6

N8

2�
�(���0)F2^F2^F2^d�.

The D8 branes are localised in the �-direction at the point �0, as indicated in the first line

of (B.1). The D4 branes are localised at � = �0 and at a point �y0 inside the CY2 space

(we denote by d4�y = vol(CY2) its volume form).

– 27 –



J
H
E
P
0
1
(
2
0
2
0
)
1
4
0

The explicit definition of the Page field strengths (we only quote the magnetic part

here) is,

f̂2 = f2 �B2F0, f̂4 = f4 �B2 ^ f2 +
1

2
B2 ^B2F0,

f̂6 = f6 �B2 ^ f4 +
1

2
B2 ^B2 ^ f2 �

1

6
B2 ^B2 ^B2F0. (B.2)

Combining (B.1) with (B.2), we find

df̂2 = N8�(�� �0)f̃2 ^ d�. (B.3)

In the case in which there is no gauge field switched on in the D8 branes, there is no

induced D6-brane charge, as implied by the first line in (2.21). Otherwise D6-flavour

charge is induced, as indicated by (B.3). A similar analysis shows that,

df̂4 = (2�)3N4�(�� �0)�
4(�y � �y0)d� ^ d4�y + 2�N8�(�� �0)f̃2 ^ f̃2 ^ d�. (B.4)

This indicates that D4 brane charge might originate from either localised D4 branes, or on

localised D8 branes with a gauge field strength f̃2 switched on, such that f̃2 ^ f̃2 ^ d� is

non-zero. For our background, we have, consistently with (2.20)

df̂4 = (2�)3N4�(�� �0)�
4(�y � �y0)d� ^ d4�y. (B.5)

The analogous expression for f̂6 is obtained combining the expressions in (B.1)–(B.2),

df̂6 = (2�)4N4�(���0)�
4(�y��y0)f̃2^d�^d4�y+

1

6
(2�)2N8�(���0)f̃2^f̃2^f̃2^d�. (B.6)

We thus have df̂6 = 0, in agreement with (2.21).

To close this appendix, let us present simple expressions counting the total number of

D branes in the Hanany-Witten set-ups associated with our gauge theories and holographic

backgrounds. These formulas are similar to those derived in [11, 24] for CFTs in four and

six dimensions. They read,

N total
D8 = 2�

⇥
h0

8(0)� h0
8(2�(P + 1))

⇤
, N total

D4 = 2�
⇥
h0

4(0)� h0
4(2�(P + 1))

⇤
, (B.7)

N total
D6 =

1

2�

Z 2⇡(P+1)

0
h8d�, N total

D2 =
1

2�

Z 2⇡(P+1)

0
h4d�.

These can be successfully checked in all the examples in section 4 and in appendix C.

C A more stringent check of the duality

In this appendix we work out the details of a more complicated, generic and demanding

example, shown in figure 9. Extending the examples studied in the body of the paper, we

consider a quiver that starts with linearly increasing nodes. This is followed by q-nodes

with SU(Gl), SU(G̃l) gauge groups in the top and lower row respectively, where

Gl =
Ĝ0

q
l + �K

✓
1� l

q

◆
, G̃l =

Ĝ0

q
l + �K

✓
1� l

q

◆
, l = 1, . . . , q (C.1)
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ν 2ν Kν

β 2β Kβ

G1 G2 Ĝ0

G̃1 G̃2 Ĝ0

Ĝ1 Ĝ2

ĜP−K−q

Ĝ1 Ĝ2

ĜP−K−q

F1

F̃1

F2

F̃2

K nodes q nodes (P −K − q) nodes

Figure 9. A more complicated quiver with K linearly increasing rank nodes in each row, followed

by q nodes with SU(Gl) and SU(G̃l) gauge groups in the top and lower rows, respectively, and

ending with (P �K � q) nodes with SU(Ĝi) gauge groups in both rows.

Following them, there are (P �K � q) SU(Ĝl) gauge groups with ranks

Ĝi =
Ĝ0

P �K � q + 1
(P �K � q + 1� i), i = 1, . . . , (P �K � q) (C.2)

in both rows.

As in the examples studied in the main body of the paper, the gauge anomaly vanishes

in the linearly increasing rows. Following the logic of section 3, for the SU(K�) node we

have Q = F1 + G̃1 + (K � 1)� and R = K�. A vanishing gauge anomaly for the SU(K�)

node, see (3.1), forces

F1 = K� + � � G̃1 =
�

q
(K + q)� Ĝ0

q
. (C.3)

Similarly, for the SU(K�) node the condition is F̃1 = K� + � �G1 = ⌫
q (K + q)� Ĝ0

q .

For the next gauge group, SU(G1), we have the contibutions R = G̃1 and Q = K�+G̃2.

The gauge anomaly then implies 2G̃1 � G̃2 � K� = 0, which is true in virtue of (C.1).

For all SU(Gl) and SU(G̃l) gauge groups we also have a vanishing gauge anomaly. In the

SU(Ĝ0) gauge group — q-steps forward in the top row — the contributions are R = Ĝ0

and Q = F2 + G̃q�1 + Ĝ1, where (3.1) is satisfied whenever

F2 = 2Ĝ0 � Ĝ1 � G̃q�1 = Ĝ0

✓
1

q
+

1

P + 1�K � q

◆
� �K

q
. (C.4)

The same is true for the SU(Ĝ0) lower gauge group, in this case F̃2 = 2Ĝ0 � Ĝ1 �Gq�1 =

Ĝ0(
1
q + 1

P+1�K�q )� ⌫K
q . Considering (C.2), the gauge anomaly vanishes similarly for the

rest of the gauge groups.

To calculate the central charge we compute the number of (0, 4) hypers and vectors

nvec =
KX

j=1

�
j2(�2 + �2)� 2

�
+

qX

j=1

(G2
j + G̃2

j � 2) +

P�K�qX

j=1

2(Ĝ2
j � 1),

nhyp =

KX

j=1

j2�� +

K�1X

j=1

j(j + 1)(�2 + �2) +

qX

j=1

GjG̃j +

q�1X

j=0

(GjGj+1 + G̃jG̃j+1)+

+

P�K�qX

j=1

Ĝ2
j +

P�K�q�1X

j=0

2ĜjĜj+1, (C.5)
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where for the number of hypers we are considering G0 = �K, G̃0 = �K and Ĝ0 = Gq = G̃q.

As in the previous examples, we are interested in the case of a long quiver. To leading

order the central charge, in the three possible limits, is

c = 6(nhyp � nvec)

=

�
��
��

2Ĝ2
0P + 12P + O(1, 1/P ), if P � 1,

(2��K + (� + �)Ĝ0)Kq + O(1, 1/q), if q � 1,

2��K3 + O(1, 1/K), if K � 1.

(C.6)

Now, we can compare the result in (C.6) with the holographic central charge. The h8 and

h4-profiles are given by

h8(�) =

�
��
��

⌫
2⇡� 0  �  2�K

�K + Ĝ0�⌫K
2⇡q (�� 2�K) 2�K  �  2�(K + q)

Ĝ0 � Ĝ0
2⇡(P�K�q+1)(�� 2�(K + q)) 2�(K + q)  �  2�(P + 1).

(C.7)

h4(�) =

�
��
��

�
2⇡� 0  �  2�K

�K + Ĝ0��K
2⇡q (�� 2�K) 2�K  �  2�(K + q)

Ĝ0 � Ĝ0
2⇡(P�K�q+1)(�� 2�(K + q)) 2�(K + q)  �  2�(P + 1).

(C.8)

The holographic central charge, using (2.27), results into

chol = 2��K2(K + q) + (� + �)KqĜ0 � 2Ĝ2
0(K � P � 1)

=

�
��
��

2Ĝ2
0P if P � 1,

(2��K + (� + �)Ĝ0)Kq if q � 1

2��K3 if K � 1.

(C.9)

We can then easily see that (C.9) is in complete agreement with the output of (C.6).
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[7] R.A. Reid-Edwards and B. Stefański Jr., On Type IIA geometries dual to N = 2 SCFTs,

Nucl. Phys. B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].

[8] O. Aharony, L. Berdichevsky and M. Berkooz, 4d N = 2 superconformal linear quivers with

type IIA duals, JHEP 08 (2012) 131 [arXiv:1206.5916] [INSPIRE].

[9] I. Bah, AdS5 solutions from M5-branes on Riemann surface and D6-branes sources, JHEP

09 (2015) 163 [arXiv:1501.06072] [INSPIRE].
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Flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].
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1 Introduction

Defect QFTs play an important role in our current understanding of Quantum Field The-

ories. Of particular interest is the situation when the ambient QFT is a CFT with a

holographic dual. In this case, introducing appropriate branes in the dual geometry it is

possible to construct the gravity dual of the defect QFT, that can then be studied holo-

graphically [1–3]. When the defect QFT is a CFT, the explicit AdS dual geometry can

be constructed in terms of the fully backreacted geometry [4, 5], if the number of defect

branes is su�ciently large.
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2d defect CFTs breaking half of the supersymmetries of the ambient CFT have been

studied in [6–8], and their corresponding AdS3 gravity duals have been constructed.1 The

ambient CFT is either a 6d (1,0) CFT [6, 7] or a 5d fixed point theory [8].2 In the first

case the 2d CFT lives in D2-D4 branes introduced in the D6-NS5-D8 brane intersections

that underlie 6d (1,0) CFTs. In the second case it lives in D2-NS5-D6 branes in the D4-D8

brane set-ups that give rise to 5d Sp(N) fixed point theories.

In this work we will be interested in an extension of the first realisation. We will

show that a sub-class of the local solutions constructed recently in [11], preserving small

N = (0, 4) supersymmetry on a foliation of AdS3⇥S2⇥CY2 over an interval, can be used to

construct globally compact solutions dual to 2d (0,4) SCFTs that have an interpretation in

terms of D2-D4 defects in 6d (1,0) CFTs. More precisely, we will be using the word defect to

indicate the presence of extra branes in Hanany-Witten brane set-ups that would otherwise

arise from compactifying higher dimensional branes. This provides a new scenario in which

2d (0,4) CFTs appear in string theory.

2d (0,4) CFTs play a key role in the microscopical description of 5d black holes with

AdS3⇥S2 near horizon geometries [12–17]. In string theory they can be realised in D1-D5-

KK systems [18–21] and D1-D5-D9 systems [22]. They also play a prominent role in the

description of self-dual strings in 6d (1,0) CFTs realised in M- and F-theory [23–28]. Their

extensions to 2d (0,4) CFTs with large superconformal algebra have also received a good

deal of attention [29–33]. Very recently we have also shown that they can be realised in

larger D2-D4-D6-NS5-D8 brane systems [34, 35].

In [11] AdS3⇥S2⇥M4 solutions in massive IIA supergravity preserving N = (0, 4)

supersymmetry with SU(2)-structure were classified. These solutions are warped products

of AdS3⇥S2⇥M4 over an interval, with M4 either a CY2 or a Kahler manifold. The CFT

duals of the first class were studied in [34, 35]. They are described by (0,4) quiver gauge

theories with gauge groups
�n

i=1 SU(ki) ⇥ SU(k̃i). SU(ki) is the gauge group associated

to ki D2 branes stretched between NS5 branes and SU(k̃i) is the gauge group associated

to k̃i D6-branes, wrapped on the CY2, also stretched between the NS5 branes. On top of

these there are D4 and D8 branes that provide flavour groups to both types of nodes of the

quiver. These quivers are a generalisation of the linear quivers studied in [26], where the D6

branes are unwrapped and are thus non-dynamical. In this paper we give an interpretation

to our brane systems as D2-D4 brane defects in the D6-NS5-D8 branes associated to 6d

(1,0) CFTs.

The organisation of the paper is as follows. In section 2 we review the main properties

of the AdS3⇥S2⇥CY2 solutions constructed in [11], and summarise the key features of their

2d dual CFTs, following [35]. In section 3 we construct a mapping that relates a sub-class

of these solutions with the AdS7 solutions in massive IIA supergravity constructed in [36].

Using this map we can interpret the 2d dual CFTs as associated to D2-D4 defects in the

D6-NS5-D8 brane set-ups dual to the AdS7 solutions, wrapped on the CY2. This suggests

that it should be possible to construct RG flows that interpolate between these two classes

11d CFTs and their AdS2 duals have been addressed in [9].
2SUSY-preserving defects in 5d CFTs have been studied recently in [10].

– 2 –
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of solutions. In section 4 we discuss the AdS7 solution that describes the 6d linear quiver

with gauge groups of increasing ranks terminated by D6 branes, in relation to the map

constructed in section 3. By means of this study we rediscover the non-Abelian T-dual

(NATD) of the AdS3⇥S3⇥CY2 geometry, constructed in [37] (see also [30]), as the leading

order in an expansion on the number of gauge groups, of this solution. Then in section 5

we start a detailed study of the non-Abelian T-dual solution. We show that it provides a

simple explicit example in the general classification in [11], that describes a 2d (0,4) CFT

with two families of gauge groups [35] with increasing ranks. As in other AdS solutions

generated through non-Abelian T-duality, the solution is non-compact, and this renders

and infinitely long dual quiver CFT. Remarkably, we are able to provide explicit global

completions of the solution that have associated well-defined 2d (0,4) dual CFTs, that we

describe. This solution thus provides a useful example where it is possible to use holography

in a very explicit way to determine global properties of non-compact solutions generated

through non-Abelian T-duality, following the ideas in [38–42]. In section 6 we attempt to

make connection with RG flows in the literature that connect AdS3 geometries in the IR,

with an interpretation as 2d defect CFTs, with AdS7 solutions in the UV [6, 7]. Our results

are negative, and thus exclude the RG flows constructed in these references as interpolating

between the AdS3 solutions in [11] and the AdS7 solutions in [36]. Section 7 contains our

conclusions and future directions. Appendix A contains some explicit derivations useful

in section 5. Appendix B contains details of the BPS flow constructed in [6], upon which

section 6 is built.

2 AdS3�S2�CY2 solutions in massive IIA and their CFT duals

In [11] AdS3⇥S2 solutions in massive IIA with small (0,4) supersymmetry and SU(2)

structure were classified. Two classes of solutions that are warped products of the form

AdS3⇥S2⇥M4⇥I were found, for M4 either a CY2 manifold, class I, or a family of Kahler

4 manifolds depending on the interval, class II. The solutions in the first class provide a

generalisation of D4-D8 systems involving additional branes, while those in the second class

are a generalisation of the (T-duals of the) solutions in [28], based on D3-branes wrapping

curves in F-theory. In this paper we will be interested in the first class of solutions, that

we now summarise.

The explicit form of the NS sector of the solutions referred as class I in [11] is given by:

ds2 =
up
h4h8

✓
ds2(AdS3) +

h8h4

4h8h4 + (u0)2
ds2(S2)

◆
+

�
h4

h8
ds2(CY2) +

p
h4h8

u
d�2, (2.1)

e�� =
h

3
4
8

2h
1
4
4

p
u

p
4h8h4 + (u0)2, H =

1

2
d

✓
� � +

uu0

4h4h8 + (u0)2

◆
^ vol(S2) +

1

h8
d� ^H2.

Here � is the dilaton, H the NS 3-form and ds2 is the metric in string frame. The warpings

are determined from three independent functions h4, u, h8. h4 has support on (�, CY2) while

u and h8 have support on �, with u0 = �⇢u. The reason for the notation h4, h8 is that
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these functions may be identified with the warp factors of intersecting D4 and D8 branes

when u = 1.3

The 10 dimensional RR fluxes are

F0 = h0
8, (2.2a)

F2 = �H2 �
1

2

✓
h8 �

h0
8u

0u
4h8h4 + (u0)2

◆
vol(S2), (2.2b)

F4 =

✓
d

✓
uu0

2h4

◆
+ 2h8d�

◆
^ vol(AdS3)

� h8

u
(�̂4d4h4) ^ d�� �⇢h4vol(CY2)�

uu0

2(4h8h4 + (u0)2)
H2 ^ vol(S2), (2.2c)

with the higher fluxes related to these as F6 = � �10 F4, F8 = �10F2, F10 = � �10 F0.

Supersymmetry holds whenever

u00 = 0, H2 + �̂4H2 = 0, (2.3)

which makes u a linear function. Here �̂4 is the Hodge dual on CY2. In turn, the Bianchi

identities of the fluxes impose

h00
8 = 0, dH2 = 0 (2.4)

h8

u
r2

CY2
h4 + �2

⇢h4 �
2

h3
8

�̂4(H2 ^H2) = 0,

away from localised sources.

In this paper we will be interested in the subclass of solutions for which the symmetries

of the CY2 are respected by the full solution. This enforces H2 = 0 and a compact CY2.

Thus, we will be dealing with T4 or K3. The supersymmetry and Bianchi identities are

then all solved for h8, u, h4 arbitrary linear functions in �.

The magnetic components of the Page fluxes F̂ = F ^ e�B2 , are given by

f̂0 = h0
8, (2.5)

f̂2 = �1

2

⇣
h8 � (�� 2n�)h0

8

⌘
vol(S2) (2.6)

f̂4 = �h0
4vol(CY2), (2.7)

f̂6 =
1

2

⇣
h4 � (�� 2n�)h0

4

⌘
vol(CY2) ^ vol(S2), (2.8)

where we have included large gauge transformations of B2 of parameter n, such that

B2 =
1

2

✓
2n� � � +

uu0

4h4h8 + (u0)2

◆
^ vol(S2). (2.9)

The 2d CFTs dual to this class of solutions were constructed in [35]. They are described

by (0,4) supersymmetric quivers with gauge groups associated to D2 and D6 branes, the

3The interpretation for generic u is more subtle.

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
3

N
(2)
2 N

(3)
2 N

(k)
2

N
(2)
6 N

(3)
6 N

(k)
6

N
(1)
2

N
(1)
6

N
(1)
8 N

(2)
8 N

(3)
8 N

(k)
8

N
(1)
4 N
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Figure 1. Generic quiver field theory whose IR is holographic dual to the solutions discussed in this

section. The solid black line represents a (4,4) hypermultiplet, the grey line a (0,4) hypermultiplet

and the dashed line a (0,2) Fermi multiplet. (4,4) vector multiplets are the degrees of freedom at

each node.

0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 1. 1
8 -BPS brane intersection underlying the quiver depicted in figure 1. (x0, x1) are the

directions where the 2d CFT lives, (x2, . . . , x5) span the CY2, on which the D6 and the D8-branes

are wrapped, x6 is the direction along the linear quiver, and (x7, x8, x9) are the transverse directions

on which the SO(3)R symmetry is realised.

latter wrapped on the CY2 manifold, stretched between NS5 branes. Having finite extension

in this direction, the field theory living in both the D2 and D6 branes is two dimensional

at low energies compared to the inverse separation between the NS5-branes. It was shown

in [35] that these quivers are rendered non-anomalous with adequate flavour groups at

each node, coming from D4 and D8 branes. Remarkably, the flavour groups associated

to gauge groups originating from D2 branes arise from D8 branes (wrapped on the CY2)

while those associated to the gauge groups originating from wrapped D6-branes arise from

D4-branes. The corresponding quiver is depicted in figure 1. The underlying brane set-up

is summarised in table 1.

The 2d CFTs dual to the solutions in class I thus generalise the (0,4) quivers studied

in [26] from D2, NS5 and D6 branes, in two ways. First, the D6 branes are compact, and

therefore give rise to gauge, as opposed to global, symmetries. Second, there are D8 branes

between the NS5 branes that can give rise to di�erent flavour groups to each gauge group

coming from D2 branes [44, 45]. Non-compact D4 branes provide the necessary flavour

groups that render the nodes associated to the new, colour, D6 branes non-anomalous.

Our quivers also generalise the (0,4) quivers constructed in [32] from D3-brane box config-

urations to gauge nodes with di�erent gauge groups.

– 5 –
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1
8 -BPS brane set-ups such as the one depicted in table 1 were discussed in [7] in the

context of 2d defect CFTs originating from D2-D4 branes living in 6d (1,0) CFTs. In the

next section we find that it is indeed possible to give an interpretation to some of the

CFTs studied in [35] in these terms. We will discuss the connection with the solutions

constructed in [7] in section 6.

3 A map between AdS3�S2 and AdS7 solutions in massive IIA

In [36] an infinite class of AdS7 solutions in massive IIA was constructed,4 preserving 16

supersymmetries (eight Poincare and eight conformal) on a foliation of AdS7⇥S2 over an

interval. In this section we show that they can be related to our solutions in [11], preserving

(0,4) supersymmetries on a foliation of AdS3⇥S2⇥CY2 over an interval, through a map

that reduces supersymmetry by half. As opposed to the mappings in [47] between AdS7

solutions and the AdS5 and AdS4 solutions in [48, 49], this mapping is not one-to-one,

due to the presence of D2-D4 defects, whose backreaction introduces new 4-form and 6-

form fluxes.

We start by briefly summarising the solutions constructed in [36]. Using the parametri-

sation in [50], these solutions can be completely determined by a function �(z) that satisfies

the di�erential equation
...
� = �162�3F0. (3.1)

Where F0 is the Ramond zero-form. Explicitly, the metric and fluxes are given by

ds2
10 = �

p
2

�
8

�
��

�̈
ds2(AdS7) +

�
� �̈

�
dz2 +

�3/2(��̈)1/2

�̇2 � 2��̈
ds2(S2)

�
(3.2)

e2� = 25/2�538 (��/�̈)3/2

�̇2 � 2��̈
(3.3)

B2 = �

✓
� z +

��̇

�̇2 � 2��̈

◆
vol(S2) (3.4)

F2 =

✓
�̈

162�2
+

�F0��̇

�̇2 � 2��̈

◆
vol(S2). (3.5)

These backgrounds were shown to arise as near horizon geometries of D6-NS5-D8 brane

intersections [51, 52] (see also [50, 53] for previous hints), from which 6d linear quivers

with 8 supercharges can be constructed [44, 45]. In these quivers anomaly cancelation

implies that for every gauge group the number of flavours must double the number of

gauge multiplets, Nf = 2Nc [53]. In reference [50] a prescription was given to calculate the

function �(z) that encodes the explicit AdS7 solution dual to a given 6d quiver diagram.

In this quiver diagram the NS5 branes are located at di�erent values of z, the D6-branes

are stretched between them along this direction and the D8 branes are perpendicular. The

corresponding brane set-up is depicted in table 2.

4See [46] for orientifold constructions thereof.
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0 1 2 3 4 5 6 7 8 9

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 2. 1
4 -BPS brane intersection underlying the 6d (1,0) CFTs dual to the AdS7 solutions

in [36]. (x0, . . . , x5) are the directions where the 6d CFT lives, x6 is the direction along which the

NS5-branes are located, and (x7, x8, x9) realise the SU(2) R-symmetry of the internal space.

After this brief summary we can introduce the mapping that relates these solutions to

the solutions in class I in [11], summarised in the previous section. The mapping reads

� $ 2�z (3.6)

u $ � (3.7)

h8 $ �
�̈

81�2
(3.8)

h4 $
81

8
� . (3.9)

Using these relations one can match the B2 field, dilaton, F0 and F2 fluxes of the two

solutions, as well as the S2 ⇥ I components of the metric. For the rest of the metric one

must consider the mapping

ds2(AdS3) +
34

23
ds2(CY2)$ 4 ds2(AdS7) . (3.10)

Besides, the F4 and F6 fluxes, which would violate the symmetries of the AdS7 solution,

must be disregarded when using the mapping from AdS3 to AdS7. These fluxes clearly sign

the presence of a D2-D4 defect in the AdS3 solution. As we discuss below, its backreaction

has also the e�ect of modifying the dependence of the di�erent functions on both sides

of (3.7)–(3.9) on the respective field theory directions (related through (3.6)).

Indeed, (3.7) and (3.9) relate linear functions in � with a cubic function of z. This

mapping is therefore essentially di�erent from the mappings found in [47], where other than

the replacements of AdS5⇥�2 or AdS4⇥�3 with AdS7, the internal space is just distorted

by some numerical factors. This di�erence is due to the presence of the D2-D4 defect in

the AdS3 solution, which is also responsible for the reduction of the supersymmetry from

1/2 BPS to 1/4 BPS.

Using (3.8) and (3.6) it is possible to obtain the AdS7 solution related to a particular

AdS3⇥CY2 solution. One finds

h8 = F0� + c $ �̈ = �162�3F0z + c̃ , (3.11)

from which �(z), and thus, the explicit AdS7 solution in [36], can be determined. This

mapping does not however give the expressions for the u and h4 functions that define

the AdS3 solution. Still, one can exploit (3.11) to show that the D8-brane charges of the

AdS7 and AdS3 solutions, determined, respectively, from h0
8 and �...

�/(162�3), agree, and

– 7 –
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that the same holds for the D6-brane charges, given that the corresponding f̂2 Page fluxes

satisfy

f̂2(AdS3) = �1

2

⇣
h8 � (�� 2n�)h0

8

⌘
vol(S2)$

✓
�̈

162�2
+ F0(z � n�)

◆
vol(S2) = f̂2(AdS7).

(3.12)

This implies that the D6-NS5-D8 sector of the AdS3 solution is simply obtained by com-

pactifying on the CY2 the D6-NS5-D8 branes that underlie the AdS7 solution.

However, as we have mentioned, the u and h4 linear functions needed to fully specify

the AdS3 solution, cannot be determined from the AdS7 solution using this mapping, other

than the fact that they have to be proportional to each other.5 This was to be expected,

since, as we showed in [11], these functions encode the information of the additional D2-

D4 branes present in the AdS3 solution. This is, once more, essentially di�erent from the

mappings between AdS5 and AdS4 and AdS7 solutions found in [47], where it is not possible

to identify 6 and 4-cycles on which additional D2 or D4 brane charges can be defined. In

this case this is possible due to the non-trivial CY2 4-cycle in the internal space of the

AdS3 solutions.

The symmetry between the D6-NS5-D8 and D2-NS5-D4 sectors, manifest in the ex-

pressions of the RR Page fluxes of the AdS3 solutions,

f̂0 = h0
8, f̂2 = �1

2

⇣
h8 � (�� 2n�)h0

8

⌘
vol(S2) (3.13)

and

f̂4 = �h0
4vol(CY2), f̂6 =

1

2

⇣
h4 � (�� 2n�)h0

4

⌘
vol(CY2) ^ vol(S2), (3.14)

stress the role of both D2 and D6 branes as colour branes in the 2d CFT dual to the AdS3

solution, and of D4 and D8 branes as flavour branes [35]. The resulting 2d (0,4) CFT thus

contains two types of nodes, associated to the gauge groups of D2 and compact, wrapped

on the CY2, D6 branes. This is the generalisation of the (0,4) quivers discussed in [26]

that we found in [35]. Note that compactification on the CY2 of the 6d CFT living in

D6-NS5-D8 branes preserves (4,4) supersymmetries.6 The D2-D4 branes further reduce

the supersymmetries by one half [7] (see also [59]). Alternatively, one could start with

the D2-NS5-D4 Hanany-Witten brane set-ups discussed in [60, 61], realising 2d (4,4) field

theories, and intersect them with wrapped D6 and D8 branes, which would also reduce the

supersymmetries by a half. The resulting 1
8 BPS configuration (increasing to 1

4 at the near

horizon) is the one that we depicted in table 1.

5We will see below that this guarantees that the two solutions share the same singularity structure, or,

in other words, that the S2 shrinks in the same way to produce topologically an S3.
6Gauge theories with (4, 4) supersymmetry in two dimensions may be viewed as the dimensional re-

duction of 6d (1, 0) gauge theories. The six dimensional gauge theories have an SU(2)R R-symmetry.

Upon dimensional reduction to two dimensions there is an additional SO(4) = SU(2)r � SU(2)l symmetry

acting on the four reduced dimensions. This is also an R-symmetry since the supercharges are a spinor

of this SO(4) group; the left-moving (positive chirality) supercharges are in the (2,1,2) representation of

SU(2)l � SU(2)r � SU(2)R while the right-moving (negative chirality) supercharges are in the (1, 2, 2)

representation [54, 55].
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Let us now discuss the physical reason for the condition h4 ⇠ u, implied by (3.9)

and (3.7), in the AdS3 solutions. As we have mentioned, the functions u and h4, needed to

completely determine the AdS3⇥CY2 solution, cannot be computed from (3.7) and (3.9),

due to the di�erent dependence on � and z of these functions and �(z), respectively. Rather,

the relation h4 = 81u/8 has to be seen as a restriction on the class of AdS3⇥CY2 solutions

that can be interpreted as defects in the CFTs dual to AdS7 solutions. This restriction

comes from the condition that both solutions share the same singularity structure. In order

to see this we note that in both solutions the range of the interval is determined by the

points at which the S2 shrinks, such that the S2⇥I space is topologically an S3. In AdS7

there is a D6 brane when � = 0, �̈ 6= 0, and a O6 when �̈ = 0, � 6= 0. In turn, when

� = 0, �̈ = 0 the S2 shrinks smoothly [48]. Similarly, for AdS3 solutions satisfying h4 ⇠ u

there is a D6 brane when u ⇠ h4 = 0, h8 6= 0 and a O6 when h8 = 0, u ⇠ h4 6= 0. In turn,

the S2 shrinks smoothly for u ⇠ h4 = 0, h8 = 0 [11]. The role played by the D6 branes

terminating the space as flavour branes is discussed in section 4.

Let us summarise our findings so far in this section. We have shown that a subclass

of the solutions in [11]7 can be interpreted as arising from D2-D4 defect branes inside the

D6-NS5-D8 brane intersections underlying the AdS7 ⇥ S2 ⇥ I solutions in [36], wrapped

on the CY2 of the internal manifold. 6d (1,0) CFTs compactified in CY2 manifolds give

rise to 2d (4,4) field theories that are not conformal [54, 55]. Therefore, AdS3 solutions

cannot be obtained from the AdS7 solutions in [36] simply by extending the construction

of AdS5 and AdS4 solutions in [47] to 4d manifolds. As we showed in [11] extra D2 and D4

branes are needed, that further reduce the supersymmetries down to 1/8 BPS and the AdS3

solutions to 1/4-BPS. These branes backreact in the compactified geometry, and modify

the simple mappings found in [47] such that the dependence of the functions defining the

AdS3 and AdS7 solutions change, due to the backreaction. One can thus think of the 2d

CFT associated to the AdS3 solutions as comprised of two sectors, one coming from D6-

NS5-D8 branes wrapped on the CY2, which by itself does not give rise to a 2d CFT, and one

coming from extra, D2-D4 branes, which would not give rise either to 2d CFTs together

with the NS5-branes [60]. One can in this sense interpret the D2-D4 branes as defects

inside D6-NS5-D8 brane systems. We would like to stress that this defect interpretation is

essentially di�erent from the defect interpretation in terms of punctures that can be given

to the Gaiotto theories in 4d [56], dual to the Gaiotto-Maldacena geometries [57]. In this

last case both the field theory in the absence of punctures (dual to the Maldacena-Nunez

solution [58]) and the ones with punctures are well- defined 4d CFTs, in contrast with the

2d CFTs dual to our AdS3 solutions.

Further light on the relation between the 2d (0,4) CFTs dual to the AdS3 solutions

and compactifications on CY2 of the 6d (1,0) CFTs dual to the AdS7 solutions comes from

comparing their respective central charges, following [62]. The holographic central charge

of the 6d CFTs dual to the AdS7 solutions was computed in [63]:

cAdS7 =
1

GN

24

38

Z
dz(���̈). (3.15)

7Those that share the same singularity structure of the solutions in [36], in the sense that we have just

explained.
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In turn, the holographic central charge of the 2d CFTs dual to the AdS3⇥CY2 solutions

is [35]

cAdS3 =
3�

2GN
Vol(CY2)

Z
d�(h8h4) . (3.16)

Using the mapping given by (3.6)–(3.9) this becomes

cAdS3 $
3

23GN
Vol(CY2)

Z
dz(���̈) =

39

27
Vol(CY2) cAdS7 . (3.17)

Thus, there exists a universal relation between the central charges associated to both types

of solutions. Similarly, in [64] (see also [65]) AdS3 ⇥ �4 solutions of massive IIA were

constructed whose 2d (0,1) and (0,2) CFT duals arise as compactifications of the 6d (1,0)

theories dual to the AdS7 solutions. Their respective free energies were shown to satisfy

the relation
F2

F6
=

1

(2XIR)5
Vol(�4), (3.18)

where �4 is the compactification manifold and XIR is a constant that characterises the AdS3

solution.8 Our result is thus in agreement with an interpretation of the 2d CFTs dual to our

solutions as compactified 6d (1,0) theories in CY2 manifolds, with extra degrees of freedom

coming from the 2d defects. It would be very interesting to obtain explicit flows connecting

the AdS3⇥CY2 solutions in the IR with the AdS7 solutions in the UV. In particular, it

would be interesting to clarify whether these involve R1,1⇥CY2 warped product geometries,

which would be the natural extension of the flows constructed in [62, 64, 65], or wrapped

AdS3 subspaces, more directly related to defects, as in [6–8]. In [7] di�erent limits of

the D2-D4-D6-NS5-D8 intersections depicted in table 1 were studied, giving rise to either

AdS7 or AdS3⇥S3⇥I’ geometries, associated to the UV or IR limits of the intersection,

respectively. In particular, AdS3⇥T4 geometries should arise when the branes are smeared

on the T4. In section 6 we explore the connection between the BPS flows constructed

in [6, 7] and the subclass of AdS3⇥T4 solutions defined by the mapping discussed in this

section.

4 The linear quiver with infinite number of nodes

As we have mentioned, the mapping found in the previous section is formal, in the sense

that it relates �, a cubic function in z, to h4 ⇠ u, which are linear in � (with z and �

related as in (3.6)). In this section we discuss a particular instance in which � and h4 ⇠ u

can be explicitly related.

Consider an AdS7 solution in which the S2⇥I geometry is smooth at z = 0 and termi-

nates at z = P + 1, such that

F0 = ��000(z)

162�3
=

N

2�

�
1 , 0  z  P

�P , P  z  P + 1.
(4.1)

8XIR is the value in the IR of the X scalar field of 7d minimal supergravity (see section 6).
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Figure 2. D6-NS5-D8 brane set-up associated to a linear quiver with increasing ranks terminated

by a flavour group. NS5 branes are denoted by circles, D6 branes by horizontal lines and D8 branes

by vertical lines.

For this we need N(P + 1) D8-branes at z = P , given that

dF0 =
N(P + 1)

2�
�(z � P )dz. (4.2)

As shown in [63], for a particular choice of the integration constants such that �(0) =

�(P + 1) = 0, and � and �0 are continuous functions, we have

�(z) =
27�2N

2

�
P (P + 2)z � z3 , 0  z  P

Pz3�3P (P + 1)z2 + P (3P 2 + 4P + 2)z � P 3(P + 1) , P  z  P + 1,

(4.3)

and the dual CFT is a linear quiver with gauge group

SU(N)⇥ SU(2N)⇥ SU(3N)⇥ SU(4N)⇥ . . .⇥ SU(PN), (4.4)

finished with a SU((P + 1)N) flavour group, represented by the D8 branes. The brane

set-up associated to this quiver is depicted in figure 2.

Now, consider the situation in which P is very large, so that the region of interest

reduces to 0  z  P and we can take �(z) = 27⇡2N
2 (P (P +2)z�z3) for all P .9 Redefining

z =
p

P (P + 2)x, we can write the solution in this region as

ds2

p
P (P + 2)

=
8�p

3

p
1� x2 ds2(AdS7) +

2
p

3�p
1� x2

�
dx2 +

x2(1� x2)2

1 + 6x2 � 3x4
ds2(S2)

�
,

e4� =
12

F 4
0 �

2P (P + 2)

(1� x2)3

(1 + 6x2 � 3x4)2
, F0 =

N

2�
(4.5)

B2 = �2�
p

(P (P + 2)
x3(5� 3x2)

1 + 6x2 � 3x4
vol(S2), F2 = F0B2, f̂2 = nvol(S2).

This solution can be expanded close to x = 1 (the end of the space) by defining x = 1� v.

We then have a metric and dilaton that for small values of v read,

ds2 ⇠ 8�

�
2

3

p
v ds2(AdS7) +

p
6�p
v

(dv2 + v2ds2(S2)),

e4� ⇠ v3. (4.6)

It is thus clear that close to v ⇠ 0 or x ⇠ 1, in the end of the space, we have D6 branes

that extend along AdS7. As discussed in [48], these D6 branes can play the role of flavour

9Note that strictly speaking this would extend the region of interest to 0 � z �
�

P (P + 2), but this is

equivalent to 0 � z � P when P is large.
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branes even when their dimensionality is the same as that of the colour branes. They di�er

in that the colour branes are extended along the six Minkowski directions of AdS7 plus a

bounded interval, while the flavour D6-branes are extended on the whole AdS7. Being non-

compact they can act as flavour branes, as happens in many other (qualitatively di�erent)

examples, like [66, 67].

Now, we would like to use the mapping between AdS3 and AdS7 solutions described

by (3.6)–(3.9). This tells us that we should identify,

h8 =
N

2�
�, u =

27�N

4

✓
P (P + 2)�� �3

4�2

◆
, h4 =

81

8
u. (4.7)

This is not a solution of the equations of motion of the AdS3 system. Nevertheless, if we

take P !1 or, equivalently, �! 0, we have

h8 =
N

2�
�, u =

27�N

4
P (P + 2)�, h4 =

37�N

25
P (P + 2)�, (4.8)

which defines a non-compact AdS3 solution. This is the solution constructed in [37] act-

ing with non-Abelian T-duality on the AdS3⇥S3⇥CY2 solution dual to the D1-D5 sys-

tem [54, 55, 68–70].

As we discuss in the next section, the non-compact nature of the non-Abelian T-dual

solution is reflected in the dual CFT in the existence of an infinite number of gauge groups of

increasing ranks. In this section we have rediscovered it as the leading order of the solution

defined by (4.5), dual to a well-defined six dimensional CFT.10 Since we are working at

very small values of z (equivalently, very small values of �), we do not see the flavour D6

branes, and the space is rendered non-compact. Conversely, taking P !1 we see no sign

of these branes closing the space.

We discuss the non-Abelian T-dual solution in detail in the next section, and describe

other possible ways to define it globally using AdS3/CFT2 holography.

5 The non-Abelian T-dual of AdS3�S3�CY2

In this section we discuss in detail one of the simplest solutions in the classification of

AdS3⇥S2 geometries in [11], with a focus on the description of its 2d dual CFT, follow-

ing [35]. This solution arises acting with non-Abelian T-duality on the near horizon of the

D1-D5 system, and was originally constructed in [37]. In reference [30] it was shown that

the (4,4) supersymmetry of the D1-D5 system is reduced to (0,4) upon dualisation, and

that the solution can be further T-dualised and uplifted to M-theory such that it fits in the

class of AdS3⇥S2⇥S2⇥CY2 solutions in [71].11 This solution is particularly interesting in

the study of the interplay between non-Abelian T-duality and holography, since it allows

for simple explicit global completions of the geometry using field theory arguments.

10To be more precise, (4.8) selects a particular non-Abelian T-dual solution, with a given relation between

the D2 and D6 brane charges. We give more details in the next section.
11Actually, it provides the only known example in this class with SU(2) structure.
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In this section we also discuss another solution in the class in [11] that arises from

the D1-D5 system, and that can be obtained as a limit of the non-Abelian T-dual solu-

tion [38, 39, 72]. This is the Abelian T-dual (ATD) of AdS3⇥S3⇥CY2 along the Hopf-fibre

of the S3, and orbifolds thereof, that also preserve (0,4) of the supersymmetries of the

original D1-D5 system. The orbifold solutions describe the D1-D5-KK system, and are

dual to (0,4) CFTs that have been discussed in the literature [18–21, 25, 32].

5.1 The NATD solution

The non-Abelian T-dual (NATD) of AdS3⇥S3⇥T4 with respect to a freely acting SU(2)

subgroup of its SO(4) R-symmetry group was constructed in [37]. As in other NATD

examples, the space dual to S3 becomes, locally, R⇥S2. The SO(4) R-symmetry is reduced

to an SU(2) R-symmetry, and the solution is rendered (0,4) supersymmetric [30]. Due to our

lack of knowledge of how non-Abelian T-duality extends beyond spherical worldsheets [73],

the space is globally unknown. In this section we will resort to holography in order to

construct a compact internal space for which a well-defined 2d dual CFT exists, following

the strategy in [38–42].

We start generalising the solution constructed in [37] to arbitrary D1 and D5 brane

charges and a compact CY2 four dimensional internal space. The most general solu-

tion reads

ds2
10 = 4L2ds2(AdS3) + M2ds2(CY2) + 4L2ds2(S3) (5.1)

e2� = 1 (5.2)

F3 = 8L2vol(S3) (5.3)

F7 = �8L2M4vol(S3) ^ vol(CY2) . (5.4)

The corresponding D1 and D5 brane charges are given by

N1 =
1

(2�)6

Z

S3�CY2

F7 =
4L2M4

(2�)4
Vol(CY2) (5.5)

N5 =
1

(2�)2

Z

S3
F3 = 4L2 (5.6)

The NATD with respect to a freely acting SU(2) group on the S3 reads

ds2
10 = 4L2ds2(AdS3) + M2ds2(CY2) +

d�2

4L2
+

L2�2

4L4 + �2
ds2(S2) (5.7)

e2� =
4

4L6 + L2�2
(5.8)

B2 = � �3

2(4L4 + �2)
vol(S2) (5.9)

F0 = L2 (5.10)

F2 = � L2�3

2(4L4 + �2)
vol(S2) (5.11)

F4 = �L2M4vol(CY2) (5.12)

F6 =
L2M4�3

2(4L4 + �2)
vol(CY2) ^ vol(S2) (5.13)
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It is easy to see that this solution fits locally in the class of AdS3⇥S2⇥CY2 solutions

constructed in [11], with the simple choices

u = 4L4M2� (5.14)

h4 = L2M4� (5.15)

h8 = F0� . (5.16)

These functions define a regular, albeit non-compact, solution. We will shortly be discussing

various possibilities that define it globally. For now let us analyse the associated quantised

charges.

We start discussing the relevance of large gauge transformations. Close to � = 0 the

3d transverse space is R3, while for large � it is R⇥ S2. This implies that for finite � there

is a non-trivial S2 on which we can compute
�
S2 B2, which needs to satisfy

1

4�2
|
Z

S2
B2| 2 [0, 1). (5.17)

For B2 as in (5.9) this implies that a large gauge transformation needs to be performed as

we move in �, such that B2 ! B2 + n�volS2 for � 2 [�n, �n+1], with

�3
n

4L4 + �2
n

= 2n�. (5.18)

The non-compactness of � is then reflected in the existence of large gauge transformations

of infinite gauge parameter n. Moreover, taking into account large gauge transformations,

we see that even if the 2-form and 6-form Page fluxes vanish identically,

f̂2 = F2 � F0 ^B2 = 0, f̂6 = F6 �B2 ^ F4 = 0, (5.19)

implying the absence of D6 and D2 brane quantised charges, there is a non-zero contribution

when n 6= 0, such that

N8 = 2�F0 = 2�L2 (5.20)

N6 =
F0

2�
n�Vol(S2) = nN8 (5.21)

N4 =
1

(2�)3

Z

CY2

F4 =
L2M4

(2�)3
Vol(CY2) (5.22)

N2 =
1

(2�)5

Z

CY2

F4n�Vol(S2) = nN4 (5.23)

N5 =
1

(2�)2

Z ⇢n+1

⇢n

Z

S2

H3 = 1. (5.24)

These conserved charges suggest that the D1-D5 system that underlies the Type IIB

AdS3⇥S3⇥CY2 solution has been mapped under the NATD transformation onto a brane

system consisting on n D2-D6 branes at each [�n, �n+1) interval, dissolved in a D4-D8

bound state, due to the non-vanishing B2-charge. The corresponding brane distribution is

depicted in table 3.
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0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 3. Distribution of branes compatible with the quantised charges of the NATD solution.

(y0, y1) are the directions where the 2d CFT lives, (y2, . . . , y5) parameterise the CY2, y6 = �, y7 is

the radius of AdS3 and (y8, y9) span the S2.

This configuration is the same as the one underlying the solutions constructed in [7],

and, as in that case, it can be related to the 1
8 -BPS brane set-up depicted in table 1, where

the SU(2)R symmetry is manifest, through a rotation in the (x6, x7) subspace. Due to the

non-compactness of � the brane system is however infinite. This suggests a relation with

the linear quiver with infinite gauge groups discussed in section 4, that we can now make

more explicit.

Indeed, given that h4 and u, as given by (5.15) and (5.14), satisfy the condition h4 ⇠ u,

the NATD solution fits in the class of solutions that can be related to AdS7 solutions,

discussed in section 3. Both solutions are related explicitly through the mapping

u = 162F0L
4� , P =

2
p

3

�
L2, (5.25)

with P as introduced in (4.3). This selects the NATD solution with M2 = 34

2 L2,12 as the

one related to the 6d (1,0) linear quiver discussed in section 4. These relations show that

in the supergravity limit L � 1 the D6-branes are sent o� to infinity. In this way we can

think of the NATD solution as the leading order in an expansion in P , of the AdS7 solution

dual to the 6d linear quiver with gauge groups of increasing ranks, terminated with flavour

D6-branes.

In the next subsections we define other ways of completing the NATD solution with

compact AdS3 solutions. This will be valid for arbitrary values of the charges.

5.2 2d (0,4) dual CFT

As we have seen, the quantised charges of the NATD solution are compatible with an

infinite brane system consisting on D2 and D6 branes stretched between NS5 branes. The

D6 branes are wrapped on the CY2, and thus share the same number of non-compact

directions of the D2 branes.

General 2d (0,4) quiver theories associated to the 1/8-BPS D2-D4-D6-D8-NS5 brane

configurations depicted in table 1 were constructed in [35]. For the particular configuration

corresponding to the NATD solution the quiver contains two infinite families of nodes,

associated to D2 and wrapped D6 branes, with gauge groups of increasing ranks, and no

12This restriction is imposed because the AdS7 solution depends on one single parameter, P , while a

generic NATD solution depends on two parameters, L and M .
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Figure 3. Infinite quiver associated to the NATD solution.

flavours. This quiver is depicted in figure 3. We next summarise its main ingredients (the

reader can find more details in reference [35]):

• To each gauge node corresponds a (0,4) vector multiplet plus a (0,4) twisted hy-

permultiplet in the adjoint representation of the gauge group. In terms of (0,2)

multiplets, the first consists on a vector multiplet and a Fermi multiplet in the ad-

joint, and the second to two chiral multiplets forming a (0,4) twisted hypermultiplet,

also in the adjoint. The (0,4) vector and the (0,4) twisted hypermultiplet combine to

form a (4,4) vector multiplet. They are represented by circles.

• Between each pair of horizontal nodes there are two (0,2) Fermi multiplets, forming

a (0,4) Fermi multiplet, and two (0,2) chiral multiplets, forming a (0,4) hypermulti-

plet, each in the bifundamental representation of the gauge groups. The (0,4) Fermi

multiplet and the (0,4) hypermultiplet combine into a (4,4) hypermultiplet. They are

represented by black solid lines.

• Between each pair of vertical nodes there are two (0,2) chiral multiplets forming a

(0,4) hypermultiplet, in the bifundamental representation of the gauge groups. They

are represented by grey solid lines.

• Between each gauge node and any successive or preceding node there is one (0,2)

Fermi multiplet in the bifundamental representation. They are represented by dashed

lines.

• Between each gauge node and a global symmetry node there is one (0,2) Fermi multi-

plet in the fundamental representation of the gauge group. They are again represented

by dashed lines.

Note that the resulting quiver, depicted in figure 3, can be divided into two, horizontal,

(4,4) linear quivers consisting on (4,4) gauge groups with increasing ranks connected by

(4,4) bifundamental hypermultiplets. They correspond to the two (4,4) D6-NS5-D8 and

D2-NS5-D4 subsectors of the brane configuration. The coupling between these two lin-

ear quivers through (0,4) hypermultiplets and (0,2) Fermi multiplets renders however the

complete quiver (0,4) supersymmetric (see [35] for more details).

The previous fields contribute to the gauge anomaly of a generic SU(Ni) gauge group as:

• A (0,2) vector multiplet contributes with a factor of �Ni.
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Figure 4. Completed quiver with a finite number of gauge groups.

• A (0,2) chiral multiplet in the adjoint representation contributes with a factor of Ni.

• A (0,2) chiral multiplet in the bifundamental representation contributes with a factor

of 1
2 .

• A (0,2) Fermi multiplet in the adjoint representation contributes with a factor of �Ni.

• A (0,2) Fermi multiplet in the fundamental or bifundamental representation con-

tributes with a factor of �1
2 .

Following these rules it is easy to see that the coe�cient of the anomalous correlator of the

symmetry currents < JA
µ (x)JB

⌫ (x) >⇠ k�µ⌫�
AB vanishes for each gauge group (see [35] for

more details) - hence the gauge anomalies vanish. By assigning R-charges to the di�erent

multiplets (see [35] for the precise assignation), we can calculate the U(1)R anomaly (for

U(1)R inside SU(2)R). The correlation function < jµ(x)j⌫(y) > for two U(1)R currents is

proportional to the number of N = (0, 4) hypermultiplets minus the number of N = (0, 4)

vector multiplets. This result is conserved when flowing to lower energies. In the far IR,

when the theory is proposed to become conformal the R-symmetry anomaly is related to

the central charge as indicated below.

5.2.1 Central charge

Let us now discuss the central charge associated to this quiver. We compute it using the

formula (see [35, 43])

c = 6(nhyp � nvec), (5.26)

where nhyp counts the number of fundamental and bifundamental hypermultiplets and nvec

of vector multiplets. Clearly, these numbers are infinite for our quiver in figure 3. However,

since they are subtracted in the computation of the central charge, they could still render a

finite value. Terminating the space at a given n = P and analysing the behaviour when P

goes to infinity we show however that this is not the case. Anomaly cancellation enforces

that flavour groups must be added to both gauge groups at the end of the quiver. The

resulting quiver is the one shown in figure 4. This quiver was discussed in [35], as one

of the anomaly free examples analysed therein. For completeness we reproduce here the

computation of its central charge.

The hypermultiplets that contribute to the counting of nhyp are the two chiral mul-

tiplets in each solid horizontal line, plus the two chiral multiplets in each vertical line.
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They give

nhyp =

P�1X

j=1

j(j+1)(N2
4 +N2

8 )+
PX

j=1

j2N4N8 = (N2
4 +N2

8 )

✓
P 3

3
�P

3

◆
+N4N8

✓
P 3

3
+

P 2

2
+

P

6

◆

(5.27)

Vector multiplets come from each node in the quiver, such that:

nvec =

PX

j=1

(j2N2
4 � 1 + j2N2

8 � 1) = (N2
4 + N2

8 )

✓
P 3

3
+

P 2

2
+

P

6

◆
� 2P (5.28)

This gives for the central charge

c = 6

�
� (N2

4 + N2
8 )

✓
P 2

2
+

P

2

◆
+ N4N8

✓
P 3

3
+

P 2

2
+

P

6

◆
+ 2P

�
. (5.29)

To leading order in P we have,

c ⇠ 2N4N8P
3. (5.30)

The central charge thus diverges with P 3 for the infinite quiver dual to the NATD solution.

Still, it is useful to show that (5.30) coincides with the holographic central charge for

� 2 [0, �P ], with �P satisfying (5.18). Note that for large P we can simply take �P = 2�P .

Using (3.16) we find for � 2 [0, 2�P ],

chol =
�

2GN
(2�)5N4N8P

3 = 2N4N8P
3, (5.31)

in agreement with the field theory result.

Our calculation shows the precise way in which the central charge diverges due to the

non-compact field theory direction. It also gives us a possible way to regularise the infinite

CFT dual to the NATD solution. Indeed, the quiver depicted in figure 4 describes a well-

defined 2d (0,4) CFT, that can be used to find a global completion of the non-Abelian

T-dual solution. This completion is obtained glueing the non-Abelian T-dual solution at

�P = 2�P to another solution in [11] that terminates the space at � = 2�(P + 1). We

present the details of this completion in the next subsection. In section 5.3.2 we present a

di�erent completion, which makes manifest that this procedure is not unique and that one

can device di�erent global completions of the NATD solution, as stressed in [38].

5.3 Completions

In this section we present two possible completions of the NATD solution. The AdS3 exam-

ple is particularly useful in this respect, because the completed solution is not only explicit

but also extremely simple, as opposed to other examples in higher dimensions [38, 39, 41].

5.3.1 Completion with O-planes

The simplest way to complete the NATD solution is by terminating the infinite linear

quiver at a certain value of �, as we have done in the previous subsection. We take this to
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be � = 2�(P + 1), with P 2 Z, and choose the u, h8 and h4 functions such that:

u = 4L4M2�, 0  �  2�(P + 1) (5.32)

h8(�) = F0.

�
� 0  �  2�P

P (2�(P + 1)� �) 2�P  �  2�(P + 1).
(5.33)

h4(�) = L2M4.

�
� 0  �  2�P

P (2�(P + 1)� �) 2�P  �  2�(P + 1).
(5.34)

The explicit form of the metric, dilaton and fluxes in the 2�P  �  2�(P + 1) region

can be found in appendix A. One can check that the NS sector is continuous at � = 2�P .

The 2-form and 6-form Page fluxes are also continuous once large gauge transformations

are taken into account. They are given by

f̂2 = �F0 vol(S2).

�
n� 0  n  P

P�(P + 1� n) P  n  P + 1
(5.35)

f̂6 = L2M4 vol(S2) ^ vol(CY2).

�
n� 0  n  P

P�(P + 1� n) P  n  P + 1,
(5.36)

so they vanish at n = P + 1, where the geometry terminates. We show below that at

this point the background has a singularity associated to O6-O2 planes. In turn there is

a discontinuity in F0 and F4 at n = P that is translated into (P + 1)N8 and (P + 1)N4

additional flavours connected to the nodes corresponding to PN4 D2 and PN8 D6 branes,

respectively. This is exactly as in the quiver depicted in figure 4.

The expressions of the metric and dilaton in the 2�P  �  2�(P + 1) region, given

by equations (A.1), (A.2) in appendix A, show that close to � = 2�(P + 1) they behave as

ds2 ⇠ x�1ds2(AdS3) + M2ds2(CY2) + x
�
dx2 + ds2(S2)

�
, e2� ⇠ x�1 (5.37)

where x = �� 2(P + 1). This singular behaviour corresponds to the intersection of an O6

fixed plane lying on AdS3⇥CY2 with O2-planes lying on AdS3 and smeared on CY2⇥S2.

Even if it is not clear what this object is in string theory, the fact that the solution has a

well-defined dual CFT suggests that it should be possible to give it a meaning.

5.3.2 Glueing the NATD to itself

Another interesting way of defining globally the NATD solution is by glueing it to itself.

In this case we take:

u(�) = 4L4M2, 0  �  4�P. (5.38)

h8(�) = F0.

�
� 0  �  2�P

4�P � � 2�P  �  4�P.
(5.39)

h4(�) = L2M4.

�
� 0  �  2�P

4�P � � 2�P  �  4�P.
(5.40)

– 19 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
3

The explicit form of the metric, dilaton and fluxes in the 2�P  �  4�P region can

be found in appendix A. One can check that the NS sector is continuous at � = 2�P . The

2-form and 6-form Page fluxes are also continuous once large gauge transformations are

taken into account. They are given by

f̂2 = �F0 vol(S2).

�
n� 0  n  P

(2P � n)� P  n  2P
(5.41)

and

f̂6 = L2M4 vol(S2) ^ vol(CY2).

�
n� 0  n  P

(2P � n)� P  n  2P
(5.42)

Therefore, they are both continuous at n = P and vanish at n = 2P . The corresponding

quantised charges are:

N6 =

�
nN8 0  n  P

(2P � n)N8 P  n  2P
(5.43)

and

N2 =

�
nN4 0  n  P

(2P � n)N4 P  n  2P
(5.44)

where N6 denotes anti-D6 brane charge, N2 D2-brane charge and N8 = ±2�F0 in the two

regions. For N4 we have

N4 =
1

(2�)3

Z
f̂4 =

1

(2�)3

Z
F4 = ⌥L2M4

(2�)3
Vol(CY2) (5.45)

in the two regions. Thus, the D2 and D6 brane charges increase linearly in the 0  n  P

region, corresponding to the NATD solution, and decrease linearly in the P  n  2P

region, till they vanish at n = 2P , where the geometry terminates. At this point the S2

shrinks smoothly. The discontinuity of N8 and N4 at n = P is translated into 2N8 and

2N4 additional flavours at the nodes with flavour groups PN4 and PN8, respectively. The

associated quiver is the one depicted in figure 5. The 2N8 and 2N4 flavour groups contribute

each with one (0,2) Fermi multiplet in the fundamental representation of the corresponding

gauge group. As for the quivers constructed in [35], the flavour group introduced at the

node associated to D2-branes arises from D8-branes while that introduced at the node

associated to D6-branes arises from D4-branes.

The central charge of this quiver is given by

c = 6

�
(N2

4 + N2
8 )(�P ) + N4N8

✓
2

3
P 3 +

P

3

◆
+ 4P � 2

�
. (5.46)

To leading order in P this gives

c = 4N4N8P
3, (5.47)

which one can check is in agreement with the holographic central charge.
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Figure 5. Symmetric quiver associated to the NATD solution glued to itself.

5.4 The Abelian T-dual limit

The non-Abelian T-dual solution defined in � 2 [�n, �n+1] gives rise to the Abelian T-dual,

along the Hopf-fibre of the S3, of the original AdS3⇥S3⇥CY2 background, in the limit in

which n goes to infinity [38, 39, 72]. In this subsection we will be interested in the ATD

solution, and orbifolds thereof, in its own right, as another explicit example in the class

in [11].

The ATD solution is given by

ds2
10 = 4L2ds2(AdS3) + M2ds2(CY2) +

d�2

4L2
+ L2ds2(S2) (5.48)

e2� =
4

L2
(5.49)

B2 = ��

2
vol(S2) (5.50)

F2 = �L2

2
vol(S2) (5.51)

F6 =
1

2
M4L2vol(CY2) ^ vol(S2), (5.52)

where � is the ATD of the Hopf-fibre direction, normalised such that � 2 [0, 2�]. Upon

dualisation, the (4,4) supersymmetries of the original solution are reduced to (0,4) [30],

and the solution fits in the classification in [11]. The corresponding u, h4 and h8 functions

are given by

u = 4L4M2 (5.53)

h4 = L2M4 (5.54)

h8 = L2. (5.55)

The quantised charges are,

N2 =
L2M4

(2�)4
Vol(CY2) , N6 = L2 , N5 = 1 (5.56)
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Figure 6. Circular quiver associated to the (orbifolded) ATD solution.

so using (3.16) the holographic central charge gives

chol = 6N2N6. (5.57)

One can check that this is reproduced from the NATD solution for � 2 [�n, �n+1] and n

large, using that N2 = nN4 and N6 = nN8 in this interval. The brane set-up describing the

ATD solution consists on N2 D2-branes and N6 D6-branes, wrapped on the CY2, stretched

along the � circular direction between two NS5-branes that are identified.

Orbifolds of this solution can be constructed taking � 2 [0, 2�N ]. They are T-

dual to the AdS3⇥S3/ZN⇥CY2 solution in Type IIB that describes the D1-D5-KK sys-

tem [18–21, 25]. The Type IIA brane realisation of this system is depicted in figure 6.

From this quiver we have that

nvec = (N2
2 � 1 + N2

6 � 1)N, nhyp = (N2
2 + N2

6 + N2N6)N. (5.58)

One then obtains a central charge

c = 6(nhyp � nvec) = 6N2N6N + 12N. (5.59)

This gives in the large N2, N6 limit,

c ⇠ 6N2N6N, (5.60)

in agreement with the central charge of the D1-D5-KK system [18].13

For N = 1 the quiver in figure 6 reduces to the quiver depicted in figure 7. The (4,4)

hypermultiplets connecting N2 nodes and N6 nodes among themselves become (4,4) hyper-

multiplets in the adjoint representation. In turn, the (0,2) Fermi multiplets connecting each

13This central charge was computed using the Brown-Henneaux formula [74]. One can also use (3.16),

which generalises the central charge therein to non-trivial warping and dilaton.
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Figure 7. Quiver associated to the ATD solution.

N2 (N6) node with adjacent N6 (N2) nodes combine into (0,4) Fermi multiplets connecting

each N2 node with its respective N6 node, which together with the (0,4) hypermultiplets

between them give (4,4) hypermultiplets in the bifundamental. In this way supersymmetry

is enhanced to (4,4), and the quiver describes the D1-D5 system in terms of the D2 and

D6-brane charges of the Abelian T-dual solution.14

6 Relation with the AdS3�S2 flows of Dibitetto-Petri

In [6, 7] Dibitetto and Petri (DP) constructed various BPS flows within minimal N = 1 7d

supergravity that are asymptotically locally AdS7. These flows are described by warped

AdS3 solutions triggered by a non-trivial dyonic 3-form potential. A particularly interesting

solution was constructed in [6], which was shown to interpolate between asymptotically

locally AdS7 and AdS3⇥T4 geometries. The UV AdS7 limit is (asymptotically locally) the

reduction to 7d of the AdS7 solutions of massive IIA constructed in [36]. In this subsection

we would like to explore the 10d uplift of the IR AdS3⇥T4 limit, in connection with the

subclass of solutions discussed in section 2, in the case in which CY2 =T4.

The AdS3 solution constructed in [6] reads (see appendix B for the details),

ds2
7 = e2U(r)ds(AdS3)

2 + e2V (r)dr2 + e2W (r)ds(S3)2,

X = X(r),

B(3) = k(r)vol(AdS3) + l(r)vol(S3), (6.1)

where X, U , V , W , k and l are functions of r discussed in the appendix B. This solution

is asymptotically locally AdS7 when r ! 1 , while when r ! 0 it flows to an AdS3⇥T4

non-singular limit, given by,15

ds2
7 =

231/5

g2

✓
32/5

52
ds2(AdS3) +

4

38/5
ds2(T4)

◆
, (6.2)

and

B3 = �1

2
vol(AdS3)� 4r4vol(S3). (6.3)

14See [75], section 4, for this analysis in Type IIB.
15As compared to [6], we write the 7d metric in terms of an AdS3 space of radius one.
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As the AdS7 asymptotic limit, this geometry is not a solution of 7d N = 1 minimal

supergravity by itself, but rather the IR leading asymptotics of the flow. In the discussion

that follows it will be useful to recall from appendix B that the values of the 7d scalar X

in the r !1 and r ! 0 limits are X = 1 and X5 = 22/3, respectively.

7d N = 1 minimal supergravity can be consistently uplifted to massive IIA on a

squashed S3 [64]. Using the uplift formulae provided in appendix B, a family of AdS3

solutions to massive IIA can thus be constructed from the DP flow. This gives rise in

the r !1 limit to 10d geometries that asymptote to the AdS7⇥S2⇥I family of solutions

in [36]. In turn, the geometry that is obtained in the AdS3⇥T4 limit reads16

ds2
10 = 8

p
2�

�
��

�̈

✓
23
p

3

52
ds2(AdS3) +

25

3
p

3
ds2(T4)

◆

+
2
p

2p
3
�

�
� �̈

�
dz2 + 2

p
6�

�3/2(��̈)1/2

3�̇2 � 8��̈
ds2(S2) (6.4)

e2� = 2338
p

6�5

✓
� �

�̈

◆3/2 1

3�̇2 � 8��̈
(6.5)

B2 = �

✓
� z +

3��̇

3�̇2 � 8��̈

◆
vol(S2) (6.6)

F2 =

✓
�̈

162�2
+

3�F0��̇

3�̇2 � 8��̈

◆
vol(S2) (6.7)

F4 =
29

34�

✓
�̈

53
dz ^ vol(AdS3)�

25

33
�̇vol(T4)

◆
(6.8)

F6 = � 29

5337

��̈

3�̇2 � 8��̈

⇣
2853�vol(T4) + 34�̇vol(AdS3) ^ dz

⌘
^ vol(S2). (6.9)

As in 7d, the uplift of the r ! 0 limit of the DP flow is not a solution to massive IIA

by itself, but rather its IR leading asymptotics. We would like to see whether it can be

completed by an AdS3⇥T4 solution in the class of [11], with the same asymptotics. For

that it is easy to realise that one can absorb the constant X that causes the distortion of

the internal space (we are referring to (B.25)–(B.29) in appendix B) by simply modifying

the mapping for the h4 function in (3.9) as h4 = 81
8 X5u $ 81

8 X5�. We then have for the

IR geometry given by (6.4)–(6.9),

� $ 2�z (6.10)

u $ � (6.11)

h8 $ �
�̈

81�2
(6.12)

h4 =
27

2
u$ 27

2
� . (6.13)

This gives for the AdS3⇥T4 subspace

up
h4h8

ds2(AdS3) +

�
h4

h8
ds2(T4)$

p
6�

�
��

�̈

✓
ds2(AdS3) +

33

2
ds2(T4)

◆
. (6.14)

16Here we have taken g3 = 8
�

2, which is the value for which the internal space and fluxes of the AdS7

solutions in [36] are recovered.
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The result is a bonna fide AdS3⇥T4 solution to massive IIA, supplemented with F4 and

F6 fluxes satisfying (2.7) and (2.8). The resulting 7d metric does not share however the

asymptotics of the 7d metric arising from (6.4). Thus, the IR limit of the DP flow cannot be

completed into an AdS3⇥T4 solution in the class of [11], that shares its same asymptotics.

This result excludes the RG flows constructed in [6] as solutions interpolating between

AdS3⇥T4 geometries (in the subclass defined in section 3) and the AdS7 solutions con-

structed in [36]. Still, it should be possible to construct these flows, perhaps as R1,1⇥CY2

warped product geometries, as the ones discussed in [64].

7 Conclusions

In this paper we have discussed some aspects of the class of AdS3⇥S2 solutions with small

N = (0, 4) supersymmetry and SU(2)-structure constructed in [11]. We have focused our

analysis on a sub-set of solutions contained in “class I” of [11], which are warped products

of AdS3⇥S2⇥CY2 over an interval with warpings respecting the symmetries of CY2. 2d

(0,4) CFTs dual to these solutions have been proposed recently in [34, 35].

We have established a map between the previous solutions and the AdS7 solutions

in [36], that allows one to interpret the former as duals to defects in 6d (1,0) CFTs. More

precisely, the 2d dual CFT arises from wrapping on the CY2 the D6-NS5-D8 branes that

underlie the AdS7 solutions, and intersecting them with D2 and D4 branes. In this sense it

combines wrapped branes and defect branes. The D2-branes are stretched between the NS5-

branes, as the D6-branes, and the D4-branes are perpendicular, as the D8-branes. They

give rise to (0,4) quivers with two families of gauge groups connected by matter fields [35].

Each family is described by a (4,4) linear quiver and is connected with the other family by

(0,4) and (0,2) multiplets, rendering the final quiver (0,4) supersymmetric.

The previous mapping suggests that it should be possible to construct flows connecting

the AdS3⇥CY2 solutions in the IR with the AdS7 solutions in the UV. The presence of

D2-D4 defects suggests that one should look at warped AdS3 flows, as the ones discussed

in [6], which interpolate between asymptotically locally AdS3⇥T4 geometries, with an

interpretation as 2d defect CFTs, and AdS7 solutions. We have found however that our

solutions have di�erent asymptotics than the IR AdS3 geometries considered in [6]. This

discrepancy could originate on the wrapped branes present in our solutions, more suggestive

of an R1,1⇥CY2 flow [62], as the one constructed in [64]. It would be very interesting to

find the explicit flow that interpolates between these two classes of solutions.

We have provided a thorough analysis of the AdS3⇥S2⇥CY2 solution that arises from

the Type IIB solution dual to the D1-D5 system through non-Abelian T-duality. Using

the map between AdS3 and AdS7 solutions derived in the first part of the paper, we have

rediscovered this solution as the leading order of the AdS7 solution in the class in [36]

dual to a 6d linear quiver with gauge groups of increasing ranks, terminated by D6-branes.

Secondly, we have provided two explicit global completions with AdS3 solutions in the class

in [11]. One of these completions is obtained glueing the non-Abelian T-dual solution to

itself, in a sort of orbifold projection around the point where the space terminates. This

solution has a well-defined 2d dual CFT that we have studied. Orbifolds have previously
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played a role in the completion of NATD solutions, remarkably in the example discussed

in [41], but this is the first time the explicit completed geometry has been constructed.

The AdS3 example provides indeed a very useful set-up where to test the role played

by holography in extracting global information of NATD in string theory, following the

ideas in [38–42].

Acknowledgments

We would like to thank Giuseppe Dibitetto, Nicolo Petri, Alessandro Tomasiello and Stefan

Vandoren for fruitful discussions. YL and AR are partially supported by the Spanish

government grant PGC2018-096894-B-100 and by the Principado de Asturias through the

grant FC-GRUPIN-IDI/2018/000174. NTM is funded by the Italian Ministry of Education,

Universities and Research under the Prin project “Non Perturbative Aspects of Gauge

Theories and Strings” (2015MP2CX4) and INFN. AR is supported by CONACyT-Mexico.

We would like to acknowledge the Mainz Institute for Theoretical Physics (MITP) of the

DFG Cluster of Excellence PRISMA+ (Project ID 39083149) for its hospitality and partial

support during the development of this work. YL and AR would also like to thank the

Theory Unit at CERN for its hospitality and partial support during the completion of

this work.

A Completions of the NATD solution

Completion with O-planes. The metric, dilaton and fluxes of the NATD solution

completed as indicated in section 5.3.1 read, in the 2�P  �  2�(P + 1) region,

ds2 =
4L2�

P (2�(P + 1)� �)
ds2(AdS3) + M2ds2(CY2) +

P (2�(P + 1)� �)

4L2�
d�2

+
L2P� (2�(P + 1)� �)

4L4 + P 2(2�(P + 1)� �)2
ds2(S2) (A.1)

e2� =
4�

L2P (2�(P + 1)� �)
⇣
4L4 + P 2(2�(P + 1)� �)2

⌘ (A.2)

B2 = � �P 2(2�(P + 1)� �)2

2
⇣
4L4 + P 2(2�(P + 1)� �)2

⌘vol(S2) (A.3)

F0 = �PL2 (A.4)

F2 = �
L2

⇣
P 3 (2� (P + 1)� �)3 + 8L4�P (P + 1)

⌘

2
⇣
4L4 + P 2 (2� (P + 1)� �)2

⌘ vol(S2) (A.5)

F4 = L2M4P vol(CY2) (A.6)
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NATD solution glued to itself. The metric, dilaton and fluxes of the NATD solution

glued to itself read, in the 2�P  �  4�P region,

ds2 =
4L2�

4�P � �
ds2(AdS3) + M2ds2(CY2) +

4�P � �

4L2�
d�2 +

L2�(4�P � �)

4L4 + (4�P � �)2
ds2(S2)

(A.7)

e2� =
4�

L2(4�P � �)
⇣
4L4 + (4�P � �)2

⌘ (A.8)

B2 = � �(4�P � �)2

2
⇣
4L4 + (4�P � �)2

⌘vol(S2) (A.9)

F0 = �L2 (A.10)

F2 = �
L2

⇣
(4�P � �)3 + 16�PL4

⌘

2
⇣
4L4 + (4�P � �)2

⌘ vol(S2) (A.11)

F4 = L2M4 vol(CY2) (A.12)

B The Dibitetto-Petri flow in minimal N = 1 7d supergravity

The solution discussed in section 6 was obtained in [6] taking the following ansatz:

ds2
7 = e2U(r)ds2(AdS3) + e2V (r)dr2 + e2W (r)ds2(S3),

X = X(r),

B(3) = k(r)vol(AdS3) + l(r)vol(S3), (B.1)

and vanishing vector fields. Here ds2(S3) is the metric of an S3 with radius 2
� , parame-

terised as:

e1 =
1

�
d�2,

e2 =
1

�
cos �2d�3,

e3 =
1

�
(d�1 + sin �2d�3), (B.2)

and ds2(AdS3) is the metric of an AdS3 with radius 2
L , parameterised as:

e1 =
1

L
(dt� sinh x1dx2),

e2 =
1

L
dx1,

e3 =
1

L
cosh x1dx2. (B.3)
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vol(S3) and vol(AdS3) represent their corresponding volume forms. DP showed that (B.1)

is a solution to minimal 7d sugra with X, U , V , W , k and l given by,

X(r) =
22/5h1/5

�
�1 + �8

�2/5

�
�8L�4 (1 + �8) +

p
2g (1 + 4�4 + 4�12 + �16)

�1/5
, (B.4)

e2U(r) =
(�4 + 1)2

4�4X2
, (B.5)

e2V (r) =
4X8

h2
, (B.6)

e2W (r) =
(�4 � 1)2

4�4X2
, (B.7)

l(r) =
1

16h�4 (�4 + 1)2
[
p

2g
�
�1 + 4�4 + 4�8 + 4�12 � �16

�

+2L
�
1� 4�4 � 2�8 � 4�12 + �16

�
], (B.8)

k(r) =
1

16h�4 (�4 � 1)2

�p
2g

�
1 + 4�4 + 4�12 + �16

�

�2L
�
1 + 4�4 � 2�8 + 4�12 + �16

� �
, (B.9)

where r = log � and � and L satisfy,

� + L =
p

2g. (B.10)

In these expressions g and h are the gauge coupling of the vector fields17 and the topological

mass of the 3-form potential, respectively, of minimal N = 1 7d supergravity.

B.1 The r !1, AdS7 limit

When r !1 the previous solution is asymptotically locally AdS7, for any values of � and

L respecting the constraint given by their equation (4.27). The explicit way in which AdS7

arises is as follows.

The r !1 limit of the previous functions gives, for g = 2
p

2h,18

X � 1,

e2U � �4

4
=

e4r

4
, (B.11)

e2V � 4

h2
, (B.12)

e2W � �4

4
=

e4r

4
, (B.13)

k � ��4

16
= �e4r

16
, (B.14)

l � �4

16
=

e4r

16
. (B.15)

17This constant enters in the superpotential even for vanishing profile for the vector fields.
18This value is fixed such that X = 1 asymptotically.
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This gives for the 7d metric,

ds2
7 =

e4r

L2
ds2(AdS3) +

4

h2
dr2 +

e4r

�2
ds2(S3), (B.16)

in terms of unit radius S3 and AdS3 spaces. In turn, the 3-form potential is given by,

B3 =

p
2g � 2L

16h
e4r

⇣
vol(AdS3)� vol(S3)

⌘
. (B.17)

For arbitrary L and �, the scalar curvature is

R = �3

2
e�4r

⇣
28e4rh2 + L2 � �2

⌘
, (B.18)

and thus asymptotes to that of an AdS7 space of radius 1/h. The geometry in the UV

can thus be completed by an AdS7 space with vanishing 3-form potential, that solves the

equations of motion and gives rise to an AdS7 solution to massive IIA supergravity upon

uplift to ten dimensions [64].

B.2 The r ! 0, AdS3⇥T4 limit

In turn, the r ! 0 limit of the expressions (B.4)–(B.9) is non-singular for the special value

L =
5g

4
p

2
, (B.19)

which is also the value for which the leading order behaviour of the scalar potential �(X),

�(r) =
h2/5(5

p
2g � 8L)8/5

23/10r16/5
+ . . . (B.20)

is non-singular. Note that from (B.10),

� =
3g

4
p

2
. (B.21)

Substituting these values in (B.4)–(B.9) and taking the r ! 0 limit, one finds

X � 22/5

31/5
,

e2U � 32/5

24/5
,

e2V � 28

3g2

✓
2

33

◆1/5

,

e2W � 32/526/5r2.

(B.22)

This gives, for the metric in (B.1)

ds2
7 =

231/5

g2

✓
32/5

52
ds2(AdS3) +

4

38/5
ds2(T4)

◆
, (B.23)

and for the 3-form potential

B3 = �1

2
vol(AdS3)� 4r4vol(S3). (B.24)

As discussed in [6], this geometry is not a solution of 7d N = 1 minimal supergravity

by itself, but rather the IR leading profile of the flow for L and � given by (B.19), (B.21).
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B.3 Uplift to massive IIA

7d N = 1 minimal supergravity can be consistently uplifted to massive IIA on a squashed

S3 [64]. The uplift formulae were provided in that reference. They read, in the parameter-

isation used in [50] and for vanishing vector fields:

ds2
10 =

16

g
�

✓
� �

�̈

◆1/2

X�1/2ds2
7

+
16

g3
�X5/2

�✓
� �̈

�

◆1/2

dz2 �
✓
� �

�̈

◆1/2 ��̈

�̇2 � 2��̈X5
ds2(S2)

�
(B.25)

e2� =
X5/2

g3

3826�5

�̇2 � 2��̈X5

✓
� �

�̈

◆3/2

(B.26)

B2 =
23
p

2

g3

✓
���̇

�̇2 � 2��̈X5
� �z

◆
vol(S2) (B.27)

F2 =

✓
23
p

2

g3
F0

���̇

�̇2 � 2��̈X5
+

�̈

342�2

◆
vol(S2) (B.28)

F4 =
23

34�

⇥
��̈dz ^B(3) � �̇dB(3)

⇤
, (B.29)

where in the last expression we have used the odd-dimensional self-duality condition [76]

X4 ⇤7 F4 = �2hB3. (B.30)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Abstract: We construct a general class of (small) N = (0, 4) superconformal solutions

in M-theory of the form AdS3 ⇥ S3/Zk ⇥ CY2, foliated over an interval. These solutions
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1 Introduction

Two-dimensional N = (0, 4) CFTs play a prominent role in the microscopic description of

5d black holes [1–6]. They are also central in the description of 6d (1,0) CFTs deformed

away from the conformal point. In fact, when the M5-branes are separated in an extra

transverse direction one gets a theory of interacting strings. These strings support a (0, 4)

supersymmetric quiver gauge theory, whose elliptic genus has been shown to capture the

full supersymmetric partition function of the 6d theory [7, 8].

M2-branes suspended between parallel M5-branes lead to strings on their boundaries.

We refer to them as M -strings [9]. For M5-branes probing A-type singularities, the case

that will concern us in this paper, these strings are referred as MA-strings [7]. They support

2d (0, 4) quiver gauge theories with unitary gauge groups. Other general configurations of

M -strings can be obtained for M5-branes probing D-type singularities, or “end of the space”

M9-branes. These support quiver gauge theories involving symplectic and orthogonal gauge

groups, and exceptional gauge groups, respectively [8]. More general configurations can

be obtained beyond the realm of M-theory, using F-theory [10, 11]. In all cases, once the

quiver gauge theory is specified the elliptic genus can be computed using localisation.

– 1 –
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Explicit AdS3 holographic duals to 2d (0,4) quiver gauge theories were however quite

rare in the literature, with known examples reducing to intersections of D1-D5 branes [12]

with KK-monopoles [13–16] or D9-branes [17]. The recent results in [18] significantly

contributed to fill this gap.1

The geometries constructed in [18] are AdS3⇥ S2⇥ M4 foliations over an interval, with

M4 either a CY2 (class I) or a 4d Kähler (class II) manifold. They are solutions to massive

Type IIA supergravity involving D2-D4-D6-NS5-D8 brane configurations. They preserve

small (i.e. with only one SU(2) R-symmetry) N = (0, 4) supersymmetries and posses an

SU(2) structure. The dual CFTs of the first class were studied in [34, 35]. They arise in

the infrared limit of (0,4) quiver gauge theories containing two families of unitary gauge

groups,
�n

i=1 SU(ki)⇥SU(k̃i). The gauge group SU(ki) is associated to ki D2-branes while

the gauge group SU(k̃i) is associated to k̃i D6-branes, wrapped on the CY2. Both D2 and

D6 branes are stretched between NS5-branes. On top of this, there are D4 and D8 branes

that provide flavour groups to both types of gauge groups, and render the field theory

anomaly-free.

The uplift of these solutions to M-theory provides explicit holographic duals to the

2d (0, 4) quiver gauge theories with unitary gauge groups supported by MA-strings. We

will see that they are AdS3⇥S3/Zk⇥ CY2 foliations over an interval that still realise small

(0, 4) superconformal symmetry. This will be one of the main results in this paper. Our

class of solutions extends previous results in the literature, which took more restricted

ansatze for the fluxes [36]. Furthermore, we are able to show that they are in one to one

correspondence with 2d quiver CFTs describing MA-strings. The CFTs arise as infrared

fixed points of 2d field theories living on M2-branes and M-theory Kaluza-Klein monopoles

(wrapped on the CY2, and thus behaving e�ectively as 2-branes) stretched between parallel

M5-branes. This set-up realises two families of unitary gauge groups, supported by flavour

groups coming from extra M5-branes that render the quivers non-anomalous. Our field

theories generalise quivers constructed in the literature [8]. The key ingredient is that we

are able to obtain them within controlled string theory set-ups with known holographic

duals. They provide examples for 2d (0, 4) quiver gauge theories for which the elliptic

genus can be computed.

The contents of the paper are distributed as follows. In section 2 we summarise the

main properties of the backgrounds of the form AdS3⇥ S2⇥ CY2 foliated over an interval

constructed in [18]. We focus our attention on compact Calabi-Yau 2-folds. We give a

brief account of the 2d (0, 4) quiver CFTs that are dual to these solutions [34, 35]. In

section 3 we perform the uplift of the sub-class of solutions with vanishing Romans’ mass

to eleven dimensions. We construct the explicit 2d quivers dual to these backgrounds and

compute the central charge, both holographically and field theoretically, finding agreement

in the holographic limit. Furthermore, we show that the central charge scales linearly

with the total number of MA-strings of the configuration. This identifies the latter with

the defining degrees of freedom of our theories, and allows us to reinterpret with general-

ity previous results obtained in more restricted scenarios [13]. In section 4 we construct

1See the papers [19–33] for more general AdS3 solutions with di�erent amounts of supersymmetries.
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new AdS3/Zk⇥ S3⇥ CY2 solutions in M-theory, foliated over an interval, preserving four

Poincaré supersymmetries. We achieve this through a double analytical continuation. The

new solutions are associated to M2-M5-M5’ brane intersections with momentum charge,

and provide a holographic description for the superconformal quantum mechanics (SCQM)

that arises in the low energy limit. These SCQMs generalise quantum mechanical descrip-

tions of M-branes in the context of M(atrix) theory studied in the literature [37–42]. In

section 5 we construct a new family of AdS2⇥ S3⇥ CY2⇥ I solutions to Type IIA with four

Poincaré supercharges, upon reduction from M-theory. These solutions are associated to

D0-F1-D4-D4’ brane intersections. We naturally extend them to backgrounds of massive

IIA supergravity, upon double analytical continuation from the solutions summarised in

section 2. In section 6 we present our conclusions and future lines of research motivated by

our results. Appendix A summarises the class I and class II solutions presented in [18]. In

appendix B we present the most general class of AdS3⇥S2⇥ M4 solutions to M-theory with

(0,4) supersymmetries and SU(2) structure. Appendix C contains more general AdS2⇥
S3⇥M4 solutions to massive IIA where M4 is a 4d Kähler manifold. The geometries stud-

ied in the main body of the paper are special cases of those in the appendices. It would be

interesting to understand the holographic dual to these more general backgrounds.

2 Review of the AdS3 � S2 � CY2 solutions to massive Type IIA

In [18] the most general class of AdS3⇥ S2 solutions to massive IIA supergravity with small

(0,4) supersymmetry and SU(2) structure was presented. These solutions are foliations of

AdS3⇥S2⇥M4 over an interval, with M4 either a CY2 or a 4d Kähler manifold. The first

type of solutions were referred to as class I. The second, which contain as a particular case

the T-duals of the solutions found in [11], were referred to as class II. The backgrounds

in class I for which the symmetries of the CY2 are respected by the solution constitute

a particularly interesting subclass for which the full family of 2d (0,4) dual CFTs can be

identified [34, 35]. This subclass of solutions is the focus of our main interest in this work.

From them we will construct a general class of AdS3⇥S3/Zk⇥ CY2 solutions to M-theory,

to which we will associate 2d (0,4) quiver CFTs supported by MA-strings. The uplifts of

the most general solutions in class I and class II will be presented in appendix B. Our

solutions provide altogether a complete classification of AdS3 solutions to M-theory with

(0,4) supersymmetries and SU(2) structure.

We begin our analysis by reviewing the class I geometries constructed in [18], with the

further restriction that the symmetries of the Calabi-Yau 2-fold are respected by the full

solution. This requires the Calabi-Yau to be compact, and therefore we will take it to be

either T 4 or K3. The NS sector of this subclass of solutions reads,

ds2 =
uq
�h4h8

�
ds2

AdS3
+

�h4h8

4�h4h8 + (u0)2
ds2

S2

�
+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2 ,

e�� =
h

3/4
8

2�h1/4
4

p
u

q
4�h4h8 + (u0)2 , H(3) =

1

2
d

✓
� � +

uu0

4�h4h8 + (u0)2

◆
^ �volS2 .

(2.1)
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Here � is the dilaton, H(3) the NS three-form and the metric is given in string frame. A

prime denotes a derivative with respect to �.

The RR sector reads

F(0) = h0
8 , F(2) = �1

2

�
h8 �

h0
8u

0u

4h8
�h4 + (u0)2

�
�volS2 ,

F(4) = �
✓

d

✓
u0u

2�h4

◆
+ 2h8d�

◆
^ �volAdS3 � �⇢�h4

�volCY2 .

(2.2)

Higher RR fluxes are related to these as F(6) = � � F(4), F(8) = �F(2), F(10) = � � F(0),

where � is the ten-dimensional Hodge-dual operator. Supersymmetry holds when

u00 = 0 , (2.3)

which makes u a linear function of �. In turn, the Bianchi identities of the fluxes impose

h00
8 = 0 , �h00

4 = 0, (2.4)

which make h8 and �h4 also linear functions. The particular configurations reviewed above

are independent of the CY2-fold coordinates and �h4 has support on the � coordinate only.

The supersymmetry and Bianchi identities are satisfied for u, h8, �h4 arbitrary linear func-

tions in �. This is the above mentioned restriction we adopt with respect to [18]. We shall

keep this restriction hereafter, with the exception of the material in the appendices.

The magnetic components of the Page fluxes �F = F ^ e�B(2) are given by

�F(0) = h0
8 (2.5)

�F(2) = �1

2

⇣
h8 � (�� 2�j)h0

8

⌘
�volS2 (2.6)

�F(4) = ��h0
4
�volCY2 (2.7)

�F(6) =
1

2

⇣
�h4 � (�� 2�j)�h0

4

⌘
�volCY2 ^ �volS2 , (2.8)

where we have included large gauge transformations in B(2) of parameter j, such that

B(2) =
1

2

✓
2�j � � +

uu0

4�h4h8 + (u0)2

◆
^ �volS2 . (2.9)

2.1 Brief description of the 2d dual CFTs

Associated to the Page fluxes there is a D2-D4-D6-D8-NS5 brane system, depicted in

table 1. The 2d CFTs that live on these brane set-ups were analysed in [34, 35], to which

the reader is referred for more details. They are described by (0, 4) superconformal quivers

with gauge groups associated to stacks of D2 and D6 branes (the latter wrapped on the

CY2 manifold), both stretched between NS5 branes. Being the extension of the D2 and

D6 branes finite in the � direction, the field theory living on their intersection is e�ectively

two dimensional at low energies. These quivers are rendered non-anomalous with adequate

flavour groups at each node, coming from D4 and D8 branes. Figure 1 illustrates their
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0 1 2 3 4 5 6 7 8 9

D2 x x x

D4 x x x x x

D6 x x x x x x x

D8 x x x x x x x x x

NS5 x x x x x x

Table 1. 1
8 -BPS brane intersection underlying the AdS3 solutions. (x0, x1) are the directions where

the 2d CFT lives, (x2, . . . , x5) span the CY2, on which the D6, the D8 and the NS5 branes are

wrapped, x6 is the direction along the �-interval, and (x7, x8, x9) are the transverse directions on

which the SO(3)R symmetry is realised.

N
(2)
2 N

(3)
2 N

(k)
2

N
(2)
6 N

(3)
6 N

(k)
6

N
(1)
2

N
(1)
6

N
(1)
8 N

(2)
8 N

(3)
8 N

(k)
8

N
(1)
4 N

(2)
4 N

(3)
4 N

(k)
4

Figure 1. Generic quiver field theory whose IR is holographic dual to the solutions reviewed in

this section. The solid black line represents a (4,4) hypermultiplet, the grey line a (0,4) hypermul-

tiplet and the dashed line a (0,2) Fermi multiplet. The degrees of freedom at each node are (4,4)

vector multiplets.

general structure. The quivers can be divided into two long linear quivers consisting on

(4, 4) gauge groups connected horizontally by (4, 4) bifundamental hypermultiplets, coupled

through (0, 4) hypermultiplets (vertically) and (0, 2) Fermi multiplets (in the diagonals).

The flavour degrees of freedom couple through (0, 2) Fermi multiplets with its corresponding

gauge node. These couplings render the quiver (0, 4) supersymmetric.

Let us see how the cancellation of gauge anomalies works. For a given SU(N
(i)
2 )

gauge group we are concerned with the contributions to the anomaly coming from the

(0, 4) hypermultiplets that connect it to the SU(N
(i)
6 ) gauge node and with the various

(0, 2) Fermi multiplets. The (0, 4) hypermultiplets in the bifundamental representation are

composed of two (0, 2) chiral multiplets, which contribute to the gauge anomaly a factor of

1. In turn, the (0, 2) Fermi multiplets in the fundamental or bifundamental representations

contribute a factor of �1
2 . Putting these together, we have that for a SU(N

(i)
2 ) gauge group

the gauge anomaly cancellation condition is

2N
(i)
6 = N

(i�1)
6 + N

(i+1)
6 + N

(i)
8 . (2.10)
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This becomes

2N
(i)
2 = N

(i�1)
2 + N

(i+1)
2 + N

(i)
4 , (2.11)

for SU(N
(i)
6 ) gauge groups. The reader is referred to [35] for more details.

In the next section we study the M-theory lift of the backgrounds in (2.1)–(2.2).

3 New AdS3 � S3/Zk � CY2 solutions in M-theory

Let us consider the uplift to eleven dimensions of the solutions discussed in the previous

section. To perform this lift we need F(0) = 0, which according to (2.2) imposes the function

h8 to be a constant. Thus, the IIA brane configuration that we lift consists on intersecting

D2-D4-D6-NS5 branes. The restriction to vanishing Romans’ mass implies that the number

of D6-branes (N6) must remain constant between all pairs of NS5-branes. In the lift to

eleven dimensions this number becomes a modding parameter of the geometry, associated

with KK-monopole charge.

Once this lift is performed, we obtain a class of AdS3⇥S3/Zk⇥ CY2 solutions to M-

theory foliated over an interval. They preserve N = (0, 4) supersymmetry. These solu-

tions read

ds2
11 = �

�
� uq

�h4h8

ds2
AdS3

+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2

�
� +

h2
8

�2
ds2

S3/Zk
, (3.1)

G(4) = �d

✓
uu0

2�h4

+ 2�h8

◆
^ �volAdS3 + 2h8 d

✓
�� +

uu0

4�h4h8 + u02

◆
^ �volS3/Zk

� �⇢�h4
�volCY2 , (3.2)

� =
h

1/2
8 (4�h4h8 + u02)1/3

22/3�h1/6
4 u1/3

,

where k = h8 = N6. The quotiented 3-sphere is written as an S1
z Hopf fibration over an S2,

ds2
S3/Zk

=
1

4

�✓
dz

k
+ �

◆2

+ ds2
S2

�
with d� = �volS2 . (3.3)

In the previous solutions the symmetries SL(2, R) ⇥ SL(2, R) and SU(2) are realised geo-

metrically on the AdS3 and the quotiented 3-sphere, respectively.

The dual quivers associated to this class of solutions are depicted in figure 2. The

gauge anomaly is automatically cancelled for the SU(N
(i)
2 ) gauge groups, once an extra

SU(N6) flavour group is added to the first node, while for the SU(N6) gauge groups the

condition (2.11) has been enforced. In what follows, we concentrate on the backgrounds

in (3.1)–(3.2). In appendix B we discuss the lift to eleven dimensions of the more general

backgrounds constructed in [18].

3.1 Brane set-up

In the new class of solutions given by (3.1)–(3.2), the number of Type IIA D6-branes became

the orbifold parameter in S3/Zk, k = N6 = h8, and thus corresponds to KK-monopole

– 6 –
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Figure 2. Generic quiver field theories dual to the AdS3 solutions with vanishing Romans’ mass.

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M5 x x x x x x

KK x x x x x x x z

M5’ x x x x x x

Table 2. 1
8 -BPS brane intersection underlying the AdS3⇥ S3/Zk solutions in M-theory. The

directions (x0, x1) are those where the 2d dual CFT lives, (x2, . . . , x5) span the CY2, x6 is the

‘field space’ direction and (x7, x8, x9) are the transverse directions on which the SO(3)R symmetry

is realised. Finally, x10 is the extra eleventh direction, which spans the S1/Zk � S3/Zk and plays

the role of Taub-NUT direction of the KK-monopole.

charge. The D2-branes became M2-branes. Their charge in the interval � 2 [2�j, 2�(j +1)]

is obtained by integrating the Page flux �G(7) = G(7) � G(4) ^ C(3). The component of �G7

relevant to calculate the number of M2 branes is given by

�G(7) = 2h8

⇣
�h4 � (�� 2�j)�h0

4

⌘
�volS3/Zk

^ �volCY2 . (3.4)

The D4-branes of the Type IIA solution became M5-branes. Their presence is captured

by non-trivial flux of G4 through the CY2. Finally, the NS5 branes became M5’-branes,

whose charge is given by a non-trivial flux of G4 through the (�, S3/Zk) cycle. Therefore,

the D2-D4-D6-NS5 branes underlying the Type IIA solutions become M2-M5-KK-M5’

branes, intersecting as shown in table 2. The KK-monopoles (wrapped on the CY2) and

the M2 branes are stretched between parallel M5’-branes and there are extra M5-branes

providing for flavour groups. This describes MA-strings, supplemented with extra M5-

branes. The corresponding dual quivers are the ones depicted in figure 2, with upper

row nodes associated to M2-branes and lower row nodes to KK-monopoles. The M5-

branes provide for extra flavour groups that render the quivers non-anomalous (and the

supergravity equations of motion satisfied).

Our new solutions in M-theory (3.1)–(3.2), provide for explicit AdS3 geometries that

can be used to study these quivers holographically. It would be interesting to see these

– 7 –
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N2N6 N6

N6

N2

N6
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Figure 3. Left: Generic quiver field theory whose IR limit is holographic dual to the AdS3 solutions

with I = S1. Right: Quiver field theory for M = 1. In the right quiver, the (0,4) hypermultiplets

combine with two (0,2) Fermi multiplets to produce (4,4) hypermultiplets. Supersymmetry is thus

enhanced to (4,4).

geometries emerging in the near horizon limit of intersecting M2-M5-MKK-M5’ brane sys-

tems. This is currently under investigation [43].

Note that when u0 = 0 the M5-branes wrapped on AdS3 ⇥ S3/Zk support self-dual

strings on their worldvolumes, coupled to the (self-dual) 3-form field

C(3) = �2�h8(�volAdS3 + �volS3/Zk
) . (3.5)

They arise from M2-branes ending on the M5-branes. These solutions provide then for

fully backreacted near horizon geometries for OM theory [44], the theory conjectured to

be the UV completion of the (2,0) theory with constant background 3-form field living

on the M5-branes [45]. In our explicit set-up the 3-form depends on the positions of the

M5-branes in the �-direction. Extra intersecting M5’-branes and KK-monopoles further

reduce the supersymmetries by a half.

An interesting particular case contained in our class of solutions is when I = S1,

for which �h0
4 = u0 = 0. This case was discussed in [7] (see also [46]). In this case the

background [47] is the uplift of the T-dual of the AdS3 ⇥ S3/ZM ⇥ CY2 geometry that

describes D1-D5 branes in a AM�1 singularity, introduced by M KK-monopoles. The IIB

KK-monopoles become the M5’-branes in M-theory, with their Taub-NUT charge provided

by the Type IIB D5-branes. The associated 2d quivers are those on the left of figure 3.

When M = 1 supersymmetry is enhanced to (4,4), the brane system becomes a M2-M5’

brane intersection and the associated quiver becomes the one on the right.

Another interesting case is when k = 1 and there is just one KK-monopole stretched

between the M5’-branes. The resulting quivers are depicted in figure 4 (left). In M-theory

one KK-monopole is equivalent to no modding, and therefore the brane system reduces

to the M2-M5-M5’ brane intersection included in table 2. This intersection is still 1/8-

BPS. These brane intersections might play a role as brane set-ups where 2d defect CFTs

could be realised, in connection with the phenomenon of deconstruction [48]. Indeed,

our quivers generalise (by the inclusion of flavours) the 2d defect CFTs living in D3-D3’-

KK intersections studied in [49], which deconstruct 4d N = 2 CFTs living in M5-brane

– 8 –
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Figure 4. Left: 2d (0,4) quiver CFT dual to the AdS3⇥ S3⇥CY2⇥ I solution. Right: 4d N = 2

quiver CFT with flavours.

intersections. One might expect that the 2d quivers depicted on the left of figure 4 could

emerge through a similar mechanism as the one described in [49], by coupling the 4d N = 2

CFT depicted on the right with an Abelian field theory. It would be interesting to explore

this possibility.

3.2 Central charge

In this section we compute the (right moving) central charge of the CFTs dual to our

solutions. We consider generic quivers such as the ones depicted in figure 2, that we

terminate by adding adequate flavour groups, rendering the quiver non-anomalous, with

large but finite length (see [35] for more details). One possibility is the completed quiver

depicted in figure 5. The corresponding functions h8 and �h4(�) = �h4(�) are given by,

h8 = N6, 0  �  2�(P + 1).

�h4(�)= �

�
��
��

�0

2⇡� 0  �  2�

�j+
�j

2⇡ (�� 2�j) 2�j  �  2�(j + 1),

�P � ↵P
2⇡ (�� 2�P ) 2�P  �  2�(P + 1),

(3.6)

with �j =
�j�1

r=0 �r and j = 1, . . . , P � 1. We have �h4(0) = �h4(2�(P + 1)) = 0. At these

values of �, the asymptotic analysis indicates the presence of M5-branes extended on AdS3⇥
S3/Zk and the space terminates. In what follows, we choose � such that �volCY2 = 16�4.

The numbers of M2 and M5 branes at each 2�j  �  2�(j + 1) interval, with

j = 1, . . . , P , are given by

N
(j)
2 =

1

(2�)6

Z

CY2�S3/Zk

�G(7) =
2

(2�)6

⇣
�h4 � (�� 2�j)�h0

4

⌘
volCY2volS3 = �j (3.7)

and

N
(j)
5 =

1

(2�)3

Z

CY2

G(4) =

�
�j 2�j  �  2�(j + 1); j = 0, . . . , P � 1

��P 2�P  �  2�(P + 1).
(3.8)
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N (p)
2
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2N
(p)
2 −N

(p−1)
2

N6

2N
(p−1)
2

− N
(p−2)
2

− N
(p)
22N

(2)
2

− N
(1)
2

− N
(3)
2

2N
(1)
2 −N

(2)
2 2N

(3)
2

− N
(2)
2

− N
(4)
2

N6

Figure 5. Completed quiver field theories whose IR limits are holographic duals to the AdS3⇥
S3/Zk solutions in M-theory. N

(j)
2 refer to M2-brane charges and N6 = k to the constant, KK-

monopole charge. M5-branes provide for the 2N
(i)
2 �N

(i�1)
2 �N

i+1)
2 flavour groups that render the

quiver non-anomalous.

Notice that �j�1��j = 2N
(j)
2 �N

(j�1)
2 �N

(j+1)
2 is the number of flavours at each 2�j  � 

2�(j +1) interval, with j = 1, . . . , P � 1, and there are extra �P +�P�1 = 2N
(P )
2 �N

(P�1)
2

flavours at the 2�P  �  2�(P + 1) interval, as depicted in figure 5.

We proceed now with the computation of the holographic central charge. The inter-

esting result we shall obtain is that the central charge is proportional to the total number

of MA-strings and is also related to the action of the M 0
5-branes.

The central charge being directly proportional to the number of MA-strings indicates

that the fundamental degrees of freedom of this theory should be understood as MA-strings.

On the other hand, the relation between the action of M 0
5-branes and the central charge

indicates that these branes (that provide a boundary condition for the membranes to end)

capture on their world-volumes the dynamics of the lower dimensional branes. This is a

non-trivial fact, already encountered in [50]. It would be of interest to reproduce it in other

holographic systems to fully understand its origin.

The right-moving central charge of the AdS3⇥S2⇥ CY2 solutions constructed in [18]

was computed in [35]. The expression found there remains valid upon uplift to eleven

dimensions. In terms of the ten dimensional Newton’s constant we have,

c =
3�

2GN
volCY2

Z
d�h8

�h4. (3.9)

This gives, for the functions �h4 and h8 displayed above

c =
3

�
h8

Z 2⇡(P+1)

0
d�h4 = 6h8

PX

j=1

�j = 6h8

PX

j=1

N
(j)
2 = 6kN2 = 6 NMA

, (3.10)

where NMA
stands for the total number of MA-strings in the configuration, taking into

account the orbifolding by Zk. This result emphasises the fact that the MA-strings holo-

graphically capture the degrees of freedom of the conformal field theory. This suggests
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that the MA-strings actually are the degrees of freedom of the strongly coupled conformal

field theory. Notice the factor of “6” in eq. (3.10). This factor is fixed on purely algebraic

grounds. See for example [51].

We show next that this result can be reproduced from the action describing the M5’-

branes of the configuration, where the M2-branes end, realising the MA-strings introduced

in [7, 9].

The M5’-branes on which the M2-branes end, span the (t, x1, CY2) directions of the

geometry, and are positioned along the �-interval at � = 2�j. Their worldvolume e�ective

action is given by

SM5′(j) = TM5′

Z
d6�

p
detg =

1

4
TM5′volCY2

Z ✓
�h4h8 +

1

4
u02

◆
cosh r dtdx1 . (3.11)

For an M5’-brane located at � = 2�j and r = 0 this becomes

SM5′(j) =
1

4 (2�)4
volCY2volR

✓
�h4 (2�j) h8 +

1

4
u02

◆
=

1

4
volR

✓
�jh8 +

u02

4�

◆
. (3.12)

Summing the contributions of all M5’-branes we have, to leading order in P ,

SM5′ =
PX

j=1

SM5′(j) ⇠ h8

PX

j=1

�j = NMA
. (3.13)

This reproduces the scaling of the central charge to leading order within the context of the

M5’-branes e�ective action.

Our discussion in the previous subsection about the interpretation of the MA-strings

as self-dual strings when u0 = 0 suggests that we should also be able to reproduce the

scaling of the central charge from the M5-branes e�ective action, where the M2-branes

realise self-dual strings. However, to check this we would need an action for non-Abelian

M5-branes.

3.2.1 Field theory calculation

Finally, we check for consistency that the previous central charge coincides with the field

theory result for long quivers with large ranks — the regime in which we can trust the

supergravity solutions (see [35]). At the conformal point the central charge is related to

the two point U(1)R current correlation function (see for example [52]), such that

c = 6(nhyp � nvec) , (3.14)

where nhyp is the number of N = (0, 4) hypermultiplets and nvec the number of N = (0, 4)

vector multiplets of the quiver in the UV description.

For the quivers considered in figure 5, we find

nhyp =

P�1X

j=1

N
(j)
2 N

(j+1)
2 + (P � 1)N2

6 + N6

PX

j=1

N
(j)
2 , (3.15)

and

nvec =
PX

j=1

⇣
(N

(j)
2 )2 � 1

⌘
+ P (N2

6 � 1) . (3.16)
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Figure 6. 2d (0,4) quiver CFT with gauge groups of linearly increasing ranks.

After defining N2 =
�P

j=1 N
(j)
2 , this gives for the central charge

c = 6 (nhyp � nvec) = 6

�
�N6N2 +

P�1X

j=1

N
(j)
2 N

(j+1)
2 �

PX

j=1

(N
(j)
2 )2 �N2

6 + 2P

�
� . (3.17)

Now, the net contribution to this expression of the term
⇣�P�1

j=1 N
(j)
2 N

(j+1)
2 ��P

j=1(N
(j)
2 )2

⌘

is subleading when compared with the contribution of N6N2. This hierarchy occurs when

the number of gauge nodes is large (for long quivers). As a consequence, to leading order

in the number of nodes P , we find

c = 6N6N2+O(P ). (3.18)

The only situation in which the two competing terms above scale similarly in P , is when

there are no intermediate flavour groups, i.e. when N
(j)
2 = j�0 for i = 1, . . . ,P . This partic-

ular situation corresponds to the quiver with gauge groups of linearly increasing ranks, de-

picted in figure 6.Next we show that the contribution of
⇣�P�1

j=1 N
(j)
2 N

(j+1)
2 ��P

j=1(N
(j)
2 )2

⌘

is indeed subleading with respect to that of N6
�P

j=1 N
(j)
2 . To do this, we should impose

that N6 is much bigger than �0. This is required to have a trustable supergravity back-

ground — see the analysis in section 4.4 of [35]. The central charge then reads

c = 6

�
�N6N2 + �2

0

⇣P�1X

j=1

j(j + 1)�
PX

j=1

j2
⌘
�N2

6 + 2P

�
� . (3.19)

Keeping in mind that N2 = �0
�P

j=1 j = �0
P (P+1)

2 we get

c = 3�0(N6 � �0)P
2 + O(P ) ⇠ 3�0N6P

2 . (3.20)

We used that N6 must be much larger than �0 for the supergravity background to be

trustable.

One can now easily check that this is in agreement with the holographic calculation.

In fact, the function �h4 representing the quiver with linearly increasing ranks is

�h4(�) = �h4(�) = �

�
�0

2⇡� 0  �  2�P
�0P
2⇡ (2�(P + 1)� �) 2�P  �  2�(P + 1),

(3.21)
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0 1 2 3 4 5 6 7 8 9 10

M0 x z

M2 x x x

M5 x x x x x x

M5’ x x x x x x

Table 3. 1
8 -BPS brane intersection underlying the AdS3/Zk⇥ S3 solutions in M-theory. x1 is

the direction of propagation of the wave. (x2, . . . , x5) span the CY2, x6 is the direction along the

�-interval, (x7, x8, x9, x10) are the transverse directions on which the SO(4) symmetry is realised.

The presence of the wave renders the dual CFT one-dimensional.

with h8 = N6. Using our expression for the central charge (3.9) we find,

c=
3

�
N6

�Z 2⇡P

0

�0

2�
�d� +

Z 2⇡(P+1)

2⇡P

�0

2�
(2�(P + 1)� �)d�

�
=3N6�0P

2

✓
1 +

1

P

◆
, (3.22)

in coincidence with eq. (3.20) when long quivers are considered.

Any other situation with intermediate (many, but sparse enough) flavour groups will

work along similar lines, showing the validity of eq. (3.18). This shows that the holographic

calculation and the field theoretical one coincide for long quivers with large enough ranks.

This closes our analysis of the backgrounds in equations (3.1)–(3.2). In the next section

we present a new branch of AdS3 solutions in M-theory.

4 Double analytic continuation

A double analytic continuation in the AdS3⇥ S3/Zk⇥ CY2⇥ I solutions presented in (3.1)–

(3.2), gives rise to a second class of solutions in which the AdS3 subspace is quotiented

instead of the S3. These solutions preserve the same amount of supersymmetries. The

KK-monopoles turn into M0-branes, or waves, with the Taub-NUT direction of the KK-

monopoles turning into the direction of propagation of the waves. The solutions are then

associated to the M0-M2-M5-M5’ brane intersections depicted in table 3. The double

analytic continuation of the background given in (3.1) works as follows. The AdS3 and S3

factors can be swapped as

AdS3 ! �S3 , S3 ! �AdS3 . (4.1)

In order to get a spacetime with the correct signature the u, �h4, h8 functions need to be

also analytically continued, as follows

u! �iu , �h4 ! i�h4 , h8 ! ih8 , (4.2)

together with �! i�.

Applying this set of transformations to the solutions to M-theory discussed in (3.1)–

(3.2) gives rise to the following new solutions

ds2
11 =

h2
8

�2
ds2

AdS3/Zk
+ �

�
� uq

�h4h8

ds2
S3 +

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2

�
� (4.3)
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0 1 2 3 4 5 6 7 8 9

D0 x

F1 x x

D4 x x x x x

Table 4. 1
8 -BPS intersection involving D0, D4 and F1 branes. A N = 4 supersymmetric quan-

tum mechanics lives in the common x0 direction. (x1, . . . , x4) span the directions on the CY2. x5

is the direction along the �-interval. The (x6, . . . , x9) directions enjoy an SO(4) rotational sym-

metry, of which an SU(2) is the R-symmetry of the SU(1, 1|2) supergroup and another SU(2) a

global symmetry.

G(4) = �d

✓
�uu0

2�h4

+ 2�h8

◆
^ �volS3 � 2h8 d

✓
� +

uu0

4�h4h8 � u02

◆
^ �volAdS3/Zk

� �⇢�h4
�volCY2 (4.4)

� =
h

1/2
8 (4�h4h8 � u02)1/3

22/3�h1/6
4 u1/3

(4.5)

where k = h8 and the quotiented AdS3 subspace is written as a Hopf fibration over AdS2,

ds2
AdS3/Zk

=
1

4

�✓
dz

k
+ �

◆2

+ ds2
AdS2

�
with d� = �volAdS2 . (4.6)

4.1 Dual quantum mechanics

Due to the momentum charge, the previous class of solutions is dual to a 1d superconformal

quantum mechanics (SCQM). Holographically, they are thus essentially di�erent from the

AdS3⇥S3/Zk solutions on which the double analytic continuation was performed. From

the isometries of the background, we see that the N = 4 SCQM must preserve su(1, 1|2)

superconformal algebra, whose bosonic sub-algebra is sl(2)� su(2) [53].2

A particular solution that can be used to provide some hint on the nature of the dual

quantum mechanics is the one for which I = S1. This is the background that follows

from setting �h0
4 = u0 = 0 in (4.3)–(4.5). This solution is associated to a M0-M2-M5’

brane intersection, and is the uplift to M-theory of the T-dual of the AdS3/ZM⇥ S3⇥ CY2

geometry that describes D1-D5 branes with M units of momentum along the Hopf-fibre

direction of AdS3. T-dualising on the Hopf-fibre gives rise to D0-branes, D4-branes and

F1-strings, as shown in table 4, which upon uplift give the M0-M2-M5’ brane intersection

included in table 3. When M = 1 supersymmetry is enhanced to 2d (4, 4) and the brane

intersection becomes the M2-M5’ brane set-up discussed in section 3.1. The associated

quiver is the one depicted on the right of figure 3. Switching on momentum charge allows for

a quantum mechanical description of this system within M(atrix) theory, upon taking the

Sen-Seiberg limit [54, 55]. The AdS3/ZM⇥ S3⇥ CY2⇥ S1 solution (or its AdS2 reduction to

Type IIA) provides for an alternative holographic description of this quantum mechanics.

2Note that one of the SU(2) isometry groups of the 3-sphere is a global symmetry.
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More general AdS3/Zk⇥ S3⇥ CY2⇥ I solutions in our class should be dual to M(atrix)

quantum mechanics describing M2-M5-M5’ brane intersections. M5-M5’ brane intersec-

tions were discussed in this context in [42], but these give rise to 4d SCFTs in their common

worldvolume, and are therefore di�erent from the intersections considered in this paper.

The M(atrix) theory description of the 2d SCFTs living in our M-brane intersections is

currently under investigation [56].

Connections between AdS2 solutions and M(atrix) theory have been discussed in the

literature in various contexts (see for instance [50, 57–60]). The results in [50] are par-

ticularly interesting regarding our system. Indeed, the system depicted in table 4 can be

thought of as the result of adding F1-branes to the 1/4-BPS D0-D4 brane system discussed

in [50], dual to a AdS2⇥S3⇥ S4 geometry foliated over an interval. The D0-D4 brane

system describes in M(atrix) theory longitudinal M5-branes, in terms of a U(k) gauge

theory with hypermultiplets in the adjoint representation and N fundamentals [39]. This

quantum mechanics is the reduction on a circle of the quiver CFT dual to the D1-D5 sys-

tem (depicted on the right of figure 3).3 Alternatively, one could think of our system in

terms of a 1/4-BPS D0-F1 brane system with extra D4-branes. 1/4-BPS D0-F1 branes

are dual to a AdS2⇥S7 geometry foliated over an interval [50, 61]. Our solutions can be

interpreted in these set-ups as the fully backreacted supergravity solutions that arise when

F1-strings are placed in the AdS2⇥S3⇥S4 geometry dual to the D0-D4 brane system, or

D4-branes are placed in the AdS2⇥S7⇥I solutions dual to the D0-F1 brane system, uplifted

to eleven dimensions.

5 New AdS2 � S3 � CY2 solutions to massive Type IIA

The AdS3/Zk⇥ S3⇥CY2⇥ I solutions to M-theory presented in (4.3)–(4.4), can be reduced

on the Hopf-fibre of AdS3. This produces a new class of AdS2⇥ S3⇥ CY2⇥ I solutions

to massless Type IIA supergravity. These solutions are associated to D0-F1-D4-D4’ brane

systems, preserve four Poincaré supersymmetries and have an SU(2) structure. In fact,

one can check that they are just the double analytic continuation of the AdS3⇥ S2⇥ CY2⇥
I solutions reviewed in section 2, when restricted to the massless case. Therefore, these

backgrounds can be extended straightforwardly to the massive case. In this section we

present this new class of solutions. We leave their detailed study to our forthcoming

publication [56].

Performing the analytic continuation explained in the previous section on the class of

solutions given by (2.1)–(2.2) we find a NS sector,

ds2 =
uq
�h4h8

� �h4h8

4�h4h8 � (u0)2
ds2

AdS2
+ ds2

S3

�
+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2 ,

e�� =
h

3/4
8

2�h1/4
4

p
u

q
4�h4h8 � (u0)2 , H(3) = �1

2
d

✓
� +

uu0

4�h4h8 � (u0)2

◆
^ �volAdS2 .

(5.1)

3In the limit in which the CY2 is taken to be very large, such that the group associated to the D5-branes

becomes global.
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The RR sector reads

F(0) = h0
8 , F(2) = �1

2

�
h8 +

h0
8u

0u

4h8
�h4 � (u0)2

�
�volAdS2 ,

F(4) =

✓
�d

✓
u0u

2�h4

◆
+ 2h8d�

◆
^ �volS3 � �⇢�h4

�volCY2 .

(5.2)

The background in equations (5.1)–(5.2) solves the equations of motion provided that

u00 = �h00
4 = h00

8 = 0. The last two conditions come from the Bianchi identities for the RR

sector. Note that we must have 4�h4h8 � (u0)2 > 0, in order for the metric to be of the

correct signature and the dilaton to be real.

The Page fluxes are given by

�F(0) = F(0) = h0
8 , (5.3)

�F(2) = F(2) � F(0)B(2) = �1

2
(h8 � �h0

8)
�volAdS2 , (5.4)

�F(4) = F(4) = ��h0
4
�volCY2 �

✓
2h8 �

⇣uu0

2h4

⌘0◆ �volS3 ^ d� , (5.5)

�F(6) =
1

2
(�h4 � ��h0

4)
�volAdS2 ^ �volCY2 +

✓⇣u(�u0 � u)

4h4

⌘0
� �h8

◆
�volAdS2 ^ �volS3 ^ d� , (5.6)

�F(8) =

✓
2�h4 �

⇣uu0

2h8

⌘0◆ �volCY2 ^ �volS3 ^ d� . (5.7)

The class of solutions given by (5.1) and (5.2) provide a new class of backgrounds

to Type IIA with four Poincaré supersymmetries and SU(2)-structure, which are warped

products of AdS2⇥S3⇥ M4 over an interval, with M4 a Calabi-Yau 2-fold. The AdS2⇥
S3 subspace realises an SL(2, R)⇥ SO(4) isometry group. As mentioned above, one of the

SU(2)’s in SO(4) ⇠= SU(2) ⇥ SU(2) is a global symmetry, so the R-symmetry is that of

the SU(1, 1|2) supergroup. This identifies the superconformal group of the associated dual

quantum mechanics. As in section 2, we have restricted ourselves to the case in which

the symmetries of the CY2 are respected by the full solution. We will construct the most

general class of solutions with SU(2) structure in appendix C, where we will relax this

condition on the class I solutions in [18] and analytically continue the solutions in class II.

Note that a more general class of solutions with the same supersymmetry can in principle

be obtained taking an identity structure instead of the SU(2)-structure considered here.

5.1 Brane set-up

Associated to the Page fluxes we find the following quantised charges,

N8 = 2�

Z

I�

d �F(0) , d �F(0) = h00
8d� . (5.8)

According to (5.8), we have a natural definition of D8-branes as objects localised in the �

direction. This, in turn, leads to the fact that D8-branes are not dissolved into fluxes, and

e�ectively behave as flavour branes. They span the AdS2⇥ S3⇥ CY2 sub-manifold.
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0 1 2 3 4 5 6 7 8 9

D0 x

F1 x x

D4 x x x x x

D4’ x x x x x

D8 x x x x x x x x x

Table 5. 1
8 -BPS brane intersection underlying the AdS2⇥S3 solutions in Type IIA. (x1, . . . , x4)

span the CY2 and (x6, x7, x8, x9) are the transverse directions on which the SO(4) symmetry group

is realised. A N = 4 supersymmetric quantum mechanics lives in the common x0 direction.

From the expression for �F(4) in (5.5) we identify two manifolds supporting �F(4)-fluxes.

These are M̃4 = CY2 and M4 = S3 ⇥ I. There are therefore two quantised charges,

associated to D4 and D4’ branes

N4 =
volCY2

(2�)3

Z

I
d��h00

4 ,

N4′ =
volS3

(2�)3

Z

I
d�

✓
2h8 �

⇣uu0

2h4

⌘0◆
.

(5.9)

Given that

d �F(4) = �h00
4 d� ^ �volCY2 , (5.10)

the D4-branes provide localised sources, and are therefore flavour branes. They are ex-

tended on AdS2⇥S3. In turn, the D4’-branes are dissolved into fluxes and therefore do not

provide additional physical sources. They are colour branes and extend on (t, CY2).

Finally, there is D0 brane charge,

N0 =
1

(2�)7
volCY2volS3

Z

I
d�

✓
2�h4 �

⇣uu0

2h8

⌘0◆
. (5.11)

Given that d �F8 vanishes identically the D0-branes are colour branes. On top of this there

are F1-strings, associated to the electric components of H(3), in (5.1). These F1 extend

on AdS2.

The brane set-up associated to the quantised charges is summarised in table 5. Note

that this is exactly what is obtained reducing the M-brane configuration in the previous

section, with the addition of extra D8-branes, not present in M-theory. Similar brane

intersections have been discussed in [62], in connection with AdS2⇥ S3⇥S3 geometries

warped over a strip. In this reference the dual SCQM was interpreted in terms of D0-F1-

D4 brane defects inside the 5d Sp(N) fixed point theory dual to the AdS6 Brandhuber-

Oz background [63]. It is likely that a similar interpretation is at place for our brane

system [56].

6 Conclusions

In this paper we have presented and studied new families of solutions preserving four

Poincaré supersymmetries.
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The first is a new class of solutions to M-theory preserving N = (0, 4) (small) su-

persymmetry, of the type AdS3⇥ S3/Zk⇥ CY2 foliated over an interval. These solutions

are holographic duals to 2d (small) N = (0, 4) SCFTs supported by MA-strings in M5-

brane intersections. We identified the precise quivers in correspondence with the functions

defining the backgrounds. Through the computation of the central charge we have checked

the compliance with the holographic dictionary and the identification of MA-strings as

the defining degrees of freedom of our theories. We calculated the central charge of a two

dimensional N = (0, 4) QFT that flows to a conformal sigma model. To perform our calcu-

lation we used a brane intersection of M2 and M5 branes and the geometry they generate.

If we were to think of our supergravity solutions as near horizons of higher dimensional

black holes, our central charge would be identified with the entropy of these black holes.

Notice that these ideas are similar to those in [1]. In fact, the entropy of black holes was

calculated in [1] using a 2d N = (0, 4) sigma model. Even when the brane configuration

considered in [1] is di�erent from the one we discussed here, the ideology is resemblant.

Through analytic continuation, we have constructed a second family of new solutions

for which the modding is performed on the Hopf fibre of AdS3. These solutions are holo-

graphically dual to SCQM, which are the M(atrix) theory descriptions of M2-M5-M5’ brane

intersections, upon Sen-Seiberg limit. We have postponed a more detailed analysis of these

supersymmetric quantum mechanics to our forthcoming publication [56]. We have shown

that the subclasses of AdS3⇥S3/Zk and AdS3/Zk⇥ S3 M-theory solutions with u0 = 0,

contain self-dual strings. Therefore, they provide with explicit fully backreacted AdS3⇥ S3

OM-theory [45] backgrounds [44].

Upon reduction, we have constructed a third new class of solutions to Type IIA su-

pergravity with four Poincaré supercharges, of the type AdS2⇥ S3⇥ CY2 foliated over an

interval. These solutions should be holographic duals to the quantum mechanical systems

described above, in the regime of validity of the Type IIA description. We have extended

these solutions to the massive case noticing that they are related through analytic con-

tinuation to the AdS3⇥S2⇥ CY2 solutions to massive Type IIA supergravity constructed

in [18]. The dual quantum mechanics is under investigation in [56]. Three appendices

extend our solutions to the most general class of AdS3⇥S2 solutions to M-theory with (0,4)

supersymmetries and SU(2) structure, and to new AdS2⇥S3⇥M4 solutions to massive IIA

where M4 is a Kähler manifold. It would be interesting to understand the holographic

duals for the general backgrounds presented there.

There is an interesting connection between our work and holographic duals of defect

CFTs constructed in the literature. It was shown in [64] that a subclass of the solutions

in [18] allowed for an interpretation in terms of 2d D2-D4 defects in the 6d (1, 0) CFTs

living in D6-NS5-D8 brane intersections. Key to this realisation was the identification of a

mapping between these solutions and the AdS7 solutions to massive Type IIA supergravity

constructed in [65]. In the same vein, one would expect that a similar interpretation

should be possible for our AdS3 M-theory solutions, this time in terms of 2d M2-M5

defects in the 6d (1,0) CFTs living in M5’-branes probing A-type singularities. In this

direction, it would be interesting to show whether our solutions bear any relation to the

flows constructed in [66, 67], which are asymptotically locally AdS7 in the UV. Along
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closely related lines, AdS2⇥S3⇥ R flows to asymptotically locally AdS6 in the UV have

been constructed in [68, 69], and interpreted as 1d defects in the 5d Sp(N) fixed point

theory dual to the AdS6 Brandhuber-Oz solution [63]. We would expect that our AdS2⇥
S3 solutions to massive Type IIA bear a relation to these, thus allowing for an interpretation

as D0-F1-D4 brane defects within the Sp(N) fixed point theory living in D4’-D8 branes.

These issues are currently under investigation [43].
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A Review of the general AdS3 � S2 � M4 solutions in [18]

In this appendix we summarise the generic backgrounds found in [18]. These backgrounds

were divided in two classes: class I, for which the M4 is a Calabi-Yau 2-fold, and class

II, for which M4 is a general 4d Kähler manifold. The particular case in class I in which

the full solution respects the symmetries of the Calabi-Yau manifold, and therefore the

Calabi-Yau manifold needs to be compact, was discussed in section 2. This is the case that

concerned us in the main body of the paper. In these appendices we complete the analysis

by providing the most general solutions in M-theory with (0,4) supersymmetries and SU(2)

structure. In appendix B we present the uplift to M-theory of the most general solutions in

class I and of the solutions in class II. In appendix C we construct AdS2⇥S3⇥M4 solutions

to massive Type IIA supergravity through double analytical continuation of the class I and

class II solutions.

We start reviewing the most general class I backgrounds in [18].

Class I: M4 =CY2. The explicit form of the NS sector of the solutions referred to as

class I in [18] is given by,

ds2 =
uq
�h4h8

�
ds2

AdS3
+

�h4h8

4�h4h8 + (u0)2
ds2

S2

�
+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2 ,

e�� =
h

3/4
8

2�h1/4
4

p
u

q
4�h4h8 + (u0)2 ,

H(3) =
1

2
d

✓
� � +

uu0

4�h4h8 + (u0)2

◆
^ �volS2 +

1

h8
d� ^H2 .

(A.1)

Here � is the dilaton, H(3) the NS three-form and the metric is given in string frame. A

prime denotes a derivative with respect to �. The two-form H2 is defined on the CY2 as
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we specify below. The RR sector reads

F(0) = h0
8 , F(2) = �H2 �

1

2

⇣
h8 �

h0
8u

0u

4h8
�h4 + (u0)2

⌘
�volS2 ,

F(4) = �
✓

d

✓
u0u

2�h4

◆
+ 2h8d�

◆
^ �volAdS3 � �⇢�h4

�volCY2 �
h8

u
(��4d4

�h4) ^ d�

� u0u

2(4�h4h8 + (u0)2)
H2 ^ �volS2 ,

(A.2)

where ��4 is the Hodge dual on the CY2. Higher RR fluxes are related to these as F(6) =

��F(4), F(8) = �F(2), F(10) = ��F(0), where � is the ten-dimensional Hodge-dual operator.

Supersymmetry holds when

u00 = 0 , H2 + ��4H2 = 0 , (A.3)

which makes u a linear function of �. H2 is defined in terms of three functions g1,2,3 on the

CY2 and the vielbein on M4, �ei,

H2 = g1(�e1 ^ �e2 � �e3 ^ �e4) + g2(�e1 ^ �e3 + �e2 ^ �e4) + g3(�e1 ^ �e4 � �e2 ^ �e3). (A.4)

Hence, the Bianchi identities of the fluxes impose

h00
8 = 0 , dH2 = 0

h8

u
r2

CY2
�h4 + �2

⇢
�h4 +

2

h3
8

(g2
1 + g2

2 + g2
3) = 0.

(A.5)

In the particular case when H2 vanishes and �h4 has support on the � coordinate we find

that the supersymmetry and Bianchi identities are satisfied for u, h8, �h4 arbitrary linear

functions in �. We are then in the case reviewed in section 2 and lifted to eleven dimensions

in section 3.

Class II: M4 = Kähler. We now summarise the details of the class II backgrounds

in [18]. These are warped products of the form AdS3⇥S2⇥M4⇥I, where M4 is a family

of Kähler four-manifolds with metrics that depend on the interval coordinate �, and with

an integrable complex structure that is �-independent. These solutions have the following

NS sector

ds2 =
up

hw2 � v2

�
ds2

AdS3
+

hw2 � v2

4(hw2 � v2) + (u0)2
ds2

S2

�
+

p
hw2 � v2

u

�
u

hw
ds2

M4
+ d�2

�
,

H(3) =
1

2
d

✓
�� +

uu0

4(hw2 � v2) + (u0)2

◆
^ volS2 + d

⇣ v

wh
�J
⌘

,

e�� =
wh

1
2

p
4(hw2 � v2) + (u0)2

2
p

u(hw2 � v2)
1
4

. (A.6)
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The functions u, v and w depend on �, while h has support in � and M4. �J is a two-form

defined on the Kähler manifold.4 The RR fluxes are given by,

F(0) = v0,

F(2) = �w2

u
d� ^ ��4(d4h ^ �J)� �⇢(w �J) +

vv0

hw
�J � 1

2

✓
v � v0uu0

4(hw2 � v2) + (u0)2

◆
volS2 ,

F(4) =
1

2
volAdS3 ^

✓
d

✓
vuu0

hw2 � v2

◆
+ 4vd�

◆
+

v

2h

✓
vv0

hw2
� �⇢ log(v�1hw2)

◆
�J ^ �J

� vw

u
d� ^ ��4d log h +

1

2

✓
uu0

4(hw2 � v2) + (u0)2
F2 +

hw2 � v2

hw
�J
◆
^ volS2 . (A.7)

Here d4 = �+�, with �, � defined as the Dolbeault operators, expressed in terms of complex

coordinates on M4.

Supersymmetry and the Bianchi identities (away from localised sources) hold by the

following conditions,

u00 = 0, �⇢

�
�g 1

2

h

�
= 0, i�� log h = �R

and v00 = 0, 2i��h = �2
⇢(w

�J) .

(A.8)

The quantity �g is the determinant of the metric and �R the Ricci form on M4.

B New AdS3 � S2 � M4 solutions in M-theory

In this appendix we consider the uplift to eleven dimensions of the most general solutions

in class I and the solutions in class II reviewed in the previous appendix. Our backgrounds

provide the most general class of AdS3⇥S2 solutions in M-theory with (0,4) supersymme-

tries and SU(2) structure. Note that a more general class of solutions with (0,4) SUSY

can in principle be obtained taking an identity structure instead of the SU(2)-structure

considered here. We will focus separately on the class I and class II backgrounds. In both

cases, conditions must be imposed to allow the lift to eleven dimensions.

Lift of the class I backgrounds. We consider the class I geometries first. Imposing

that F(0) = 0 to allow the lift of the solutions described by equations (A.1)–(A.2), we find

the eleven dimensional configurations,

ds2
11 = �

�
� uq

�h4h8

ds2
AdS3

+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2

�
� +

h2
8

4�2

⇣
ds2

S2 + (D�̃)2
⌘

,

G(4) = �
✓

d

✓
uu0

2�h4

◆
+ 2h8d�

◆
^ �volAdS3 � �⇢�h4

�volCY2 �
uu0

2(�h4h8 + (u0)2)
H2 ^ �volS2

� h8

u
�4 d4

�h4 ^ d� +
h8

2

�
1

2
d

�
�� +

uu0

4�h4h8 + (u0)2

�
^ �volS2 +

1

h8
d� ^H2

�
^D�̃ ,

(B.1)

4The interested reader can find a detailed explanation in [18].
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where we have defined the following expressions,

H2 = �dA ,

D�̃ = d�̃ + Ã + � with d� = �volS2 ,

� =
h

1/2
8 (4�h4h8 + u02)1/3

22/3�h1/6
4 u1/3

,

(B.2)

with �̃ = 2
h8
� and Ã = 2

h8
A. In (B.2) we have assumed that dH2 = 0 holds globally,

allowing us to globally define H2 = �dA. Notice that the connection Ã + � makes the

fibre over the S2 and the CY2 non trivial. The uplift to eleven dimensions preserves the

N = (0, 4) supersymmetry of the Type IIA solutions, as well as their SU(2)-structure.

Considering a sub-class of solutions –with H2 = 0 and �h4 = �h4(�) –we obtain

AdS3⇥S3/Zk⇥CY2 solutions to M-theory with (0, 4) (small) supersymmetry, warped over

an interval. These were the solutions written in equations (3.1)–(3.2).

Lift of the class II backgrounds. To allow for a lift to M-theory, we impose that

F(0) = 0. Considering v0 = 0 and uplifting the solution described by equations (A.6)–(A.7)

we find,

ds2
11 = �

�
ds2

AdS3
+

hw2 � v2

hwu

✓
ds2

M4
+

hw

u
d�2

◆�
+

u2w2h

4(hw2 � v2)�2

�
ds2

S2 +
v2

w2h
(D�̃)2

�

G(4) =
1

2
volAdS3 ^

�
d

✓
vuu0

hw2 � v2

◆
+ 4v d�

�
� v

2h

�
�⇢ log(v�1hw2)

� �J ^ �J

� vw

u
d� ^ ��4d log h +

1

2

✓
uu0

4(hw2 � v2) + (u0)2
J2 +

hw2 � v2

hw
�J
◆
^ volS2

+
v

2

�
1

2
d

✓
�� +

uu0

4(hw2 � v2) + (u0)2

◆
^ volS2 + d

⇣ v

wh
�J
⌘�
^D�̃, (B.3)

where we have defined the following expressions,

D�̃ = d�̃ + J̃ + � with d� = �volS2 ,

J2 = dJ̃ = �w2

u
d� ^ ��4(d4h ^ �J)� �⇢(w �J),

� =

�
uw
p

h
p

4(hw2 � v2) + u02

2(hw2 � v2)

�2/3

.

(B.4)

Here �̃ = 2
v� and J̃ = 2

vJ . As before, the connection J̃ + � makes the fibre over the S2

and the M4 non trivial. In order to find this uplift we have assumed that dJ2 = 0 holds

globally, allowing us to globally define J2 = dJ̃ .

The uplift to eleven dimensions preserves the N = (0, 4) supersymmetry of the Type

IIA solutions, as well as their SU(2)-structure.

C New AdS2 � S3 � M4 solutions in massive Type IIA

Applying the set of transformations discussed around equation (4.2) to the previous M-

theory solutions gives rise to AdS2⇥S3⇥M4 solutions with 4 Poincaré supercharges and
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SU(2) structure. In these solutions the AdS2 is non-trivially fibrered. These solutions give

upon reduction to Type IIA the double analytical continuation of the class I and class

II solutions reviewed in appendix A. Thus, by acting with these rules directly on these

sets of solutions we can generalise the backgrounds to the massive case. We present these

backgrounds in this appendix. The AdS2⇥S3⇥M4 M-theory solutions arise upon uplift

when F(0) = 0.

Class I backgrounds. A sub-class of these solutions was presented in section 5. Here

we generalise this class to the case in which there is a dependence of the fluxes on the CY2.

Performing the double analytical continuation

u! �iu , �h4 ! i�h4 , h8 ! ih8 , �! i� , (C.1)

together with

AdS3 ! �S3 , S2 ! �AdS2 , (C.2)

in the most general solutions in class I, given by equations (A.1), (A.2), we arrive at

ds2 =
uq
�h4h8

� �h4h8

4�h4h8 � (u0)2
ds2

AdS2
+ ds2

S3

�
+

�
�h4

h8
ds2

CY2
+

q
�h4h8

u
d�2 ,

e�� =
h

3/4
8

2�h1/4
4

p
u

q
4�h4h8 � (u0)2 ,

H(3) = �1

2
d

✓
� +

uu0

4�h4h8 � (u0)2

◆
^ �volAdS2 +

1

h8
d� ^H2 .

(C.3)

The RR sector reads

F(0) = h0
8 , F(2) = �H2 �

1

2

�
h8 +

h0
8u

0u

4h8
�h4 � (u0)2

�
�volAdS2 ,

F(4) =

✓
�d

✓
u0u

2�h4

◆
+ 2h8d�

◆
^ �volS3 � h8

u
��4d4h4 ^ d�� �⇢�h4

�volCY2

+
u0u

2(4�h4h8 � (u0)2)
H2 ^ �volAdS2 .

(C.4)

These backgrounds generalise the solutions in section 5 to the case in which H2 6= 0 and

rCY2
�h4 6= 0.

Supersymmetry holds when

u00 = 0 , H2 + ��4H2 = 0 . (C.5)

H2 is defined in terms of three functions g1,2,3 on the CY2 and the vielbein on M4, �ei, as

in eq. (A.4). The Bianchi identities of the fluxes impose

h00
8 = 0 , dH2 = 0

h8

u
r2

CY2
�h4 + �2

⇢
�h4 +

2

h3
8

(g2
1 + g2

2 + g2
3) = 0.

(C.6)

Note that it must be that 4�h4h8 � (u0)2 > 0, in order for the metric to be of the correct

signature and the dilaton to be real.
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Class II backgrounds. In this case we consider the following analytical continuation

u! �iu , v ! iv , w ! iw , �! i� (C.7)

together with

AdS3 ! �S3 , S2 ! �AdS2 , (C.8)

of the class II solutions reviewed in appendix A. The NS sector of the background we

get reads

ds2 =
up

hw2 � v2

�
hw2 � v2

4(hw2 � v2)� (u0)2
ds2

AdS2
+ ds2

S3

�
+

p
hw2 � v2

u

� u

hw
ds2

M4
+ d�2

�
,

e�� =
wh1/2

p
4(hw2 � v2)� (u0)2

2u1/2(hw2 � v2)1/4
, H(3) =

1

2
d

✓
��� uu0

4(hw2 � v2)� (u0)2

◆
^ �volAdS2 .

(C.9)

The RR sector is given by

F(0) = v0 ,

F(2) =�w2

u
d�^��4(d4h^ �J)��⇢w �J+

vv0

hw
�J� 1

2

✓
v+

v0uu0

4(hw2�v2)�(u0)2

◆
^�volAdS2 ,

F(4) =�1

2
�volS3^

✓
d

✓
vuu0

hw2�v2

◆
�4vd�

◆
+

v

2h

✓
vv0

hw2
��⇢ log(v�1hw2)

◆
�J^ �J

� vw

u
d�^��4dlogh+

1

2

✓
� uu0

4(hw2�v2)�(u0)2
F(2)+

hw2�v2

hw
�J
◆
^�volAdS2 .

(C.10)

Here d4 = �+�, with �, � defined as the Dolbeault operators, expressed in terms of complex

coordinates on M4. Supersymmetry and the Bianchi identities hold by the conditions,

u00 = 0, �⇢

�
�g 1

2

h

�
= 0, i�� log h = �R

and v00 = 0, 2i��h = �2
⇢(w �J) .

(C.11)

The backgrounds presented in this appendix provide the most general class of

AdS2 ⇥ S3 solutions to massive Type IIA supergravity with 4 Poincaré supercharges and

SU(2) structure.
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1 Introduction

Recent progress in Holography deepened our understanding of lower dimensional realisa-
tions of the AdS/CFT correspondence [1]. These scenarios are particularly relevant for the
development of the black hole microstate counting programme. Indeed, 4d and 5d extremal
black holes exhibit AdS2 and AdS3 geometries close to their horizons.

E�orts in classifying AdS2 and AdS3 geometries in M-theory and Type II supergravity
have revealed that a plethora of these solutions exists, exhibiting di�erent geometrical
structures and preserving di�erent amounts of supersymmetries, see for example [2–39].
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Indeed, as the dimensionality of the internal space increases, the richer the structure of all
possible geometries and topologies thereof becomes. Exhausting all possibilities through
classifications becomes then increasingly complex.

Major recent progress has been achieved in the classification of AdS3 geometries with
N = (0, 4) supersymmetries and SU(2) structure [15, 28]. Remarkably, the 2d CFTs dual
to subsets of these solutions have been identified [40–42] (see also [43–45]), thus providing
for explicit AdS3/CFT2 pairs where the microscopical description of 5d black holes can
be addressed. Generalising recent developments in five dimensional BPS black holes (see
for instance [46–48]) to these new set-ups constitutes a promising new avenue that is still
awaiting for further development.

AdS2 geometries arise as near horizon geometries of 4d extremal black holes, and are
thus ubiquitous in their microscopical studies. The precise realisation of the AdS2/CFT1
holographic correspondence presents however important technical and conceptual prob-
lems [49–52]. These mainly originate from the fact that the boundary of AdS2 is non-
connected [53]. As a result this correspondence is much less understood than its higher
dimensional counterparts.

A promising approach to the study of the AdS2/CFT1 correspondence is to exploit
its connection with the better understood AdS3/CFT2 correspondence. This approach has
been explored recently in [38]. At the geometrical level the AdS3 and AdS2 spaces are
related by Abelian T-duality. At the level of the dual CFTs the Superconformal Quantum
Mechanics (SCQM) dual to the AdS2 solutions arise from the 2d CFTs dual to the AdS3
backgrounds upon dimensional reduction. In this manner new families of AdS2 solutions to
Type IIB supergravity with N = 4 supercharges and their dual SCQMs were constructed
in [38], using as seed solutions the N = (0, 4) AdS3 solutions to massive Type IIA super-
gravity recently found in [35]. These constructions provide explicit string theory set-ups
in which one of the chiral sectors of the 2d CFT is decoupled in the SCQM, as explained
in [54–56]. Remarkably, the corresponding quivers inherit, by construction, many of the
properties of the parent 2d quiver CFTs, like the matter content that guarantees gauge
anomaly cancellation in 2d.

Given that SCQMs do not have these constraints, one would expect that more general
quivers than those arising upon reduction could be constructed. With this goal in mind we
will follow in this paper an alternative road to the study of AdS2/CFT1 pairs. Our starting
point will be the new class of AdS2 solutions with N = 4 supercharges recently constructed
in [35], using the technique of double analytical continuation. Therefore, a priori one does
not expect any relation between these solutions and 2d CFTs.1

The technique of double analytical continuation has been extensively used in the con-
struction of AdS2 solutions. Indeed, the only requirement to produce an AdS2 solution
is that an S2 exists in the internal space of an already known supergravity background,
that can be analytically continued to AdS2. Fortunately, many AdSp supergravity solu-
tions contain S2’s in their transverse spaces. The AdSp subspace itself gives rise upon the

1Besides the fact that, as we will see, the 1d dual CFTs will be formulated in terms of (0,4) 2d mat-
ter fields.
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analytical continuation to an Sp that is part of the internal space of the new solutions,
and realises some of its isometries. Some examples of AdS2 solutions constructed in this
way are the AdS2 � S6 backgrounds constructed in [19, 25] from the class of AdS6 � S2

solutions to Type IIB in [57–60], the AdS2 �S7 solutions to massive Type IIA constructed
in [21] from the AdS7 � S2 solutions of [61], or the AdS2 � S4 � S2 solutions constructed
in [32], from the AdS4 �S2 �S2 backgrounds in [62, 63]. These solutions preserve di�erent
amounts of supersymmetries, and allow, in some cases, for interesting interpretations as
line defect CFTs [24, 36, 37] or deconstructed higher dimensional CFTs [32].

In this paper we focus our study on the AdS2 � S3 � CY2 � I� solutions to massive
Type IIA supergravity recently constructed in [35]. These solutions can be thought of as
the dual description of the quantum mechanics of a point like defect in a five-dimensional
CFT. The contents of this work are distributed as follows. In section 2 we review the
main properties of these solutions, we compute the quantised charges and propose the
underlying brane set-up. This is a 1/8 BPS D0-D4-D4’-D8-F1 brane intersection, previ-
ously studied in [24, 35, 37]. We show that the D0, D4 and F1 branes are most naturally
counted with their (regularised) electric charges, rather than their magnetic ones. This
is in agreement with their interpretation in terms of instantons in the worldvolumes of
the D4’ and D8 branes, interacting with Wilson lines. In section 3 we set to discuss the
superconformal mechanics dual to these solutions. We start reviewing the CFT dual to
the D0-D4-F1 system, described in the near horizon limit by one of our solutions. This
example is used to introduce the low-energy fields that will enter in the quantum mechanics
dual to more general solutions. We construct explicit quiver quantum mechanics that we
interpret as describing D0 and D4 brane instantons in the worldvolumes of D4’ and D8
branes, interacting with Wilson lines in the antisymmetric representations of their gauge
groups. We use the notion of central charge for superconformal quantum mechanics put
forward in [38], defined from the number of vacuum states of the theory, and compare it
to the holographic calculation. In section 4 we further elaborate on the relation between
the holographic central charge and the product of electric and magnetic RR charges of
AdS2 solutions pointed out in [38]. Furthermore, we propose an extremising functional
constructed from the RR Maxwell fluxes from which we derive the holographic central
charge through an extremisation principle. Section 5 contains our conclusions and future
directions. Appendix A contains a summary of the AdS3 � S2 � CY2 solutions and their
2d dual CFTs studied in [28, 40–42]. These motivate the families of backgrounds for which
we construct dual SCQMs in this paper. Appendix B contains a detailed derivation of the
low-energy field content of the D0-D4-D4’-D8 brane web. Appendix C studies di�erent
probe branes of interest in our backgrounds. Finally, appendices D and E contain specific
geometrical properties of our solutions.

2 The AdS2 � S3� CY2 solutions to massive IIA

In this section we present and further discuss the AdS2 �S3� CY2 solutions to massive IIA
supergravity constructed in [35]. These solutions were obtained through a double analytic
continuation of the AdS3 � S2� CY2 backgrounds to massive IIA constructed in [28], and
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summarised in appendix A (see eqs. (A.1), (A.3a) and (A.3b)). We give a thorough study
of the underlying geometry that will allow us to propose concrete superconformal quantum
mechanics dual to the solutions.

The class of solutions referred as class I in [35] contain a transverse space M4 =CY2.2
They are given by

ds2 = u�
�h4h8

� �h4h8

4�h4h8 � (u�)2
ds2AdS2 + ds2S3

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2 ,

e�� = h
3/4
8

2�h1/4
4

�
u

�
4�h4h8 � (u�)2 ,

H(3) = �1
2d

�
� + uu�

4�h4h8 � (u�)2

�
� �volAdS2 +

1
h2

8
d� � H2 .

(2.1)

Here Φ is the dilaton, H(3) = dB(2) is the NS 3-form and the metric is written in string
frame. The warping function �h4 has support on (�,CY2). On the other hand, u and h8
only depend of �. We denote u� = ��u and similarly for h�

8. Note that it must be that
4�h4h8 � (u�)2 > 0, in order for the metric to be of the correct signature and the dilaton to
be real.

The RR sector reads

F(0) =h�
8 ,

F(2) = � 1
h8
H2 � 1

2

�
h8 +

h�
8u

�u

4h8�h4 � (u�)2

�
�volAdS2 ,

F(4) =
�

� d
�
u�u

2�h4

�
+ 2h8d�

�
� �volS3 � h8

u
��4d4h4 � d� � ��

�h4 �volCY2

+ u�u

2h8(4�h4h8 � (u�)2)
H2 � �volAdS2 ,

(2.2)

with the higher dimensional fluxes related to these as F(6)=��10F(4), F(8)=�10F(2), F(10) =
� �10 F(0). Supersymmetry holds whenever

u�� = 0, H2 + ��4H2 = 0, (2.3)

where ��4 is the Hodge dual on CY2. In what follows we will restrict ourselves to the set
of solutions for which H2 = 0 and �h4 = �h4(�). In that case the background is a solution
of the massive IIA equations of motion if the functions �h4, h8 satisfy the conditions (away
from localised sources),

�h��
4(�) = 0, h��

8(�) = 0, (2.4)

which make them linear functions of �.

2A second class of solutions, referred as class II, contain an M4 Kähler manifold.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D0 �
D4 � � � � �
D4’ � � � � �
D8 � � � � � � � � �
F1 � �

Table 1. Brane set-up, where � marks the spacetime directions spanned by the various branes. x0

corresponds to the time direction of the ten dimensional spacetime, x1, . . . , x4 are the coordinates
spanned by the CY2, x5 is the direction where the F1-strings are stretched, and x6, x7, x8, x9 are
the coordinates where the SO(4) symmetry is realised.

2.1 Brane set-up

The brane set-up associated to the previous solutions was identified in [37] (see also [24]), for
the case of u = constant.3 It consists on a D0-F1-D4-D4’-D8 brane intersection, depicted
in table 1, preserving four supersymmetries. This is compatible with the quantised charges
obtained from the Page fluxes, as we show below.

The Page fluxes associated to the background given in (2.1), (2.2), �F = F �e�B(2) , are
given by4,

�F(0) =h�
8 ,

�F(2) = � 1
2

�
h8 � (� � 2�k)h�

8
�

�volAdS2 ,

�F(4) = � �h�
4

�volCY2 �
�
2h8 +

u�(u�h�
4 � �h4u�)
2�h2

4

�
�volS3 � d� ,

�F(6) =
1
2

�
�h4 � (� � 2�k)�h�

4
�

�volAdS2 � �volCY2

�
�
(� � 2�k)h8 � (u � (� � 2�k)u�)(�h4u� � u�h�

4)
4�h2

4

�
�volAdS2 � �volS3 � d� ,

�F(8) =
�
2�h4 +

u�(uh�
8 � h8u�)
2h2

8

�
�volCY2 � �volS3 � d� ,

�F(10) =
�
(� � 2�k)�h4 � (u � (� � 2�k)u�)(uh�

8 � h8u�)
4h2

8

�
�volAdS2 � �volS3 � �volCY2 � d� .

(2.5)

The F1-branes are electrically charged with respect to the NS-NS 3-form. We compute
their charges according to

Qe
F1 = 1

(2�)2
�

AdS2�I�
H(3) , (2.6)

3The u non-constant case was recently analysed in [64] for the AdS3 � S2 � CY2 backgrounds from
which our solutions are constructed by analytical continuation, in the massless case. The brane intersection
involves in this case dyonic branes placed at conical singularities.

4These fluxes take into account the e�ect of the large gauge transformations B2 � B2 + �k�volAdS2 , for
k = 0, 1, . . . , P . These transformations are performed every time a �-interval [2�k, 2�(k + 1)] is crossed, as
explained below.
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in units of �� = gs = 1. We regularise the volume of the AdS2 space such that5

VolAdS2 = 4� . (2.7)

This gives for H(3) as in (2.1) (and H2 = 0),

Qe
F1 = 1

2�

�
� � uu�

4h4h8 � u�2

����
�f

�i
, (2.8)

where this must be computed at both ends of the I�-interval. From now and for the rest
of the paper we will focus our analysis on the u = constant case. In such case

Qe
F1 = �f � �i

2�
. (2.9)

Therefore, there are k F1-strings for � � [0, 2�k], with one F1-string being created as we
move in �-intervals of length 2�. Enforcing that with our regularisation prescription (2.7)
B2 lies in the fundamental region,

1
(2�)2 |

�

AdS2
B(2)| � [0, 1] , (2.10)

then implies that a large gauge transformation of parameter k needs to be performed for
� � [2�k, 2�(k + 1)], such that

B(2) = �1
2(� � 2k�)�volAdS2 . (2.11)

This a�ects the RR Page fluxes, as

�F(p) � �F(p) � k� �F(p�2) � �volAdS2 , (2.12)

which has already been taken into account in the expressions in (2.5).
As we will see, the D0 and D4 branes will have an interpretation in the dual field

theory as instantons. Therefore, we will characterise them by their electric charges. We
use that the electric charge of a Dp-brane is given by

Qe
Dp = 1

(2�)p+1

�

AdS2��p

�F(p+2), (2.13)

in units of �� = gs = 1. Substituting the electric components of the �F(2) and �F(6) fluxes
in (2.5) and regularising the volume of AdS2 as indicated by equation (2.7), we find for the
electric charges of the D0 and D4 branes,

Qe
D0 = h8 � (� � 2�k)h�

8

Qe
D4 = h4 � (� � 2�k)h�

4 , (2.14)
5This regularisation prescription is based on the analytical continuation that relates the AdS2 space with

an S2.
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where in the last equation we have used that �h4 � Υh4 and ΥVolCY2 = 16�4. Both the
D0 and the D4 branes play the role of colour branes in the brane set-up, as implied by the
fact that both d �F(8) and the second component of d �F(4) vanish identically.

The D4’ and D8 branes will find an interpretation in the dual field theory as branes
where the D0 and D4 brane instantons live. We will characterise them by their magnetic
charges. As usual these are computed from

Qm
Dp = 1

(2�)7�p

�

�8�p

�F(8�p) , (2.15)

in units of �� = gs = 1. The second component of �F(4) in (2.5) is the Hodge-dual of the
�F(6) used in (2.14) to compute the electric charge of the D4-branes. In turn, the first
component gives rise to a magnetic charge associated to a second type of D4’-branes. This
charge reads

Qm
D4� = VolCY2

(2�)3
�h�

4 = 2�h�
4 . (2.16)

Given that
d �F(4) = �h��

4 d� � �volCY2 , (2.17)
these branes provide sources localised in the � direction. They are thus flavour branes.
Being localised in � and transverse to the CY2, they are naturally seen to wrap AdS2 �S3.
In turn, given that d �F(0) �= 0 if h��

8 �= 0, according to

d �F(0) = h��
8d� , (2.18)

there are also D8 brane sources localised in the � direction, also behaving as flavour branes.
They are wrapped on AdS2 � S3 � CY2. Their magnetic charge is given by

Qm
D8 = 2�h�

8. (2.19)

2.2 The local solutions

For u = constant a generic background in our class is defined by the functions �h4, h8. We
will be interested in solutions that in the � � [2�k, 2�(k + 1)] interval are of the form

�h(k)
4 = Υ

�
�k +

�k
2�

(� � 2�k)
�
, h

(k)
8 =

�
µk +

�k
2�

(� � 2�k)
�
, (2.20)

with the space starting and ending at � = 0 and � = 2�(P + 1), respectively, where we
take both �h4 and h8 to vanish. We thus have that

�h4(�) =Υh4(�)

=Υ

�
����
����

�0
2� � 0 � � � 2�

�k+ �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . , P � 1

�P � �P
2� (� � 2�P ) 2�P � � � 2�(P + 1),

(2.21)

h8(�) =

�
����
����

�0
2� � 0 � � � 2�

µk + �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . ., P � 1

µP � µP
2� (� � 2�P ) 2�P � � � 2�(P + 1).

(2.22)
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By imposing continuity the �k, µk integration constants are determined from �k, �k as (see
appendix B),

�k =
k�1�

j=0
�j , µk =

k�1�

j=0
�j . (2.23)

These profiles for the �h4 and h8 functions were the ones taken in [40–42] for the construction
of the 2d CFTs dual to the AdS3�S2�CY2 solutions in [28]. These results are summarised
in appendix A. The supergravity backgrounds can be trusted when �k, �k, P are large.
Taking �k, �k to be large controls the divergence of the Ricci scalar at the points where the
sources are localised. In turn, these singularities are spread out for P large.

The behaviour of the solutions defined by (2.21) and (2.22) (and u = constant) at both
ends of the �-interval is that of a superposition of D4 branes smeared on the CY2 and D8
branes. Note that the same behaviour is obtained from a superposition of O4 and O8 ori-
entifold fixed planes, with the O4 smeared on the CY2. The smearing of these objects is an
e�ect of the solutions being only �-dependent. A more elaborated configuration, for which
�h4 depends both on � and the coordinates of the CY2, would have these object localised.
We may think as our solutions as the zero mode in a putative Fourier decomposition on the
CY2. We will find an interesting interpretation for this behaviour in the following sections.
Indeed, for very small values of �, the metric and dilaton read

ds2 � ��1
�
ds2AdS2 + 4ds2S3

�
+ ds2CY2 + �d�2 , e�2� � �3 , (2.24)

while for � � 2�(P + 1) we have

ds2 � x�1
�
ds2AdS2 + 4ds2S3

�
+ ds2CY2 + xdx2 , e�2� � x3 , (2.25)

with x = 2�(P + 1) � �. We recognise these behaviours as those of a superposition of
(smeared) D4 and D8 branes and/or (smeared) O4 and O8 orientifold fixed planes.

Using the electric and magnetic charges discussed in the previous subsection to count,
respectively, the colour and flavour brane charges, we find for � in the [2�k, 2�(k + 1)]
interval,

Q
e (k)
D0 = µk , Q

e (k)
D4 = �k (2.26)

Q
m (k)
D4� = �k , Q

m (k)
D8 = �k . (2.27)

These equations show that the constants �k, µk, �k, �k must be integer numbers. Moreover,
they show that the D0 and D4 brane charges in each [2�k, 2�(k+1)] interval are equal to the
total D8 and D4’ brane charges in the [0, 2�k] previous intervals. Namely, �k = �k�1

j=0 �j ,
µk = �k�1

j=0 �j . We will find an interesting interpretation for this result when we discuss
the dual field theory in section 3.2.

2.3 Holographic central charge

We compute the holographic central charge following the prescription in [38]. In this section
we consider general solutions with u a linear function of �. We recall that as discussed in
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that reference the holographic central charge for an AdS2 solution is to be interpreted as
the number of vacuum states of the dual SCQM. The prescription in [38] reads,

cholo =
3Vint
4�GN

, (2.28)

where GN = 8�6 and Vint is the volume of the internal space, which must be corrected by
a dilaton term, following [65, 66]. For the backgrounds described by (2.1) and (2.2), Vint
reads

Vint =
�

d8x
�
e�4�detg8,ind =

VolCY2VolS3

4

� 2�(P+1)

0
d�

�
4�h4h8 � u�2

�
, (2.29)

from where, using that ΥVolCY2 = 16�4, we find

cholo =
3
4�

� 2�(P+1)

0
d�

�
4h4h8 � u�2

�
. (2.30)

We will refer to this expression in the next sections for our particular solutions with u =
constant.

3 The dual superconformal quantum mechanics

In this section we discuss the N = 4 super-conformal quantum mechanical theories that
we propose as duals to the AdS2 solutions with the defining functions given by equa-
tions (2.21), (2.22) (and u = constant). We provide a UV N = 4 quantum mechanics, that
conjecturally flows to a super conformal quantum mechanics dual to these backgrounds.

We start analysing a well-known particular solution in this class. This is the Abelian
T-dual of the AdS3 � S3� CY2 solution to Type IIB, along the S1 fibre direction of the
AdS3 space. Thus, the dual SCQM to this solution arises as the IR fixed point of the
quantum mechanical quiver that is obtained dimensionally reducing the 2d QFT living in
the D1-D5 system. Though many of the subtleties in our generic case do not appear in this
simple setting, it is useful to study it first. In fact, this example illustrates the field content
that will appear in our quivers and sets up the discussion for the extension to more general
ones. Appendix B contains a detailed account of the low-energy field content emerging
from the brane web associated to our solutions.

3.1 Warm up: quantum mechanics of the D0-D4 system

In order to motivate the construction of the quantum mechanics dual to our AdS2 back-
grounds we focus first on the Abelian T-dual of the D1-D5 system, whose near horizon ge-
ometry is the AdS3�S3� CY2 solution of Type IIB. In this case the T-duality is performed
on the S1 Hopf fibre contained in AdS3, leaving an AdS2 solution in our class where the
�-direction lives in the T-dual circle. In this case u, h4 and h8 are the constant functions,

u = 16L4M2 , h4 = 4L2M4 , h8 = 4L2 , (3.1)

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
5

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D0 �
D4 � � � � �
F1 � �

Table 2. Brane set-up associated to the D0-D4-F1 brane system T-dual to the D1-D5 system.

and the solution reads

ds2 = L2
�
ds2AdS2 + 4ds2S3

�
+M2ds2CY2 +

1
4L2 d�2 (3.2)

e�� = 2L (3.3)

H(3) = �1
2d� � �volAdS2 (3.4)

F(4) = �8L2 �volS3 � d� (3.5)

F(8) = 8L2M4 �volS3 � �volCY2 � d� , (3.6)

with � � [0, 2�]. As in many other examples where T-duality is performed along a Hopf-
fibre direction, the T-dual background preserves half of the supersymmetries of the original
solution. In our case the SO(4)R symmetry of the AdS3 � S3� CY2 solution is broken to
SU(2)R, the other SU(2) becoming a global symmetry. Together with the SL(2,R) isometry
group of AdS2, SL(2,R)�SU(2) span the bosonic subgroup of SU(1, 1|2). This is one of the
two possible superconformal groups with 4 supercharges in one dimension, the other being
D(2, 1;�), � �= �1, 0, for which the R-symmetry is two SU(2)’s, and thus corresponds to
large superconformal symmetry.

The D1-D5 system gives rise upon T-duality to D0-D4 branes plus an extra F1-brane.
The corresponding 1/4-BPS brane set-up is depicted in table 2. The numbers of D0 and D4
branes are computed using equations (2.14). We obtain that Qe

D0 = h8, Qe
D4 = h4. There is

also one F1-string that extends in the �-direction. If before the T-duality the AdS3 subspace
is orbifolded by ZN , which is equivalent to introducing N units of momentum in the D1-D5
system, breaking the supersymmetries to (0,4), then N F1-strings are generated after the
T-duality. These strings stretch in � between 2�k and 2�(k + 1), with k = 0, . . . , N � 1.
The central charge of the D1-D5-wave system [67],

c = 6QwQD1QD5 (3.7)

is reproduced after the T-duality as

c = 6QF1QD0QD4 . (3.8)

As a consistency check for expression (2.30) we can show that it reproduces this field
theory result.

We next discuss in some detail the quiver depicted in figure 1. This quiver is the
dimensional reduction of the 2d (4,4) quiver CFT that lives in the D1-D5 system. The
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QD4

QD0

Figure 1. Quiver quantum mechanics associated to the D0-D4-F1 brane system. The solid black
lines represent (4,4) adjoint hypermultiplets, the grey line a (0,4) hypermultiplet and the dashed
lines two (0, 2) Fermi multiplets. Circles represent N = (4, 4) vector multiplets.

usage of 2d (0,4) notation to describe 1d super quantum mechanics is widespread in the
literature. The reader is referred to [68, 69] for a detailed presentation of this description.
In our example this is further motivated by its explicit relation to the 2d (4,4) CFT living
in the D1-D5 system. The detailed field content of the quiver depicted in figure 1 is as
follows (see appendix B):

• Circles represent (4,4) vector multiplets. They are associated to gauge nodes. They
come from open strings with both ends on the D0 or the D4 branes.

• Black lines connecting one gauge node to itself represent (4,4) hypermultiplets in the
adjoint representation of the gauge group. They also originate from open strings with
both ends on the D0 or the D4 branes.

• The grey line connecting the two gauge nodes represents a (0,4) bifundamental hy-
permultiplet.

• The two dashed lines connecting the two gauge nodes represent (0,2) bifundamental
Fermi multiplets. These combine into a (0,4) Fermi multiplet. Together with the (0,4)
bifundamental hypermultiplet they form a (4,4) hypermultiplet in the bifundamental
representation of the two gauge groups. This originates from open strings stretched
between the D0 and the D4 branes. The resulting quiver is thus (4,4) supersymmetric.

Having introduced our notation we now set out to describe the more general quiver
quantum mechanics dual to the solutions defined by equations (2.21), (2.22). We will make
use of the low-energy field content detailed in appendix B.

3.2 ADHM quantum mechanics with Wilson loops

The previous D0-D4-F1 brane system can be extended to include D4’ and D8 branes while
keeping the same number of supersymmetries, giving rise to the brane set-up depicted
in table 1. We show in this and the next subsection that this brane set-up suggests an
interpretation in terms of D0 and D4-brane self-dual instantons in the 5d N = 1 theory
living in the D4’-D8 branes, with extra BPS Wilson loops.
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m1

m2

mM

D5m1
D5m2 D5mM

Figure 2. Array of M D5-branes with (m1,m2, . . .mM ) F1-strings stretched between them and
the N D3-branes. Note that even if the branes are separated for illustration purposes they are
actually coincident.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 � � � �
D5 � � � � � �
F1 � �

Table 3. Brane set-up associated to the D3-D5-F1 brane configuration that describes Wilson loops
in the antisymmetric representation of U(N) in 4d N = 4 SYM.

We start recalling the brane realisation of Wilson loops in arbitrary U(N) representa-
tions. This was worked out in [70–72] for 4d N = 4 SYM. In [70, 71] it was shown that a
half-BPS Wilson loop in a U(N) antisymmetric representation is described by an array of
M D5-branes with fundamental string charges dissolved in their worldvolumes. This is the
realisation in the near horizon limit of a configuration of M stacks of D5-branes separated
by a distance L from the N D3-branes, with (m1,m2, . . .mM ) F1-strings stretched between
the stacks, as depicted in figure 2, in the limit L � �. The brane set-up is depicted in
table 3. In turn, in [71, 72] it was shown that a half-BPS Wilson loop in a symmetric
representation of U(N) is described by an array of P D3-branes with fundamental string
charges dissolved in their worldvolumes. This is the realisation in the near horizon limit of
a configuration of P D3-branes, separated by a distance L from a stack of N coincident D3-
branes, with (n1, n2, . . . nP ) F1-strings stretched between the stacks, in the limit L � �.
The F1-string charges dissolved in the di�erent D5-branes (D3-branes) of the array mj ,
j = 1, . . . ,M (ni, i = 1, . . . , P ), then realise a Wilson loop operator in the antisymmetric
(symmetric) U(N) representation labeled by the Young tableau depicted in figure 3. This
generalises the description of a Wilson loop in the fundamental representation in [73, 74]
to all other representations.

Let us now see how this is realised in our brane system. We start by considering the
D4-D4’-F1 brane subsystem in table 1. In this brane set-up the D4-D4’-F1 branes are
distributed exactly as the D3-D5-F1 brane configuration that describes Wilson loops in
antisymmetric representations in 4d N = 4 SYM, depicted in table 3. In other words,
the strings extending between the D4’ and the D4 branes have as their lowest energy
excitation a fermionic field. Integrating out this massive field leads to a Wilson loop
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m1 m2 mM

nP

n2

n1

Figure 3. Young tableau labelling the irreducible representations of U(N).

QD4′ F1

D4′

QD4 D4

X6,7,8,9

X5

X1,2,3,4

Figure 4. Wilson loop in the QD4� -th antisymmetric representation of U(QD4).

in the antisymmetric representation. Indeed, a BPS Wilson line can be introduced into
the low-energy 5d SYM theory living on the D4-branes by probing the D4-branes with
fundamental strings [73, 74]. These can in turn be taken to originate on additional D4’-
branes, orthogonal to the D4-branes. This can be described through the coupling

SD4 = T4

�
�F(4) � At (3.9)

in the worldvolume e�ective action of the D4-branes. If the D4-branes are wrapped on the
CY2, as in our brane set-up, the D4’-branes must be orthogonal to them and must carry a
magnetic charge

QD4� = 1
(2�)3

�

CY2

�F(4) . (3.10)

This charge is then equal to the number of F1-strings dissolved in the worldvolume of the
D4-branes. For QD4� D4’-branes this configuration, depicted in figure 4, describes then
a Wilson loop in the QD4�-th antisymmetric representation of U(QD4), where QD4 is the
number of D4-branes. BPS Wilson loops in arbitrary representations of U(QD4) can then
be obtained adding arrays of D4’-branes with fundamental string charges dissolved in their
worldvolumes, as in figure 2.

Let us consider now the D0-D8-F1 brane subsystem in table 1. In this brane set-
up the D0-D8-F1 branes are again distributed exactly as the D3-D5-F1 and D4-D4’-F1
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brane configurations described above. In this case a BPS Wilson line can be introduced
into the low energy quantum mechanics living on the D0-branes by probing the D0-branes
with fundamental strings, originating on D8-branes [75]. As discussed above, the fermionic
string stretched between the D8 and the D0 branes implies that the Wilson loop will be in
the antisymmetric representation. This is indeed what is inferred from the coupling

SD0 = T0

�
F(0) � At (3.11)

in the worldvolume e�ective action of the D0-branes. D8-branes with charge

QD8 = 2�F(0) (3.12)

induce QD8 F1-strings dissolved in the worldline of the D0-branes. This describes then a
Wilson loop in the QD8’th antisymmetric representation of U(QD0), for QD0 D0-branes.
As for the D4-D4’-F1 subsystem described above, BPS Wilson loops in arbitrary repre-
sentations of U(QD0) can then be obtained adding arrays of D8-branes with fundamental
string charges dissolved in their worldvolumes, as depicted in figure 2.

Therefore, the complete D0-D4-D4’-D8-F1 brane system depicted in table 1 can be
interpreted as describing Wilson loops in the QD4� � QD8 antisymmetric representation of
U(QD4) � U(QD0).

The complete brane system has, however, a richer dynamics, as one must also consider
the interactions between the D4-D4’-F1 and D0-D8-F1 subsystems. Indeed, the D0 and D4
branes can be seen as instantons in the worldvolumes of the D4’ and D8 branes, respectively.
This is inferred from the couplings [76]

SD4� = T4

�
Tr[C(1) � F � F ] , SD8 = T8

�
Tr[C(5) � F � F ] , (3.13)

in the D4’ and D8 branes worldvolume e�ective actions. These show that a D0-brane can
be absorbed by a D4’-brane and converted into an instanton, while a D4-brane wrapped on
the CY2 can be absorbed by a D8-brane and converted as well into an instanton. The one
dimensional N = 4 gauged quantum mechanics living on the complete brane system would
describe then the interactions between the two types of instantons and the two types
of Wilson lines previously described. This generalises the ADHM quantum mechanics
discussed in [69, 77].

Indeed, in the previous references gauged quantum mechanics describing the interac-
tions between D0-brane instantons and Wilson lines in the 5d N = 2 SYM theory living
in D4-branes were constructed. In our brane set-up we have extra D8-branes. These allow
for extra D4-brane instantons wrapped on the CY2. Moreover, the D8-branes introduce
additional F1-strings ending on the D0-branes. Given this, we propose that the gauged
quantum mechanics living on the complete D0-D4-D4’-D8-F1 brane set-up describes the
interactions between instantons and Wilson lines in the 5d N = 1 SYM theory living in
D4’-D8 branes.

D4-D8 brane set-ups must include O8 orientifold fixed planes in order to flow to 5d
fixed point theories in the UV [78, 79]. We have indeed seen in section 2.1 that the

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
5

α1 D4 α2 D4 αP D4

ν0 D8

β0 D4
′

ν1 D8

β1 D4
′

νP−1 D8

βP−1 D4
′

µ1 D0 µ2 D0 µP D0

ρ

Figure 5. Hanany-Witten like brane set-up associated to the quantised charges of the solutions.

behaviour of the solutions at both ends of the space is compatible with the presence of
O8 orientifold fixed points. These could provide for a fully consistent brane picture. In
the next subsection, we construct quiver quantum mechanics that we propose describe
instanton and Wilson line defects within the 5d Sp(N) D4-D8/O8 brane system of [78, 79].

3.3 The dual quiver quantum mechanics

In this section we propose quiver quantum mechanics supported by the D0-D4-D4’-D8-F1
brane system. The full dynamics is described in terms of the matter fields that enter in the
description of the D0-D4-F1 system, introduced in section 3.1, plus additional fields that
connect these branes with the D4’ and the D8 branes. The extra fields are (twisted) (4,4)
bifundamental hypermultiplets, coming from the open strings that connect the D4’-branes
with the D0-branes and the D8-branes with the D4-branes, and (0,2) bifundamental Fermi
multiplets, coming from the open strings that connect the D4’-branes with the D4-branes
and the D8-branes with the D0-branes [68, 77]. This field content is detailed in appendix B.

Let us analyse in more detail the brane picture introduced in table 1. In subsection 2.1
we found the following quantised charges at each [2�k, 2�(k + 1)] �-interval,

Q
e (k)
D4 = �k =

k�1�

j=0
�j , Q

e (k)
D0 = µk =

k�1�

j=0
�j , (3.14)

Q
m (k)
D4� = �k , Q

m (k)
D8 = �k , Q

e (k)
F1 = 1 . (3.15)

We can associate a Hanany-Witten like brane set-up to these charges, as depicted in figure 5.
In this figure there are µk D0-branes and �k D4-branes, and orthogonal �k D8-branes and
�k D4’-branes, in the [2�k, 2�(k+ 1)], k = 1, . . . P , �-intervals. As discussed in section 2.1
the D0 and D4 branes are interpreted as colour branes while the D4’ and D8 branes play
the role of flavour branes. In the last [2�P, 2�(P + 1)] interval there are extra ��P , �µP ,
D4’ and D8 brane charges that cancel the total D4’ and D8 brane charges of the compact
space. Note that these charges may originate from D4’/O4 and D8/O8 superpositions,
consistently with the singularity structure at the end of the space.

The brane set-up depicted in figure 5 can be related to a Hanany-Witten brane set-up
in Type IIB upon a T+S duality transformation. This is depicted in figure 6. The D0 and
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α1 NS5 α2 NS5 αP NS5

ν0 NS7

β0 D3

ν1 NS7

β1 D3

νP−1 NS7

βP−1 D3

µ1 F1 µ2 F1 µP F1

ρ

Figure 6. Hanany-Witten brane set-up associated to the T+S duals of our solutions.

α1 NS5 α2 NS5 αP NS5
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Figure 7. Hanany-Witten brane set-up of figure 6 after Hanany-Witten moves.

D4 branes are now F1 and NS5 branes, while the D8 and D4’ branes become NS7 and D3
branes, respectively. In this brane set-up one can make Hanany-Witten moves that turn
the configuration onto the one depicted in figure 7. Here all the �k stacks of D3-branes and
�k stacks of NS7-branes are now coincident, and there are �k D1-branes and µk D1-branes
ending on each stack of �k NS5-branes and µk F1-strings, originating, respectively, from
the (�0, . . . ,�k�1) and (�0, . . . , �k�1) stacks of D3 and NS7-branes.

Back to Type IIA, the previous configuration is mapped onto the one depicted in
figure 8, where �k F1-strings originating in (�0,�1, . . . ,�k�1) stacks of D4’-branes end on
a given stack of �k D4-branes, and µk F1-strings originating in (�0, �1, . . . , �k�1) stacks of
D8-branes end on a given stack of µk D0-branes. This is exactly the description of U(�k)
and U(µk) Wilson loops in the antisymmetric representations (�0, . . . ,�k�1) of U(�k) and
(�0, . . . , �k�1) of U(µk), that we discussed in the previous subsection. The respective Young
tableaux are depicted in figure 9.

Therefore, our proposal is that the quantum mechanics dual to our AdS2 solutions
describes the interactions between Wilson loops in the (�0, . . . ,�k�1) and (�0, . . . , �k�1)
antisymmetric representations of the gauge groups U(�k) � U(µk), and µk D0 and �k D4
brane instantons, with k = 1, . . . , P .6

6Note that if O4-O8 orientifold fixed planes are present at both ends of the �-interval the gauge groups
would actually be Sp(�1), Sp(µ1) and Sp(�P ), Sp(µP ) in the first and last �-intervals [82].
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Figure 8. Hanany-Witten like brane set-up equivalent to the brane configuration in figure 5.

βk−1β1β0 νk−1ν1ν0

Figure 9. Young tableaux labelling the irreducible representations of U(�k) and U(µk).

Our proposed quantum mechanics can be given a quiver-like description in terms of a
set of disconnected quivers showing the interactions between the D0-D4-D4’-D8 branes in
each �-interval. These quivers can be read o� directly from the brane set-up depicted in
figure 5, before the Hanany-Witten moves that connect the di�erent intervals are made.
Keeping in mind that D0 and D4 branes, and D4 and D8 branes, are connected by (4,4)
hypermultiplets, and D4’ and D4 branes, and D8 and D0 branes, through (0,2) Fermi
multiplets, all of them in the bifundamental representations of the respective groups, and
that there are (4,4) vectors and (4,4) adjoint hypermultiplets at each gauge node (see
appendix B), we can depict the quivers shown in figure 10. These quivers can be interpreted
as partitions of the total number of D4’ and D8 branes due to the insertions of the D0
and D4 brane instanton defects. This results in independent quantum mechanics living in
the di�erent D0-D4 brane instantons. In turn, the Wilson line defects do not show in the
quivers, since the associated fermionic strings are massive. The integration of these Fermi
fields leads to the insertion of the Wilson loop. Note that in these quivers we have taken
into account that the number of D4’ and D8 source branes in each interval is given by the
di�erence of the quantised charge in the given interval and that in the preceding one. This
is implied by the source terms (2.17), (2.18), together with the derivatives

�h��
4 = 1

2�

P�

k=1
(�k�1 � �k)�(� � 2�k) , h��

8 = 1
2�

P�

k=1
(�k�1 � �k)�(� � 2�k) , (3.16)

derived from the �h4 and h8 functions defined by (2.21) and (2.22). Flavour groups in the
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Figure 10. Disconnected quivers describing the SCQMs dual to our solutions.

last �-interval should be present associated to the D4’ and D8 flavour branes at the end of
the space.

Our suggested interpretation of the AdS2 solutions in [35] as duals to line defect quan-
tum mechanics living in the D4’-D8 brane system of [78, 79] is in agreement with the
findings in [37] (see also [24]). In these references it was shown that the solutions with
CY2 = T4 flow in the UV to the AdS6 solution dual to the 5d CFT living in the D4’-D8
brane system. Accordingly, a defect interpretation in terms of D0-D4-F1 branes was given.
Our analysis suggests that the D0 and D4 branes would find an interpretation in terms of
instantons inside the D4’ and D8 branes and that the F1-strings would arise in the near
horizon limit from F1-strings stretched between the D0 and the D8 branes and the D4 and
the D4’ branes, realising Wilson loops in antisymmetric representations. Quiver quantum
mechanics describing line defects in 5d gauge theories realised in (p, q) 5-brane webs have
been proposed in [80, 81] (see also [68, 75]). It would be interesting to clarify the relation
between these SCQM and the ones proposed in this paper.

3.4 Quantum mechanical central charge

One possible check of our proposed quivers would require that a notion of central charge
existed for the superconformal quantum mechanics, that could be matched with the holo-
graphic central charge constructed in section 2.3. Such a notion indeed exists for 1d quiver
CFTs that originate from 2d N = (0, 4) CFTs upon dimensional reduction [38]. In that case
one can measure the number of vacua of the 1d CFT using the same expression that de-
fines the central charge of the 2d CFT, in terms of the two-point U(1)R current correlation
function (see for example [83]),

c = 6(nhyp � nvec) , (3.17)

where nhyp is the number of N = (0, 4) hypermultiplets and nvec the number of N =
(0, 4) vector multiplets in the UV description (of either the 1d or the 2d CFT). It was
shown in [38] that for the class of AdS2 solutions considered therein the result matches the
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Figure 11. Quiver mechanics associated to the backgrounds obtained from eqs. (3.19)–(3.20).

holographic calculation for long quivers with large ranks. We show next that equation (3.17)
matches as well the holographic result for the quiver quantum mechanics defined in the
previous subsection, not originating from 2d CFTs. For these quivers nhyp and nvec are the
numbers of N = (0, 4) hypermultiplets and N = (0, 4) vector multiplets of the quantum
mechanics.

As a first check we show that equation (3.17) reproduces the right central charge of
the D0-D4-F1 system, T-dual to the D1-D5-wave system. In this case, with N -waves,

nhyp = NQD0QD4 +N(Q2
D0 +Q2

D4) , nvec = N(Q2
D0 +Q2

D4)
c = 6(nhyp � nvec) = 6NQD0QD4 . (3.18)

This is in exact agreement with equation (3.8) and (2.30).
As a second example we consider the following profiles for the �h4 and h8 linear

functions:

�h4(�) = Υh4(�) = Υ

�
�
�

�
2� � 0 � � � 2�P

�P
2� (2�(P + 1) � �) , 2�P � � � 2�(P + 1).

(3.19)

h8(�) =

�
�
�

�
2� � 0 � � � 2�P

�P
2� (2�(P + 1) � �) , 2�P � � � 2�(P + 1).

(3.20)

The corresponding N = 4 quantum mechanical quiver is the one depicted in figure 11.7
Substituting in (3.17) we find

nhyp �
P�

j=1
j2

�
�2 + �2 + ��

�
, nvec �

P�

j=1
j2(�2 + �2),

c � ��P (P + 1)(2P + 1) � 2��P 3 , chol,1d = 2��P 2(P + 1) � 2��P 3.

7Flavour groups coupled to the last gauge nodes should be present associated to the D4’ and D8 flavour
branes at the end of the space. Their contribution to the central charge is subleading and has not been
incorporated into the (therefore approximate) expressions for the number of hypermultiplets and vector
multiplets.
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We then see that in the holographic limit (large P , �, �) the field theory and holographic
central charges coincide. One can elaborate many other examples in which the two calcu-
lations are also shown to agree.

In order to justify this agreement one can draw a comparison between the central
charge calculation proposed in (3.17) and the dimension of the Higgs branch of the quan-
tum mechanics calculated in [84–87]. In these references the following formula is used to
compute the dimension of the Higgs branch for N = 4 quantum mechanics with gauge
group ΠvU(Nv)

M =
�

v,w

NvNw �
�

v

N2
v + 1 . (3.21)

In this formula Nw stands for the ranks of the colour groups adjacent to a given colour
group of rank Nv. Our expression in (3.17) extends this fomula for counting the degrees of
freedom of the quantum mechanics to more general quivers including flavours. Moreover,
our quivers need not be related by dimensional reduction to 2d CFTs, as the quivers
discussed in [38], where this formula was shown to reproduce the central charge of 1d
CFTs obtained from 2d CFTs upon dimensional reduction.

In the next section we further elaborate on the holographic central charge discussed in
section 2.3, and relate it to an extremisation principle.

4 Holographic central charge, electric-magnetic charges and a minimisa-
tion principle

In this section we show that the holographic central charge of the AdS2 solutions discussed
in this paper can be related to the product of the RR electric and magnetic charges. The
second result of this section is to show that it can also be obtained through a minimisation
principle. The first relation was already encountered for the N = 4 AdS2 solutions studied
in [38], and, as in that case, it generalises an argument for AdS2 gravity coupled to a gauge
field put forward in [88]. Our second result is a minimisation principle that allows to obtain
the holographic central charge in the spirit of [89–93], by minimising a functional defined
as the integral of various geometrical forms. In analogy with the findings in [38], we show
that these geometric forms can be directly related to the RR electric and magnetic fluxes
of the background. In contrast with [38], we use the Maxwell (instead of Page) fluxes to
establish the connection.

4.1 Relation with the electric-magnetic charges

As it happened for the AdS2 solutions in [38], there exists an interesting relation between
the holographic central charge of our AdS2 solutions, given by equation (2.30), and the
electric and magnetic charges of the underlying Dp-branes. Using our definitions (2.13)
and (2.15) for the electric and magnetic charges of Dp-branes and taking the absolute value
of the charges, we find that the quantity

Q =
�

p

Qe
DpQ

m
Dp (4.1)
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is proportional to the holographic central charge, up to a boundary term. More concretely,
we find

Q = VolCY2VolS3VolAdS2

(2�)8
�

d�

�
2�h4h8 � (u�)2

2 � (� � 2�k)
2 (4�h4h8 � (u�)2)

��h�
4

�h4
+ h�

8
h8

�

+u2 � 2(� � 2�k)uu�

4

��h�2
4

�h2
4
+ h�2

8
h2

8

� �
(4.2)

where the sum has been taken over the D0-D4-D4’-D8 branes of our backgrounds. This
expression needs to be regularised in order to obtain a finite result, given the integral
over the infinite AdS2 space present in the computation of the electric charges. We can
regularise it for instance as in (2.7).
Let us now use the BPS equation u�� = 0 on the expression (4.2). We may think about the
application of the BPS equation as an extremisation of the quantity Q. We find

Q = VolCY2VolS3VolAdS2

(2�)8
�

d�

�
4�h4h8 � (u�)2 + u2 � 2(� � 2�k)uu�

4

��h��
4

�h4
+ h��

8
h8

�

���

�
2(� � 2�k)�h4h8 � uu�

2 + u2 � 2(� � 2�k)uu�

4

�
(�h4h8)�

�h4h8

���
. (4.3)

Finally, we use the expressions (3.16) to obtain,

Q = VolCY2VolS3VolAdS2

(2�)8
�

d�

�
4�h4h8 � (u�)2 (4.4)

+u2 � 2(� � 2�k)uu�

8�

P�

k=1

�(�k�1 � �k)
h4

+ (�k�1 � �k)
h8

�
�(� � 2�k)

���

�
2(� � 2�k)�h4h8 � uu�

2 + u2 � 2(� � 2�k)uu�

4

�
(�h4h8)�

�h4h8

���
.

In the absence of sources, the second line in (4.4) vanishes and the quantity Q in (4.2)
coincides, up to a finite boundary term with the holographic central charge in (2.30).

Consider now solutions with u� = 0 as in the rest of this paper. In the presence of
sources, the second line in eq. (4.4) is,

u2
0

8�

P�

k=1

�(�k�1 � �k)
�k

+ (�k�1 � �k)
µk

�
.

This is subleading in the regime of large parameters, with respect to the term in the first
line of (4.4). Interestingly, the boundary term gives a divergent contribution similar to
that found in [38]. In fact, for �h4 and h8 given by equations (2.21) and (2.22), we find

� 2�(P+1)

0
��

�
2(� � 2�k)�h4h8 + u2 (�h4h8)�

4�h4h8

�
= � lim

��0

u2
0

8��
(�P + �0 + µP + �0) +O(�2)

= lim
��0

u2
0

8��
(Qsources

D4� +Qsources
D8 ), (4.5)
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where �h4(� = 0) = h8(� = 0) = �, and the same at � = 2�(P + 1), with � � 0. The
boundary term thus yields a divergence directly related to the presence of the D4’ and
D8 brane sources of the background. In summary, once regularised, equation (4.2) is
proportional, up to a boundary term, to the holographic central charge in (2.30).

As in [38], we find an explicit realisation of the proposal in [88], which relates the
central charge in the algebra of symmetry generators of AdS2 with an electric field to the
square of the electric field. This proposal is realised in our fully consistent string theory
set-up, where various branes with electric and magnetic charges enter the calculation. We
show next that we can also derive the central charge by extremising an action functional
constructed out of the RR Maxwell fluxes.

4.2 An action functional for the central charge

We showed in [38] that a natural way to define an action functional from which the central
charge can be derived through an extremisation principle is to put “o�-shell” the electric
and magnetic RR Page fluxes of the associated background. We implement next this idea
in our current backgrounds following closely the derivation in [38], with the di�erence that
in the present case we use the Maxwell fluxes.

In fact, we use the fluxes F0, F2, F4 defined in (2.2) — as in the rest of the paper we
consider the case H2 = 0 and �h4(�). We also use the dual fluxes F6, F8, F10 defined as
Hodge duals below (2.2).

On these fluxes we impose the “restriction” procedure explained in [38]. Basically, we
define forms constructed from the Maxwell fluxes, after excising from them the AdS2 part.
In this way we define the forms [J0, J̃0,J4, J̃4,F4, F̃4,F8, F̃8]. To be concrete, the Maxwell
fluxes of our backgrounds and the “restricted” forms read,

F(0) = J0, F(2) = �J̃0 �volAdS2 ,

F(4) = J4 � J̃4, F(6) = F4 � �volAdS2 + F̃4 � �volAdS2 ,

F(8) = F8, F(10) = F̃8 � �volAdS2 , (4.6)

J0 = h�
8 , J̃0 = 1

2

�
h8 +

u�uh�
8

4�h4h8 � u�2

�
, J4 = ��h�

4
�volCY2 ,

J̃4 =
�
2h8 +

uu��h�
4 � �h4u�2

2�h2
4

�
�volS3 � d�,

F4 = h8�h�
4u

2

�h4(4�h4h8 � u�2)
�volS3 � d�,

F̃4 = 1
2

�
�h4 +

u�u�h�
4

4�h4h8 � u�2

�
�volCY2 ,

F8 =
�
2�h4 +

uu�h�
8 � h8u�2

2h2
8

�
�volCY2 � �volS3 � d�,

F̃8 = � h�
8
�h4u2

h8(4�h4h8 � u�2)
�volCY2 � �volS3 � d�. (4.7)
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With the forms as in (4.6), we define the functional,

C = 1
2

�

X8
[J̃4 � F̃4 + J0 � F̃8 + F4 � J4 + J̃0 � F8)]

=
�

X8

�
�h4h8 � 1

8

�
u2

��h�2
4

�h2
4
+ h�2

8
h2

8

�
� 2uu�

��h�
4

�h4
+ h�

8
h8

�
+ 2u�2

��
�volCY2 � �volS3 � d�.

(4.8)

We now extremise this functional by imposing the Euler-Lagrange equation for u(�),

2u�� = u

��h��
4

�h4
+ h��

8
h8

�
. (4.9)

In the absence of sources, this equation implies

h��
8 = 0, �h��

4 = 0, u�� = 0. (4.10)

In this case the functional C is proportional to the central charge in (2.30). The functional
in (4.8) can be written as

4C =
�

X8

�
4�h4h8 � (u�)2 � u2

2

��h��
4

�h4
+ h��

8
h8

�
+ ��

�
u2

2

��h�
4

�h4
+ h�

8
h8

���
�volCY2 � �volS3 � d�.

Using the expressions in (3.16) and following the procedure described below (4.3), we find
for constant u = u0

4C =
�

X8

�
4�h4h8� (u�)2� u2

0
4�

P�

k=1

�
�k�1��k

h4
+ �k�1��k

h8

�
�(��2�k)

�
�volCY2 � �volS3 � d�

� lim
��0

u2
0

2�
(µP + �0 + �P + �0)VolCY2VolS3 . (4.11)

As in section 4.1, we find that up-to a boundary term and the subleading source-term,
the extremisation of the functional C in (4.8) is proportional to the holographic central
charge (2.30). The functional C is defined in terms of the Maxwell fields of the background.
This development extends the ideas of [89–93] to the present case, for manifolds with
boundary in the presence of sources.

5 Conclusions

In this paper we have studied the AdS2 � S3 � CY2 � I� solutions to massive Type IIA
supergravity recently constructed in [35] and proposed SCQM dual to them. Our solutions
can be thought of as describing the background near a string like defect inside AdS6.
Conversely, they can be thought of as dual to the Quantum Mechanics describing the
excitations of (0 + 1)-dimensional defects in a five dimensional SCFT.

We have started by identifying the 1/8-BPS brane set-up that underlies the solutions.
This is the D0-D4-D4’-D8-F1 brane intersection studied in [24, 37]. From the study of
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this brane set-up we have revealed that the D0 and D4 branes have an interpretation as
instantons in the worldvolumes of the D4’ and D8 branes. Accordingly, these branes are
counted by their electric charges. In turn, the F1-strings provide for Wilson lines in the
antisymmetric representations of the D0 and D4 branes gauge groups. This generalises the
constructions in [70, 71] for 4d N = 4 SYM to our more complicated brane configurations.

We have proposed explicit quiver quantum mechanics dual to our solutions, that gen-
eralise previous constructions dual to AdS2 solutions in [38]. In [38] AdS2/CFT1 duals with
4 supercharges were constructed using T-duality from the AdS3/CFT2 pairs in [28, 40–42].

These quivers inherited some of the properties of the 2d “mother” CFTs, like the
matter content that guarantees gauge anomaly cancelation in 2d. This condition does not
have to be satisfied in one dimension, and indeed the quivers that we have constructed
in this paper consist on a set of disconnected matrix models that do not satisfy it. It
would be interesting to relate the SCQMs constructed in this paper to the quiver quantum
mechanics studied in [80, 81], living in D1-F1-D3-D5-NS5-D7 brane systems. These brane
systems are the T-dual realisations of our D0-D4-D4’-D8-F1 brane configurations, so one
would expect the dual SCQMs to be related.

It was shown in [37] (see also [24]) that the AdS2 � S3 � T4 � I� solutions with h4 a
particular function of the T 4 and � asymptote locally to AdS6 � S3 � I in the UV. This
allowed to interpret these solutions as D0-D4-F1 line defect CFTs within the 5d N = 1
gauge theory living in the D4’-D8 brane system. It is plausible that we have found concrete
realisations of these CFTs in the form of D0-D4 brane instantons interacting with F1 Wilson
lines, connecting with the results in [68, 69, 75, 77, 80, 81].

We have seen that the holographic central charge can be related to the product of the
electric and magnetic charges of the D-branes present in the solutions. This realises in a
controlled string theory set-up the proposal in [88], where the central charge in the algebra
of symmetry generators of AdS2 with a gauge field was related to the square of the electric
field, and adds to the controlled string theory set-ups realising this proposal already found
in [32, 38]. It would be interesting to see if further set-ups realising this proposal can be
found in more general situations, especially in higher dimensions.

Moreover, we have provided one more example where the holographic central charge
can be derived from an action functional, following the ideas of geometric extremisation [89–
93]. Our results extend the results in [89–93] by the presence of sources and boundaries.
We should stress that a physical reason that underlies the need for extremisation in a
field theory with a non-Abelian R-symmetry, such as ours, remains as an interesting open
problem that deserves further investigation.

An interesting open avenue that also deserves further investigation is the application
of exact calculational techniques to our new backgrounds. This would allow to understand
the properties of our theories in the IR and would set the stage for their applications to
the study of black holes, along the lines of [94]. It would be interesting to study our
constructions with a more algebraic point of view, along the lines of [95, 96]. Similarly, the
connection or similarities with the dynamics uncovered in papers like [97] should be nice
to clarify.
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A The seed backgrounds and their dual SCFTs

In this appendix we recall the main properties of the solutions to massive IIA supergravity
(with localised sources) obtained in the recent work [28]. It was proposed in [40–42] that
these backgrounds are holographic duals to two dimensional CFTs preserving N = (0, 4)
SUSY that we also summarise below.

The Neveu-Schwarz (NS) sector of these bosonic solutions reads,

ds2 = u�
�h4h8

�
ds2AdS3 +

h8�h4

4h8�h4 + (u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2, (A.1)

e�� = h
3
4
8

2�h
1
4
4

�
u

�
4h8�h4 + (u�)2, (A.2)

H(3) =
1
2d

�
� � + uu�

4�h4h8 + (u�)2

�
� �volS2 + 1

h2
8
d� � H2.

Generically, the warping function �h4 has support on (�,CY2). On the other hand, u and
h8 only depend of �. We denote u� = ��u and similarly for h�

8. The RR fluxes are

F(0) =h�
8, F(2) = � 1

h8
H2 � 1

2

�
h8 � h�

8u
�u

4h8�h4 + (u�)2

�
�volS2 , (A.3a)

F(4) = �
�

d
�
uu�

2�h4

�
+ 2h8d�

�
� �volAdS3

� h8
u
(��4d4�h4) � d� � ��

�h4 �volCY2 � uu�

2h8(4h8�h4 + (u�)2)
H2 � �volS2 , (A.3b)

with the higher fluxes related to them as F(6) = ��10F(4), F(8) = �10F(2), F(10) = ��10F(0).
It was shown in [28] that supersymmetry holds whenever

u�� = 0, H2 + ��4H2 = 0, (A.4)

where ��4 is the Hodge dual on CY2. In what follows we will restrict ourselves to the set of
solutions for which H2 = 0 and �h4 = �h4(�). After this, the background reads,

ds2st =
u�

�h4h8

�
ds2AdS3 +

h8�h4

4h8�h4 + (u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2,

e�� = h
3
4
8

2�h
1
4
4

�
u

�
4h8�h4 + (u�)2,
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B2 = 1
2

�
�� + 2�k + uu�

4�h4h8 + (u�)2

�
�volS2 ,

�F(0) = h�
8,

�F(2) = �1
2

�
h8 � h�

8(� � 2�k)
�

�volS2 ,

�F(4) = �
�

��

�
uu�

2�h4

�
+ 2h8

�
d� � �volAdS3 � ��

�h4 �volCY2 . (A.5)

We have written the Page fluxes, �F = e�B(2) � F , more useful for our purposes. Notice
that we have also allowed for large gauge transformations B(2) � B(2) + �k �volS2 , for k =
0, 1, . . . ., P . The transformations are performed every time we cross an interval [2�k, 2�(k+
1)]. The space begins at � = 0 and ends at � = 2�(P +1). This will become more apparent
once the functions �h4, h8, u are specified below.

The background in (A.5) is a SUSY solution of the massive IIA equations of motion if
the functions �h4, h8, u satisfy (away from localised sources),

�h��
4(�) = 0, h��

8(�) = 0, u��(�) = 0. (A.6)

Various particular solutions were analysed in [28]. Here we will consider an infinite family
of solutions for which the functions are piecewise continuous. These were carefully studied
in [40–42] and a precise dual field theory was proposed. Let us briefly summarise aspects
of these SCFTs.

The associated dual SCFTs. A generic background of the form in (A.5) is defined
by the functions �h4, h8, u. For the type of solutions that were considered in [40–42] the
�-interval was bounded in [0, 2�(P+1)]. This range was determined by the vanishing of the
functions �h4, h8. Generically these functions are piecewise linear in �, and can be taken as,

�h4(�) =Υh4(�)

=Υ

�
�����������
�����������

�0
2� � 0 � � � 2�

�1 + �1
2� (� � 2�) 2� � � � 4�

�2 + �2
2� (� � 4�) 4� � � � 6�

�k+ �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k := 3, . . . , P � 1

�P � �P
2� (� � 2�P ) 2�P � � � 2�(P + 1).

(A.7)

h8(�) =

�
�����������
�����������

�0
2� � 0 � � � 2�

µ1 + �1
2� (� � 2�) 2� � � � 4�

µ2 + �2
2� (� � 4�) 4� � � � 6�

µk + �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k := 3, . . . , P � 1

µP � µP
2� (� � 2�P ) 2�P � � � 2�(P + 1),

(A.8)
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α3 αK

µK

α1

F1 F2 F3 FK

F̃1 F̃2 F̃3 F̃K

α2

µ1 µ2 µ3

Figure 12. A generic quiver field theory whose IR is dual to the holographic background defined by
the functions in (A.7)–(A.8). The solid black line represents a (4, 4) hypermultiplet. The grey line
represents a (0, 4) hypermultiplet and the dashed line represents a (0, 2) Fermi multiplet. N = (4, 4)
vector multiplets are the degrees of freedom in each gauged node.

where

�k =
k�1�

j=0
�j , µk =

k�1�

j=0
�j . (A.9)

The choice of constants is imposed by continuity of the metric and dilaton, while the
fluxes can present discontinuities associated to the presence of branes (see [28] for more
details). In turn, the u function, also linear in �, does not enter in the magnetic Page
fluxes associated to the solutions, and thus, does not a�ect the type of quivers that can be
constructed from the brane set-up. Here we will restrict to the simplest case, u� = 0.

The background in eq. (A.5) for the functions �h4, h8 specified above is dual to the CFT
describing the low energy dynamics of a two dimensional quantum field theory encoded by
the quiver in figure 12. In this quiver the ranks of the flavour groups are determined by
the absence of gauge anomalies, to be [40–42]

Fk = �k�1 � �k, F̃k = �k�1 � �k. (A.10)

The most stringent check in [40–42] for the validity of this proposal was the matching
between the field theory and holographic central charges. The U(1)R current two-point
function can be identified when flowing to the far IR (a conformal point is reached) with
the right moving central charge of the N = (0, 4) conformal field theory. Following [83, 99]
it was found for a generic quiver with nhyp hypermultiplets and nvec vector multiplets, that
the central charge (the anomaly of the U(1)R current) is

cCFT = 6(nhyp � nvec). (A.11)

In [40–42] a variety of examples of long linear quivers for which the ranks of each of the
nodes is a large number were discussed. In each of these qualitatively di�erent examples,
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it was found that the field theoretical central charge of eq. (A.11) coincides (in the limit of
long quivers with large ranks) with the holographic central charge, computed as

chol =
3�

2GN
VolCY2

� 2�(P+1)

0
�h4h8 d� = 3

�

� 2�(P+1)

0
h4h8 d�, (A.12)

where GN = 8�6 (with gs = �� = 1) and ΥVolCY2 = 16�4.

B D0-D4-D4’-D8 quantum mechanics

In this appendix we include a study of the low-energy field content emerging from the brane
web given in table 1. The four coordinates x1,2,3,4 parametrise a Calabi-Yau, whose nature
we need not specify in general. Just to be concrete we can take it to be a four-torus. The
compactification to a four-torus breaks the SO(4) symmetry associated to rotations on the
four-dimensional subspace spanned by x1,2,3,4. However, in what follows, we will continue
to use the SO(4) algebra to organise fields.8

As all the branes are localised in the x5 = � direction, strings stretched between branes
in adjacent intervals Ik and Ik+1, with Ik = [2�k, 2�(k + 1)], are necessarily long, hence
describing massive states. Therefore, the Hilbert space of the full system is given by the
direct sum of individual Hilbert spaces associated with D0-D4-D4’-D8 systems, that we
now describe.

In the following, we will use that the rank of the gauge and flavour groups associated
with D0, D4, D4’ and D8 branes in a given interval Ik is given by µk, �k, F̃k and Fk,
respectively, with F̃k = �k�1 � �k and Fk = �k�1 � �k, in agreement with the notation
used in the main text. The elementary excitations on the branes are given by strings
with ends attached to the branes. We will often use 2d language, exploiting the fact that
our brane web is T-dual to a D1-D5-D5’-D9 system, and we need only to dimensionally
reduce to 0 + 1 dimensions to get back to D0-D4-D4’-D8. Much of the conventions in
denoting fields is borrowed from [99], while quantisation of open strings can be easily done
following [100, 101], to which we refer for more details.

• D0-D0 strings: for simplicity, let us start by considering a sytem of µk parallel D1�D1
branes stretched along x0,5 (eventually we will reduce down to 1d). The system
consists of a U(µk) gauge theory and can be obtained by dimensional reduction of a
10d N = 1 U(µk) gauge theory, where the field content is that of a 10d gauge field
and a 10d Majorana-Weyl spinor.

In order to see what this entails, consider the decomposition of the 10d Lorentz group
as SO(1, 9) � SO(1, 1) � SO(8). A Majorana-Weyl spinor in the 16 of9 SO(1, 9) can
be decomposed as 16 = (+1

2 ,8s) � (�1
2 ,8c). We should then further split the SO(8)

8See [98], Ch. 4, where subtleties and special limits concerning quantisation on a compact four-torus are
discussed.

9We should really say Spin(1, 9). In this appendix, we will not care much about global structure of
groups.
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as SO(8) � G with G = SO(4)� � SO(4)+, where the two SO(4)’s are realised on
the D4 and D4’ branes. We may also rewrite G as

G = SU(2)�
L � SU(2)�

R � SU(2)+L � SU(2)+R , (B.1)

where SU(2)�
R � SU(2)+R can be understood as the R-symmetry of the quantum me-

chanical system.

A ten-dimensional gauge field decomposes as a two-dimensional gauge field uµ plus
8 scalars. The scalars, that we denote collectively as Y and Z, transform in the
(1,1,2,2) and (2,2,1,1) of G, respectively. Decomposing also the eight-dimensional
spinors under representations of G, and using N = (0, 4) language, we get10

Vector multiplet: uµ (1,1,1,1)
� (1,2,1,2)

Twisted hypermultiplet: Y (1,1,2,2)
�̃ (1,2,2,1)

Hypermultiplet: Z (2,2,1,1)
� (2,1,1,2)

Fermi multiplet: �̃ (2,1,1,2)

(B.2)

i.e. the field content of a (4, 4) vector and a (4, 4) hypermultiplet. The latter was
denoted in the main text as a black solid line starting and ending on the same gauge
groups, see figure 10. All the multiplets above transform in the adjoint of the gauge
group U(µk) on the D1 branes.

Let us now dimensionally reduce to one-dimensional field theory. The gauge field
uµ, upon dimensional reduction, decomposes as uµ � (ut,�), with ut the 1d vector
field and � a real scalar of the 1d theory. The fermions and scalars are inert, leading
indeed to the field content (B.2). Of course, going to down to one dimension, chirality
for the fermions is lost.

Quantisation of D4-D4 strings, upon reduction to 0+1 dimensions, leads to the same
conclusions for the gauge group U(�k).

• D0-D4� strings: the system of D0-D4’ branes is a brane web with 4 ND relative
boundary conditions, T-dual of the well-known D1-D5 system. The NS and R sectors
give rise, upon imposing the GSO projection, to a scalar in the (1,2) of the internal
SO(4)+ and a 6d Weyl spinor which is a singlet under the internal SO(4)+. We can
dimensionally reduce to 1d to get an N = (4, 4) twisted hypermultiplet. In N = (0, 4)

10We are considering the following decomposition

8s = (2,1,1,2) � (1,2,2,1) , 8c = (2,1,2,1) � (1,2,1,2) ,

from which (B.2) follows. The eight complex fermions obtained by decomposing a 10d Majorana-Weyl
spinor are denoted, in some compact notation, as �, �̃, � and �̃.
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language we have

Twisted Hypermultiplet: �� (1,1,1,2)
�� (1,2,1,1)

Fermi multiplet: �̃� (2,1,1,1)
(B.3)

Each of these multiplets transform in the µk of the gauge group U(µk) and in the
anti-fundamental of the global SU(F̃k).

• D0-D4 strings: the field content is the same as for the D0-D4’ system. The only
di�erence is that SO(4)� � SO(4)+ are exchanged. From our discussion about D0-
D4’ strings we find

Hypermultiplet: �̃ (1,2,1,1)
� (1,1,1,2)

Fermi multiplet: �̃ (1,1,2,1)
(B.4)

i.e. a (4, 4) hypermultiplet. Each of these multiplets transform in the µk of the gauge
group U(µk) and in the �k of the other gauge group U(�k).

• D4-D4’ strings: this system is an example of a brane web with 8 relative ND boundary
conditions. Strings in the NS sector are automatically massive. Indeed, such a brane
web can be T-dualised to a D0 � D8 system, where the R sector gives rise to an
N = (0, 2) Fermi multiplet, singlet of all internal symmetries,

N = (0, 2) Fermi multiplet: � (1,1,1,1) . (B.5)

Such a Fermi multiplet transforms in the �k of the gauge group U(�k) and in the
antifundamental of the global group SU(F̃k).

• D0-D8 strings: again, this is a system with 8 relative ND boundary conditions.
Therefore, also in this case we find a N = (0, 2) Fermi multiplet, which is a singlet
of all internal symmetries

N = (0, 2) Fermi multiplet: � (1,1,1,1) . (B.6)

This N = (0, 2) Fermi multiplet transforms in the µk of the gauge group U(µk) and
in the Fk of the global group SU(Fk).

• D4-D8 strings: finally, we have a system of D4-D8 branes with 4 relative ND boundary
conditions, with degenerate NS and R sectors. The quantisation of D4-D8 strings
leads again to an N = (4, 4) twisted hypermultiplet. Its field content is given by

Twisted hypermultiplet: � (1,1,1,2)
� (1,2,1,1)

Fermi multiplet: �̃ (2,1,1,1) ,
(B.7)

where each multiplet transforms in the �k of the gauge group U(�k) and in the Fk

of the global group SU(Fk).
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Putting altogether, we get the field content of figure 10, where black solid lines represent
(4, 4) hypermultiplets and dashed black lines (0, 2) Fermi multiplets. Interactions between
the various fields can be constructed following the rules of e.g. [77, 99]. In particular,
interactions should not spoil supersymmetry. See [99] where this is done consistently.

C Holographic calculation of SQM observables

In this appendix we probe the background in (2.1) and (2.2) by introducing probe D branes.
The action describing the coupling of a generic Dp brane to the NS-NS and RR closed string
fields contains the usual DBI + WZ terms,

SDp = SDBI + SWZ ,

SDBI = �Tp
�

dp+1�

�
e�� ��det(gab +Bab + 2���Fab)

� 1
2

�

SWZ = Tp

�

p+1
exp(2���F(2) +B(2)) �

�

q

C(q) ,

(C.1)

where F is the gauge field living on the brane.

• Let us begin by considering probe D0 branes. The field theory living on a D0 brane
is (0 + 1)�dimensional. We can define a metric for such a (0 + 1)�dimensional field
theory from the pullback of (2.1),

ds2ind = � u
�

�h4h8

4�h4h8 � (u�)2
dt2 . (C.2)

Note that the pullback of B(2) and the field strength Fab on the D0 brane are auto-
matically zero, due to their (anti)symmetric properties. Given that

e���
det gind = h8(��)

2 cosh(r�) , (C.3)

where the “�” simply refers to the fact that we are keeping r and � fixed at some
values, for a probe D0 brane we find the following action

SD0 = �T0
�

R
dt e���

det gind + T0

�
C(1) , (C.4)

which leads to

SD0 = �T0
h8(��)

2 cosh(r�)
�

R
dt+ T0

µk
2 sinh(r�)

�

R
dt . (C.5)

If we choose �� = 2�k, we find

SD0 = T0
µk
2 (sinh r� � cosh r�)

�

R
dt . (C.6)

We then find that the brane is calibrated only when r� = �, for which, however, we
have a vanishing action.
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Consider instead the coupling of a D0 brane to an external one form, call it A(1).
The action describing such a coupling is

S = 2�T0

�
F(0)A(1) . (C.7)

If, as in (2.2), F(0) = h�
8, we get

S = 2�TD0
�k
2�

�

R
A(t)dt . (C.8)

Using that T0 = 1, we find that the action (C.8) describes a Chern-Simons term with
kCS = �k. If we were to make sense of the action (C.8) also on a topologically non-
trivial one-dimensional manifold, say on a circle S1, we would find that it describes
a gauge invariant action if and only if �k is an integer. Moreover, without loss of
generality, we can take �k to be positive as well, as a Chern-Simons term is odd
under parity.

• Let us move on to the case of a probe D4 brane stretched along (t,CY2). The induced
metric on the worldvolume of such a D4 brane, from the pullback of (2.1), reads

ds2ind = � u�h4h8

4�h4h8 � (u�)2
dt2 +

�
�h4
h8

ds2CY2 . (C.9)

The pullback of B(2) vanishes, whereas we will ignore for now the field strength Fab

along the brane.11 Given that

e���
det gind =

�h4(��)
2 cosh(r�) , (C.10)

for a probe colour D4 brane the DBI action reads

SDBI = �T4VolCY2

�h4(��)
2 cosh(r�)

�

R
dt . (C.11)

Using that T4 = 1/(2�)4 and �h4 = Υh4 we find

SDBI = �ΥVolCY2

(2�)4
h4(��)

2 cosh(r�)
�

R
dt . (C.12)

Let us consider now the WZ part of the D4 brane action

SWZ = T4

�
C(5) + 2�C(3) � F(2) + 4�2C(1) � F(2) � F(2) . (C.13)

If we place the D4 brane at � = 2�k, its action reads

S = SDBI + T4

�
C(5) + 2�T4

�
�F(4) �A(1) ,

= T4ΥVolCY2
�k

2 (sinh r� � cosh r�)
�

R
dt+ 2�T4

�
�F(4) �A(1) .

(C.14)

11An �� expansion of the DBI action would produce a Maxwell kinetic term for F . Eventually we will be
interested in the dimensional reduction to 1 dimension where such a kinetic term would be absent.
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Here we have used that C(5)|D4 = �1
2(�h4 � �h�

4(� � 2�k)) sinh(r)dt � �volCY2 , where
dC(5) = �F(6) on the brane. In turn, the term 2�C(3) � F(2) contributes as a Chern-
Simons term, 2� �F(4) � A(1), with �F(4) = �h�

4
�volCY2 . This Chern-Simons term reads

explicitly,
2�T4

�
�F(4) �A(1) = 2�T4�h�

4VolCY2

�
A(1) . (C.15)

Using that �h4 = Υh4 and choosing Υ as usual such that ΥT4VolCY2 = 1 we find a
CS action with level kCS = �k. Again, invariance under large gauge transformations
implies that �k has to be an integer. Parity allows us to take it to be positive.

D Continuity of the NS sector

Let us comment briefly on the continuity of the NS sector of (2.1). Being u, �h4 and h8 linear
functions of �, we consider the following expressions for them in the interval [2�k, 2�(k+1)],

�h(k)
4 = �k +

�k
2�

(� � 2�k) , h
(k)
8 = µk +

�k
2�

(� � 2�k) , u(k) = ak +
bk
2�

(� � 2�k) . (D.1)

Let us now see what conditions should be imposed on the constants
{�k,�k, µk, �k, ak, bk} in order for the NS sector in (2.1) to be continuous. We
rewrite (2.1) as

ds2 = f1ds2AdS2 + f2ds2S3 + f3ds2CY2 + f4d�2 , B(2) = f5 �volAdS2 , e�2� = f6 . (D.2)

Then, we should impose the continuity of the fi’s at all points �k = 2�k, where the functions
u, �h4 and h8 change defining laws. This is achieved by demanding

lim
����

k

fi = lim
���+

k

fi . (D.3)

We will refer to the left and right hand side of (D.3) as f�
i and f+

i , respectively, and
therefore continuity corresponds to requiring f�

i = f+
i . A straightforward computation

shows that

f�
1 = f+

1 � (ak�1 + bk�1)
�
(�k�1 + �k�1)(µk�1 + �k�1)

16�2(�k�1 + �k�1)(µk�1 + �k�1) � b2k�1
= ak

�
�kµk

16�2�kµk � b2k
, (D.4)

f�
2 = f+

2 � (ak�1 + bk�1)�
(�k�1 + �k�1)(µk�1 + �k�1)

= ak�
�kµk

, (D.5)

f�
3 = f+

3 �
�

�k�1 + �k�1
µk�1 + �k�1

=
�

�k

µk
, (D.6)

f�
4 = f+

4 �
�
(�k�1 + �k�1)(µk�1 + �k�1)

ak�1 + bk�1
=

�
�kµk
ak

, (D.7)

f�
5 = f+

5 � ak�1bk�1+16�2(�k�1+ �k�1)(µk�1+ �k�1)
16�2(�k�1 + �k�1)(µk�1 + �k�1) � b2k�1

= �1 + akbk
b2k � 16�2�kµk

, (D.8)

– 33 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
5

CY2 CY2

e−2φ
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0
2π(P + 1)

ρ
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Figure 13. Behaviour of the solutions at both ends of the �-interval for u = constant. We find
that the CY2 is of finite size, while the S3 diverges at both ends of the interval.

f�
6 = f+

6 �
(µk�1 + �k�1)3/2

�
16�2(�k�1 + �k�1)(µk�1 + �k�1) � b2k�1

�

�
�k�1�k�1(ak�1 + bk�1)

= µ
3/2
k

�
16�2(�k + �k) � b2k

�

ak
�

�k
. (D.9)

A possible solution for such a system is

ak = ak�1 + bk�1 , bk = bk�1 = b0 , �k = �k�1 � �k�1 , µk = µk�1 � �k�1 , (D.10)

which, in turn, implies

ak = a0 + kb0 , �k = �0 +
k�1�

j=0
�j , µk = µ0 +

k�1�

j=0
�j . (D.11)

These are the very same conditions assuring continuity of u, �h4 and h8. Therefore, we
conclude that imposing continuity of the functions u, �h4 and h8 is su�cient to get continuity
for the NS sector.

E Volumes and stringy volumes

Analysing the volume of the compact submanifolds of the solutions in eqs. (2.21)–(2.22)
we run into the possibility that some of these submanifolds have infinite size. However,
in spite of a divergent warp factor, the “stringy size” of the submanifold is actually finite
or vanishing at the ends of the space. The finite stringy-volume case does not pose any
problem in interpreting a D-brane wrapping such cycle. The case in which the cycle shrinks
may suggest an interpretation of the singularity in terms of new massless degrees of freedom
(branes wrapping the shrinking cycles) that the supergravity solution is not encoding.

In the case with u� = 0 we see in eqs. (2.24), (2.25) that the S3 diverges at both
ends of the �-interval. A representation of the various compact submanifolds is given in
figure 13. We can nevertheless calculate the stringy volume of the S3, at any value of the
�-coordinate,

Vs[S3] =
�

�volS3 e��
�
det[g +B] = 2�2u

�
h8
�h4
. (E.1)

This is finite at the ends of the �-interval. Hence, branes wrapping this S3 will have
finite action.
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1 Introduction

Our understanding of four- and five-dimensional extremal black holes has extended our
knowledge of supergravity backgrounds involving AdS2 and AdS3 geometries. For instance,
an infinitely deep AdS2 throat arises as the near horizon geometry of 4d extremal black
holes that have associated an SL(2,R)�U(1) isometry, which includes the conformal group
in 1d. Even if this limit is clear geometrically a microscopic understanding remains a
demanding task [2–4]. Via the AdS/CFT correspondence [5] one might presume that
there is a conformal quantum mechanics dual to these AdS2 geometries. Nevertheless,
AdS2/CFT1 pairs pose important conceptual puzzles [6–9] originated from the boundary
of AdS2 being non-connected [10].

Partial attempts at studying AdS2 and AdS3 solutions in 10 and 11 dimensions, with
vast and rich structures coming from the high dimensionality of the internal space, ad-
mitting many possible geometries, topologies and amounts of supersymmetry, have been
carried out, [1, 11–43]. In particular, recent progress has been reported on the construction
of new AdS3 solutions with four Poincaré supersymmetries [18, 24, 26, 34, 37] as well as
on the identification of their 2d (half-maximal BPS) dual CFTs [27–29, 34, 37, 44]. In the
same vein, AdS2/CFT1 pairs have been explored as a natural extension of AdS3/CFT2 pairs
through T-duality [38] and double analytical continuation, [1, 41], in each case, providing
di�erent families of quiver quantum mechanics with four Poincaré supersymmetries.

Part of the motivation for this work is to construct AdS2 solutions through non-Abelian
T-duality acting on AdS3 spaces. Non-Abelian T-duality (NATD) was introduced in the
90’s [45] as a transformation of the string �-model, generalising to non-Abelian isometry
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groups the path integral approach to Abelian T-duality put forward in [46]. From these
studies other important groundwork arose, see for example [47–51]. In spite of this initial
progress and unlike its Abelian counterpart, the NATD transformation did not reach the
status of a string theory symmetry [48, 50–55], due to two main di�culties. Firstly, NATD
has only been worked out as a transformation in the worldsheet for spherical topologies
(namely, at tree level in string perturbation theory) and second, the conformal symmetry of
the string �-model is only known to survive the NATD transformation at first order in ��.

Sfetsos and Thompson [56] reignited the interest in NATD by showing that it can be
successfully used as a solution generating technique in supergravity, with the derivation of
the transformation rules of the RR sector. This study was initiated with the dualisation
of the AdS5�S5 and AdS3�S3�CY2 backgrounds with respect to a freely acting SU(2)
isometry group (SU(2)-NATD). This work was of particular interest to tackle the rôle
NATD might have in the context of AdS/CFT correspondence. In this vein, interesting
examples of AdS spacetimes generated through NATD in di�erent contexts have been
constructed to date [56–73]. Holographically, the field theoretical interpretation of NATD
was first addressed in [29, 74–77], where the main conclusion is that NATD changes the
field theory dual to the original theory. Remarkably, in all examples so far of NATD in
supergravity — in the context of holography — the dualisation took place with respect to
a freely acting SU(2) subgroup of the entire symmetry group of the solutions.

The main purpose of this work is to construct an AdS2 solution to massive Type IIA
supergravity acting with NATD on the well-known D1-D5 near horizon system. Here the
dualisation is performed with respect to a freely acting SL(2,R) group (SL(2,R)-NATD).
Second, we give a proposal for its dual superconformal quantum mechanics, in terms of D0
and D4 colour branes coupled to D4� and D8 flavour branes, inspired by the results in [1].

The organisation of the paper is as follows. In section 2, we develop the technology
necessary to construct solutions through SL(2,R)-NATD. In the same section we apply
these results to the D1-D5 near horizon system, generating a new AdS2�S3�CY2 geometry
foliated over an interval. The brane set-up, charges and holographic central charge are
carefully studied. Section 3 contains a summary of the infinite family of AdS2 solutions
to massive Type IIA supergravity with four Poincaré supersymmetries constructed in [1],
as well as of the quiver quantum mechanics proposed there as duals to these geometries.
In section 4, we show that our SL(2,R)-NATD solution provides an explicit example in
the classification in [1]. At the end of this section we study an explicit completion of this
solution and propose a quiver quantum mechanics that admits a description in terms of
interactions between Wilson lines and D0 and D4 instantons in the world-volumes of the
D4� and D8 branes. Our conclusions are contained in section 5.

2 NATD of AdS3�S3�CY2 with respect to a freely acting SL(2, R)

In this section we review the dualisation procedure and apply it to the AdS3�S3�CY2
solution of Type IIB supergravity. We address the construction of the brane set-up, Page
charges and holographic central charge of the resulting background and propose a quiver
quantum mechanics that flows in the IR to the superconformal quantum mechanics dual
to our solution.
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2.1 NATD with respect to SL(2,R)L

The study of NATD as a solution generating technique in supergravity was initiated in [56],
where the dualisation was carried out with respect to a freely acting SU(2) isometry
group. Since then, several works have taken advantage of this technology to generate
new AdS solutions, some of which avoiding previously existing classifications (see for in-
stance [58, 69, 78, 79]). Most of these examples possess rich isometry groups containing at
least an SU(2) factor that can be used to dualise. Instead, in this work we will use a non-
compact, freely acting, SL(2,R) group to dualise. This is the first time that NATD with re-
spect to a non-compact isometry group has been applied as a solution generating technique
in supergravity.1 Following [52] we perform the NATD transformation with respect to one
of the freely acting SL(2,R) isometry groups of the AdS3 subspace of the AdS3�S3�CY2
solution of Type IIB supergravity. We start reviewing the necessary technology.

Consider a bosonic string �-model that supports an SL(2,R) isometry, such that the
NS-NS fields can be written as,

ds2 = 1
4gµ�(x)LµL� +Giµ(x)dxiLµ +Gij(x)dxidxj ,

B2 = 1
8bµ�(x)Lµ � L� + 1

2Biµ(x)dxi � Lµ +Bij(x)dxi � dxj , Φ = Φ(x),
(2.1)

where xi are the coordinates in the internal manifold, for i, j = 1, 2, . . . , 7, and Lµ are the
SL(2,R) left-invariant Maurer-Cartan forms,

Lµ = �iTr(tµg�1dg), which obey, dLµ = 1
2f

µ
��L

� � L� , (2.2)

where fµ�� are the structure constants of SL(2,R). The generators of the sl(2,R) algebra
can be obtained by analytically continuing the su(2) generators as,

ta = �a�
2
, with �1 =

�
0 i

i 0

�
, �2 =

�
0 �i
i 0

�
, �3 =

�
i 0
0 �i

�
. (2.3)

These generators satisfy,2

Tr(tatb) = (�1)a�ab, [t1, t2] = i
�
2t3, [t2, t3] = i

�
2t1, [t3, t1] = �i

�
2t2. (2.4)

The group element g � SL(2,R) depends on the target space isometry directions,
realising an SL(2,R) group manifold. Here the group manifold is an AdS3 space. The
geometry described by (2.1) is then manifestly invariant under g � ��1g for � � SL(2,R).
We parametrise an SL(2,R) group element in the following fashion,

g = e
i
2 t�3e

i
2 ��2e

i
2 ��3 , with 0 � � � �, 0 � t < �, 0 � � < �, (2.5)

1In [41], SL(2,R)-NATD was used to find an explicit example — with brane sources — in the class of
AdS2�S2�CY2 solutions fibered over a 2d Riemann surface constructed in [14].

2We take gµ� = �Tr(tµt�) in order to have (+, �,+) signature.
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which is closely related to the Euler angles parametrising SU(2). Thus, the left-invariant
forms (2.2) are given by,

L1 = sinh �d� � cosh � sin �dt, L2 = cosh �d� � sinh � sin �dt,
L3 = � cos �dt � d�.

(2.6)

A string propagating in the geometry given by (2.1) is described by the non-linear
�-model,

S =
�

d�2
�
Eµ�L

µ
+L

�
� +Qiµ�+x

iLµ
� +QµiL

µ
+��xi +Qij�+x

i��xj
�
, (2.7)

with Eµ� = gµ� + bµ� , Qiµ = Giµ +Biµ, Qµi = Gµi +Bµi, Qij = Gij +Bij .

and Lµ
± are the left-invariant forms pulled back to the worldsheet. This �-model is also

invariant under g � ��1g for � � SL(2,R).
The SL(2,R) non-Abelian T-dual solution for the �-model (2.7) is constructed as

in [45], introducing covariant derivatives, �±g � D±g = �±g�A±g, in the Maurer-Cartan
forms but enforcing the condition that the gauge field is non-dynamical with the addition
to the action of a Lagrange multiplier term,

�iTr(vF±), (2.8)

where F± = �+A� � ��A+ � [A+, A�] is the field strength for the gauged fields A±. v is
a vector that takes values in the Lie algebra of the SL(2,R) group and it is coupled to the
field strength, F±. In this way, the total action is invariant under,

g � ��1g, A± � ��1(A±� � �±�), v � ��1v�, with �(�+,��) � SL(2,R). (2.9)

After integrating out the Lagrange multiplier and fixing the gauge, we recover the original
non-linear �-model. On the other hand, by integrating by parts the Lagrange multiplier
term one can solve for the gauge fields and obtain the dual �-model, that still relies on the
parameters t, �, � and the Lagrange multipliers. In order to preserve the number of degrees
of freedom, the redundancy is fixed by choosing a gauge fixing condition, for instance g = I,
which implies t = � = � = 0. The resulting action reads,

Ŝ =
�

d�2
�
Qij�+x

i��xj + (�+vµ + �+x
iQiµ)M�1

µ� (��v� � Q�i�+x
i)

�
, (2.10)

with Mµ� = Eµ� + f�
µ�v�.

In this action the parameters t, �, � have been replaced by the Lagrange multipliers vi,
i = 1, 2, 3, which live in the Lie algebra of SL(2,R), this is non-compact, by its construction
as a vector space.

In particular, the solutions generated by SU(2)-NATD are non-compact manifolds even
if the group used in the dualisation procedure is compact, this is because the new variables
live in the Lie algebra of the dualisation group. As we see, the SL(2,R)-NATD solution
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generating technique inherits this non-compactness. At the level of the metric and using
the following parametrisation for the Lagrange multipliers,

v = (� cos � cosh �, � sinh �, � sin � cosh �), (2.11)

the original AdS3 space is replaced by an AdS2 �R+ space, where besides the AdS2 factor
(in which the remaining SL(2,R) symmetry is reflected) a non-compact radial direction is
generated in the internal space.

Furthermore, from the path integral derivation the dilaton receives a 1-loop shift,
leading to a non-trivial dilaton in the dual theory, given by,

Φ̂(x, v) = Φ(x) � 1
2 log(detM). (2.12)

A similar shift in the dilaton was obtained in Abelian T-duality [45], in such a case M is
the metric component in the direction where the dualisation is carried out.

The transformation rules for the RR fields was the new input in [56] which allowed
to use NATD as a solution generating technique in supergravity. This was done using
a spinor representation approach. The derivation relied on the fact that left and right
movers transform di�erently under NATD, and therefore lead to two di�erent sets of frame
fields for the dual geometry. In the SL(2,R)-NATD case, we also have two di�erent sets of
frame fields, which define the same dual metric obtained from (2.10), and must therefore
be related by a Lorentz transformation, Λ�

�. In turn, this Lorentz transformation acts on
spinors through a matrix Ω, defined by the invariance property of gamma matrices,

Ω�1Γ�Ω = Λ�
�Γ�, (2.13)

and given that the RR fluxes can be combined to form bispinors,

P =e�

2

4�

n=0
��F 2n+1, P̂ = e�̂

2

5�

n=0
◆◆̂F 2n, with ��F p =

1
p!Γ�1...mpF

�1�2...mp
p , (2.14)

one can finally extract their transformation rules by right multiplication with the Ω�1

matrix on the RR bispinors,

P̂ = P · Ω�1, (2.15)

where P̂ are the dual RR bispinors. Notice that the action (2.15) on the RR sector is from
a Type IIB to a IIA solution. If starting from a Type IIA to a IIB solution instead, the
rôle of P and P̂ is swapped. The knowledge of the transformation rules for the RR sector
guarantees that starting with a solution to Type II supergravity the dual background is
also a solution.

The technology reviewed in this section allows us to consider a non-compact space like
AdS3, which posses an SO(2, 2) �= SL(2,R)L�SL(2,R)R isometry group. After performing
the dualisation with respect to a freely acting SL(2,R) group the isometry gets reduced
to just SL(2,R), which is geometrically realised by an AdS2 factor in the dual geometry.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 x x
D5 x x x x x x

Table 1. The set-up for QD1 D1-branes wrapped on x5 and QD5 D5-branes wrapped on x5 and
CY2. This system preserves (4,4) supersymmetry. The field theory lives in the x0 and x5 directions
and x1, x2, x3, x4 parameterise the CY2. The SO(4) R-symmetry is geometrically realised in the
x6, x7, x8, x9 directions.

Further, as we explained before, the dual geometry acquires a non-compact direction, that
now belongs to the internal space.

In the next section we will apply this technology to the AdS3�S3�CY2 geometry to
produce an AdS2�S3�CY2�I solution in massive Type IIA supergravity, which fits in the
classification in [1].

2.2 Dualisation of the AdS3�S3�CY2 background
We consider IIB string theory on R1,1 � R4�CY2 where we include QD1 D1-branes and
QD5 D5-branes as is shown in the brane set-up depicted in table 1.

The AdS3�S3�CY2 background arising in the near horizon limit of the D1-D5 system
depicted in table 1 is,

ds2
10 = 4L2ds2

AdS3 +M2ds2
CY2 + 4L2ds2

S3 , e2� = 1,
F3 = 8L2(volS3 + volAdS3), F7 = �8L2M4(volS3 + volAdS3) � volCY2 .

(2.16)

Here we will use VolCY2 = (2�)4.
Following the rules explained in the previous section, the SL(2,R)-NATD transforma-

tion of the background (2.16) gives rise to the following geometry,

ds2
10 = L2�2

�2 � 4L4ds
2
AdS2 + 4L2ds2

S3 +M2ds2
CY2 +

d�2

4L2 ,

e2� = 4
L2(�2 � 4L4) , B2 = � �3

2(�2 � 4L4)volAdS2 ,

F0 = L2, F2 = � L2�3

2(�2 � 4L4)volAdS2 , F4 = �L2(M4volCY2 � 2� d� � volS3),

F6 = L2�2

2(�2 � 4L4)(�M
4volCY2 � 8L4d� � volS3) � volAdS2 ,

F8 = 2L2M4� volS3 � volCY2 � d�, F10 = �4L6�2M4

�2 � 4L4 volAdS2 � volS3 � volCY2 � d�.

(2.17)

Here we have parametrised the Lagrange multipliers as in (2.11) in order to manifestly
realise the SL(2,R) residual global symmetries. Indeed, from the original SO(2, 2) isometry
group, after the dualisation, an SL(2,R) subgroup survives, which is geometrically realised
by a warped AdS2 � R+ subspace.
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The background (2.17) is a solution to the massive Type IIA supergravity EOMs. As
we will see in section 4, it is an explicit solution in the classification provided in [1]. In
order to have the right signature and avoid singularities we are forced to set �2 � 4L4 > 0.
Namely, we get a well-defined geometry for,

� > �0 = 2L2, (2.18)

where the � coordinate begins.
The asymptotic behaviour of the metric and dilaton in (2.17) at the beginning of the

space, around � = �0 is,

ds2 � a1
x
ds2

AdS2 + a2ds
2
S3 +M2ds2

CY2 + a3dx
2, e� � a4x

�1/2, (2.19)

with x = ���0 > 0 and ai are constants. Here the warp factor reproduces the behaviour of
an OF1 plane extended in AdS2 and smeared over S3, this is also consistent with additional
coincident fundamental strings if they are smeared on the S3 and the CY2. Further, in
section 4.1, we will provide a concrete completion for the background (2.17), where at both
ends of the space the behaviour given in (2.19) is identified.

We conclude this section with some comments about the supersymmetry of the so-
lution (2.17). On one hand, as we mentioned before (and we will show in section 4) the
background (2.17) fits in the class of AdS2�S3�CY2�I solutions to massive Type IIA con-
structed in [1], which contain eight supersymmetries, four Poincaré and four conformal.
Second, it is well established by now [56, 60] that performing non-Abelian T-duality on a
round 3-sphere projects out the spinors charged under either the SU(2)L or SU(2)R sub-
group of the global SO(4) factor of S3, leaving the rest intact. This amounts to a halving
of supersymmetry in the non-Abelian T-dual of AdS3�S3�CY2 [56]. The SL(2,R)-NATD
works analogously, this time one projects out the spinors charged under one of the SL(2,R)
factors of the global SO(2, 2) �= SL(2,R)L � SL(2,R)R isometry, keeping the rest intact.
As such SL(2,R)-NATD on the AdS3�S3�CY2 solution also reduces the supersymmetry
by half. That this mirrors the halving of the supersymmetries as in the SU(2)-NATD case
is hardly surprising, the solutions are after all related by a double analytic continuation
(as we will explain around the equation (4.2)).

2.3 Brane set-up and charges

Non-Abelian T-dualisation under a freely acting SU(2) subgroup of an SO(4) symmetry
reduces the isometry group to SU(2). Geometrically, the S3 is replaced by its Lie algebra,
R3, which is locally R�S2. This isometry is reflected in the dual fields, for instance
a B2 over the S2 is generated after the dualisation, which is � dependent (like the B2
in (2.17)). This � dependence in B2 implies that large gauge transformations must be
included such that 1

4�2 |
�
B2| remains in the fundamental region as we move in the �

direction. This argument was developed in [64, 66, 74] where the non-compactness in the
� coordinate — in backgrounds like (2.17) — was addressed with the introduction of large
gauge transformations in the dual geometry.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D0 x
D4 x x x x x
D4� x x x x x
D8 x x x x x x x x x
F1 x x

Table 2. Brane set-up associated to our solution. Here x denotes the spacetime directions spanned
by the various branes. x0 corresponds to the time direction of the ten dimensional spacetime,
x1, . . . , x4 are the coordinates spanned by the CY2, x5 is the direction where the F1-strings are
stretched, and x6, x7, x8, x9 are the coordinates where the SO(4) symmetry is realised.

The SL(2,R)-NATD, as shown in the previous section, produces an antisymmetric
Kalb-Ramond tensor over the AdS2 directions, signaling the presence of fundamental
strings in the solution. We use the same argument as in the SU(2)-NATD case to de-
termine the range of the � coordinate, (see [1] for more details). Namely, we impose that
the quantity,

1
4�2 |

�

AdS2
B2| � [0, 1), (2.20)

is bounded and use a regularised volume for AdS2,3

VolAdS2 = 4�2. (2.21)

For B2 in (2.17) to satisfy (2.20) a large gauge transformation is needed as we move
along �. Namely, for � � [�k, �k+1] we need to perform B2 � B2 + �kvolAdS2 , with

�3
k

�2
k � �2

0
= 2�k. (2.22)

We continue the study of the background (2.17) by computing the associated charges,
obtained from the Page fluxes, defined by F̂ = e�B2 � F , given by,

F̂0 =L2, F̂2 = �L2k�volAdS2 , F̂4 = �L2(M4volCY2 � 2� d� � volS3),
F̂6 =L2(�kM4volCY2 + �(� � 2�k) d� � volS3) � volAdS2 ,

F̂8 =2L2M4� volS3 � volCY2 � d�,

F̂10 =L2M4�(� � 2�k)volAdS2 � volS3 � volCY2 � d�,

(2.23)

where we have taken into account the large gauge transformations B2 � B2 + �kvolAdS2 .
Inspecting the Page fluxes (2.23), we determine the type of branes that we have in the
system. This is the D0-D4-D4�-D8-F1 brane intersection depicted in table 2.

Using the expressions for the Page fluxes (2.23) we compute the magnetic charges of
Dp-branes using,

Qm
Dp = 1

(2�)7�p

�

�8�p

F̂8�p, (2.24)

3This reguralisation prescription is taken from [1].
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where Σ8�p is a (8� p)-dimensional manifold transverse to the directions of the Dp-brane.
Furthermore, we define the electric charge of a Dp-brane as follows,

Qe
Dp = 1

(2�)p+1

�

AdS2��̃p

F̂p+2, (2.25)

here Σ̃p is defined as a p�dimensional manifold on which the brane extends. Both expres-
sions, (2.24) and (2.25) are written in units of �� = gs = 1.

As we anticipated, the background (2.17) fits in the class of solutions presented in [1],
that we briefly summarise in the next section. In such geometries, the D0 and D4-branes
are interpreted in the dual field theory as instantons carrying electric charge. In turn,
the D4� and D8-branes have an interpretation as magnetically charged branes where the
instantons lie. In the interval [�k, �k+1], these charges look in the following fashion,

Qm
D8 = 2�F̂0 = 2�L2,

Qm
D4� = 1

(2�)3
�

CY2
F̂4 = 2�L2M4,

Qe
D0 = 1

2�

�

AdS2
F̂2 = 2�kL2 = k Qm

D8,

Qe
D4 = 1

(2�)5
�

AdS2�CY2
F̂6 = 2�kL2M4 = k Qm

D4� ,

(2.26)

where we have used VolCY2 = 16�4. Furthermore, the fundamental strings are electrically
charged with respect to the 3-form H3,

Qe
F1 =

1
(2�)2

�

AdS2�I�
H3 = 1

�
B2

����
�k+1

�k

= 1. (2.27)

One fundamental string is produced every time we cross the value � = �k. Therefore in
the interval [0, �k] there are k F1-strings.

2.4 Holographic central charge

In the spirit of the AdS/CFT correspondence, the study of AdS2 geometries leads to con-
sider one-dimensional dual field theories, where the definition of the central charge is subtle.
In a conformal quantum mechanics the energy momentum tensor has only one component,
and as the theory is conformal, it must vanish. We will interpret the central charge as
counting the number of vacuum states in the dual superconformal quantum mechanics,
along the lines of [1, 38, 41].

We compute the holographic central charge following the prescription in [69, 79], where
this quantity is obtained from the volume of the internal manifold, accounting for a non-
trivial dilaton,

Vint =
�
d8x e�2�

�
det g8,ind = 25�6L4M4

�

I�
(�2 � 4L4) d�,

chol =
3Vint
4�GN

= 3L4M4

�

�

I�
(�2 � 4L4) d�,

(2.28)
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where GN = 8�6 in units gs = �� = 1. Since the dual manifold is non-compact the new
background has an internal space of infinite volume that leads to an infinite holographic cen-
tral charge, which points the solution needs a completion, as is shown in expression (2.28).

In the next section, we review the solutions constructed in [1] in order to see that the
background (2.17) fits in that class of solutions. In turn, using the developments of [1], a
concrete completion to the background (2.17) generated by SL(2,R)-NATD is proposed.
Such completion in the geometry implies also a completion in the quiver, letting us to
describe a well-defined CFT.

3 The AdS2�S3�CY2 solutions to massive IIA and their dual SCQM

In [26] a classification of AdS3�S2 solutions to massive IIA supergravity with small (0,4)
supersymmetry and SU(2)-structure was obtained. These solutions are warped products of
the form AdS3�S2�M4�I preserving an SU(2) structure on the internal five-dimensional
space. The M4 is either a CY2 or a 4d Kähler manifold. The respective classes of solutions
are referred as class I and class II. In this section we briefly discuss the AdS2�S3�CY2
solutions obtained via a double analytical continuation of the class I solutions above. These
solutions were first constructed in [34] and then studied in detail in [1]. These backgrounds
are dual to SCQMs which were also studied in [1], and that we also review. The study
of the solutions constructed in [1, 34] allows us to propose a concrete completion for the
solution (2.17) and therefore a well-defined central charge. We present the details of this
completion in section 4.

A subset of the backgrounds studied in [1, 34] — where we assume that the symmetries
of the CY2 are respected by the full solution — read,

ds2 = u�
h4h8

�
h4h8
∆ ds2

AdS2 + ds2
S3

�
+

�
h4
h8

ds2CY2 +
�
h4h8
u

d�2 , ∆ = 4h4h8 � (u�)2,

e�2� = h
3/2
8 ∆

4h1/2
4 u

, B2 = �1
2

�
� � 2�k + uu�

∆

�
volAdS2 ,

F̂0 = h�
8 , F̂2 = �1

2
�
h8 � h�

8(� � 2�k)
�
volAdS2 ,

F̂4 =
�
2h8d� � d

�
u�u
2h4

��
� volS3 � ��h4volCY2 .

(3.1)

Here Φ is the dilaton and B2 is the Kalb-Ramond field. The warping functions h8, h4 and
u have support on �, with u� = ��u. We have quoted the Page fluxes, F̂ = e�B2 � F , and
included large gauge transformations4 of B2 of parameter k, B2 � B2 + �kvolAdS2 . The
higher dimensional fluxes can be obtained as Fp = (�1)[p/2] �10 F10�p. Note that ∆ > 0, in
order to guarantee a real dilaton and a metric with the correct signature.

4Like those that were studied in section 2.3.
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Supersymmetry holds whenever u�� = 0. In turn, the Bianchi identities of the fluxes
impose,

h��
8 = 0 , h��

4 = 0, (3.2)

away from localised sources, which makes h8 and h4 are piecewise linear functions of �.
Particular solutions were studied in [1] where the functions h4 and h8 are piecewise

continuous as follows,

h4(�)=

�
��
��

�0
2� � 0 � � � 2�,

�k+ �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . , P � 1

�P � �P
2� (� � 2�P ) 2�P � � � 2�(P + 1),

(3.3)

h8(�) =

�
��
��

�0
2� � 0 � � � 2�,

µk + �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . , P � 1

µP � µP
2� (� � 2�P ) 2�P � � � 2�(P + 1).

(3.4)

For u� = 0 the previous functions vanish at � = 0 and � = 2�(P + 1), where the space
begins and ends. The �k, �k, µk and �k are integration constants, which are determined
by imposing continuity of the NS sector as,

µk =
k�1�

j=0
�j , �k =

k�1�

j=0
�j . (3.5)

Using the piecewise functions (3.3) and (3.4) in the [�k, �k+1] interval and the defini-
tions (2.24)–(2.25), the expressions for the charges are,

Qe
D0 = h8 � (� � 2�k)h�

8 = µk, Qe
D4 = h4 � (� � 2�k)h�

4 = �k,

Qm
D4� = 2�h�

4 = �k, Qm
D8 = 2�h�

8 = �k,
(3.6)

and given that,

dF̂0 = h��
8d�, dF̂4 = h��

4d� � volAdS2 , (3.7)

with,

h��
8 = 1

2�

P�

j=1
(�j�1 � �j)�(� � 2�j), h��

4 = 1
2�

P�

j=1
(�j�1 � �j)�(� � 2�j), (3.8)

there are D8 and D4� brane sources localised in the � direction. In turn, both dF̂8 and
the volS3 component of dF̂4 vanish identically, which implies that D0 and D4 branes play
the rôle of colour branes. The brane set-up associated to the solution (3.1) consists of a
D0-F1-D4-D4�-D8 brane intersection, as depicted in table 2.

In addition, in [1] the number of vacua was computed. For the solutions defined by
the above functions, it was shown that the holographic central charge is given by,

chol,1d = 3Vint
4�GN

= 3
4�

VolCY2

(2�)4
� 2�(P+1)

0
(4h4h8 � (u�)2) d�. (3.9)

In the next section we briefly describe the SCQM proposed in [1] in order to extract
information about the field theory associated to the background (2.17).
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3.1 The dual superconformal quantum mechanics

In [1], a proposal for the quantum mechanics living on the D0-D4-D4�-D8-F1 brane in-
tersection was given in terms of an ADHM quantum mechanics that generalises the one
discussed in [80]. This quantum mechanics was interpreted as describing the interactions
between instantons and Wilson lines in 5d gauge theories with 8 Poincaré supersymmetries
living in D4-D8 intersections. The complete D0-D4-D4�-D8-F1 brane intersection was split
into two subsystems, D4-D4�-F1 and D0-D8-F1, that were first studied independently.

Let us start considering the D4-D4�-F1 brane subsystem. This subsystem was inter-
preted as a BPS Wilson line in the 5d theory living on the D4-branes. When probing
the D4-branes with fundamental strings, D4�-branes transverse to the D4-branes are origi-
nated. These orthogonal D4�-branes carry a magnetic charge Qm

D4� = 2�h�
4 proportional to

the number of fundamental strings dissolved in the world-volume of the D4�-branes. Addi-
tionally, the D4-branes can be seen as instantons in the world-volume of the D8-branes [81],
where the D4-brane wrapped on the CY2 can be absorbed by a D8-brane and converted
into an instanton.

The D0-D8-F1 brane subsystem is distributed as the D4-D4�-F1 previous case. Here a
Wilson line is introduced into the QM living on the D0-branes, in this case D8-branes are
originated by probing D0-branes with fundamental strings. The number of fundamental
strings dissolved in the worlvolume of D8-branes is in correspondence with the magnetic
charge of the D8-branes, Qm

D8 = 2�h�
8. In terms of instantons, the D0-brane is absorbed

by a D4�-brane and converted into an instanton.
The proposal in [1] is that the one dimensional N = 4 quantum mechanics living on

the complete D0-D4-D4�-D8-F1 brane intersection describes the interactions between the
two types of instantons and two types of Wilson loops in the Qm

D4� � Qm
D8 antisymmetric

representation of U(Qe
D4) � U(Qe

D0).
The SCQMs that live on these brane set-ups were analysed in [1]. They are described

in terms of a set of disconnected quivers as shown in figure 1, with gauge groups associated
to the colour D0 and D4 branes (the latter wrapped on the CY2) coupled to the D4�

and D8 flavour branes. The dynamics is described in terms of (4,4) vector multiplets,
associated to gauge nodes (circles); (4,4) hypermultiplets in the adjoint representation
connecting one gauge node to itself (semicircles in black lines); and (4,4) hypermultiplets
in the bifundamental representation of the two gauge groups (vertical black lines). The
connection with the flavour groups is through twisted (4,4) bifundamental hypermultiplets,
connecting the D0-branes with the D4�-branes and the D4-branes with the D8-branes (bent
black lines), and (0,2) bifundamental Fermi multiplets, connecting the D4-branes with the
D4�-branes and the D0-branes with the D8-branes (dashed lines) — see [1] for more details.

Such quivers, depicted in figure 1, can be read from the Hanany-Witten like brane set-
up depicted at the top of figure 2. Here in each [�k, �k+1] interval there are µk D0-branes
and �k D4-branes, playing the rôle of colour branes. Orthogonal to them there are �k D8-
branes and �k D4�-branes, interpreted as flavour branes. In order to see the interpretation
as Wilson lines one can proceed as follows (see [1]). The D0-D4-D4�-D8-F1 brane set-up
is taken to an F1-D3-NS5-NS7-D1 system in Type IIB through a T+S duality transfor-
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Figure 1. A generic one dimensional quiver field theory whose IR limit is dual to the AdS2
backgrounds given in [1].

mation. In this set-up, Hanany-Witten moves can be performed, which upon T-duality
give the Type IIA configuration depicted at the bottom of figure 2. This configuration
consists of �k coincident stacks of D8-branes and �k coincident stacks of D4�-branes, with
µk and �k F1-strings originating in the di�erent (�0, �1, . . . �k�1;�0,�1, . . . ,�k�1) coinci-
dent stacks of D8- and D4�-branes. The other endpoint of the F1-strings is on each stack
of µk D0-branes and �k D4-branes. From this picture the description of Wilson loops in
the (�0, �1, . . . �k�1;�0,�1, . . . ,�k�1) completely antisymmetric representation of U(µk) and
U(�k), respectively, is recovered. In [1], this was interpreted as describing Wilson lines for
each of the D0 and D4 gauge groups, given that they are in the completely antisymmetric
representation they actually described backreacted D4-D0 baryon vertices [82] within the
5d CFT living in D4�-D8 brane intersections. The reader is referred to [1] for more details
on this construction.

In [1], it was shown that the holographic central charge (given by (3.9)), matches the
field theory central charge, computed using the expression,

cft = 6(nhyp � nvec), (3.10)

where nhyp counts the number of bifundamental, fundamental and adjoint (0,4) hypermul-
tiplets and nvec counts the number of (0,4) vector multiplets, both in the UV description.
The equation (3.10) was obtained in [83] for two-dimensional conformal field theories, and
was determined by identifying the right-handed central charge with the U(1)R current
two-point function. With the expression (3.10), both results, holographic and field theory
central charge have been shown to agree for the 2d N = (0, 4) quiver CFTs constructed
in [27–29], as well as for the AdS2/SCQM pairs proposed in [1, 38, 41]. In [38], the agree-
ment is kept since the one-dimensional quiver QMs are originated from the two-dimensional
N = (0, 4) CFTs upon dimensional reduction. However, in [1, 41], the equation (3.10)
matches with the holographic result even though the 1d CFTs have not originated from
the 2d “mother” CFTs.
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αP D4
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Figure 2. (Top) Hanany-Witten like brane set-up associated with the quivers depicted in figure 1.
Brane set-up equivalent to the previous one after a T+S+T duality transformation and Hanany-
Witten moves (bottom).

As we anticipated, the background (2.17) belongs to the classification provided in [1].
Therefore, we will use the expression (3.10) to obtain the number of vacua of the super-
conformal quantum mechanics dual to our solution. The previous analysis guarantees its
agreement with the holographic result.

After this summary, we turn to the solution (2.17), the main focus of this paper and
show that it fits locally in the previous class of AdS2�S3�CY2�I solutions to Type IIA
supergravity constructed in [1].

4 SCQM dual to the non-Abelian T-dual solution

In this section we show that the solution (2.17), obtained as the SL(2,R)-NATD of the
AdS3�S3�CY2 solution to Type IIB supergravity, fits in the class of geometries constructed
in [1], that we have just reviewed. We will also provide a global completion to this solution
by glueing it to itself.

Consider the backgrounds (3.1). It is easy to see that the background (2.17) fits locally
in this class of solutions, with the simple choices,

u = 4L4M2�, h4 = L2M4�, h8 = F0� . (4.1)

In [29], it was studied that the AdS3�S2�CY2�I solution constructed in [56], by acting
SU(2)-NATD on the near horizon limit of the D1-D5 system, belongs to a subset of the ge-
ometries classified in [26]. Therefore, since both classifications, [26] and [1, 34], are related

– 14 –



J
H
E
P
1
0
(
2
0
2
1
)
0
2
0

AdS3 × S3 × CY2

AdS3 × S2 × CY2 × IAdS2 × S3 × CY2 × I

SL(2,R)-NATD SU(2)-NATD

Analytic
Continuation

AdS2 ↔ S2

S3 ↔ AdS3

Figure 3. Relation between the solution (2.17) and the solution obtained in [56] through SU(2)-
NATD.

by a double analytical continuation, this fact strongly suggests that the background (2.17)
should be related to the solution obtained in [56], upon an analytical continuation pre-
scription.

This double analytical continuation works as follows, we focus on the Type IIA back-
ground given by (2.17) and the AdS2 and S3 factors are interchanged as,

ds2AdS2 � �ds2S2 , ds2
S3 � �ds2

AdS3 . (4.2)

In order to get well-defined supergravity fields, we also need to analytically continue the
following terms,

� � i�, L � iL, Fi � �Fi, (4.3)

where Fi are the RR fluxes. Thus, applying this set of transformations one finds the
AdS3�S2�CY2�I solution to massive Type IIA supergravity with four Poincaré supersym-
metries constructed for the first time in [56]. We summarise these connections in figure 3.

4.1 Completed NATD solution

According to (3.3)–(3.4) one can choose a profile for the piecewise linear functions h4,
h8 and propose a concrete way to complete the solution (2.17). In turn, completing the
geometry implies a completion in the quiver, allowing us to match between holographic
and field theory computations.

We can complete the solution (2.17) by terminating the � interval at a certain value
�2P with P � Z.5 Then, the piecewise functions (3.3)–(3.4) read,

u = 4L4M2�, (4.4)

h4(�)= L2M4
�

� �0 � � � �P ,

�0 � (� � �2P ) �P � � � �2P ,
(4.5)

h8(�) = L2
�

� �0 � � � �P ,

�0 � (� � �2P ) �P � � � �2P .
(4.6)

5We choose the value �2P due to the completion is composed by two copies of the SL(2,R)-NATD
solution, glued between them.
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The previous functions reproduce the behaviour (2.19) for the metric and dilaton at both
ends of the space and one can check that the NS sector is continuous at �P when �P =
�0+�2P

2 . Hereinafter, we take the value �2P = �0 (2P �1) and use �0
2� dimensionless, namely

�0
2� � 1, in order to obtain well-quantised charges. Thus, we get �P = 2�P .

Notice that the functions (4.5)–(4.6) are a simple example, with �k = � and �k = �,
for all intervals. This implies there are no flavour branes at the di�erent intervals — with
the exception of the [�P�1, �P ] interval, that we will analyse later.

The Page fluxes (2.23) in each [�k, �k+1] interval then read as follows,

F̂0 = L2
�
1 k = 0, . . . , P � 1,
�1 k = P, . . . , (2P � 1), (4.7)

F̂2 = �L2volAdS2

�
�k k = 0, . . . , P � 1,
�(2P � k) k = P, . . . , (2P � 1), (4.8)

F̂CY2
4 = L2M4volCY2

�
�1 k = 0, . . . , P � 1,
1 k = P, . . . , (2P � 1), (4.9)

F̂CY2
6 = �L2M4volAdS2 � volCY2

�
k k = 0, . . . , P � 1,
(2P � k) k = P, . . . , (2P � 1), (4.10)

Here we show the component over CY2 for F̂4 and F̂6. The 2-form and 6-form Page fluxes
are continuous at �P and the change of sign in the 0-form and 4-form Page fluxes is due
to the presence of D8 and D4� flavour branes at [�P�1, �P ] interval.

The corresponding quantised charges read,

Qm
D8 = 2�L2

�
1 k = 0, . . . , P � 1,
�1 k = P, . . . , (2P � 1), (4.11)

Qe
D0 = Qm

D8

�
�k k = 0, . . . , P � 1,
�(2P � k) k = P, . . . , (2P � 1), (4.12)

Qm
D4� = 2�L2M4

�
�1 k = 0, . . . , P � 1,
1 k = P, . . . , (2P � 1), (4.13)

Qe
D4 = Qm

D4�

�
k k = 0, . . . , P � 1,
(2P � k) k = P, . . . , (2P � 1). (4.14)

Thus, the D0 and D4 brane charges increase linearly in the 0 � k � P region, and
decrease linearly in the P + 1 � k � 2P � 1 region, until the value k = 2P � 1 is reached.
Here the minus sign in the charges denotes anti-Dp brane charge. The quiver for the
configuration (4.5)–(4.6) is depicted in figure 4.

The discontinuities at �P are translated into 2Qm
D4� and 2Qm

D8 flavour groups accord-
ing to,

N
[P�1,P ]
D4� = 1

(2�)3
�

CY2
F̂4 = 1

(2�)3
�

CY2�I�
dF̂4 = �P�1 � �P = 2Qm

D4� (4.15)

N
[P�1,P ]
D8 = 2�F̂0 = 2�

�

I�
dF̂0 = �P�1 � �P = 2Qm

D8 (4.16)
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Figure 4. Symmetric completed quiver associated to the NATD solution.
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Figure 5. The Hanany-Witten like brane set-up for the completed non-Abelian T-dual solution,
underlying the quiver depicted in figure 4.

where we used the expressions (3.7)–(3.8) with �P�1 = 2�L2M4, �P = �2�L2M4, �P�1 =
2�L2 and �P = �2�L2.

The quiver shown in figure 4 can be translated to the description reviewed in section 3.1.
The Hanany-Witten like brane set-up is shown in figure 5. In each [�k, �k+1] interval, for
k = 0, . . . , P �1, we have kQm

D8 D0-branes and kQm
D4� D4-branes. For k = P, . . . , 2P �1 we

have (2P � k)Qm
D8 D0-branes and (2P � k)Qm

D4� D4-branes. Orthogonal to them, in each
interval, there are Qm

D8 D8-branes and Qm
D4� D4�-branes, playing the rôle of flavour branes.

As proposed in [1] and we reviewed in section 3.1, one can perform a T-S-T dual-
ity transformation6 to the D0-D4-D4�-D8-F1 system. Consider the left-hand side of the
Hanany-Witten like brane set-up shown in figure 5, from the first Qm

D8D8- and Qm
D4�D4�-

branes until the PQm
D8D0- and PQm

D4�D4-branes. It is easy to see that this subsystem is
equivalent to the brane set-up depicted on the top of figure 2 (with �i = Qm

D8, �i = Qm
D4� ,

µj = jQm
D8 and �j = jQm

D4� , for i = 0, 1, . . . , P �1 and j = 1, . . . , P ). When we perform the
T+S+T transformation on the left-hand configuration an equivalent system to the bottom

6That is a T-(S-duality)-T transformation.
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Figure 6. Symmetric brane set-up after a T+S+T duality transformation and Hanany-Witten
moves from the brane set-up depicted in figure 5.

in figure 2 is obtained. This is depicted on the left-hand side in figure 6, here the now
coincident D8-branes and D4�-branes are to the right of the PQm

D8D0 and PQm
D4�D4 stacks.

On the right-hand side of the Hanany-Witten like brane set-ups, shown in figure 5 and
figure 6, we have the same configuration that on the left-hand side, since the right-hand
side is the symmetric part of the left-hand side. That is, the complete configuration is the
left-hand side glued to itself.

Let us focus on the D0-D8-F1 system on the left-hand side of the Hanany-Witten
like brane set-up shown in figure 6 (from Qm

D8D0 until PQm
D8D0).7 After the T+S+T

transformation, we obtain P stacks of Qm
D8D8-branes — depicted in figure 6 to the right of

the PQm
D8D0-branes — with PQm

D8F1-strings originating in the di�erent coincident stacks
of D8-branes. The other endpoint of the F1-strings is on each stack of kQm

D8D0-branes. For
the D4-D4�-F1 system we have a similar configuration, namely P stacks of Qm

D4�D4�-branes,
with PQm

D4�F1-strings attached to them. These F1-strings have the other end point on the
di�erent kQm

D4� stacks of D4-branes. Thus, as we reviewed in section 3.1, the system can
be interpreted as Wilson loops in the Qm

D8 �Qm
D4� completely antisymmetric representation

of the gauge groups U(kQm
D8)�U(kQm

D4�), that we interpret as describing the backreaction
of the D4-D0 baryon vertices of a D4�-D8 brane intersection.

To be concrete, consider the SCQM that arises in the very low energy limit of a D4�-
D8 brane intersection, dual to a 5d QFT, where D4- and D0-brane baryon vertices are
introduced. Namely, D4-brane (D0-brane) baryon vertices are linked to D4�-branes (D8-
branes) with fundamental strings. In the IR these branes change their rôle, that is the

7Since on the right-hand side we have the same configuration.
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gauge symmetry on both D4�- and D8-branes becomes global, shifting D4� and D8 from
colour to flavour branes and the D0- and D4-branes play now the rôle of colour branes of
the backreacted geometry.

Furthermore, with the piecewise linear functions (4.4), (4.5) and (4.6) we can compute
the holographic central charge,8

chol =
3
�
L4M4

�� �P

�0
(�2 � �2

0) d� +
� �2P

�P

�
(�0 � (� � �2P ))2 � �2

0
�

d�

�

= Qm
D4�Qm

D8(4P 3 � 12P + 8).
(4.17)

In order to compare this result with the field theory computation in (3.10), we need to
compute the number of hypermultiplets and vector multiplets. For the quiver in figure 4
we obtain,

nhyp =
�
(Qm

D4�)2 + (Qm
D8)2 +Qm

D4�Qm
D8

� �
P 2 + 2

P�1�

i=1
i2

�
,

nvec =
�
(Qm

D4�)2 + (Qm
D8)2

� �
P 2 + 2

P�1�

i=1
i2

�
.

(4.18)

Thus, when the sums are performed we get the following expression for the field theory
central charge,

cft = 6(nhyp � nvec) = 6Qm
D4�Qm

D8

�
P 2 + 2

P�1�

i=1
i2

�

= Qm
D4�Qm

D8(4P 3 + 2P ).
(4.19)

We see that at large Qm
D8, Qm

D4� and P (in the holographic limit, which is long quivers with
large ranks) the results (4.17) and (4.19) coincide.

5 Conclusions

In this paper we developed the implementation of NATD in supergravity backgrounds
supporting an SL(2,R) subgroup as part of their full isometry group. Namely, we imple-
mented the solution generating technique in non-compact spaces exhibiting an SO(2,2) �=
SL(2,R)L�SL(2,R)R isometry group geometrically realised by an AdS3 space. After the
dualisation, the resultant dual geometry exhibits an SL(2,R) isometry reflected geomet-
rically as an AdS2 space plus a non-compact new direction in the internal space. This
non-compact direction arises since the Lagrange multipliers live in the Lie algebra of the
SL(2,R) group, which is by construction a vector space, R3. That is, the space dual to
AdS3 is locally AdS2 � R+.

We worked out in detail the SL(2,R)-NATD solution of the AdS3�S3�CY2 solution
that arises in the near horizon limit of the D1-D5 brane intersection. We found that
the SL(2,R)-NATD solution is a simple example in the classification constructed in [1].

8We used �0
2�

� 1 as explained above.
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Further, our background (2.17) is related through an analytic continuation prescription
to the AdS3�S2�CY2�I solution obtained in [56], as one of the first examples of AdS
backgrounds generated through SU(2) non-Abelian T-duality.

An important drawback of non-Abelian T-duality is the lack of global information
about the dual geometry, which cannot be inferred from the transformation itself. For this
we used the fact that our solution (2.17) fits in the classification constructed in [1] which
allowed us to propose an explicit completion for the geometry. Unlike the two completions
worked out in [29] for the SU(2)-NATD solution constructed therein, continuity of the
NS sector allows only one possible completion for the geometry given in (2.17). Our
completion, shown in section 4.1, is obtained by glueing the SL(2,R)-NATD solution to
itself. We proposed a well-defined quiver quantum mechanics, dual to our AdS2 solution,
that flows in the IR to a superconformal quantum mechanics (based on the Hanany-Witten
brane set-ups and Page charges), which admits an interpretation in terms of backreacted
D4-D0 baryon vertices within the 5d QFT living in a D4�-D8 brane intersection. In support
of our proposal we checked the agreement between the holographic and field theory central
charges.
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1 Introduction and general idea

A major line of research motivated by the Maldacena conjecture [1] is the study of super-
symmetric and conformal field theories in diverse dimensions. Since the early 2000’s e�orts
have been dedicated to the classification of Type II or M-theory backgrounds with AdSd+1
factors. These backgrounds are conjecturally dual to SCFTs in d dimensions with di�erent
amounts of SUSY. For the case in which the solutions are half-maximal supersymmetric,
important progress in classifying string backgrounds and the mapping to quantum field
theories has been achieved.

Indeed, for N = 2 SCFTs in four dimensions, the field theories studied in [2] have holo-
graphic duals first discussed in [3], and further elaborated (among other works) in [4–10].
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The case of five dimensional SCFTs was analysed from the field theoretical and holo-
graphic viewpoints in [11–25], among many other interesting works. An infinite family of
six-dimensional N = (1, 0) SCFTs was discussed both from the field theoretical and holo-
graphic points of view in [26–34]. For three-dimensional N = 4 SCFTs, the field theoretical
aspects presented in [35] were discussed holographically in [36–41], among other works. The
case of two-dimensional SCFTs and their AdS3 duals is very attractive, not only for the
rich landscape of two dimensional CFTs, but also for the connection with the Physics of
black holes. In this case, recent progress was reported for half-maximal supersymmetric
(for AdS3) backgrounds, see for example [42–56]. All these solutions geometrise various
perturbative and non-perturbative aspects of conformal field theories in diverse dimensions.

A natural extension is the study of backgrounds with an AdS2 factor [57–72]. These
should be dual to superconformal quantum mechanics (SCQM). The similarities between
the superconformal algebras in one and two dimensions or, by duality, the geometric re-
lations between AdS2 and AdS3-spaces, suggest in particular that the studies of [49–56]
could be extended to the AdS2 case. Some studies involving AdS2 geometries were moti-
vated by developments in black holes Physics, whilst others drew inspiration from a purely
geometric or field theoretical viewpoint, or both [73–85].

Surprisingly, the case of AdS2/CFT1 is less understood than its higher dimensional
cousins. Indeed, various subtleties take place in the study of AdS2 backgrounds [86–90].
Let us summarise some of them.

A conformal quantum mechanical theory needs to have only SL(2,R) global symmetry
(aside from possible supersymmetry and associated R-symmetry). Nevertheless, the anal-
ysis of [74–76], implies that whilst the isometry of AdS2 is SL(2,R), asymptotically the
group of symmetry is one-copy of the Virasoro algebra. The central charge of the algebra
is proportional to the inverse Newton’s constant in two dimensions.

The connection between AdS3 and AdS2 geometries was discussed from the field theory
perspective in [77, 78]. These authors prove that quantising a two dimensional CFT using
Discrete Light Cone Quantisation (DLCQ) is equivalent to decoupling one of the chiral
sectors of a CFT. In this paper we use these ideas to connect AdS3 and AdS2 string
solutions in geometrical fashion.

In the context of JT-gravity, the authors of [80] found flows interpolating between
AdS3 and AdS2 spaces. These correspond to the reduction of AdS3 along a space-like
direction. There may be a relation between those solutions at the IR fixed point, and the
backgrounds we find in this work. The authors of [78] found that black holes with generic
AdS2 near horizon geometry have an entanglement entropy related to the two-dimensional
Newton’s constant, according to,

SEE = 1
G

(2)
N

.

They show that this entanglement entropy coincides with the entropy of a black hole whose
near horizon contains the AdS2. In the present paper we perform explicit holographic
calculations that hint at a relation between three quantities: the number of vacuum states
of the SCQM, the partition function for the one dimensional SCFT when formulated on a
circle and the entropy of a black hole that has AdS2 near horizon geometry.
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We enlarge the classification of SCFTs and AdS2-string backgrounds, dealing with the
case of N = 4 SCQMs and AdS2 string geometries with an SU(2)-isometry. This leads
us to the study of SCQM that are more elaborated than those usually analysed in the
bibliography. We define our SCQM to be the strongly coupled IR fixed point of N = 4
UV-finite quantum mechanical quiver theories, that we precisely specify. Our new N = 4
AdS2 background solutions in Type IIB, are a trustable dual description of the CFT1
dynamics, whenever the number of nodes of the quiver and the ranks of each gauge group
are large. We also need that the flavour groups (geometrically realised on source-branes)
are widely separated in the geometry (we refer to this as the flavour groups being “sparse”).

We present precise proposals for the N = 4 conformal quantum mechanics. We study
various aspects of the SCQMs using the dual backgrounds. These include: number of vacua,
Chern Simons coe�cients, symmetry breaking, expected values of Wilson lines, couplings,
etc. We uncover a novel and intriguing relation between a suitably defined “central charge”
(associated with the number of vacua above mentioned) and the product of electric and
magnetic charges for each Type IIB background.

The contents of this work are distributed as follows. In section 2 we review the AdS3
backgrounds in massive IIA that act as “seed” for our new infinite family of AdS2 solu-
tions in Type IIB. We revisit the two-dimensional N = (0, 4) SCFTs dual to these back-
grounds and improve on the existing bibliography by discussing the superpotential terms.
In section 3 we present our new family of AdS2 backgrounds and study in detail various
geometrical aspects. In section 4 we present a concrete proposal for our N = 4 SCQM
and perform holographic calculations that encode field theoretical aspects of our strongly
coupled CFT1s, with some emphasis on the holographic central charge above mentioned.

In section 5 we discuss a connection between the number of vacua of the SCQM and
the RR sector of our supergravity solutions. We show that the holographic central charge
is related to a product of electric and magnetic charges of the D-branes present in the
background. We also present a new extremal principle in supergravity from which the
central charge of the SCQM can be obtained. Our results extend and generalise those in
the existing literature by the inclusion of sources and boundaries. Moreover they suggest
new ways for the construction of the extremising functionals. In section 6 we present our
conclusions, with an invitation to colleagues working on field theoretical aspects of N = 4
SCQM to check some of our predictions using their favourite exact methods. Various ap-
pendices complement geometrical aspects of the backgrounds. Field theoretical observables
of the strongly coupled quantum mechanical system are also holographically computed.

2 Seed backgrounds and associated CFTs

In this section we review discuss the solutions to massive IIA supergravity (with localised
sources) obtained in the recent work [49]. These backgrounds provide the “seed” from
which the new AdS2 supergravity solutions presented in this work are derived. New results
will also be presented.

For brevity, we restrict ourselves to a particular case of the generic backgrounds in [49].
The generic case is analysed in appendix A. The Neveu-Schwarz (NS) sector of these
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solutions reads,

ds2 = u�
�h4h8

�
ds2AdS3 +

h8�h4

4h8�h4 + (u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2, (2.1)

e�� = h
3
4
8

2�h
1
4
4

�
u

�
4h8�h4 + (u�)2, H3 = 1

2d
�

�� + uu�

4�h4h8 + (u�)2

�
� volS2 ,

where Φ is the dilaton, H = dB2 is the NS 3-form and the metric is written in string frame.
The warping functions �h4, h8 and u have support on �. We denote u� = ��u and similarly
for �h�

4, h
�
8. The RR fluxes are

F0 = h�
8, F2 = �1

2

�
h8 � h�

8u
�u

4h8�h4 + (u�)2

�
volS2 , (2.2a)

F4 = �
�
d

�
uu�

2�h4

�
+ 2h8d�

�
� volAdS3 � ��

�h4volCY2 , (2.2b)

with the higher fluxes related to them as F6 = � �10 F4, F8 = �10F2, F10 = � �10 F0. The
background in (2.1)–(2.2b) is a SUSY solution of the massive IIA equations of motion if
the functions �h4, h8, u satisfy (away from localised sources),

�h��
4(�) = 0, h��

8(�) = 0, u��(�) = 0. (2.3)

The first two are Bianchi identities. Hence the presence of localised sources will be indicated
by delta-function inhomogeneities. In contrast, u�� = 0 is a BPS equation.

The Page fluxes, defined as �F = e�B2 � F , are

�F0 = h�
8,

�F2 = �1
2

�
h8 � h�

8(� � 2�k)
�

volS2 ,

�F4 = �
�

��

�
uu�

2�h4

�
+ 2h8

�
d� � volAdS3 � ��

�h4volCY2 . (2.4)

We have allowed for large gauge transformations B2 � B2 + �kvolS2 , for k = 0, 1, . . . , P .
The transformations are performed every time we cross an interval [2�k, 2�(k + 1)]. The
�-direction begins at � = 0 and ends at � = 2�(P + 1). This will become apparent once
the functions �h4, h8, u are specified below.

Various particular solutions were analysed in [49]. Here we consider an infinite fam-
ily of backgrounds for which the �h4, h8 functions are piecewise continuous. These were
carefully studied in [50–52], where a precise dual field theory was proposed. The above
mentioned range of the �-coordinate is determined by the vanishing of the functions �h4 and
h8. Generically these functions read,

�h4(�) =Υh4(�) =Υ

�
��
��

�0
2� � 0� � � 2�

�k+ �k
2� (��2�k) 2�k � � � 2�(k+1), k= 1, ..,P �1

�P � �P
2� (��2�P ) 2�P � � � 2�(P +1),

(2.5)

h8(�) =

�
��
��

�0
2� � 0� � � 2�

µk+ �k
2� (��2�k) 2�k � � � 2�(k+1), k := 1, . . . ,P �1

µP � µP
2� (��2�P ) 2�P � � � 2�(P +1).

(2.6)
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0 1 2 3 4 5 6 7 8 9
D2 x x x
D4 x x x x x
D6 x x x x x x x
D8 x x x x x x x x x
NS5 x x x x x x

Table 1. BPS brane intersection underlying the geometry in (2.1)–(2.3). The directions (x0, x1)
are the directions where the 2d dual CFT lives. The directions (x2, . . . , x5) span the CY2, on which
the D6 and the D8-branes are wrapped. The coordinate x6 is the direction associated with �.
Finally (x7, x8, x9) are the transverse directions realising an SO(3)-symmetry associated with the
isometries of S2.

The quantities (�k,�k, µk, �k) are integration constants. By imposing continuity we deter-
mine,

�k =
k�1�

j=0
�j , µk =

k�1�

j=0
�j . (2.7)

Below, we summarise aspects of the two dimensional field theories dual to the back-
grounds (2.1)–(2.3) for the solutions determined by eqs. (2.5)–(2.6). We also present new
aspects of these field theories.

2.1 The associated dual SCFTs

As was explained in the papers [50–52], for the functions �h4, h8, u in eqs. (2.5)–(2.6), the
backgrounds in eqs. (2.1)–(2.3) are associated with a Hanany-Witten [91] set-up indicated
in table 1. Using this brane set-up, dual two-dimensional CFTs with N = (0, 4) SUSY
were proposed. These CFTs describe the low energy, strongly coupled dynamics of two
dimensional quantum field theories. The field theories are encoded by the quiver in figure 1.
The di�erence between this quiver and those proposed in [50–52] is the presence of (4, 4)
matter connecting flavour and colour groups. These correspond in figure 1 to the vertical
(bent) lines. In the limit that makes the holographic backgrounds trustable (that is, long
quivers with large ranks and sparse flavour groups), these (4,4) hypermultiplets do not a�ect
the matching of observables discussed in [50–52]. In fact, their contribution is subleading
and not captured by supergravity.

The absence of gauge anomalies constrains the ranks of the flavour groups to be

Fk = �k�1 � �k, F̃k = �k�1 � �k. (2.8)

These are precisely the quantised numbers of D8 and D4 flavour (source) branes derived
from eq. (2.4) These conditions are unchanged by the presence of the N = (4, 4) bifunda-
mentals connecting flavour and colour groups, which (being vectorial) do not count towards
the anomaly.

Numerous checks for the validity of this proposal were presented in [50–52]. The
right-handed central charge of the SCFTs is computed by identifying it with the U(1)R
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α3 αK

µK

α1

F1 F2 F3 FK

F̃1 F̃2 F̃3 F̃K

α2

µ1 µ2 µ3

Figure 1. A generic quiver field theory whose IR is dual to the holographic background defined by
the functions in (2.5)–(2.6). The solid black lines represent (4, 4) hypermultiplets, the wavy lines
represent (0, 4) hypermultiplets and the dashed lines represent (0, 2) Fermi multiplets. N = (4, 4)
vector multiplets are the degrees of freedom in each gauged node.

current two-point function. The works [92, 93] found that for a generic quiver with nhyp
hypermultiplets and nvec vector multiplets the central charge is,

cCFT = 6(nhyp � nvec). (2.9)

The papers [50–52] present a variety of examples of long linear quivers with sparse flavour
groups and large ranks for each of the nodes. In each of these qualitatively di�erent
examples, it was found that the field theoretical central charge of eq. (2.9) coincides with
the holographic central charge (at leading order, when the background is a trustable dual
description to the CFT). Note that this matching is not changed by the presence of the
extra (4, 4) hypermutiplets mentioned above. The “sparse” character of the flavour groups
makes their contribution subleading.

The expression for the holographic central charge derived in [50–52] is,

chol =
3�

2GN
VolCY2

� 2�(P+1)

0
�h4h8d� = 3

�

� 2�(P+1)

0
h4h8d�. (2.10)

We used that GN = 8�6 (with gs = �� = 1) and that ΥVolCY2 = 16�4.

2.1.1 Superpotential
Now, we present a new development, adding value to this review-section. Let us discuss the
superpotential terms that can be written due to the presence of the (4, 4) hypermultiplets
connecting D2-D4 and D6-D8 branes. In two dimensions with N = (0, 4) SUSY, we can
write interactions in terms of a superpotential W [92–95],

S =
�

d2xd�+W, W = ΨaJ
a(Φi). (2.11)

Studying the strings stretched between the di�erent branes in the Hanany-Witten set-up,
we find the massless fields described in figure 2 (left side). We depict only one “interval”
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F D8

F̃ D4

NS1 NS2

MD6

ND2

Y

Σ

Z

Ψ̂

Ψ

F̃

F

N

M

Figure 2. On the left, we plot one cell in the Hanany-Witten set-up, in between the NS-five
branes NS1 and NS2. The solid black lines represent (4, 4) hypermultiplets, the curvy lines (0, 4)
hypermultiplets and the dashed lines (0, 2) Fermi multiplets. On the right, we plot the field content
of one cell in the quiver (same convention). Y,Z are (4, 4) hypers, Σ denotes a (0, 4) hyper. The
(0, 2) Fermi fields are denoted by (Ψ, �Ψ). The gauge nodes contain (4, 4) vector multiplets.

of the whole Hanany-Witten set-up. The blue and red lines denote N -D2 branes and M -
D6 branes, there are also F D8 and F̃ D4 flavour branes. The D2 and D6 colour branes
are joined by a wavy line, representing a (0, 4) hyper (denoted by Σ in the right figure).
Dashed lines represent (0, 2) Fermi multiplets, joining D2-D8 and D4-D6 pairs. These
are denoted by Ψ, �Ψ in the right figure. We also have solid black lines, representing (4, 4)
hypermultiplets, joining D2-D4 and D6-D8 branes and denoted by Y,Z on the right panel of
figure 2. This “interval” is connected via (0, 2) Fermi multiplets and (4, 4) hypermultiplets
with a similar next-interval as indicated in figure 1.

As discussed above, these new (4, 4) matter fields Y,Z have no-e�ect on anomalies and
their e�ect on the central charge is subleading. Their presence was emphasised in [56].
They allow to write a superpotential term.

The superpotential interaction is obtained by closing the “triangle”, contracting in-
dexes appropriately in the circuit D8-D2-D6-D8 and D4-D6-D2-D4. This suggests that we
should include cubic superpotential terms of the form,

W � Y ΣΨ+ ZΣ�Ψ. (2.12)

In appendix B we give more details about the Lagrangian associated with the quiver
QFT in figure 1. Putting together all this information, the full Lagrangian describing the
UV dynamics is written there. This dynamics conjecturally flows in the IR to a CFT with
small N = (0, 4) SUSY [50–52].

After this summary of the “seed” backgrounds and dual SCFTs, let us now focus on
the new infinite family of backgrounds and the associated SCQMs.

3 New Type IIB backgrounds

In this section we present a new infinite family of AdS2 backgrounds of Type IIB super-
gravity. They are obtained by applying T-duality on the seed backgrounds defined by
eqs. (2.1)–(2.3), along a direction inside AdS3.
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Consider the backgrounds of eqs. (2.1)–(2.3). Write AdS3 as a fibration over AdS2,

ds2AdS3 = 1
4

��
d�̃ + �

�2
+ ds2AdS2

�
with d� = volAdS2 . (3.1)

ds2AdS2 = �dt2 cosh2 r + dr2, � = � sinh rdt.

We T-dualise on the fibre direction to obtain the new solutions (more general configu-
rations are discussed in appendix A). These backgrounds have the structure AdS2 � S2 �
CY2 � I� � S1

�. The NS sector reads,

ds2 = u�
�h4h8

�
1
4ds2AdS2 +

�h4h8

4�h4h8 + (u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

(d�2 + d�2) ,

e�2� = h8

4�h4

�
4�h4h8 + (u�)2

�
, H3 = 1

2d
�

� � + uu�

4�h4h8 + (u�)2

�
� volS2 + 1

2volAdS2 � d� ,

(3.2)

where � is the T-dual-coordinate, with range [0, 2�].
The RR sector is given by

F1 = h�
8d� , F3 =�1

2

�
h8 � h�

8u
�u

4h8�h4+(u�)2

�
volS2 �d�+ 1

4

�
d

�
u�u

2�h4

�
+2h8d�

�
�volAdS2 ,

F5 =�(1+�)�h�
4 volCY2 �d� =��h�

4 volCY2 �d�+
�h�

4h8u2

4�h4(4�h4h8+(u�)2)
volAdS2 �volS2 �d� ,

F7 =
4�h2

4h8 �uu��h�
4+�h4(u�)2

8�h4h8+2(u�)2
volCY2 �volS2 �d�

� 4�h4h2
8 �uu�h�

8+h8(u�)2
8h2

8
volAdS2 �volCY2 �d� ,

F9 =�
�h4h�

8u
2

4�h8(4�h4h8+(u�)2)
volAdS2 �volCY2 �volS2 �d� , (3.3)

where F7 = � � F3 = and F9 = �F1. We also quote the explicit expression of �H3,

�H3 = 2�h2
4

4�h4h8 + (u�)2
volCY2 � volS2 � d�

�
�h�

4h8uu� + �h4u� (uh�
8 + h8u�) + 4�h2

4h
2
8

2h2
8
�
4�h4h8 + u�2� volAdS2 � volCY2 � d� .

One can check that the Type IIB equations of motion are satisfied imposing the BPS
equations and Bianchi identities: u�� = 0 and �h��

4 = 0, h��
8 = 0. A violation of the Bianchi

identities is admissible at points where brane sources are located. We consider solutions
like those in eqs. (2.5)–(2.6).
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We perform a large gauge transformation B2 � B2 + k�volS2 . This naturally divides
the interval I� in (P + 1)-cells of size 2�. The Page forms �F = e�B2 � F are,

�F1 = h�
8 d� ,

�F3 =
1
2

�
h�

8(��2�k)�h8
�

volS2 �d�+ 1
4

�
u���h4u� �u�h�

4
�

2�h2
4

+2h8

�
volAdS2 �d� ,

�F5 =
1
16

�(u�(��2�k)u�) (u�h�
4 ��h4u�)

�h2
4

+4(��2�k)h8

�
volAdS2 �volS2 �d�

��h�
4volCY2 �d� ,

�F7 =
1
2

�
�h4 �(��2�k)�h�

4
�

volS2 �volCY2 �d�

�
�
4�h4h2

8 �uu�h�
8+h8(u�)2

8h2
8

�
volAdS2 �volCY2 �d� ,

�F9 =�
�
u2h�

8 �h8uu�+(��2�k)(h8u�2 �uu�h�
8+4�h4h2

8)
16h2

8

�
volAdS2 �volS2 �volCY2 �d�.

(3.4)

To describe the brane set-up, we use that �h4 and h8 are continuous polygonal functions
with discontinuous derivatives, as in eqs. (2.5)–(2.6). We compute,

d �F1 = h��
8d� � d�, d �F3 = �1

2h
��
8 � (� � 2�k)d� � volS2 � d�, (3.5)

d �F5 = ��h��
4d� � volCY2 � d�, d �F7 = �1

2
�h��

4 � (� � 2�k)d� � volS2 � volCY2 � d�,

d �F9 = 0, (3.6)

with

�h��
4 = 1

2�

P�

j=1
(�j�1 � �j)�(� � 2�j), h��

8 = 1
2�

P�

j=1
(�j�1 � �j)�(� � 2�j), (3.7)

�h��
4 � (� � 2�k) = h��

8 � (� � 2�k) = x�(x) = 0.

Inspecting the Page fluxes, the electric parts tell us what type of branes we have in the
system. The exterior derivative of the dual magnetic form d �F8�p being nonzero, indicates
that the Dp brane is a source in the background (flavour branes). In contrast, d �F8�p = 0
indicates that these branes are dissolved into fluxes (colour branes). We then find a brane
set-up consisting of (colour) D1 and D5 branes, extending in between NS-five branes. This
is complemented by (sources) D3 and D7 branes. There are also fundamental strings
dissolved into flux. We list the brane content in table 2 and the associated Hanany-Witten
set-up in figure 3.
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0 1 2 3 4 5 6 7 8 9
D1 x x
D3 x x x x
D5 x x x x x x
D7 x x x x x x x x
NS5 x x x x x x
F1 x x

Table 2. Brane set-up underlying the geometry in (3.2)–(3.3). x0 is the time direction of the ten
dimensional spacetime. The directions (x1, . . . , x4) span the CY2, x5 is the direction associated
with �, (x6, x7, x8) are the transverse directions realising the SO(3)-symmetry of the S2, and x9 is
the � direction.

F0D7 F1D7

F̃0D3

β0D1

ν0D5 (ν0 + ν1)D5

(β0 + β1)D1

F̃1D3

NS NS NS

Figure 3. The Hanany-Witten set-up corresponding to the background in eqs. (3.2)–(3.3).

Let us study the quantised Page charges, defined by integrating the Page magnetic
flux,1

QDp = 1
2�2

10TDp

�
�F8�p =

1
(2�)7�p

�
�F8�p . (3.8)

The functions �h4, h8 are as those in eqs. (2.5)–(2.6). The integrals over volumes are,

ΥVolCY2 = 16�4,
�

d� = Vol� = 2�, VolS2 = 4�.

The di�erent brane charges in each interval [2�k, 2�(k + 1)] are

QD1 =
1

(2�)6
�

�7

�F7 =
�ΥVolCY2

16�4

�
�

�VolS2

4�

�
�

�Vol�
2�

� �
h4 � h�

4(� � 2�k)
�
= �k,

QD3 =
1

16�4

�

�5

�F5 = 1
16�4

�

[�,�5]
d �F5 =

�ΥVolCY2

16�4

�
� Vol�

�
d�h��

4 = �k�1 � �k,

QD5 =
1

4�2

�

�3

�F3 =
�VolS2

4�

�
�

�Vol�
2�

� �
h8 � h�

8(� � 2�k)
�
= µk,

QD7 =
�

�1
F1 =

�

[�,�1]
dF1 = Vol�

�
h��

8d� = �k�1 � �k. (3.9)

Notice that we have used the expression for the second derivatives in eq. (3.7).
1The relevant constants are,

TDp = 1
(2�)pgs�� p+1

2
, 2�2

10 = (2�)7g2
s��4, TNS5 = 1

(2�)5g2
s��3 , �� = gs = 1.
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The structure of singularities in the two ends of the �-interval is studied in appendix C.
Referring to the set-up in table 2 and figure 3, in the [2�k, 2�(k + 1)] interval we have
�k = �k�1

j=0 �j D1 colour branes and µk = �k�1
j=0 �j D5 branes. We also have (�k�1 � �k)

D3 and (�k�1 � �k) D7 sources (flavour branes).
We close here our analysis of the new AdS2 geometries. Below, we present a proposal

for the dual super conformal quantum mechanics. Matchings between holographic and
field theoretical calculations, together with some holographic predictions for these quantum
mechanical systems at strong coupling, are discussed in the next section.

4 Field theory and holography

In this section we discuss the N = 4 super-conformal quantum mechanical theories pro-
posed as duals to our backgrounds in eqs. (3.2)–(3.3). As anticipated in section 2.1, we
provide a UV N = 4 quantum mechanics, that conjecturally flows to a super conformal
quantum mechanics dual to our AdS2 backgrounds.

The bottomline is that the quantum mechanical quiver is the dimensional reduction
of the two dimensional QFTs presented in section 2.1. Let us discuss two approaches into
the quantum mechanical theory.

One approach is based on the works [73, 77, 78]. In these papers it is suggested that
the transition from AdS3 to AdS2 should be thought of in CFT2 � CFT1 language as a
discrete light-cone quantisation of the two dimensional CFT. This is to be taken in a limit
such that, of the original SL(2,R)� SL(2,R) symmetry of the seed CFT2, only one of the
sectors is kept. The other sector needs infinite energy to be excited. Writing the boundary
metric of AdS3 as a cylinder, ds2 = �dt2 + d�2, and changing coordinates to u = t + �

and v = t � �, we have ds2 = �dudv. In these variables the identification of coordinates
[t,�] � [t,� + 2�R] demands [u, v] � [u� 2�R, v + 2�R]. The scaling u � e�u, v � e��v

keeps the metric invariant. In the limit � � �, keeping Re� = R̃ fixed, the CFT2 then
lives on a space consisting on time and a null-circle. The energies scale in such a way that
the left sector decouples and the right sector has En = n

R̃
(see [77, 78] for the details).

The T-dualisation along the �̃-direction performed in section 3 is equivalent to starting
with a given N = (0, 4) SCFT2 as those described in section 2.1 and DLCQ it, keeping the
N = 4 SUSY right sector. Similar ideas have been discussed recently in [85]. In purely
field-theoretical terms, we start with the Lagrangian alluded to in section 2.1 (written in
appendix B) and dimensionally reduce it to a matrix model where we keep only the time
dependence and the zero modes in the �̃-direction.

A second interesting way to think about our quantum mechanical theory is inspired
by the works [96, 97]. In these references the same brane set-up depicted in table 2 was
proposed in order to describe half-BPS Wilson and ’t Hooft loops in 5d gauge theories
with 8 supercharges. These defects were described by quiver quantum mechanics with
the same field content that we described in section 2.1, after dimensional reduction. Our
quiver quantum mechanics exhibit however additional constraints, that are inherited from
the anomaly cancelation conditions of the seed 2d CFT. We will see in [98, 99] that more
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general quivers such as the ones constructed in [96, 97] are dual in the IR to AdS2 solutions
not related to AdS3 upon T-duality.

In summary, our proposal is that the dynamics of the UV quantum mechanical systems
of interest, is described by the dimensional reduction along the space-direction of the N =
(0, 4) SCFT2 discussed in section 2.1. To be concrete: consider the Type IIB backgrounds
described in eqs. (3.2)–(3.3) with the functions �h4, h8 given in eqs. (2.5)–(2.6). These
solutions are dual to an N = 4 superconformal quantum mechanics that arises in the IR
of a generic quiver quantum mechanics, with the matter content depicted in figure 1. The
dynamics is inherited from the two-dimensional N = (0, 4) Lagrangian by dimensional
reduction. We can read the ranks of colour and flavour groups from the Page charges
computed in eqs. (3.9). In the kth entry, corresponding with the [2�k, 2�(k + 1)] interval
of the geometry, we have U(�k) and U(µk) colour groups — with �k = �k�1

j=0 �j , µk =�k�1
j=0 �j . These are coupled via bifundamental hypermultiplets and Fermi multiplets with

the adjacent nodes. The connections with the kth flavour groups of ranks SU(�k�1 � �k)
and SU(�k�1 � �k) is mediated by Fermi fields and by bifundamental hypermultiplets.

The authors of [97] impose that the numbers of D3 and D7 (sources/flavour) branes
must equal the di�erence of two integers. In our formalism this is automatic. The integers
are identified with the ranks of the colour groups (be it D1 or D5) on each side of the
interval. We have that the number of D3 sources is (�k�1 ��k) and analogously (�k�1 ��k)
for the number of D7 flavours. These numbers are positive as guaranteed by the convex
character of our polygonal functions �h4, h8. The quiver is identical to and inherited from
that of the two-dimensional “mother” theory — see figure 1. The superfields involved in
writing the Lagrangian are also inherited, as explained in appendix B.

In what follows, we perform some holographic calculations that inform us about the
strong dynamics of these conformal quantum mechanical quivers.

4.1 The holographic central charge

The definition of central charge in conformal quantum mechanics is subtle. In a one-
dimensional theory, we have only one component of Tµ� . If the theory is conformal, the
trace of this quantity must vanish, and this implies that Ttt = 0. One way to think about
central charge is to consider a conformal quantum mechanics which has many ground states
(but no excitations). One may associate this quantity with the “central extension” of the
Virasoro algebra that appears in the global charges of the two-dimensional dual gravity, as
discussed in [74–76]. We can also associate this “central charge” with the partition function
of the quantum mechanics when formulated on a circle, as discussed for example in [83].

Though we refer to it as “holographic central charge” the quantity that we present
below should be interpreted as a “number of vacuum states” in the associated SCQM. To
define it, we shall use the logic discussed in [100–102].

We follow the prescription in [101, 102]. Being the field theory zero-dimensional,
some of the steps in the calculation need some care. The relevant quantity in this case is
the volume of the internal space (the part not belonging to AdS2). Analogously, we are
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computing Newton’s constant in an e�ective two-dimensional gravity theory,

1
GN,2

= Vint
GN,10

. (4.1)

Following the formalism of [101, 102] for the backgrounds described in eqs. (3.2)–(3.4),
we find

Vint =
�

d8x
�
e�4� det g8,ind =

�VolCY2VolS2Vol�
4

� � 2�(P+1)

0
�h4h8d�. (4.2)

The comparison with eq. (2.10) indicates that, under suitable rescaling, this quantity is
related to the central charge of the seed 2d SCFT.

We define the “holographic central charge” of the conformal quantum mechanics to be

chol,1d =
3

4�G2
= 3Vint

4�GN
. (4.3)

Computing explicitly with eq. (4.2) and using that (in the units gs = �� = 1) GN = 8�6,
we find

chol,1d =
3
�

� 2�(P+1)

0
h4h8d�, (4.4)

in agreement with the two-dimensional result in eq. (2.10). This is compatible with the
findings of the paper [77], that suggest that the chiral sector remaining when DLCQ is
applied to a 2d CFT has the same central extension in the Virasoro algebra.

On purely field theoretical terms, this result tells us that the number of vacua of the
N = 4 SCQM obtained by dimensional reduction of the two-dimensional “mother theory”,
responds to the expression obtained in [93], namely

cqm = 6(nhyp � nvec). (4.5)

The numbers of N = 4 hyper and vector multiplets in the one dimensional theory are
inherited from those in the two dimensional “mother” theory. The agreement between cqm
in eq. (4.5) and cCFT in eq. (2.9) is the field theoretical translation of the equality of the
holographic central charges in two dimensions, eq. (2.10), and in one dimension, eq. (4.4).

It is interesting to draw a comparison with the works [103–106]. These papers make
crucial use of the dimension of the Higgs branch for a quiver quantum mechanics with
gauge group ΠvU(Nv) and bifundamentals joining each colour group with the adjacent
ones. This quantity is given by,

M =
�

v,w

NvNw �
�

v

N2
v + 1. (4.6)

We propose that the calculation in eq. (4.4) captures the same information as eq. (4.6).
Note that our quantum mechanical theories have a field content that is more involved than
the ones considered in [103–106]. Let us illustrate this with an example (similar calculations
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ν 2ν Pν (P + 1)ν

(P + 1)ββ 2β Pβ

Figure 4. The quantum mechanical system that conjecturally flows in the IR to the SCQM
described by the backgrounds obtained from eqs. (4.7)–(4.8).

can be done for other quivers). The example we choose is represented by the functions,

h8(�) =
�

�
2� � 0 � � � 2�P

�P
2� (2�(P + 1) � �), 2�P � � � 2�(P + 1). (4.7)

�h4(�) = Υh4(�) = Υ
�

�
2� � 0 � � � 2�P

�P
2� (2�(P + 1) � �), 2�P � � � 2�(P + 1). (4.8)

According to the rules presented in section 4, the N = 4 quantum mechanical quiver is
the one depicted in figure 4. We calculate the expressions for the one dimensional central
charge cqm in eq. (4.5) and its holographic counterpart chol,1d in eq. (4.4). These expressions
should coincide in the holographic limit with the dimension of the Higgs branch in eq. (4.6).
Using the definitions in eqs. (4.4) and (4.5) we calculate

nhyp =
P�

j=1

�
j(j + 1)(�2 + �2) + j2��

�
, nvec =

P�

j=1
j2(�2 + �2), (4.9)

cqm = 3P (P + 1)(�2 + �2) + (2P + 1)(P + 1)P�� � 2��P 3

chol,1d = 2��(P 3 + P 2) � 2��P 3.

We see that in the holographic limit (large P, �,�) the results of eqs. (4.4) and (4.5) coincide.
At the same time we see that the dimension of the Higgs branch moduli space in eq. (4.6) is
precisely counting the number of hypers minus the number of vectors. Note that our quiver
has hypers joining the links not only “horizontally” but also “vertically”, in comparison
with the quivers considered in [103–106].

Following [50–52], the reader can produce a variety of test-examples showing the coin-
cidence of the calculations of eqs. (4.4), (4.5) and (4.6) in the holographic limit (it should
be interesting to explore sub-leading corrections!). We shall come back to the holographic
central charge and relate it to an extremisation principle in section 5.

Let us now discuss predictions for the strong coupling dynamics of our SCQMs.

4.2 Chern-Simons terms

Let us discuss the possible “dynamical” term for the gauge multiplet. In (0+1) dimensions
this is a Chern-Simons (CS) term. Let us motivate their presence with a small detour
on anomalies.

The authors of [107] present a detailed study on the conflict between gauge symmetry
and global symmetry (charge conjugation in this case). They study the action of l-fermions
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on a time circle of size T , in the presence of a U(1) gauge field At(t). The system has
Lagrangian, gauge and charge conjugation transformations given by,

L = �̄(i�t +At)�.
� � ei��, �̄ � �̄e�i�, At � At + �tΛ(t), At � �At. (4.10)

For configurations that are periodic in the circle, the partition function (for l fermions with
the above Lagrangian) is,

Z =
�
D�D�̄e�i

� T

0 dtL = det(i�t +At)l = (1 + eia0T )l, (4.11)

a0T =
� T

0
At(t)dt.

This is invariant under both large and small gauge transformations, but not under charge
conjugation. A way to recover the charge conjugation invariance is through the introduction
of a counterterm

Lct = e�ik
� T

0 Atdt = e�ika0T . (4.12)

This is a CS-term. In itself, it is gauge invariant but not charge conjugation invariant. If
2k = l, its presence cancels the lack of invariance under charge conjugation in eq. (4.11).
We can regularise the partition function of an even number of fermions, such that gauge
invariance and charge conjugation are both preserved. If the number of fermions is odd,
we just loose the charge conjugation invariance.

In summary, for the case of (0 + 1)-dimensions the Chern-Simons term is of the form

SCS = �CS

�
dtAt.

The coe�cient �CS must be quantised. As above, consider the theory on a circle of length
T . Performing a large gauge transformation, At � At + �tΛ with parameter Λ = 2�n

T t, we
find that the Chern-Simons action changes,

SCS � SCS + �CS2�n.

Imposing that eiSCS is single-valued under large gauge transformations, we find that
ei2�n�CS = 1, which quantises the Chern-Simons coe�cient.

4.2.1 Holographic calculation of the Chern-Simons coe�cients

Let us holographically compute the Chern Simons coe�cients for each gauge group in the
quantum mechanical quiver derived by dimensional reduction of that in figure 1. The
presence of the CS term is of non-perturbative origin. We calculate it using the Type IIB
AdS2 description of the system. To do so we use a D1 brane probe extended in [t, �], with
a gauge field (of curvature Ft�) excited on it. The Wess-Zumino term for the D1 brane
probe reads,

SWZ=TD1

�
Cp � e2�F2 =TD1

��
C2+2�

�
C0Ft�dtd�

�
= �2�TD1

�
dt

�
d�At��C0. (4.13)
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In the last equality we have used that the RR field C2 has no pull-back on this probe.
Moreover, we have set the gauge A� = 0 and imposed that the gauge field At takes the
same values at the extrema of the interval. Keeping in mind that the axion field C0 is only
well-defined in regions where h�

8 is a constant,2 where it reads C0 = h�
8�, we find,

SWZ = �2�TD1

�
dtd�At(t, �)�h��

8 = �2�TD1�(�k�1 � �k)
�

dtAt(t, 2�k) = �CS,I

�
Atdt.
(4.14)

Using eq. (4.13) we have that the Chern-Simons coe�cient in the interval [2�k, 2�(k + 1)]
is then given by,

�CS,I [k, k + 1] = �
(�k�1 � �k)

2�
. (4.15)

Therefore, in order to keep the CS coe�cient well quantised, we can allow discrete changes
of the coordinate �,

� � � +
� 2�l

�k�1 � �k

�
, with l = 1, . . . , (�k�1 � �k). (4.16)

These changes indicate that not all positions in � are allowed for the D1 probes. In other
words, the U(1)� isometry of the background is broken to Z�k�1��k . On the other hand,
the presence of the source D7 branes implies a change in the Chern-Simons coe�cient, as
the slopes of the function h8 change.

A very similar calculation for a D5 brane that extends on [t, �,CY2] gives a Chern
Simons coe�cient for the gauge groups in the lower row that is

�CS,II[k, k + 1] = �
(�k�1 � �k)

2�
. (4.17)

We find that the U(1)� is broken to Z�k�1��k and Z�k�1��k , by the Chern-Simons terms
in the lower and upper rows respectively. If they have no common subgroups the U(1)�

is completely broken. Notice also that the sum of all the Chern-Simons coe�cients gives�
k �CS[k, k + 1] = NF�, where NF is the sum of the total number of D7 brane sources in

the upper row and the total number of D3 branes sources in the lower row.
These are non-trivial predictions for the strongly coupled dynamics of our N = 4

SCQM. In appendix D we discuss additional ones. We now go back to discussing the
holographic central charge from two di�erent perspectives.

5 Holographic central charge, electric-magnetic charges and a minimisa-
tion principle

In this section we present di�erent ways of understanding the holographic central charge
given by eq. (4.4). We give a two-fold presentation. In section 5.1, that is more physically
inspired, we show that the expression in eq. (4.4) is related to a product of electric and mag-
netic charges associated with our backgrounds. In section 5.2 we present a more geometrical
approach, finding that the expression (4.4) can be obtained via an extremisation principle.

2Due to the presence of sources, see eqs. (3.4)–(3.5), the axion field is not globally defined.
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5.1 The relation between central charge and Page fluxes

We study the link between the holographic central charge of the SCQM in eqs. (4.2)–(4.4)
with the integral of electric and magnetic fluxes in the ten dimensional space. We see this
explicitly by working with the Page fluxes in eqs. (3.4).

This calculation is the string theoretic realisation of an argument presented in [74] for
two dimensional AdS2 gravity. In this reference it was proposed that the central charge
of the SCQM should be related to the (square of the) electric field in an e�ective AdS2
gravity theory coupled to a gauge field.

Consider a Dp brane, to which we can associate electric �Fp+2 and magnetic �F8�p Page
field strengths. We define the “density of electric and magnetic charges”, �eDp and �mDp, as
the forms

�eDp = 1
(2�)p

�Fp+2, �mDp = 1
(2�)7�p

�F8�p. (5.1)

The electric charge, obtained by integration of the charge density form, will turn out to
be infinite, as it involves the integration of the volume form of the non-compact AdS2
spacetime. We will work with these definitions, having in mind that a regularisation will
be necessary after the integrations are performed, see for example [108].

Consider the product of electric and magnetic charge densities in eq. (5.1), and its
integration over all space for the D-branes present in our backgrounds. We show that
(after regularisation) this product is proportional to the holographic central charge given
by eq. (4.4).3 We calculate the integral of electric and magnetic densities in eq. (5.1)
using the Page fluxes derived in eq. (3.4), and the ordered basis [t, r, S2,CY2, �,�]. The
calculation leads to

� 3�

k=0
(�1)k�eD(2k+1)�

m
D(2k+1) (5.2)

=
�

d�

��h4h8
2 + 1

16��

�
2uu� �u2

�
(�h4h8)�

�h4h8

���
VolAdS2

�VolS2

4�2

��VolCY2

16�4

��Vol�
2�

�
.

Up to a boundary term, this is proportional to eq. (4.4), the expression for the holographic
central charge of our AdS2 backgrounds.

Hence, we learn that the holographic central charge in eq. (4.4), measuring the number
of vacua of the associated SCQM, is proportional to the (regularised) product of electric
and magnetic charge densities. We see this relation as a generalisation of the proposal
in [74], showing that the central charge in the algebra of symmetry generators of AdS2
with an electric field is proportional to the square of the electric field. In our case, for a
fully string theoretic set-up, we have objects with electric and magnetic charges and both
enter the calculation.

This links the holographic central charge, usually calculated from the dilaton and the
metric of the internal space, as shown by equations (4.1) and (4.2), with an expression

3In order to show this we use that only one of the components of �F5 � �F5 needs to be taken into account,
due to its self-duality, and that some sign flips are necessary in order to work with the absolute values of
the charges and avoid unwanted cancellations.
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purely in terms of the RR-sector. It would be nice to see a similar logic at work in higher
dimensional AdS-solutions.

5.2 An extremisation principle

In this section we present a minimisation principle in supergravity that will lead to the
expression for the holographic central charge in eq. (4.4). Our presentation falls in line with
the ideas that extremisation problems in quantum field theory are realised in supergravity
through the extremisation of certain geometrical quantities. Various examples exist of this
mirroring of extremal principles. The most relevant to us are the ones studied in [83, 109–
113]. In these papers a geometrical quantity is defined in supergravity that coincides upon
extremisation with the holographic central charge of the systems under study. In some
cases this defines the central charge of the dual field theory. We point out some extensions
and di�erences with the approach of [83, 109–113].

Let us follow the idea of [109, 110]. These authors consider a particular family of
backgrounds (in eleven dimensional supergravity) of the form AdS2 � Y9, containing an
electric flux F4 and preserving N = (0, 2) SUSY. Aside from the AdS2 factor, these
backgrounds are quite di�erent from the ones we discuss here (or their lift to M-theory,
in the case in which h8 is constant [55]). Nevertheless, the lesson from [109, 110] is that
the central charge can be written in terms of an extremised functional. This functional
is defined as an integral of various forms in the geometry Y9, and it is such that, once
extremised, equals a weighted volume of the internal space. Importantly, the manifold Y9
in [109, 110] has no boundary. In our case, we have a boundary and we allow for the
presence of sources.

In order to implement these ideas we define certain di�erential forms on the X8 internal
space tranverse to our AdS2 solutions, X8 = [S2,CY2, �,�]. We construct these forms
restricting the Page forms in eq. (3.4) to the manifold X8. For example, from �F1 we
generate the one-form

�F1 �� J1 = h�
8d�. (5.3)

From the Page form �F3 in eq. (3.4) we generate a second one-form, plus a three-form,

�F3 �� F1 =
�
h8
2 + u�2�h4 � uu��h4

8�h2
4

�
d�, J3 = �1

2(h8 � h�
8(� � 2�k))volS2 � d�. (5.4)

The other forms generated from the Page fluxes are,

F3 =
1
16

�(u�(��2�k)u�)(u�h�
4��h4u�)

�h2
4

+4(��2�k)h8

�
volS2 �d�,

J5 =��h�
4volCY2 �d�, F5 =�

�
4�h4h2

8�uu�h�
8+h8(u�)2

8h2
8

�
volCY2 �d�,

J7 =
1
2(

�h4��h�
4(��2�k))volCY2 �volS2 �d�, (5.5)

F7 =�
�
4(��2�k)�h4h2

8+u2h�
8�h8uu��(��2�k)uu�h�

8+(��2�k)h8u�2

16h2
8

�
volCY2 �volS2 �d�.
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With the forms in eqs. (5.3)–(5.5), we define the functional,

C = i

�

X8
(J3+ iF3)�(J5+ iF5)�(J1+ iF1)�(J7+ iF7) (5.6)

= 1
16

�

X8

�
8�h4h8+u2

��h�2
4

�h2
4
+ h�2

8
h2

8

�
�2uu�

��h�
4

�h4
+ h�

8
h8

�
+2u�2

�
volCY2 �volS2 �d��d�.

Let us remind that the functional C is defined in terms of the restriction on X8 of the Page
fluxes. This can be minimised by imposing the Euler-Lagrange equation for u(�) from the
“Lagrangian” in eq. (5.6). This equation reads

2u�� = u

��h��
4

�h4
+ h��

8
h8

�
. (5.7)

Imposing the Bianchi identities
h��

8 = 0, �h��
4 = 0, (5.8)

this leads us to the BPS equation of our class of solutions (3.2)–(3.3),4

u�� = 0. (5.9)

Note that the fluxes are quantised, due to the type of solutions we consider for �h4, h8 — see
eqs. (3.9). It is interesting that here we impose the Bianchi identities in eq. (5.8) leading to
the BPS eq. (5.9). This is di�erent from the procedure followed in previous bibliography.

On the solutions to eqs. (5.8), (5.9), which we refer to as “on-shell’, the functional is
extremised to be,

C|on-shell =
�VolCY2VolS2Vol�

2

� � 2�(P+1)

0

�
�h4h8 + ��M

�
d�. (5.10)

with M = 1
8

�
2uu� � u2

��h�
4

�h4
+ h�

8
h8

��
.

We now compare equations (4.4) and (5.10). Up to a boundary term (present in X8 but
not in the boundary-less Y9 of [109, 110]), the inverse Newton’s constant in two dimensions
in eq. (4.1), the internal volume Vint in eq. (4.2) and the C|on-shell in eq. (5.10), all converge
into the same calculation. Our proposed duality implies that these geometrical quantities
count the number of vacua of the dual SCQM, according to eqs. (4.4)–(4.5).

Let us come back to eq. (5.6), and analyse it for the case in which we have sources.
After integration by parts we write it as,

C = 1
16

�

X8

�
8�h4h8 +N + ��M

�
d�, with

N = u2
��h��

4
�h4

+ h��
8
h8

�
, M = 2uu� � u2

��h�
4

�h4
+ h�

8
h8

�
.

4Below, we analyse the situation in which sources are present. This implies the presence of delta-function
sources as in eq. (3.7).
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Using eq. (3.7), the term N can be seen to give a finite result proportional to the quotient
of the number of flavours by the number of colours in each node. Let us understand the
boundary term in more detail. For the solutions in eqs. (2.5)–(2.6) the boundary term is
divergent. We can associate this divergence with the presence of sources. Consider for
example a solution for �h4, h8 of the type in eqs. (2.5)–(2.6) with u = u0 (a constant). In
that case evaluating the boundary term we find

� 2�(P+1)

0
��M = lim

��0

u2
0
�
(�0 + �0 + �P + µP ) = lim

��0

u2
0
�

�
N total

D3 +N total
D7

�
. (5.11)

We have used that �h4(� = 0) = h8(� = 0) = � and the same for the corresponding values at
� = 2�(P +1). Then we take � � 0, finding a divergent result in terms of the total number
of sources present in the background. Notice that in the limit of long quivers (P large)
with large ranks for colour group nodes U(�k) and U(µk) and sparse flavour groups, both
the boundary term M and the bulk term N , conveniently renormalised, are subleading in
these numbers (P,�k, µk) with respect to the first term, proportional to the holographic
central charge in eq. (4.4). For this we need to define the functional C in eq. (5.6) with a
suitable counter-term that removes the divergence when � � 0.

It should be interesting to attempt the calculation presented here in di�erent systems,
like those in [51] or in higher dimensional AdS-spaces, to check if similar extremisation
principles are at work. In particular, it would be interesting to understand the geometrical
meaning of the forms in eqs. (5.3)–(5.5).

In summary, the presentation above shows that the holographic central charge, origi-
nally defined purely in terms of the NS-NS sector — see eqs. (4.2)–(4.4), is also encoded
in the forms of eq. (5.5) and the functional (5.6). The contents of this section link the
holographic central charge with the product of electric and magnetic brane charges and
with an extremisation principle. These geometrical quantities are capturing the number of
vacua of the N = 4 SCQM.

6 Summary and conclusions

Given that this is a long and dense paper, the reader may find useful to start with a
summary. We describe the main new ideas and calculations presented, pointing to the
sections and equations that best describe them.

We start in section 2 with a summary of the seed-backgrounds in massive IIA, dual
to two-dimensional N = (0, 4) SCFTs. The new material is written in section 2.1. There
we discuss in detail the field content of the two dimensional field theories. Also, in sec-
tion 2.1.1 we presented the superpotential for these two-dimensional field theories. Details
and generalisations are given in appendices A), (B.

In section 3, we have constructed new AdS2 solutions to Type IIB supergravity
with N = 4 supersymmetry. This infinite family of solutions is precisely written in
eqs. (3.2)–(3.7). The Page charges are calculated and the Hanany Witten set-up sum-
marised in table 2.
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In section 4, we propose explicit quiver quantum mechanics that should flow in the
IR to the SCQM dual to the backgrounds in section 3. Some aspects of the dynamics of
the SCQM have been calculated using the dual description. For example the number of
vacua, that we equated with the holographic central charge of the SCQM. This quantity
is derived in eqs. (4.1)–(4.4). Our expressions are tested with an example in eqs. (4.7)–
(4.9), showing the precise match between a field theory and holography calculations. The
holographic central charge is in turn identified with the partition function of the quantum
mechanics when formulated on a circle [83]. We have seen that this quantity is related
to the “seed” two-dimensional N = (0, 4) SCFT right-moving central charge. This is an
explicit manifestation of the DLCQ upon which both CFTs are related. In this section
we also presented predictions for the conformal quantum mechanics. For example, we
calculated the Chern-Simons coe�cients in eqs. (4.13)–(4.17). This lead to a prediction for
the number of vacua and the anomalous breaking of the symmetry U(1)�. Wilson loops,
baryon vertices and gauge couplings have been studied in appendix D.

In section 5, we link the holographic central charge (a quantity originally defined in
terms of the NS-NS sector of the solutions) to the RR sector of our AdS2 backgrounds. In
particular, we have shown that it is related to the integral of the product of the electric
and magnetic charge densities of the D-branes present in the system — see eq. (5.2).
This generalises the proposal in [74], where the central charge in the algebra of symmetry
generators of AdS2 is related to the square of the electric field. In our controlled string
theory set-up, all electric and magnetic charges of the D-branes present in the solution
enter the calculation. In this same section, we have presented an extremisation principle
following the general ideas about geometric extremisation in [83, 109–113], from which we
have derived the holographic central charge. Our extremising functional is constructed in
terms of the electric and magnetic RR fluxes associated to the solutions, see eqs. (5.3)–(5.6).
Our results extend those in [83, 109–113], by the presence of sources and boundaries.

Let us end with some proposed research for the future. It would be interesting to see if
a similar relation between the holographic central charge and products of Ramond fluxes,
holds for other classes of solutions, especially higher dimensional ones. That would allow
for a physical principle underlying the construction of the purely geometric extremising
functional. Moreover, it would be interesting to find a field theory interpretation for the
extremisation construction found for our AdS2 solutions. Being the R-symmetry non-
Abelian it is not clear why an extremisation should be necessary in order to identify the
right R-symmetry from which the central charge should be constructed. This issue clearly
deserves a more careful investigation.

It would be interesting to relate, in the holographic regime, the calculations of an
index (at leading order) with our holographic central charge. More generally, it would be
interesting to apply exact calculation techniques to our quiver quantum mechanics in order
to understand the properties of the SCQM in the infrared. Related to this is the possibility
of learning about supergravity using exact results, along the lines of [114].

It would be interesting to find a defect interpretation for our AdS2 solutions, possibly
along the lines in [115]. In this reference the AdS3 “seed” solutions from which our AdS2
solutions have been constructed were interpreted as surface defects within the 5d Sp(N)
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gauge theory dual to the AdS6 Brandhuber-Oz background [11]. It is likely that, upon T-
duality, our solutions would find a similar interpretation, this time in terms of line defects,
within the T-dual of the Brandhuber-Oz background [13, 23]. It would be interesting to
find a flow interpolating these solutions with this AdS6 background. These flows may be
found in six dimensional supergravity, like those in [47, 48, 66, 115–117].

It should be possible to try to find compactifications of Type IIB supergravity to AdS2
times an eight manifold, of the form M8 = S2 � CY2 � S1

� � I�. Having these gauged
supergravities may allow to study flows away from AdS2, along the lines of those in [118].

Finding an interpretation of our solutions in the context of 4d black holes is clearly
a direction that should be investigated, possibly along the di�erent lines of [85, 119–122].
It should be important to clarify the relation between the number of vacua/holographic
central charge and the entropy of these black holes, as advanced around eq. (4.1). It
would be interesting to understand the role of the freedom in choosing �h4, h8 and their
implications for black holes. Similarly, it would be interesting to explore the uses of the
formalism developed in [123, 124], applied to our particular systems. Along this line, the
possibility of understanding our AdS2 backgrounds as the emergent dynamics in [125, 126]
is interesting to explore.

We hope to tackle some of these problems in the near future.
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A AdS3 and AdS2 backgrounds in full generality

In section 2 we discussed a particular set of solutions in class I of the paper [49] and
in section 3 we discussed the T-dual of these “seed” backgrounds. In this appendix we
summarise the general backgrounds in class I of [49] and perform the T-duality on the
AdS3 fibre, generating AdS2 backgrounds that generalise those of section 3.

The Neveu-Schwarz sector of the generic AdS3 backgrounds in [49] reads,

ds2 = u�
�h4h8

�
ds2AdS3 +

�h4h8

4�h4h8+(u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2 ,

e�� = h
3/4
8

2�h1/4
4

�
u

�
4�h4h8+(u�)2 , H3 =

1
2d

�
��+ uu�

4�h4h8+(u�)2

�
�volS2 + 1

h2
8
d��H2 .

(A.1)
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Here the metric is given in the string frame, Φ is the dilaton and H3 = dB2 is the NS
three-form. In the general case the warping function �h4 has support on (�,CY2). The RR
fluxes are,

F0 = h�
8 , F2 = � 1

h8
H2 � 1

2

�
h8 � h�

8uu
�

4h8�h4 + (u�)2

�
volS2 ,

F4 = �
�

d
�
uu�

2�h4

�
+ 2h8d�

�
� volAdS3 � ��

�h4volCY2 � h8
u
(��4d4�h4) � d�

� uu�

2h8(4�h4h8 + (u�)2)
H2 � volS2 ,

(A.2)

with the higher fluxes related to these as F6 = � �10 F4, F8 = �10F2, F10 = � �10 F0, and
where ��4 is the Hodge dual on the CY2. It was shown in [49] that supersymmetry holds
whenever,

u�� = 0 , H2 + ��4H2 = 0 , (A.3)
which makes u a linear function of �. H2 can be defined in terms of three functions g1,2,3
on CY2,

H2 = g1(�e1 � �e2 � �e3 � �e4) + g2(�e1 � �e3 + �e2 � �e4) + g3(�e1 � �e4 � �e2 � �e3), (A.4)

where �ei are a canonical vielbein on CY2 (see section 3.1. of [49]). Hence, the Bianchi
identities of the fluxes impose (away from localised sources),

h��
8 = 0 , dH2 = 0,
h8
u

�2
CY2

�h4 + �2
�
�h4 +

2
h3

8
(g2

1 + g2
2 + g2

3) = 0.
(A.5)

In the case when H2 vanishes and �h4 has support on the � coordinate only, we are in the
case of the solutions reviewed in section 2.

We T-dualise the previous backgrounds on the Hopf direction of AdS3 by parametrising
it as in (3.1). Performing T-duality on �̃ results in the dual NS sector,

ds2 = u�
�h4h8

�
1
4ds2AdS2 +

�h4h8

4�h4h8+(u�)2
ds2S2

�
+

�
�h4
h8

ds2CY2 +

�
�h4h8
u

(d�2+d�2) ,

e�2� = h8

4�h4

�
4�h4h8+(u�)2

�
,

H3 =
1
2d

�
��+ uu�

4�h4h8+(u�)2

�
�volS2 + 1

h2
8
d��H2+

1
2volAdS2 �d� ,

(A.6)

and the RR sector is,
F1 = h�

8d� ,

F3 =�1
2

�
h8 � h�

8u
�u

4h8�h4+(u�)2

�
volS2 �d� � 1

h8
H2 �d�+ 1

4

�
d

�
u�u

2�h4

�
+2h8d�

�
�volAdS2 ,

F5 =�(1+�10)
�

��
�h4volCY2 +

h8
u
(��4d4�h4)�d�+ uu�

2h8(4�h4h8+(u�)2)
H2 �volS2

�
�d� ,

(A.7)
where F7 = � �10 F3 = and F9 = �10F1.
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In the case when H2 vanishes and �h4 has support on the � coordinate only, we are in
the case of the solutions constructed in section 3.

B N = (0, 2) and N = (0, 4) theories and quantum mechanics

In this appendix we briefly discuss the QFTs that conjecturally flow in the IR to a strongly
coupled CFT. The discussion requires some standard aspects of two dimensional N = (0, 2)
and N = (0, 4) supersymmetric theories. As these are well summarised in other works —
see for example [92–94] — we shall not give too many details.

N = (0, 2) multiplets. Let us list the field components of the three types of N = (0, 2)
multiplets, namely the vector U , chiral Φ and the Fermi Ψ multiplets

U : (uµ, ��, D) , Φ : (�,�+) , Ψ : (��, G) . (B.1)

The subscript on the fermions refers to their chiralities under the SO(1, 1) Lorentz group.
D is a real and G a complex auxiliary field.

A vector U has the following expansion in superspace5

U = u0 � u1 � 2i�+�̄� � 2i�̄+�� + 2�+�̄+D . (B.2)

The corresponding field strength is obtained by means of

Υ = [D+,D�] = ��� � i�+(D � iu01) � i�+�̄+(D0 +D1)�� , (B.3)

where D+ and D� are the supercovariant gauge derivatives [95]. It turns out that Υ is a
Fermi multiplet — it satisfies D+Υ = 0. We shall give a more precise definition of a Fermi
multiplet momentarily.

A chiral field Φ is a superfield that satisfies the following equation

D+Φ = 0 , (B.4)

and therefore expands out in components as

Φ = � +
�
2�+�+ � i�+�̄+(D0 +D1)� , (B.5)

where D0 and D1 stand for the time- and space-components of the usual covariant deriva-
tive.

A Fermi superfield instead satisfies the following equation

D+Ψ = E(Φi) , (B.6)

where E(Φi) is a holomorphic function of the chiral superfields Φi. E should be chosen
in such a way that it transforms as Ψ under all symmetries. Solving (B.6) leads to the
following expansion for Ψ

Ψ = �� � �+G � i�+�̄+(D0 +D1)�� � �̄+E(�i) � �+�̄+ �E

��i
�+i , (B.7)

5N = (0, 2) superspace is parametrised by two real spacetime coordinates, x± = x0 ± x1, and two
complex Grassmann variables �+ and �

+ subject to a reality constraint.

– 24 –



J
H
E
P
0
3
(
2
0
2
1
)
2
7
7

where G is an auxiliary complex field. The holomorphic function E can be shown to appear
in the Lagrangian as a potential term. There is also another type of superpontential we
can consider for N = (0, 2) theories. For each Fermi multiplet Ψa we can introduce a
holomorphic function Ja(Φi) such that

SJ =
�

d2xd�+ �

a

Ja(Φi)Ψa + h.c. . (B.8)

It must be stressed that the superpotentials E and J cannot be introduced indepen-
dently. It turns out that, in order for supersymmetry to be preserved, they have to satisfy
the following constraint

E · J =
�

a

EaJ
a = 0 . (B.9)

Let us now move on to listing N = (0, 4) supermultiplets.

N = (0, 4) multiplets. N = (0, 4) supermultiplets are usually given in terms of
N = (0, 2) supermultiplets, pretty much as in 4 dimensions N = 2 superfields are built
from N = 1 superfields. Again, let us list them first.

Multiplets N = (0, 2) building blocks component fields SU(2)L � SU(2)R
Vector Vector + Fermi (U,Θ) (uµ, �a�, GA) (1, 1), (2, 2), (3, 1)
Hyper Chiral + Chiral (Φ, Φ̃) (�a,�b

+) (2, 1), (1, 2)

Twisted hyper Chiral + Chiral (Φ�, Φ̃�) (��a,��b
+) (1, 2), (2, 1)

Fermi Fermi + Fermi (Γ, Γ̃) (��a
�, G

b) (1, 1), (2, 2)

The N = (0, 4) vector multiplet is made of an N = (0, 2) vector multiplet and an
adjoint N = (0, 2) Fermi multiplet Θ. The field content is that of a gauge field uµ and
two left-handed fermions �a�, a = 1, 2, in addition to a triplet of auxiliary fields GA,
A = 1, 2, 3. The gauge field is a singlet under the SU(2)L � SU(2)R R-symmetry while the
two fermions transform as (2,2). The triplet of auxiliary fields transforms as (3,1) under
the R-symmetry.

There are two di�erent types of hypermultiplets, the hypermultiplet and the twisted
hypermultiplet. Both of them are formed by two N = (0, 2) chiral multiplets, therefore
they both contain two complex scalars (�a) and two right-handed fermions (�b

+). They
di�er from each other because of the di�erent representations under the R-symmetry group,
as we can see from the table above.

If we want to couple the hypermultiplet to the vector multiplet, we should consider
the following coupling between the hyper (Φ, Φ̃) and the adjoint Fermi field Θ

J� = ΦΦ̃ � W = Φ̃ΘΦ . (B.10)

On the other hand, coupling a twisted hypermultiplet to the gauge sector requires an E-type
of superpotential

E� = Φ�Φ̃� , (B.11)

with indices in Φ�Φ̃� set to have E� transforming in the adjoint of the gauge group.
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Finally, we can have an N = (0, 4) Fermi multiplet, which is made of two N = (0, 2)
Fermi multiplets. It contains two left-handed fermions which are singlets of SU(2)L �
SU(2)R R-symmetry. No further coupling between Γ, Γ̃ and Θ is possible.

As in the quiver of figure 1, there appear also N = (4, 4) vector and chiral multiplets,
it is worth mentioning how N = (4, 4) superfields decompose in N = (0, 4) language.

N = (4, 4) multiplets. There are two types of N = (4, 4) superfields, the vector and
the hypermultiplet.

Multiplets N = (0, 4) building blocks N = (0, 2) building blocks
Vector Vector + Twisted Hyper (U,Θ), (Σ, Σ̃)
Hyper Hyper + Fermi (Φ, Φ̃), (Γ, Γ̃)

The N = (4, 4) vector multipled is comprised of an N = (0, 4) vector multiplet and
a N = (0, 4) twisted hypermultiplet. The twisted hypermultiplet is usually denoted as
(Σ, Σ̃). They are coupled to the gauge sector via the E-type potential

E� = [Σ, Σ̃] . (B.12)

N = (4, 4) hypermultiplets are made of an N = (0, 4) hypermultiplet and an N = (4, 4)
Fermi multiplet, all in all (Φ, Φ̃), (Γ, Γ̃). As before, Φ and Φ̃ are coupled to the gauge
sector via

W = Φ̃ΘΦ . (B.13)

We conclude this part by stressing out that there are couplings between N = (0, 4)
Fermi multiplets Γ, Γ̃, hypermultiplets Φ, Φ̃ and twisted hypers Σ, Σ̃. They involve both
superpotential and E-terms

W = Γ̃Σ̃Φ+ Φ̃Σ̃Γ , (B.14)

and
E� = ΣΦ , E�̃ = �Φ̃Σ . (B.15)

It is easy to see that

E · J = Φ̃[Σ, Σ̃]Φ+ Φ̃Σ̃ΣΦ � Φ̃ΣΣ̃Φ = 0 . (B.16)

B.1 N = 4 quantum mechanics

As we argued in the main text, the N = 4 superconformal quantum mechanics dual to the
IIB backgrounds discussed around (3.2) and (3.3) is given by the dimensional reduction of
the CFT in figure 1. Thus, we start with a general discussion on compactification of 2d
N = (0, 4) theories. These are usually formulated in terms of N = (0, 2) multiplets, so we
start by reducing them first.
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N = 2 supersymmetry multiplets. In N = 2 quantum mechanics we have two real
supercharges with an SO(2) R-symmetry. Equivalently, they can be rearranged as two
complex supercharges Q and Q with a reality constraint, and U(1) R-symmetry. They
satisfy the algebra

Q2 = Q
2 = 0 , {Q,Q} = H , (B.17)

with H the hamiltonian. Moreover, if we denote by J the R-symmetry generator we have

[J,Q] = �Q , [J,Q] = Q , [J,H] = 0 . (B.18)

Let us now see what N = 2 supermultiplets in quantum mechanics are relevant for
us. Much of the construction is obtained from the dimensional reduction of 2d N = (0, 2)
reviewed above.

As we have seen in the previous section, the 2d N = (0, 2) vector multiplet consists
of a two-dimensional gauge field uµ, a left-handed (complex) fermionic field �� and a real
auxiliary field D. They are all valued in the adjoint representation of the corresponding
gauge group. In the following we will just set �� � �, as there is no chirality in 1d. After
reduction, we have uµ = (ut,�), where ut is the one dimensional gauge field and � a
real scalar. The supersymmetric kinetic term for an N = 2 vector multiplet in quantum
mechanics is

Lvector =
1
2g2 tr

�
(Dt�)2 + i�̄D

(+)
t � +D2

�
, (B.19)

where D(±)
t = Dt ± i� and Dt is the usual covariant derivative Dt = �t + iut for fields in a

generic representation of the gauge group.
A 2d N = (0, 2) chiral multiplet consists of a complex scalar boson � and a right-

handed (complex) fermionic field �+ in some unitary representation of the gauge group.
As before, we will only be concerned with the fundamental and adjoint representations.
Again, in going down to 1d we will drop the sub-index. The supersymmetric kinetic term
for an N = 2 chiral multiplet in quantum mechanics reads

Lchiral = Dt�̄Dt� + i�̄D
(�)
t � + �̄(D � �2)� � i

�
2�̄�� + i

�
2�̄�̄� . (B.20)

A 2d N = (0, 2) Fermi multiplet consists on a left-handed (complex) fermion �� and
an auxiliary field G. In the following, we will make the identification �� � � and �+,i � �i

if (�i,�+,i) is a chiral multiplet. The Lagrangian for a generic Fermi multiplet reads

Lfermi = i�̄D
(+)
t � + |G2|� |E(�i)|2 � �̄

�E

��i
�i � �̄i

�E

��̄i
� . (B.21)

In addition to the E-term potentials it is possible, for each Fermi multiplet Ψa, to introduce
a holomorphic function Ja(Φi) which gives rise to interactions of the form

LJ = GaJa(�i) +
�

i

�a
�Ja

��i
�i + h.c. . (B.22)

As remarked already, the superpotentials E and J cannot be introduced independently. In
order for supersymmetry to be preserved, they must satisfy �

aEaJ
a = 0.
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N = 4 supersymmetric systems. The N = 4 supermultiplets that are relevant to our
construction are given just by dimensional reduction of N = (0, 4) and N = (4, 4) super-
multiplets. Two-dimensional N = (0, 4) and N = (4, 4) supermultiplets are given in terms
of N = (0, 2) multiplets, according to the discussion in the previous section, summarised
in the two tables above. The dimensional reduction of the 2d theory depicted in figure 1
is then readily done according to the rules above. In particular, a two-dimensional gauge
field always reduces to one-component gauge field plus a scalar in one dimension. Scalars
and fermions remain untouched. In the case of the fermions, this is due to the fact that in
both one and two dimensions the minimal spinor representation is one-dimensional. Super-
symmetric interactions for the UV Lagrangian can be added as long as the condition (B.9)
is satisfied. See for instance [92].

Before ending this section, let us give one remark about the R-symmetry of the
IR theory.

R-symmetry. The R-symmetry group of supersymmetric N = 4 quantum mechanics
is SO(4) = SU(2) � SU(2). As we flow to the IR and hit a fixed point, given that it
exists, we should find that our quantum mechanics realises some classified superconformal
algebra. When N = 4, we have essentially two possibilities: d(2, 1;�), with two su(2)’s
R-symmetries, or su(1, 1|2), with one su(2) only.

The d(2, 1;�) global algebra is often referred to as large superconformal algebra and � is
a parameter which parametrises the relative strength of the two Kac-Moody levels, k� and
k+ of the SU(2) R-symmetries. Given that we have only one SU(2) (realised geometrically
on the S2) and given also that in the parent AdS3 � S2 backgrounds supersymmetries were
in the (1,2;2) of SL(2,R) � SL(2,R) � SU(2)R, we are naturally led to the conclusion
that the (global) superalgebra realised by our backgrounds and the dual field theories is
the su(1, 1|2) superalgebra.6 Also, superalgebras in one and two dimensions are closely
related — each chiral sector of a 2d SCFT provides a superalgebra and its realisation for a
1d superconformal QM — and this makes it possible to identify central charges in 1d and
2d [77].

C Singularity structure at the ends of the �-interval

In this appendix we study the asymptotic behaviour of the backgrounds in eq. (3.2), for
defining functions �h4, h8 given by eqs. (2.5)–(2.6). Other possible ways of bounding the
space can be considered following [49, 50]. We distinguish two cases:

• u = cu�: At � = 0, we find a regular background. In turn, at the end of the �-interval
(which we denote by � = 2�(P +1)�x for small x) we find a metric and dilaton that
behave as,

ds2 � 1
x
ds2AdS2 + x(dx2 + d�2 + ds2S2) + ds2CY2 , e�2� � 1. (C.1)

6The su(1, 1|2) is also realised by taking the limit � � � in the d(2, 1;�) algebra.
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CY2 CY2

e−2φ
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ψ
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Figure 5. Behaviour of the solutions at both ends of the �-interval for u = u0�. The S2 vanishes,
while the S1

� is finite at � = 0 but shrinks to zero size at � = 2�(P +1). The CY2 has finite size at
both ends.

This is a superposition of O1 and O5 planes, extended on AdS2 (and smeared on the
CY2) and AdS2 � CY2 respectively (see for example around equation (3.38) of the
paper [49]).

• u = u0: At both ends of the interval, the metric and dilaton asymptote similarly.
The expansion of the background at both ends is,

ds2 � 1
�
(ds2AdS2 + ds2S2) + �(d�2 + d�2) + ds2CY2 , e�2� � �2. (C.2)

This indicates the superposition of O3 and O7 planes, extended on AdS2 � S2 (and
smeared on the CY2) and AdS2 � S2� CY2 respectively.

In both cases we find that in approaching the end of the interval, the �-cycle becomes of
vanishing size. T-dualising in this direction we recover the seed backgrounds discussed in
section 2.

Analysing the volume of the compact submanifolds of the solutions in eqs. (2.5)–(2.6)
with u� = 0, we run into the possibility that some of these submanifolds have infinite
size. However, in spite of a divergent warp factor, the “stringy size” of the submanifold is
actually finite or vanishing at the ends of the space. The finite stringy-volume case does
not pose any problem in interpreting a D-brane wrapping such cycle. The case in which
the cycle shrinks may suggest an interpretation of the singularity in terms of new massless
degrees of freedom (branes wrapping the shrinking cycles) that the supergravity solution
is not encoding.

For the case in eqs. (2.5)–(2.6), with u = u0� and hence non-vanishing u�, the back-
ground is smooth at � = 0, but it presents a singularity at � = 2�(P + 1). We analysed
this singularity around eq. (C.1). A pictorial view of this background is given in figure 5.
In the case in which u� = 0, the asymptotic behaviour given in eq. (C.2) is sketched in
figure 6.

In spite of the two sphere having divergent volume, we find that the stringy volume of
the S2 calculated as,

Vs[S2] =
�

volS2 e��
�
det[g +B] = 2�

����h2
8

�
u2

16�h4h8
+ (� � 2�k)2

4

�
, (C.3)
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Figure 6. Behaviour of the solutions at both ends of the �-interval for u = u0. The S2 diverges
while the S1

� shrinks at both ends. The CY2 remains finite.

is finite for � = 0 and � = 2�(P + 1). A brane wrapped on S2 will then have finite energy
and will not pose problems when considering its backreaction.

D Holographic calculation of QFT observables

In this appendix we discuss the holographic calculation of various field theoretical ob-
servables of the strongly coupled quantum mechanics. We focus on Wilson loops, baryon
vertices and gauge couplings.

D.1 Wilson loops

As we mentioned in the main text we expect that our conformal quantum mechanics are
related to the more general theories describing line defects inside five dimensional N = 2
SCFTs, studied in [96, 97]. This opens the possibility that the VEV of a Wilson (or ’t Hooft)
line can be exactly computed using localisation, along the lines described in [97, 108]. Here
we discuss the holographic calculation of a particular Wilson line that can potentially be
checked with some exact methods.

Consider a fundamental string extended on AdS2, parametrised with coordinates (t, r)
as in eq. (3.1). The string has a profile � = �(r). The induced metric and NS-NS 2-form
field, as well as the action for the string, are obtained from eqs. (3.1)–(3.2). They read,

ds2ind = u

4
�

�h4h8

(�dt2 cosh2 r + dr2) +

�
�h4h8
u

��2dr2,

B2 = �0
2 cosh rdt � dr,

SF1 = 1
2�

�
dtdr cosh r

�
� u

4
�

�h4h8

�

1 + 4�h4h8
u2 ��2 � �0

2

�
� . (D.1)

We solve the equations of motion for this probe string if

��

�
� u

4
�

�h4h8

�
� = 0, u = u0�, �h4 = �

2�
�, h8 = �

2�
�. (D.2)
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The solution in eq. (D.2) implies that the string is sitting close to the beginning of a generic
quiver, for the functions �h4, h8 in eqs. (2.5)–(2.6). The on-shell action for this string is,

Son-shell =
1
2�

�
dtdr cosh r

�
�u0
2
�

��
� �0

2

�
= 1

2�

�
�u0
2
�

��
� �0

2

�
VolAdS2 . (D.3)

This is the quantity that we associate with the expected value of this particular Wilson loop.
There is another solution with constant profiles u � h8 � �h4 � 1. This solution does

not fall within the analysis of this paper. Instead, it can be thought of as the reduction
and T-dual, along the fibration in S3, of the background AdS3 �S3 �K3. Other interesting
defect-like operator, the baryonic vertex, is discussed below.

D.2 Baryonic vertex
We study here a couple of probe branes that we can identify with baryonic vertices. As
in the paper [127], there will be an integer number of fundamental strings ending on them
and their tension will be of order Tbar � 1/gs.

We consider first the gauge groups that come from D5 branes in the interval
[2�k, 2�(k+1)], for which the number of branes is µk. For this gauge group, we consider a
probe consisting on a D3 brane extended along [t,S2,�] at some fixed value � = 2�k. The
induced metric, NS-NS B-field and BIWZ action read,

ds2ind,D3 = � u

4
�

�h4h8

cosh2 rdt2 +
u

�
�h4h8
∆ ds2S2 +

�
�h4h8
u

d�2, ∆ = 4�h4h8 + u�2,

B2 = 1
2∆

�
(2�k � �)∆+ uu�� volS2 � sinh r

2 dt � d�, (D.4)

SBI = TD3

�
e��

�
det[g +B] dt � d� � volS2 = TD3

�
u

8

�
h8
�h4

�
|�=2�k(8�2)

�
dt,

SWZ = TD3

�
C4 + f2 � C2 = �TD3

�

t
at

�

S2�S1
�

�F3 = µk
2�

�

t
at.

We used that f2 = da1. We see that the mass of this particle is given by Mbar =
�2TD3

�
u

�
h8
�h4

�
|�=2�k. We also observe that µk strings must end on it, to cancel the

charge of the object on S2 � S1
�. This is the baryonic vertex for the gauge group U(µk).

With a probe D7 brane extended in [t,CY2,S2,�] at some fixed value of � = 2�k, we
find analogously,

ds2ind, D7 = � u

4
�

�h4h8

cosh2 rdt2 +
u

�
�h4h8
∆ ds2S2 +

�
�h4
h8

ds2CY2 +

�
�h4h8
u

d�2,

∆ = 4�h4h8 + u�2, B2 = 1
2∆

�
(2�k � �)∆+ uu�� volS2 � sinh r

2 dt � d�, (D.5)

SBI = TD7

�
e��

�
det[g +B] dt � d� � volS2 � volCY2

= TD7 VolCY2VolS2Vol�

�
�u

8

�
�h4
h8

�
���

�=2�k

�
dt,

SWZ = TD7

�
C8 + f2 � C6 = �TD7

�

t
at

�

S2�CY2�S1
�

�F7 = �k

2�

�

t
at.
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In this case we find that the mass of the particle is M =TD7 VolCY2VolS2Vol�
�
u
8

�
�h4
h8

�
|�=2�k,

and that there should be �k fundamental strings ending on it.

D.3 Gauge couplings

The gauge coupling of each node can also be computed holographically. We follow a
prescription that works in higher dimensional systems. For �k gauge groups we study the
action of D1 branes extending in [t, �] with � � [2�k, 2�(k+1)] (at fixed values of the other
coordinates). For the µk gauge groups, we study D5 branes that extend on [t, �,CY2] with
� � [2�k, 2�(k + 1)], also at fixed values of all other coordinates.

We compute the Born-Infeld and Wess-Zumino actions of these branes. We associate
the coe�cient of the BI parts with the gauge couplings. For the D1 brane probe we consider
here, for which the gauge field is taken to be zero and for which the NS two form has zero
pull-back on the brane worldvolume, the induced metric, Born-Infeld-Wess-Zumino action
and gauge coupling g2

YM,1 read,

SBIWZ = TD1

�
dtd�e��

�
�det[gind]�TD1

�
C2 (D.6)

ds2ind,D1 =� u

4
�

�h4h8

cosh2 r0dt2+

�
�h4h8
u

d�2, C2 =
sinh(r0)

4

�
��

�
uu�

2�h4

�
+2h8

�
d��dt,

SBI =�TD1

� 2�(k+1)

2�k
d�

�
h8
�h4

(4�h4h8+u�2)
�

dt cosh r04 ,

SWZ = TD1

� 2�(k+1)

2�k
d�

�
��

�
uu�

�h4

�
+2h8

��
dt sinh r04 ,

Notice that this probe D1 brane becomes extremal (its tension equals its charge) when
u� = 0 and when the brane is placed near the boundary of AdS2 (that is, r0 � �).
Probably under these circumstances the branes are calibrated. We can define the gauge
coupling from the coe�cient of the Born-Infeld term. We find for �k gauge groups,

1
g2
YM,1[k, k + 1] =

1
2�

� 2�(k+1)

2�k
h8d� = 2µk + �k

2 . (D.7)

Notice that this coupling is dimensionless.
Similarly for the µk gauge groups we find, using a D5 brane in [t, �,CY2] (at fixed

values for all other coordinates),

ds2ind,D5 = � u

4
�

�h4h8

cosh2 r0dt2 +

�
�h4h8
u

d�2 +
�

�h4
h8

ds2CY2 , (D.8)

C6 =
�
4�h4h2

8 � uu�h�
8 + h8(u�)2

8h2
8

�
sinh r0d� � dt � volCY2 ,

SBI = �TD5VolCY2

� 2�(k+1)

2�k
d�

�
�h4
h8

(4�h4h8 + u�2)
�

dt cosh r0
4 ,
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SWZ = TD5VolCY2

� 2�(k+1)

2�k
d�

�
4�h4h2

8 � uu�h�
8 + h8(u�)2

8h2
8

� �
dt sinh r0,

1
g2
YM,2[k, k + 1] =

1
2�

� 2�(k+1)

2�k
h4d� = 2�k + �k

2 .

In the last line we observe that this particular D5 brane probe is extremal for the solutions
with u� = 0 and at r0 � �.
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1 Introduction

The Maldacena conjecture [2] and its extensions motivate the search for AdS backgrounds
preserving di�erent amounts of Supersymmetry (SUSY), in di�erent dimensions.

The half-maximal SUSY case is especially fructiferous. The correspondence between
linear quiver conformal field theories preserving half-maximal SUSY and half-maximal
BPS solutions with an AdS factor, leads to a precise map between infinite families of
string backgrounds and their dual super-conformal field theories (SCFTs). Indeed, various
works have developed the dictionary between d-dimensional SCFTs, the associated Hanany-
Witten brane set-ups [3] and the dual AdSd+1 string theory backgrounds.

For the case d = 6, for which the strongly coupled conformal point is reached at
high energies, the papers [4–7] have outlined the holographic dictionary and many other
works have developed it. For d = 5, the works [8–14] presented backgrounds with an AdS6
factor and their UV-dual SCFTs. The dictionary for the case of four dimensional N = 2
linear quiver SCFTs and their AdS5 dual backgrounds was studied in [15–18] among other
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works. The case of d = 3 SCFTs (arising at low energies after a RG flow) and the dual
AdS4 backgrounds is studied in [19–21] among other works. The correspondence for the
case of two-dimensional (half-maximal BPS) low-energy SCFTs is particularly rich and
has received a lot of attention recently. With the lens described above (linear quivers,
Hanany-Witten set-ups and dual backgrounds), we encounter the works [22–30] among
various other papers.

The study of AdS2 backgrounds in string/M-theory has a long and illustrious history.
With the point of view described above, partial aspects of the correspondence between
super-conformal quantum mechanics theories (SCQMs) of the quiver type and half-maximal
BPS backgrounds containing an AdS2 factor were initially studied in [31–37]. The recent
works [1, 38, 39] made precise and concrete the viewpoint advertised above for di�erent
infinite families of string backgrounds containing an AdS2 factor.

This work presents a new infinite family of backgrounds with an AdS2 factor. We focus
our presentation mostly on geometrical aspects of the new type IIB solutions. The con-
tents of this paper are distributed as follows. In section 2, we present the new backgrounds
preserving eight supersymmetries (four Poincaré and four conformal SUSYs). We study
the conserved brane charges and deduce the associated brane set-up, consisting on D1 and
D5 ‘colour’ branes (dissolved into fluxes) with D3 and D7 ‘source’ branes (present in the
background and violating Bianchi identities). NS-five branes and fundamental strings com-
plete this configuration. We define the holographic central charge following the procedure
and physical meaning advanced in [1]. The section is closed with a brief discussion of the
dual SCQM. In section 3 we connect our backgrounds with those presented in [34, 35]. We
point out that the presence of sources in our solutions extend (for the AdS2 fixed point) the
results of [34, 35]. We also link the solutions in [1] with those of [34, 35] (under the above
mentioned restrictions). These links require a zoom-in procedure that we discuss in detail.
In section 4 we uncover a new and explicit infinite family of solutions of cohomogeneity-
two, by applying non-Abelian T-duality on the AdS3 backgrounds of [23–26]. The study
of these backgrounds and their ‘completion’ following the ideas of [14, 40–43] is reserved
for a future study. We extend to the families of backgrounds discussed in this work a
relation uncovered in [1, 39] between the Ramond-Ramond sector of the backgrounds and
the holographic central charge. Such relation is discussed In section 5. A functional whose
extremisation yields the central charge is also presented. Finally, section 6 gives a short
summary of the work, together with some ideas to work on the future.

2 New AdS2 � S2 � CY2 backgrounds

In this section we present a new family of AdS2 solutions with N = 4 Poincaré super-
symmetry in Type IIB supergravity. These geometries are foliations of AdS2�S2�CY2�S1

over an interval. Alternatively, they can be considered as foliations of AdS2�S2�CY2
over a 2d Riemann surface Σ with the topology of an annulus. The NS-NS sector of our
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solutions reads,

ds2st =
u

�
�h4h8

4�h4h8 � (u�)2
ds2AdS2 +

u

4
�

�h4h8

ds2S2 +
�

�h4
h8

ds2CY2 +

�
�h4h8
u

(d�2 + d�2) ,

e�2� = h8

4�h4

�
4�h4h8 � (u�)2

�
,

H3 = �1
2d

�
� + uu�

4�h4h8 � (u�)2

�
� volAdS2 +

1
h2

8
d� � H2 +

1
2volS2 � d� . (2.1)

Here � is the dilaton, H3 the NS-NS three-form and the metric is given in string frame.
A prime denotes a derivative with respect to �. The two-form H2 is defined on the CY2.
The coordinate � ranges in [0, 2�], while the � coordinate describes an interval that we
will take to be bounded between 0 and 2�(P + 1) (see below). Note that u � 0 and
4�h4h8 � (u�)2 � 0 must be imposed to have a positive definite metric. The background in
eq. (2.1) is supported by the RR fluxes,

F1 =h�
8d� ,

F3 =� 1
h8
H2�d�� 1

2

�
h8+

h�
8u

�u

4h8�h4�(u�)2

�
volAdS2 �d�+1

4

�
�d

�
u�u

2�h4

�
+2h8d�

�
�volS2 ,

F5 =�(1+�10)
�

��
�h4volCY2+

h8
u

��4d4h4�d�� u�u

2h8(4�h4h8�(u�)2)
H2�volAdS2

�
�d�.

F7 =
�
1
2

�
�h4+

uu��h�
4

4h8�h4�(u�)2

�
volAdS2 �d�� 1

4

�
2�h4d��d

�
uu�

2h8

��
�volS2

�
�volCY2

��10

� 1
h8
H2�d�

�
,

F9 =
�h4h�

8u
2

4�h8(4�h4h8�(u�)2)
volAdS2 �volCY2 �volS2 �d� . (2.2)

Supersymmetry holds whenever,

u�� = 0, H2 + ��4H2 = 0, (2.3)

where ��4 is the Hodge dual on CY2. In turn, the Bianchi identities of the fluxes impose
—away from localised sources — that,

h��
8 = 0 , dH2 = 0, h8

u
�2

CY2
�h4 + �2

�
�h4 � 1

h3
8
H2 � H2 = 0. (2.4)

In what follows we will concentrate on backgrounds for which H2 = 0 and �h4 = �h4(�).
These backgrounds are supersymmetric solutions of the Type IIB equations of motion if
the warping functions satisfy (away from localised sources),

�h��
4 = 0, h��

8 = 0, u�� = 0, (2.5)

which makes them linear functions of �.
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We focus on the solutions defined by the piecewise linear functions �h4, h8 considered
in [24, 25]. These are continuous functions with discontinuous derivatives. These imply
discontinuities in the RR-sector that are interpreted as generated by sources in the back-
ground. The solutions in [24, 25] have well-defined 2d dual CFTs. This requires a global
definition of the �-interval. We achieve this imposing that �h4 and h8 vanish at both ends
of the �-interval, that we take at � = 0, 2�(P + 1). Ending the space in this fashion, in-
troduces extra source branes in the configuration. For the backgrounds to be trustable (in
view of holographic applications), we need to impose that the sources are ‘sparse’, namely
that they occur separated enough in the �-interval. This imposes that P (the length of the
�-interval) is large.

The functions �h4 and h8 are then defined as,

�h4(�)=Υh4(�)=Υ

�
��
��

�0
2� � 0 � � � 2�,

�k+ �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . , P � 1

�P � �P
2� (� � 2�P ) 2�P � � � 2�(P + 1),

(2.6)

h8(�) =

�
��
��

�0
2� � 0 � � � 2�,

µk + �k
2� (� � 2�k) 2�k � � � 2�(k + 1), k = 1, . . . , P � 1

µP � µP
2� (� � 2�P ) 2�P � � � 2�(P + 1).

(2.7)

The choice of constants is imposed by continuity of the metric and dilaton. This implies that

�k =
k�1�

j=0
�j , µk =

k�1�

j=0
�j . (2.8)

In turn, �k and �k must be integer numbers to give well defined quantised charges (see the
next subsection). In (2.6) the number Υ is chosen such that,

ΥVolCY2 = 16�4. (2.9)

In most of our analysis in this paper we will concentrate on solutions for which u =
u0 = constant. In that case the behaviour of the metric and dilaton at both ends of the
�-interval is

ds2 � 1
x
(ds2AdS2 + ds2S2) + ds2CY2 + x (dx2 + d�2) , e�� � x , (2.10)

where x = � close to � = 0 and x = 2�(P +1)�� close to � = 2�(P +1). This corresponds
to a superposition of D3-branes, extended on AdS2�S2 and smeared on � and the CY2,
and D7-branes, extended on AdS2�S2�CY2 and smeared on �.

The backgrounds in eqs. (2.1)–(2.2) can be obtained applying the usual T duality rules
over the Hopf fibre of the three sphere of the AdS2�S3 backgrounds in [39]. Additionally,
these solutions have the same structure as the geometries in [1], namely AdS2�S2�CY2�S1

foliated over an interval. The relation with the backgrounds in [1] is through an ana-
lytic continuation,

ds2AdS2 � �ds2S2 , ds2S2 � �ds2AdS2 , e� � ie�, Fi � �iFi,
u � �iu, �h4 � i�h4, h8 � ih8, � � i�, � � �i�, gi � igi.

(2.11)

– 4 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
0

AdS3 × S2 × CY2 × Iρ AdS2 × S3 × CY2 × Iρ

AdS2 × S2 × CY2 × Iρ × SψAdS2 × S2 × CY2 × Iρ × Sψ

T-duality T-duality

Analytic

Continuation

Analytic

Continuation

AdS3 ↔ S3

S2 ↔ AdS2

AdS2 ↔ S2

S2 ↔ AdS2

Figure 1. Relations between the infinite family of AdS3 backgrounds to massive IIA constructed
in [23] (top left), the IIB AdS2 backgrounds studied in [1] (bottom left), the IIA AdS2 backgrounds
constructed in [39] (top right), and the new AdS2 solutions in Type IIB given by eqs. (2.1)–(2.2)
(bottom right).

These relations are summarised in figure 1.
Next we study the charges associated with the backgrounds in eqs. (2.1)–(2.2) and the

associated brane set-up.

2.1 Brane charges and brane set-up
We compute the charges associated to our backgrounds using that the magnetic charge for
a Dp brane is given by,

Qm
Dp = 1

(2�)7�p

�

M8�p

�F8�p, (2.12)

where M8�p is any (8 � p)-dimensional compact manifold transverse to the branes. In
turn, the electric charge of Dp branes is defined by,

Qe
Dp = 1

(2�)p+1

�

AdS2��p
�Fp+2, (2.13)

where Σp is the p-dimensional manifold on which the brane extends. In both expressions
we have set �� = gs = 1. For the electric charges we need to regularise the volume of the
AdS2 space. We take it to be the analytical continuation of the volume of the two-sphere,

VolAdS2 = 4� . (2.14)

In the previous expressions �F are the Page fluxes, defined as �F = F � e�B2 . They read,
for our backgrounds

�F1 =h�
8d� ,

�F3 =
1
2

�
h�

8(��2�k)�h8
�
volAdS2 �d�+1

4

�
2h8+

u�(u�h�
4��h4u�)
2�h2

4

�
volS2 �d� ,

�F5 =
1
4

�
h8(��2�k)� (u�(��2�k)u�)(u�h�

4��h4u�)
4�h2

4

�
volAdS2 �volS2 �d���h�

4volCY2 �d� ,

�F7 =
1
2

�
�h4�(��2�k)�h�

4
�
volAdS2 �volCY2 �d��1

4

�
2�h4+

u�(uh�
8�h8u�)
2h2

8

�
volS2 �volCY2 �d� ,

�F9 =�1
4

�
(��2�k)�h4� (u�(��2�k)u�)(uh�

8�h8u�)
4h2

8

�
volAdS2 �volS2 �volCY2 �d�. (2.15)
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x0 = t x1 x2 x3 x4 x5 = � x6 = r x7 = �1 x8 = �2 x9 = �

D1 x x
D3 x x x x
D5 x x x x x x
D7 x x x x x x x x
NS5 x x x x x x
F1 x x

Table 1. Brane set-up associated to our solutions. x0 corresponds to the time direction of the
ten dimensional spacetime, x1, . . . , x4 are the coordinates spanned by the CY2 and x7, x8 are the
coordinates parametrising the S2.

In these expressions we have allowed for large gauge transformations of the B2-field, B2 �
B2 + k�volAdS2 , as in [39] (see this reference for more details).

Before calculating the quantised charges associated to these fluxes it is useful to com-
pute the following quantities,

d �F1 =h��
8d��d� , d �F3 =

1
2h

��
8(��2�k)volAdS2 �d��d� , d �F5 =�h��

4 volCY2 �d��d� ,

d �F7 =�1
2h

��
4(��2�k)volAdS2 �volCY2 �d��d� , d �F9 =0 . (2.16)

In these expressions �h��
4 and h��

8 are the ones that follow from eqs. (2.6)–(2.7),

�h��
4 = 1

2�

P�

k=1
(�k�1 � �k)�(� � 2�k), h��

8 = 1
2�

P�

k=1
(�k�1 � �k)�(� � 2�k),

�h��
4 � (� � 2�k) = h��

8 � (� � 2�k) = x�(x) = 0. (2.17)

We then obtain
d �F3 = d �F7 = 0, (2.18)

and

d �F1 = 1
2�

P�

k=1
(�k�1 � �k)�(� � 2�k)d� � d� (2.19)

d �F5 = � 1
2�

P�

k=1
(�k�1 � �k)�(� � 2�k) volCY2 � d� � d�. (2.20)

These results can be put in correspondence with the brane set-up summarised in table 1.
The fact that d �F3 = 0 and d �F7 = 0 indicates that the D5 and D1 branes play the role
of colour branes (dissolved in fluxes) in the brane set-up. On the other hand, d �F1 and
d �F5 being nonzero indicate that the D7 and D3 branes are flavour branes, that is, explicit
sources with dynamics described by the Born-Infeld-Wess-Zumino action.
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Substituting �h4 and h8 as defined by eqs. (2.6) and (2.7), together with eqs. (2.9)
and (2.14), we find, in each �-interval [2�k, 2�(k + 1)]

Qe
D1=

1
(2�)2

�

AdS2�S�

�F3 =
�VolAdS2

4�

��Vol�
�

�
h8�h�

8(��2�k)
2 =µk,

Qm
D3=

1
16�4

�

CY2�S�

�F5 =
1

16�4

�

CY2�S��I�
d �F5 =

�ΥVolCY2

16�4

�
�Vol�

�
h��

4d�=(�k�1��k),

Qe
D5=

1
(2�)6

�

AdS2�CY2�S�

�F7 =
�VolAdS2

4�

��ΥVolCY2

16�4

��Vol�
�

�
h4�h�

4(��2�k)
2 =�k,

Qm
D7=

�

S�

�F1 =
�

S��I�
d �F1 =Vol�

�
h��

8d�=(�k�1��k). (2.21)

Further, in the brane set-up the F1-strings are electrically charged with respect to the
NS-NS 3-form H3 while the NS5 branes are magnetically charged,

Qe
F1 =

1
(2�)2

�

AdS2�I�
H3 =

�VolAdS2

4�

� � 1
2�

� � 2�(k+1)

2�k
d� = 1,

Qm
NS5 =

1
(2�)2

�

S2�S�

H3 =
�VolS2

4�

� �Vol�
2�

�
= 1. (2.22)

2.2 Holographic central charge
To close this part of our study we compute the holographic central charge associated
to our solutions. Being the field theory zero-dimensional, the previous quantity should be
interpreted as the number of vacuum states in the dual superconformal quantum mechanics
(see [1, 39] for a further discussion of the physical meaning of this quantity). We follow
the prescription in [44, 45]. We get for the internal volume,

Vint =
�

d8x
�
e�4� det g8,ind =

VolCY2VolS2Vol�
42

� 2�(P+1)

0
(4�h4h8 � (u�)2) d� , (2.23)

and, finally, for the central charge

chol,1d = 3Vint
4�GN

= 3
�

� 2�(P+1)

0

�
h4h8 � (u�)2

4Υ

�
d� . (2.24)

We have used that GN = 8�6 and set units so that �� = gs = 1.
We would like to stress that in the usual calculations, such as the previous one, giving

rise to the holographic central charge, only the NS-NS sector of the backgrounds needs to
be taken into account. We will point out an interesting relation between the holographic
central charge and the RR sector of our AdS2 solutions in section 5. Such relation has been
previously encountered in the AdS2 solutions constructed in [1, 39].

2.3 Aspects of the dual Conformal Quantum Mechanics
Whilst the main focus of this work is not the Quantum Mechanical analysis of the duals
to the backgrounds in eqs. (2.1)–(2.2), we add below some thoughts along this direction.

In the papers [1, 24, 25, 39] concrete quivers were proposed as UV-descriptions of
weakly coupled 2d QFTs or 1d Quantum Mechanics. It was conjectured that these quivers
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become strongly coupled at low energies and a conformal fixed point arises. Checks for
these proposals were presented in each of the works [1, 24, 25, 39], for the di�erent systems
under study. These checks deal with RG-invariant quantities that can be well-identified in
the UV and IR descriptions.

As we indicated around eq. (2.11) and summarised in figure 1, the backgrounds of
section 2 arise after an Abelian T-duality on the backgrounds of [39]. This suggests that
the quantum mechanical system proposed in [39] should also apply here. We are in fact
T-dualising across a non-R-symmetry-direction, hence we expect the amount of SUSY to
be the same. The R-symmetry of the quivers in [39] is SU(2)R, and there is also a global
SU(2)g symmetry. We are choosing a U(1)g inside SU(2)g for our dualisation. Therefore,
our dual quantum mechanical system should have SU(2)R�U(1)g symmetry. This is in fact
geometrically realised by the presence of the round S2 and the circle S1

� in the backgrounds
of section 2.

Since the string sigma model in a background and in its T-dual is the same, we ex-
pect the same dual quantum mechanical systems for our backgrounds as those for the
backgrounds [39] (only that perhaps it will be written in a di�erent language).

Using this reasoning, we may think about the SCQM as that arising in the very low
energy limit of a system of D3-D7 branes — dual to a four dimensional N = 2 QFT. This
system is ‘polluted’ by one-dimensional defects. These are Wilson loops (arising from F1-
D5) and ‘t Hooft loops (arising from NS5-D1) added to the background, see for example [46].
Note that both the D1’s and the D5’s extend on the �-isometric direction. From the
discussion above, it follows that the dual SCQM to our backgrounds is the description of
these one-dimensional defects inside a four dimensional N = 2 QFT. In fact, in the IR
the gauge symmetry on both D7 and D3 branes should become global. This implies that
these branes must be sources/flavours, as it occurs in the backgrounds of section 2. By the
same token we have two lines of one dimensional gauge groups: ΠP

i=1U(�i) and ΠP
i=1U(µi)

realised on D5 and D1 branes in each �-interval. This is reflected by the counting of
branes of eq. (2.21). The nodes in the [2�k, 2�(k + 1)] interval will have SU(�k � �k+1)
and SU(�k � �k+1) flavour groups, realised on the D3 and D7 branes, as also reflected by
eq. (2.21). The brane set-up is the one described in table 1.

As was found in [39], our 1d system should also have Wilson lines (in an antisymmetric
representation) inserted in the di�erent gauge nodes of the quiver. These Wilson lines
arise from the massive fermionic strings that stretch between D1s in the k-th interval and
D7s in all other intervals. The Wilson lines would be in the (�0, . . . , �k�1) antisymmetric
representation of the U(µk) gauge group. The same applies to the massive D3-D5 fermionic
strings and the antisymmetric Wilson lines on the U(�k) groups. As in [39], this information
can be encoded in Young diagrams.

We would also have a dynamical CS-term of each gauge group. This comes from the
massless fermionic strings stretched between D1-D7 and D5-D3 branes. The coe�cient can
be extracted studying the WZ action for a D1 along [t,�] and a D5 along [t,CY2,�]. As
expected, these coe�cients are quantised.

The field content of the UV-quantum mechanical quiver follows directly from the anal-
ysis of Appendix B in [39]. In fact, each node contains a (4, 4) vector multiplet and a (4, 4)
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β0 − β1 β1 − β2

ν0 − ν1 ν1 − ν2

µ2

α2α1

µ1

βk−1 − βk

νk−1 − νk

µk

αk

Figure 2. The proposed quantum mechanical quiver. This follows from the analysis of open strings
in the Hanany-Witten set-up.

adjoint hyper, (0, 4) bifundamental hypers join the two types of colour, D5 and D1, branes,
(4,4) twisted bifundamental hypers join the D7 sources with D5-branes, and the D3 sources
with D1 branes, respectively. Finally, (0, 2) Fermi multiplets join source D7 with colour
D1s and source D3 with colour D5 branes. The quiver diagram is depicted in figure 2.

3 Connection with the AdS2 �S2 �CY2 � � backgrounds of Chiodaroli-
Gutperle-Krym

In this section we relate our backgrounds to the general class of AdS2 � S2 � CY2 � Σ
solutions to Type IIB supergravity with 8 supercharges found by Chiodaroli, Gutperle and
Krym (CGK) in [34]. We show that our solutions fit locally in their classification in the
absence of D3 and D7 brane sources (in this sense our backgrounds extend those in [34] at
the AdS2 point). A similar analysis shows that the family of AdS2 solutions to Type IIB
supergravity recently found in [1] also fits in their general class.

3.1 Review of the CGK geometries

The CGK backgrounds are dual to one dimensional conformal interfaces inside the two
dimensional CFT associated to the D1-D5 system. These solutions (unlike ours) interpolate
between AdS2 in the IR (at the interface) and the AdS3 � S3 � CY2 solution of Type IIB
supergravity in the UV. We shall focus on the AdS2 fixed points and compare them with
both the backgrounds discussed in section 2 and the solutions found in [1].

In [34], the authors used techniques developed in [19, 47] to find half BPS solutions
that preserve eight of the sixteen supersymmetries of the AdS3�S3�CY2 vacuum, and are
locally asymptotic to this vacuum solution. They provided an ansatz for the bosonic fields
in Type IIB supergravity for a foliation of AdS2�S2�CY2 over a two-dimensional Riemann
surface Σ with a boundary, and found that the local solutions of the BPS equations can
be written in terms of two harmonic and two holomorphic functions defined on Σ. The
solutions corresponds to a D1-D5 configuration with extra NS5 branes and fundamental
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strings, but vanishing D3 and D7 brane charges. We will see that our solutions fit locally
within this class of solutions in the absence of D3 and D7 brane sources. Our D3 and D7
sources are localised in � and smeared in the �-coordinate. The mapping explained below
is valid at points in � where the sources are not present.

We start summarising the local solutions constructed in [34]. The metric for the ten-
dimensional spacetime is given, in Einstein frame, by

ds2 = f2
1 ds2AdS2 + f2

2 ds2S2 + f2
3 ds2CY2 + ��2dzdz , (3.1)

where the warping factors fi (i = 1, . . . , 3) and �� are functions of z and z, the local
holomorphic coordinates of Σ. The orthonormal frames can be written as,

f2
1 ds2AdS2 = �i1i2e

i1 � ei2 , i1,2 = 0, 1 ,
f2
2 ds2S2 = �j1j2e

j1 � ej2 , j1,2 = 2, 3 ,
f2
3 ds2CY2 = �k1k2e

k1 � ek2 , k1,2 = 4, 5, 6, 7 ,
��2dzdz = �abe

a � eb , a, b = 8, 9 . (3.2)

The NS-NS and RR three-forms are written as a complex three-form, defined as G =
e�H3 + ie��(F3 � � H3). This form is given by,

G = g(1)
a ea01 + g(2)

a ea23 . (3.3)

In turn, the self-dual five-form flux is,

F5 = hae
a0123 + �haea4567 , a = z, z , (3.4)

where the self-duality condition implies ha = ��a
b�hb.

The local solutions of the BPS equations and Bianchi identities admit a description in
terms of four functions, A, B, H and K. The analysis in [34] shows that the functions A
and B must be holomorphic on the Riemann surface Σ, whilst H and K must be harmonic.
The supergravity fields can be written in terms of these functions as,

f2
1 = e�2�|H|

2f2
3K

�
(A+A)K � (B � B)2

�
, f2

2 = e�2�|H|
2f2

3K

�
(A+A)K � (B +B)2

�
,

f4
3 = 4 e

2�K

A+A
, e4� = 1

4K2

�
(A+A)K � (B +B)2

� �
(A+A)K � (B � B)2

�
,

� = 1
2iK

�
B2 � B

2 � (A � A)K
�
, ��4 = e2�K

(A+A)
H2

|�zH|4
|B|4 . (3.5)

Here Φ = ��/2, where � is the dilaton. For the five-form field strength, we define a
four-form potential, along CY2,

CCY2 = � i

2
B2 � B

2

A+A
� 2�K, �zCCY2 = f4

3 �� �hz , (3.6)

where �K is the harmonic function conjugate1 to K.
1The harmonic conjugate of g is denoted as �g and satisfies i�z�g = �zg.
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The potentials for the field strengths in equation (3.3) are written in terms of the
holomorphic and harmonic functions as

b(1) = � H(B +B)
(A+A)K � (B +B)2

� h1, h1 = 1
2

�
�zH

B
+ c.c. ,

b(2) = �i H(B � B)
(A+A)K � (B � B)2

+ �h1, �h1 = � i

2

�
�zH

B
+ c.c. ,

c(1) = �i H(AB � AB)
(A+A)K � (B +B)2

+ �h2, �h2 = � i

2

�
A �zH

B
+ c.c. ,

c(2) = � H(AB +AB)
(A+A)K � (B � B)2

+ h2, h2 = 1
2

�
A �zH

B
+ c.c., (3.7)

where �hi and hi are harmonic functions conjugate to each other. In the previous expression
b(1) and b(2) are the potentials of the NS-NS three-form H3 and c(1) and c(2) are the
potentials related to the RR three-form F3. These read,

H3 = db(1) � volAdS2 + db(2) � volS2

F3 = dC2 � �H3 = (dc(1) � �db(1)) � volAdS2 + (dc(2) � �db(2)) � volS2 . (3.8)

The existence of sensible regular solutions imposes the following conditions on the
functions A, B, H and K,

• The harmonic functions A+A,B +B and K must have common singularities.

• No singular points should appear in the bulk of the Riemann surface Σ.

• The functions A + A,K and H cannot have any zero in the bulk of the Riemann
surface.

• The holomorphic functions B and �zH must have common zeros.

The previous conditions guarantee a non-vanishing and finite everywhere f1 (except at
isolated singular points at the boundary), a finite f2 in the interior of the Riemann surface
and vanishing at the boundary, and, finally, finite and non-vanishing f3 and e2� functions
everywhere on the Riemann surface, including the boundary.

The equations in (3.5) can be inverted to find A, B, H and K in terms of fi (i =
1, . . . , 3), � and Φ. One finds two possibilities, that we will refer as the “plus and minus
solutions”,2

Sol+ : H = f1f2f
2
3 , K+ = f1f4

3
2f2

, A+ = f1
f2
e2� � i�, B+ = e�f2

3
2f2

�
f2
1 � f2

2 , (3.9)

Sol� : H = f1f2f
2
3 , K� = f2f4

3
2f1

, A� = f2
f1
e2� � i�, B� = i

e�f2
3

2f1

�
f2
1 � f2

2 . (3.10)

2The “plus solution” corresponds to our AdS2 backgrounds and the “ minus solutions” to the AdS2

geometries of [1]. Both these solutions are related through an analytical continuation, as explained around
eq. (2.11).
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ψ

ρ

Figure 3. Riemann surface associated to our AdS2 geometries. Given the periodicity of � it defines
an annulus.

Inserting the “plus-solution”, equation (3.9), or the “minus-solution”, equation (3.10), in
the first expression of (3.6) one obtains, in both cases, the function associated to the
4-form potential,

CCY2 = �2�K, (3.11)

where �K is the harmonic function conjugate to K, according the footnote 1.
In the next subsection we obtain the harmonic and holomorphic functions that give

rise to our backgrounds in eqs. (2.1)–(2.2), as well as to the geometries in [1].

3.2 Our AdS2 geometries and the “plus-solution”

In order to compare the generic backgrounds given by eqs. (2.1)–(2.2) with the solutions
in [34, 35] we express our solutions in Einstein frame, to agree with their conventions.
We obtain,

f2
1 = u�

2

� �h4h3
8

(4�h4h8 � (u�)2)3

�1/4

, f2
2 = u�

25

�
4�h4h8 � (u�)2

�h3
4h8

�1/4

,

f2
3 =

��h4(4�h4h8 � (u�)2)
22h8

�1/4

, e2� = e�� = 1
2

�
h8
�h4

�
4�h4h8 � (u�)2,

� = h�
8�, ��2 = 1�

2u
�

�h4h
3
8(4�h4h8 � (u�)2)

�1/4
, CCY2 = �h�

4�. (3.12)

We emphasise that these expressions are valid at the points where h��
8 = �h��

4 = 0.
We take the � and � coordinates to define the real and imaginary parts of the z

variable. With this parametrisation, Σ is an annulus, defined in the complex plane (see
figure 3),

z = � + i� with � � [0, 2�] and � � [0, 2�(P + 1)] . (3.13)

Locally, our solutions are defined by the three functions u, �h4, h8, which must be linear in
�. We take

u = u0 + u1�, h8 = µ+ ��, �h4 = � + ��. (3.14)
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Substituting (3.12) in (3.9) and taking into account (3.14), we find for the functions
A,B,H,K,

A = h8 � i�h�
8 = µ � i�z, B = u�

4 = u1
4 ,

H = u

4 = u0
4 � i

u1
8 (z � z) , K =

�h4
2 = �

2 � i
�

4 (z � z) . (3.15)

It is easy to check that H, K, A+A and B +B are harmonic functions and A and B are
holomorphic. The harmonic function �K reads, in turn,

�K = �
�h�

4
4 (z + z) = ��

4 (z + z) , (3.16)

which is the harmonic function conjugate to the expression for K in (3.15).
From the equations (3.7), and using (3.15), we can then obtain the harmonic functions

and potentials associated with the NS-NS three-form,

h1 = � i

4(z � z) , �h1 = �1
4(z + z) ,

b(1) = u1(2u0 � iu1(z � z))
u2

1 + (2i� + (z � z)�)(2iµ+ (z � z)�) � h1 , b(2) = �1
4(z + z) , (3.17)

as well as those associated with the RR three-form,

h2 =��

8 (z
2+z2)� i

4µ(z�z) , �h2 = i
�

8 (z
2�z2)�µ

4 (z+z) ,

c(1) = u1(2u0�iu1(z�z))(z+z)�
8(u2

1+(2i�+(z�z)�)(2iµ+(z�z)�))+
�h2 , c(2) =�u1(2iu0+u1(z�z))

8(�(z�z)+2i�) +h2 .

(3.18)

From these expressions we can recover H3 and F3 as given in eqs. (2.1)–(2.2). Note that
hi and �hi are harmonic functions conjugate to each other.

We have thus shown that our solutions can be obtained, locally, from the class of solu-
tions constructed in [34]. Note that in our analysis we have implicitly assumed that h��

8 = 0
and �h��

4 = 0 also hold globally. This is necessary in order to match the axion and the 4-form
RR potential given in (3.12). This assumption — translated to our geometries — indicates
that we are not allowing for D7 and D3 brane sources, according to equations (2.16)–(2.17).
This agrees with the analysis in [34], which does not include either these types of branes.

We will show in subsection 3.4 that D3-brane sources can be included in the two
boundaries of the annulus following the formalism for the annulus derived in [35]. This
allows to recover the solutions in our class where D3-branes terminate the space at � =
2�(P + 1). Quite surprisingly, we will also see that, even if not included in the analysis
in [35], D7-brane sources can also be allowed at the end of the space. We will show that
they also manifest as (smeared) singularities of the basic harmonic function defined in the
annulus in [35].

Before that, we show in the next subsection that the AdS2 geometries found in [1],
that we will refer as LNRS geometries, fit as well in the CGK class.
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3.3 The LNRS geometries and the “minus-solution”
As we already mentioned in section 2, our class of geometries can be obtained through
a double analytic continuation from the AdS2 solutions studied in [1]. In this section we
show that the latter fit within the class of solutions referred as “minus solutions” in [34].

The warping factors, dilaton, axion and RR 4-form potential associated to the AdS2
geometries constructed in [1] (in Einstein frame) are given by,

f2
1 = u�

25

�
4�h4h8 + (u�)2

�h3
4h8

�1/4

, f2
2 = u�

2

� �h4h3
8

(4�h4h8 + (u�)2)3

�1/4

,

f2
3 = 1�

2

��h4(4�h4h8 + (u�)2)
h8

�1/4

, e2� = e�� = 1
2

�
h8
�h4

�
4�h4h8 + (u�)2 ,

� = h�
8� , ��2 = 1�

2u
�

�h4h
3
8(4�h4h8 + (u�)2)

�1/4
, CCY2 = �h�

4� . (3.19)

The Riemann surface is the same one defined in equation (3.13) and figure 3, and, as in the
previous subsection, we are also taking h��

8 = 0 and �h��
4 = 0 globally, i.e. solutions without

D7 and D3 brane sources. This is needed to obtain the axion and RR 4-form potential of
the previous equations.

In this case the matching with the solutions in [34] is with the “minus-solutions”
defined by equation (3.10). Taking into account (3.14), the harmonic and holomorphic
functions read,

A = h8 � i�h�
8 = µ � i �z , B = i

u�

4 = i
u1
4 ,

H = u

4 = u0
4 � i

u1
8 (z � z) , K =

�h4
2 = �

2 � i
�

4 (z � z) . (3.20)

As in the previous subsection, the functions H, K, A+A B +B are harmonic and A and
B holomorphic. The harmonic function �K reads exactly as in (3.16).

In turn, the harmonic functions that give rise to the NS-NS and RR three-forms read,

h1 =�1
4(z+z),

�h1 =
i

4(z�z),

h2 =�µ

4 (z+z)+i
�

8 (z
2�z2), �h2 = i

µ

4 (z�z)+ �

8 (z
2+z2),

b(1) = 1
4(z+z) , b(2) = u1(2u0�iu1(z�z))

4(u2
1�(2iµ+�(z�z))(2i�+�(z�z)))+

�h1 ,

c(1) =�u1(u1(z�z)+2iu0)
8(2i�+�(z�z)) +�h2 , c(2) = �u1(2u0�iu1(z�z))(z+z)

8(u2
1�(2iµ+�(z�z))(2i�+�(z�z)))+h2 .

(3.21)

From these expressions we recover the NS-NS and RR field strengths, H3 and F3, of the
solutions in [1].

3.4 The annulus
As we have already mentioned, the class of solutions constructed in [34] have vanishing D3
and D7-brane charges. Those solutions have a Riemann surface with a single boundary
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component. In the follow-up paper [35], the authors constructed solutions in which the
Riemann surface Σ has an arbitrary number of boundaries and non-vanishing D3 brane
charges. The D3-branes occur as poles of a basic harmonic function at the boundaries.
In this section we consider the simplest case of a Riemann surface with two disconnected
boundary components, namely the annulus. We will then see in subsection 3.5 that we can
recover the solutions with D3-brane sources at � = 2�(P + 1), the end of the space. Quite
surprisingly, we will see that D7-branes seem also allowed at the end of the space.

The annulus is defined as,

Σ �
�
w � C, 0 � Re(w) � 1, 0 � Im(w) � t

2

�
, (3.22)

with t � R+. The points w+1 and w are identified, thus giving the topology of an annulus.
Its two boundaries, �Σ1,2, are located at Im(w) = 0 and Im(w) = t

2 . The annulus can be
constructed from a double surface �Σ, which is defined as a rectangular torus with periods 1
and � , where � is a purely imaginary parameter, � = it. The original surface Σ is obtained
as the quotient Σ = �Σ/J where J (z) = z.

The construction of the solutions for the annulus in [35] proceeds in three steps. First, a
basic harmonic function with singularities and suitable boundary conditions is constructed.
Second, the harmonic functions, A+A, H and K, are expressed as linear superpositions of
the basic harmonic function, evaluated at the various poles in the two boundaries. Finally,
the meromorphic function B is constructed such that it satisfies certain regularity condi-
tions. Some of these conditions come from imposing that the solutions asymptote locally
to the AdS3�S3�CY2 background. These regularity conditions will not be satisfied by our
solutions, first because they do not asymptote to this geometry and, second, because the
D3-branes (also the D7-branes) are smeared in the � direction. This introduces significant
changes in the regularity analysis. For this reason we will not give a detailed account of the
regularity conditions imposed in [35]. We will see however in the next subsection that our
solutions can still be recovered from the general formalism in [35] in an appropriate limit.

The construction in [35] of the basic harmonic function is carried out in terms of elliptic
functions and their related Jacobi theta function of the first kind,

�1(w|�) = 2
��

n=0
(�1)nei��(n+ 1

2 )2 sin[(2n+ 1)w], (3.23)

as follows,
h0(w,w) = i

�
�w�1(�w|�)

�1(�w|�)
+ 2�iw

�

�
+ c.c. (3.24)

This function has the following simple properties: it has a single simple pole on �Σ, it
satisfies Dirichlet conditions away from the pole, and it is positive in the interior of Σ.

Notice that h0(w,w) has a singularity at w = 0, on the first boundary. This pole
can be shifted to any point on �Σ1 by a real translation, so that h0(w � x,w � x) has a
singularity at w = x. Instead, to obtain the harmonic functions with singularities at �Σ2
one needs to define,

w� � �

2 � w. (3.25)
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Then the function h0(w� + y, w� + y) has a pole at w� = �y, on the second boundary, for a
real y. In other words the pole is localised at w = y + it/2.

In the annulus the harmonic functions A+A, B+B, H and K are expressed as linear
combinations of h0 harmonic functions with poles on both boundaries,

A+A =
MA�

�A=1
r�Ah0(w � x�A , w � x�A) +

M �
A�

jA=1
r�
jA
h0(w� + yjA , w

� + yjA),

B +B =
MB�

�B=1
r�Bh0(w � x�B , w � x�B ) +

M �
B�

jB=1
r�
jB
h0(w� + yjB , w

� + yjB ),

H =
MH�

�H=1
r�Hh0(w � x�H , w � x�H ) +

M �
H�

jH=1
r�
jH
h0(w� + yjH , w

� + yjH ),

K =
MK�

�K=1
r�Kh0(w � x�K , w � x�K ) +

M �
K�

jK=1
r�
jK
h0(w� + yjK , w

� + yjK ). (3.26)

Each harmonic function is taken to have Mi poles x�i with �i = 1, . . . ,Mi on �Σ1, and M �
i

poles yji with ji = 1, . . . ,M �
i on �Σ2. The corresponding residues are r�i and rji .

In addition to the regularity conditions given in subsection 3.1, the harmonic func-
tions (3.26) satisfy an extra condition coming from the requirement that e4� > 0. Namely,
(A + A)K � (B + B)2 > 0 must be obeyed throughout Σ. Furthermore, in this language
the first regularity condition can be written in terms of the residues as rArK = r2

B.

3.5 Zoom-in to our solutions

In this subsection we show that it is possible to recover well-defined global solutions with
source branes at the ends of the space from the general analysis above for the annulus.
These solutions do not satisfy most of the regularity conditions imposed in [34, 35], and,
moreover, contain not only D3 but also D7-brane sources at the ends of the space. Still,
we will be able to recover them in a particular limit from the formalism in [35].

As we have already stressed, the choice of constants in the general �h4 and h8 functions
defined by equations (2.6) and (2.7) allows for discontinuities in the RR sector of our
backgrounds at each � = 2�k value, with k = 1, . . . , P . The discontinuities in �h�

4 are
interpreted as generated by D3-brane sources, while the discontinuities in h�

8 are interpreted
as generated by D7-branes. Both types of branes are smeared in the � direction. The space
is terminated in the � direction by imposing that �h4 = h8 = 0 at � = 0, 2�(P + 1). When
u = constant the closure of the space by setting �h4 = h8 = 0 generates D3 and D7 sources,
in the boundary of the space, as explained around eq. (2.10).

Instead, in the general discussion for the annulus in [35] the D3-branes occur as poles
of a basic harmonic function at its two boundaries. The basic harmonic function must
however be regular in the interior. Therefore, in order to fit in the discussion for the
annulus we need continuous �h�

4 and h�
8 functions. This is imposed taking

�k � �, �k � �, for k = 0, 1, . . . , P, (3.27)
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in (2.6), (2.7), which implies

�k = k �, µk = k �, for k = 0, . . . , P. (3.28)

The solutions are then defined by the functions

�h4 = �

2�
�, h8 = �

2�
� (3.29)

at all �-intervals. Yet, the closure of the space at � = 2�(P + 1) requires that (P + 1)�
D3-branes and (P + 1)� D7-branes are present at the end of the space. Instead of closing
the space by introducing sources as we did with the choice of �h4 and h8 functions given
by (2.6) and (2.7), these branes will be automatically present at the end of the space in
the annulus construction.

Let us now see how these solutions arise from the general formalism in [35]. We take
the annulus in (3.22) as defined from,

w = z

2�
= �� + i��, with �� = �

2�
, �� = �

2�
. (3.30)

Then �� � [0, 1] and the parameter t in the definition of the annulus is t = 2(P + 1). As
recalled in section 2, our class of solutions is valid when P is large. This allows us to
approximate the Jacobi theta function introduced in (3.23) by its asymptotic expansion
when t � �,

�1(�w|�)|t�� � 2e� �
4 t sin �w � ie� �

4 te�i�w. (3.31)

This approximation will be key in showing the matching with our solutions. Indeed, in this
approximation it is easy to see that the basic harmonic function defined by (3.24) reads,

h0(w,w) � 2� + i�

P + 1(w � w). (3.32)

This gives, at the two boundaries �Σ1 and �Σ2,

h0(w � x�i , w � x�i) � 2� + i�

P + 1(w � w),

h0(w� + yji , w
� + yji) � � i�

P + 1(w � w), (3.33)

respectively, where for the second boundary we have used the relation (3.25). These ex-
pressions are thus independent of the positions of the poles at both boundaries. This is in
agreement with the fact that our D3/D7 branes are smeared in the �-direction. We then
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get for the harmonic functions in eq. (3.26),

A+A = 2�
MA�

�A=1
r�A � i�

P + 1(w � w)

�
�

M �
A�

jA=1
r�
jA

�
MA�

�A=1
r�A

�
� ,

B +B = 2�
MB�

�B=1
r�B � i�

P + 1(w � w)

�
�

M �
B�

jB=1
r�
jB

�
MB�

�B=1
r�B

�
� ,

H = 2�
MH�

�H=1
r�H � i�

P + 1(w � w)

�
�

M �
H�

jH=1
r�
jH

�
MH�

�H=1
r�H

�
� ,

K = 2�
MK�

�K=1
r�K � i�

P + 1(w � w)

�
�

M �
K�

jK=1
r�
jK

�
MK�

�K=1
r�K

�
� . (3.34)

In order to match these expressions with the expressions for A + A and K given in
eq. (3.15) we take into account that w = z/(2�), and we obtain,

MA�

�A=1
r�A = 0 and

M �
A�

jA=1
r�
jA

= (P + 1)�
4�

, (3.35)

for the matching of A+A, and

MK�

�K=1
r�K = 0 and

M �
K�

jK=1
r�
jK

= (P + 1)�
�

, (3.36)

for the matching of K. Rescaling the residues as3

r�
jA

� 2r�
jA
, r�

jK
�

r�
jK

4 . (3.37)

and replacing the sums by
M �
A�

jA=1
r�
jA

� 1
2�

� 2�

0
dr�

jA
, (3.38)

as implied by the smearing of the branes in the �-direction, we can finally interpret the
residues as the charge-densities of D7 and D3 brane sources at both boundaries of the
annulus. We would like to stress that even if the general formalism in [35] does not account
for D7-branes at the boundaries of the annulus, we have associated these to the (smeared)
poles of the basic harmonic function for A+A. The analysis goes in complete parallelism
to the analysis of the residues and poles of the K function, associated to the D3-brane
sources at both boundaries of the annulus. It is unclear to us the precise reason why this
seems to work in the presence of D7-branes.

3Note that a rescaling is also necessary in order to interpret the residues of the solutions in [48] as charges
of (p, q) 5-branes.
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Finally, from the matching of the B +B and H functions we find

MB�

�B=1
r�B =

M �
B�

jB=1
r�
jB

= 0 and
MH�

�H=1
r�H =

M �
H�

jH=1
r�
jH

= u0
8�

. (3.39)

These expressions do not seem to have however a direct interpretation in terms of charges
of our solutions.

The previous analysis holds true as well for the LNRS backgrounds discussed in [1].
The matching of the A + A, H and K functions is valid for both solutions, while the
harmonic function B+B vanishes. Again, there are smeared D3 and D7-branes at the end
of the space with the same relations between residues and charges.

4 A new class of AdS2 � S2 � CY2 � � solutions with � an infinite strip

In this section we construct a new class of AdS2 solutions to Type IIB supergravity with
8 supercharges by acting with non-Abelian T-duality (NATD) on the AdS3�S2�CY2�I�

solutions obtained in [23]. The non-Abelian T-duality transformation is performed with
respect to a freely acting SL(2,R) isometry group of the AdS3 subspace. This transforma-
tion gives rise to a new class of solutions in which the AdS3 subspace is replaced by AdS2
times an interval. These solutions fit in the classification of [34] for a Riemann surface with
a single boundary, equivalent to an infinite strip.

4.1 NATD of the AdS3�S2�CY2 solutions

The study of NATD as a solution generating technique of supergravity was initiated in [49].
Further works include [50–53]. In all these examples the dualisation took place with respect
to a freely acting SU(2) subgroup of the entire symmetry group of the solutions. Instead,
in this section we perform the non-Abelian T-duality transformation with respect to one
of the freely acting SL(2,R) isometry groups of the AdS3 subspace.

In order to perform the dualisation with respect to the SL(2,R) isometry group we
follow the derivation in [54]. We take the sl(2,R) generators analytically continuing the
su(2) generators, as ta = �a/

�
2, with

�1 =
�

0 i

i 0

�
, �2 =

�
0 �i
i 0

�
, �3 =

�
i 0
0 �i

�
. (4.1)
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These generators satisfy,

Tr(tatb) = (�1)a�ab, [t1, t2] = i
�
2t3, [t2, t3] = i

�
2t1, [t3, t1] = �i

�
2t2. (4.2)

A group element in the Euler parametrisation is given by,

g = e
i
2 ��3e

i
2 ��2e

i
2 ��3 , where 0 � � � �, 0 � � < �, 0 � � < �, (4.3)

from which we write the left invariant one forms, La = �iTr(tag�1dg), in the
following fashion,

L1 = sinh�d� � cosh� sin �d�

L2 = cosh�d� � sinh� sin �d�

L3 = � cos �d� � d�. (4.4)

The backgrounds in [23] support an SL(2,R) isometry such that the metric, the Kalb-
Ramond field and the dilaton can be written as,4

ds2 = 1
4gµ�(x)LµL� +Gij(x)dxidxj , B2 = Bij(x)dxi � dxj , � = �(x), (4.5)

where xi are the coordinates in the internal manifold, for i, j = 1, 2, . . . , 7, and Lµ are the
forms given by (4.4). All the coordinate dependence on the SL(2,R) group is contained in
these forms. The subsequent details on how to technically compute the NATD transfor-
mation have been developed extensively in the literature [49, 53] (see these reference for
more details).

The geometries obtained through NATD with respect to a freely acting SL(2,R) group
on the AdS3 of the solutions in [23] are given by,

ds2st =
u

�
�h4h8

4r2�h4h8 � u2
r2ds2AdS2 +

�
�h4
h8

ds2CY2 +
u

�
�h4h8

4�h4h8 + u�2 ds2S2 +

�
�h4h8
u

(d�2 + dr2),

e�2� =

�
4r2�h4h8 � u2

� �
4�h4h8 + u�2

�

28�h2
4

,

B2 = � 2r3�h4h8

4r2�h4h8 � u2
volAdS2 � 4��h4h8 � u�(u � �u�)

2
�
4�h4h8 + u�2

� volS2 . (4.6)

4We have taken gµ� = �Tr(tµt�) to have signature (+,�,+).
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Additionally, the background is supported by the RR fluxes,

F1 =�rh�
8

4 dr+ 1
24

�
4h8+��

�
uu�

�h4

��
d�,

F3 =
h8

8
�
4�h4h8+u�2

�
��h�

4u
2

�h4
d�+rh8

�
4�h4+��

�
uu�

h8

��
dr

�
�volS2

+ r2h8

8
�
4r2�h4h8�u2

�
�
h�

8u
2

h8
dr�r�h4

�
4h8+��

�
uu�

�h4

��
d�

�
�volAdS2 ,

F5 =
1
24

�
4r�h�

4dr�
�
4�h4+��

�
uu�

h8

��
d�

�
�volCY2

� r2u2h2
8

24
�
4r2�h4h8�u2

��
4�h4h8+u�2

�
�
4r�h�

4d�+
�
4�h4+��

�
uu�

h8

��
dr

�
�volAdS2 �volS2 ,

F7 =�
�h4

8
�
4�h4h8+u�2

�
�
h�

8u
2

h8
d�+r�h4

�
4h8+��

�
uu�

�h4

��
dr

�
�volS2 �volCY2

� r2�h4

8
�
4r2�h4h8�u2

�
��h�

4u
2

�h4
dr�rh8

�
4�h4+��

�
uu�

h8

��
d�

�
�volAdS2 �volCY2 ,

F9 =
r2u2�h2

4

4
�
4r2�h4h8�u2

��
4�h4h8+u�2

�
�
rh�

8d�+1
4

�
4h8+��

�
uu�

�h4

��
dr

�
�volAdS2 �volCY2 �volS2 .

(4.7)

The previous background is a solution to the Type IIB supergravity EOM whenever
4r2�h4h8 � u2 > 0. Namely we get a well-defined geometry for

r > r0 = u

2
�

�h4h8

. (4.8)

In the next section we show that a subset of the solutions defined by (4.6) and (4.7)
fit in the general classification of AdS2�S2�CY2 � Σ geometries given in [34] with Σ an
infinite strip.

4.2 The NATD solution as a CGK geometry
In this section we discuss how the solutions given by (4.6)–(4.7) fit in the class of CGK.
Going to Einstein frame we get the warp factors of the metric, dilaton and axion,

f2
1 = ur2�

h8(4�h4h8 + u�2)1/4

4(4�h4h8r2 � u2)3/4
, f2

2 = u
�
h8(4�h4h8r2 � u2)1/4

4(4�h4h8 + u�2)3/4
,

f2
3 = (4�h4h8r2 � u2)1/4(4�h4h8 + u�2)1/4

4
�
h8

, e2� = e�� =

�
(4�h4h8r2 � u2)(4�h4h8 + u�2)

24�h4
,

� = 1
24

�
2�(�2 � r2) + 4µ� + uu�

�h4

�
, ��2 =

�
h8(4�h4h8r2 � u2)1/4(4�h4h8 + u�2)1/4

22u
.

(4.9)
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r = u

2
√

ĥ4h8
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z

ρ

r

Figure 4. Infinite strip associated to the NATD solution.

In �, the axion field, we have taken h8 = µ + ��, with µ, � constants. This choice
corresponds to backgrounds without D7-branes, as those constructed in [34].

The 2d Riemann surface associated to the solutions is the strip depicted in figure 4,
parametrised as,

z = � + i r where � � [0, 2�(P + 1)] and r � [r0,�], (4.10)

where the value of r0 is determined in eq. (4.8).
Taking the ‘plus-solution’ defined by equation (3.9) we obtain the A, B, H and K

functions in terms of the defining functions of our backgrounds, �h4, h8 and u,

A= 1
24

�
4µ(r�i�)+2i�(r�i�)2+ u�

�h4
(ru��iu)

�
, B= 1

25

�
4�h4h8+u�2�

u2+r2u�2
�

�h4h8

,

H = ru

24 , K = r(4�h4h8+u�2)
25h8

. (4.11)

We anticipate these functions are neither harmonic nor holomorphic. In order to ensure
harmonicity -in H and K- and holomorphicity -in A and B- we need to choose u� = 0. In
that case we obtain,

A= 4µ(r�i�)+2i�(r�i�)2
24 =�iz 2µ+z�

8 , B= u

24 = u0
24 ,

H = ru

24 =�iu0
25 (z�z), K = r�h4

23 =�i(z�z)
25 (�(z+z)+2�),

(4.12)

where we have used (3.14). The harmonic function conjugated to K is,

�K = � 1
25 (�(z

2 + z2) + 2�(z + z)), with CCY2 = 1
23 (�(r

2 � �2) + 2��). (4.13)

Note that we have taken �h8 = � + ��, with �, � constants, which corresponds to back-
grounds without D3-branes, as those constructed in [34].

The functions associated to the complex three-form are,

h1 = � i

4(z � z), �h1 = �1
4(z + z),

h2 = � 1
25

�
µ(z2 + z2) + �

3 (z
3 + z3)

�
, �h2 = i

25

�
µ(z2 � z2) + �

3 (z
3 � z3)

�
. (4.14)
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Notice that hi and �hi are harmonic functions conjugate to each other. The potentials given
in (3.7) are,

b(1) = �i u2
0(z � z)

(z � z)2(�(z + z) + 2�)(�(z + z) + 2µ) + 4u2
0

� h1, b(2) = �1
4(z + z),

c(1) = �i u2
0(z � z)(2µ(z + z) + �(z2 + z2))

16((z � z)2(�(z + z) + 2�)(�(z + z) + 2µ) + 4u2
0)

+ �h2,

c(2) = � u2
0

16(�(z + z) + 2�) + h2, (4.15)

which agree with the expressions (4.6) and (4.7) for u� = 0.
The previous analysis shows that the new class of solutions constructed through non-

Abelian T-duality provide an explicit example of CGK geometries where the Riemann
surface is an infinite strip. We will provide a more detailed global study of these solutions
in a future publication.

5 Electric-magnetic charges and a minimisation principle

In this section we extend two results discussed in [1, 39] to our new infinite family of AdS2
solutions.

The first result is a relation between the holographic central charge in eq. (2.24) and an
integral of the product of the electric and magnetic fluxes of the Dp-branes present in the
background. This relates the holographic central charge in section 2.2, computed purely
in terms of the NS-NS sector of the background, with a calculation purely in terms of the
Ramond-Ramond sector.

Furthermore, in section 5.2, we explore this relation from a geometrical point of view.
We define a quantity in terms of geometric forms in our geometries and through an extrem-
isation principle relate it to the holographic central charge in eq. (2.24). In summary, in
this section we present a connection between the holographic central charge, the product
of the electric and magnetic charges and an extremised functional.

5.1 A relation between the holographic central charge and the RR fluxes
We provide a relation between the holographic central charge found in eq. (2.24) and the
fluxes of the Ramond-Ramond sector in eq. (2.2). Consider a Dp brane and the associated
electric �Fp+2 and magnetic �F8�p Page field strengths. We define the “density of electric
and magnetic charges”, �eDp and �mDp, as follows,

�eDp = 1
(2�)p

�Fp+2, �mDp = 1
(2�)7�p

�F8�p. (5.1)

From these we construct the quantity,
� �

p=1,3,5,7
�eDp�

m
Dp =

= 1
�

VolAdS2

�VolCY2

16�4

� �
d�

�
4�h4h8 � (u�)2

8 + 1
16��

�
u2 (h4h8)�

h4h8

�
� u2

16

��h��
4

�h4
+ h��

8
h8

��
.

(5.2)
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In the absence of sources �h��
4 = h��

8 = 0 and, up to a boundary term, this is proportional to
the expression for the holographic central charge in equation (2.24). We explore below the
contribution of the sources to this expression. Notice that eq. (5.2) links the holographic
central charge in eq. (2.24)—a calculation purely in terms of the NS-NS sector — with one
purely in terms of the Ramond-Ramond sector.

5.2 An action functional for the central charge

Following the ideas of [55, 56] and the lead of the works [1, 39], we construct a functional
in terms of an integral of forms defined in the internal space. Once such functional is
extremised the holographic central charge in eq. (2.24) is recovered, up to a boundary term.

We define forms Ji and Fi (for i = 1, 3, 5, 7) on the internal space X8 =[S2, CY2, S�,
I�]. These forms are inherited from the Page fluxes (2.15).5 As explained in [1, 39], they
are the restriction of the fluxes to the internal space. Writing the Page fluxes in eqs. (2.15)
in terms of forms Ji and Fi as,

�F1 = J1, �F3 = F1 � volAdS2 + J3, �F5 = F3 � volAdS2 + J5,

�F7 = F5 � volAdS2 + J7, �F9 = F7 � volAdS2 . (5.3)

The forms Ji and Fi are,

J1 = h�
8 d� , J3 = 1

4

�
2h8 +

u�(u�h�
4 � �h4u�)
2�h2

4

�
volS2 � d�, J5 = ��h�

4volCY2 � d�

J7 = �1
4

�
2�h4 +

u�(uh�
8 � h8u�)
2h2

8

�
volCY2 � volS2 � d�, F1 = 1

2
�
h�

8(� � 2�k) � h8
�
d� ,

F3 = 1
4

�
(� � 2�k)h8 � (u � (� � 2�k)u�) (u�h�

4 � �h4u�)
4�h2

4

�
volS2 � d�,

F5 = 1
2(

�h4 � (� � 2�k)�h�
4) volCY2 � d� ,

F7 = �1
4

�
(� � 2�k)�h4 � (u � (� � 2�k)u�) (uh�

8 � h8u�)
4h2

8

�
volCY2 � volS2 � d�. (5.4)

With the forms in eqs. (5.4), we construct the functional,

C =
�

X8
F1 � J7 + F3 � J5 � (J1 � F7 + J3 � F5)

=
�

X8

�
4�h4h8 � (u�)2

8 � u2

16

��h�2
4

�h2
4
+ h�2

8
h2

8

�
+ uu�

8

��h�
4

�h4
+ h�

8
h8

��
volCY2 � volS2 � d� � d�,

(5.5)

We minimise the functional C by imposing the Euler-Lagrange equation for u(�),

2u�� = u

��h��
4

�h4
+ h��

8
h8

�
. (5.6)

5The same result can be obtained considering the Maxwell fluxes in (2.2).
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This equation of motion is solved if,

h��
8 = 0, �h��

4 = 0, u�� = 0, (5.7)

the first two are Bianchi identities for the background and the last is a BPS equation. The
functional in eq. (5.5) can be rewritten as,

C= 1
8

�

X8

�
4�h4h8�(u�)2+��

�
u2

2

��h�
4

�h4
+h�

8
h8

��
�u2

2

��h��
4

�h4
+h��

8
h8

��
volCY2 �volS2 �d��d�.

(5.8)
The last term (that would vanish in the absence of sources), is proportional to the quotient
of the number of flavours by the number of colours in each node. Using the condition
that the flavours are sparse, as explained below eq. (2.17), we see that its contribution is
subleading in front of the other terms. Furthermore, the boundary term gives a divergent
contribution. Indeed, for the case u = u0 and �h4, h8 in eqs. (2.6)–(2.7) the boundary
term reads,
� 2�(P+1)

0
��

�
u2

2

��h�
4

�h4
+h�

8
h8

��
volCY2 �volS2 �d��d�=� lim

��0

2�u2
0

�
(�P+µP+�0+�0)VolCY2

=� lim
��0

2�u2
0

�
(Qtotal

D3 +Qtotal
D7 )VolCY2 , (5.9)

where we regularised �h4(0) = h8(0) = �h4(2�(P+1)) = h8(2�(P+1)) = �. The divergence in
eq. (5.9) is associated with the presence of sources in the background as was found in [1, 39].

In summary, the functional in eq. (5.5) is proportional to the holographic central charge
of eq. (2.24), plus a subleading contribution and a boundary term. For our infinite family of
backgrounds, we have linked a calculation purely in terms of the NS-NS sector — eq. (2.24),
with a calculation purely in terms of the Ramond-Ramond sector — eq. (5.2), with the
extremisation of a functional constructed as a restriction of the Ramond-Ramond forms
to the internal space — eq. (5.5). We believe that this may be a generic feature, worth
exploring in backgrounds dual to various SCFTs in di�erent dimensions.

6 Conclusions

We close this paper by presenting a short summary of the contents of this work and
proposing future lines of investigation.

This work presents two new infinite families of backgrounds with an AdS2 factor. The
presentation focuses mostly on geometrical aspects of the new solutions. The new family
of backgrounds in section 2 can be obtained by analytically continuing the backgrounds
of [1] or via T-duality, on the Hopf-fibre of the S3, from the solutions in [39]. These
connections are summarised in figure 1. A precise brane set-up was proposed for these
backgrounds and the holographic central charge was calculated. We used the brane set-up
to argue for a precise quiver. The IR dynamics of such quivers should be the SCQMs dual
to our backgrounds.
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The family of AdS2 backgrounds in section 2 and that in the paper [1] have been
shown to be connected to the solutions of [34, 35]. In fact, under certain circumstances
they extend this class of solutions. The connection between these qualitatively di�erent
backgrounds requires of a subtle zoom-in procedure that we explained in detail in section 3.

A second family of new backgrounds is presented in section 4. These interesting so-
lutions depend explicitly on two coordinates (labelled as � and r in section 4) and were
obtained by the application of non-Abelian T-duality on the AdS3 factor of the backgrounds
in [23]. We leave for future work to discuss the associated brane set-up, though it seems
clear that the ideas described in [14, 40–43] will play an essential role in the global-definition
of these solutions. By the same token, it would be interesting to study the integrability
(or not) of the backgrounds presented here, as well as those in [1, 39]. Integrable string
backgrounds dual to field theories described by linear quivers in dimensions d = 2, 4, 6,
have been found in [57–60]. Similar techniques should probably apply for the d = 1 case.

Finally, in section 5 the holographic central charge defined in section 2—a quantity
computed solely in terms of the NS-NS sector of the backgrounds, has been connected
with a calculation purely in terms of the Ramond-Ramond sector of our solutions. A
functional whose extremisation yields the holographic central charge was also discussed.
It should be interesting to find out if a similar structure occurs generically for other
AdSd+1 backgrounds.
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9. Conclusions

Let us now conclude with the results of this thesis. In this work we have presented

new entries in the mapping between AdS backgrounds and SCFTs, for the particu-

lar case of AdS3/CFT2 and AdS2/SCQM.

We have used a well-structured methodology that can be summarised in the

following way: first of all, we have constructed new type II and M-theory su-

pergravity solutions with AdS factor, using diverse techniques like G-structures,

string dualities and analytical continuations. We have carried out a careful study

of the backgrounds and shown that there are physical sources in the geometry,

providing flavour symmetry. We have also counted the number of branes, flavour

and colour, and analysed the holographic central charge. With these geometric

ingredients, we have assembled a detailed description of the underlying brane in-

tersection and Hanany-Witten brane setups. These Hanany-Witten brane setups

have been mapped to quiver field theories, which are a product of many gauge

groups connected with other symmetry groups through hypermultiplets. Since we

have considered theories in lower dimensions, the field theory described by these

quivers conjecturally flow in the IR to a strongly coupled CFT, that we have pro-

posed as dual to our AdS geometries. In each case, the proposed duality has been

tested, comparing the field theory and holographic central charges and showing a

precise match between both quantities. We have complemented our analysis with

the construction of concrete examples in the classes obtained, a discussion of the

connection with existing classifications, and the identification of a striking relation

that allows to reproduce the holographic central charge from the RR sector of the

theories.
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9 CONCLUSIONS

Chapters 1, 2, and 3 have been dedicated to draft the main concepts used in

this work, both geometric and field theoretical. In Chapter 4, we have provided a

summary of the contents presented in the different papers that compose this thesis.

In Chapter 5 we have presented our ‘seed’ geometries. Here, using the Killing

spinor techniques, we have constructed four new AdS3⇥S2 classes preserving small

N = (0, 4) supersymmetry in type II supergravity. Two of them are in massive

IIA and have SU(2) structure on the M5 =M4⇥I internal space; the class I has

M4 =CY2 and the class II a 4d Kähler manifold. The other two solutions are in

type IIB, have identity structure on M5 and are distinguishable by having or not

D7-branes. We have focused in the class I in massive type IIA, in the subset with

a compact CY2. We have proposed two dimensional quiver field theories dual

to these solutions, based on the Hanany-Witten setups implied by the charges of

the solutions. In order to check the proposed duality we have matched the field

theory and holographic central charges finding agreement between both quantities

in Section 5.3. We have also found that the solution obtained via SU(2)-NATD on

AdS3⇥S3⇥CY2 fits in this class, and we have provided explicit completions for

this background that allow to define a consistent dual CFT.

In Chapter 6, we have taken the massless case of the previous geometries and

uplifted it to M-theory, obtaining a new class of warped AdS3⇥S3/Zk⇥CY2⇥I

geometries. We have shown that these solutions are dual to two dimensional SCFTs

with small N = (0, 4) supersymmetry that describe self-dual strings in 6d (1,0)

CFTs. A further family of new solutions in M-theory has been obtained through

analytic continuations, giving rise to a new class where the modding acts on the

AdS3 factor.

The reduction on AdS3 of the AdS3/Zk⇥S3 solutions has led a new class of

AdS2 solutions in massless type IIA supergravity with four Poincaré supercharges.

We have shown that these solutions can be extended to the massive case noti-

cing that they are related, via analytical continuations, with the ‘seed’ solutions.

Their superconformal quantum mechanics has been studied carefully in Section

7.1, where we have identified the underlying 1
8
-BPS brane intersection. This has

allowed to interpret the dual CFT as describing one dimensional defects consisting

on D4-D0 baryon vertices in 5d D4’-D8 systems. In the presence of the defects

the D4’- and D8-branes, of the 5d theory, become flavour branes, and the D0- and
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D4-branes play the role of colour branes. Accordingly, we have seen that, the

SCQM that lives on these systems is given in terms of a set of disconnected quivers

with gauge groups associated to D0- and D4-branes coupled to D4’ and D8 flavour

branes.

We have also shown that, performing SL(2,R)-NATD on the AdS3⇥S3⇥CY2

solution in type IIB, an explicit solution in the class given in Section 7.1 is obtained.

It is worth to mention that this has been the first time that NATD with respect to a

non-compact isometry group has been applied as a solution generating technique in

supergravity. A careful analysis of this example has been presented in Section 7.2

with a precise completion of the solution and a concrete quiver quantum mechanics

proposal. It has been shown that this solution is connected via analytical continu-

ations, with the AdS3⇥S2⇥CY2⇥I solution, obtained in [81] and studied in Section

5.4.

Chapter 8 has been dedicated to the study of three new AdS2/SCQM pairs

in type IIB supergravity. The three families of AdS2 solutions have been ob-

tained through ATD and NATD. Type A and Type B have the same warped form,

AdS2⇥S2⇥CY2 ⇥ ⌃2, with ⌃2 a 2d Riemann surface with the topology of an

annulus. The Type A solutions arise acting with ATD on the Hopf-fibre of the

AdS3 subspace of the AdS3⇥S2 solutions to massive IIA. In turn, Type B solutions

arise acting with ATD on the Hopf-fibre of the S3 in the AdS2⇥S3 backgrounds of

massive IIA. We have seen that, both solutions are also related through analytical

continuations and that they share the same D1-D3-D5-D7-NS5-F1 brane setup. In

spite of their similar features, they have however different SQCM interpretations

–due to their different origins. The SCQM dual to Type A solutions arises as a DLC

compactification of the 2d CFTs dual to the AdS3⇥S2 solutions. In turn, the Type

B solutions are dual to backreacted D1-D5 baryon vertices within the 4d N = 2

QFT living in D3-D7 branes. We have also discussed some features of these back-

grounds, like the existence of an interesting connection between the holographic

central charge and the RR sector of the solutions. The third solution in type IIB has

been obtained applying SL(2,R)-NATD on the ‘seed’ solutions. This new family

has the same form as the previous Type A and Type B geometries, but in this case

⌃2 has the topology of an infinite strip. The detailed study of these backgrounds

and their completion will be the subject of future work.
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9 CONCLUSIONS

In Section 8.2, we have shown that the solutions in type IIB extend the classi-

fication of [47, 48] to include D3- and D7-brane sources.

This work has interesting open avenues that deserve further investigation. For

instance, lower-dimensional AdS solutions are particularly relevant for the devel-

opment of the black hole microscopic counting programme and, on the other hand,

these theories can be studied as defect branes ending on a given brane setup and

producing the lower dimensional AdS backgrounds.

In the spirit of [41, 102, 103], finding an interpretation of our solutions in the

context of 4d and 5d black holes is clearly a direction that should be investigated.

It would be interesting to understand the role of the freedom in choosing h4, h8

and their implications for black holes. It should be important to clarify the relation

between the number of vacua and the entropy of these black holes.

In particular, it would be interesting to continue exploiting the G-structures

technique to explore the N = (0, 2) AdS2 and AdS3 solutions which have been

little studied and, furthermore, propose their CFT duals with the tools showed in

this work.

It would be worthwhile to use the SL(2,R)-NATD to construct new AdS2 solu-

tions and explore their dual SCQMs. In the previous examples where NATD has

been used –with respect o a freely acting SU(2) isometry group– the setup to engin-

eer the field theory was determined by Dp-branes extended between NS5 branes,

whereas SL(2,R)-NATD seems to generate fundamental strings stretched between

the different Dp-branes. With this reasoning, the SCQMs might be arising as

Wilson lines defects or baryon vertices within higher dimensional conformal the-

ories. In this vein, the first candidate to study are the Type C solutions obtained

using SL(2,R)-NATD on the AdS3 subspace of our ‘seed’ geometries, which are

missing a CFT description.

It would be interesting to see if a similar relation between the holographic

central charge and products of Ramond-Ramond fluxes holds for other classes of

solutions, especially higher dimensional AdS spaces. This study would clearly be

of benefit because it falls in line with the notion that extremisation problems in

quantum field theory are realised in supergravity via the extremisation of certain
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geometrical quantities. Accordingly, the relevance is doubly so, first, the func-
tional is constructed in terms of precise electric/magnetic forms determined by the
Ramond-Ramond sector of the solution, whereas the holographic central charge is
usually computed with the NS-NS sector of the solution. In this sense, it would be
interesting to understand the geometrical meaning of these forms and see whether
they are connected to the SU(2)-structures. And second, the extremal principle
generalises those in the existing literature by the inclusion of sources and boundar-
ies. Thus, a way forward is to extend these results to other geometries which also
contain sources.

In addition, an obvious open problem is to discuss the CFTs duals of the solu-
tions referred as class II, where the CY2 is replaced by a 4d Kähler manifold, and
the CFTs duals to the solutions AdS3⇥S2⇥M5 in type IIB. Besides, it would be
interesting to study the integrability (or not) of the backgrounds presented in this
thesis. It would be nice to explore other tests and find predictions of our proposed
duality. In particular it would be interesting to apply exact calculational techniques,
as in [41], to the new classes of solutions, since this would provide for a deeper un-
derstanding of the IR regime of the different theories.
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Conclusiones

Concluimos ahora con los resultados de esta tesis. En este trabajo hemos presentado

nuevas entradas en el mapeo entre geometrias AdS y SCFTs, para el caso particular

de AdS3/CFT2 y AdS2/SCQM.

Hemos utilizado una metodologı́a bien estructurada que se resume de la siguiente

manera: en primer lugar, hemos construido nuevas soluciones de supergravedad

tipo II y de teorı́a M con factores AdS, utilizando diversas técnicas como G-structures,

dualidades de teorı́a de cuerdas y continuaciones analı́ticas. Hemos llevado a cabo

un estudio cuidadoso de las soluciones y mostrado que tenemos fuentes fı́sicas en

la geometrı́a, proporcionando simetrı́a de sabor. Igualmente, hemos contado el

número de branas, de sabor y de color, y analizado la carga central holográfica.

Con estos ingredientes geométricos, hemos ensamblado una descripción detallada

de la intersección de branas subyacente y construido configuraciones de brana de

Hanany-Witten. Estas configuraciones de brana de Hanany-Witten han sido mapea-

das a teorı́as de campo de quiver, que son un producto de varios grupos de gauge

conectados con otros grupos de simetrı́a a través de hipermultipletes. Dado que

hemos considerado teorı́as en dimensiones bajas, las teorı́as de campo descritas

por estos quiver fluyen conjeturalmente en el IR a CFTs fuertemente acopladas,

que hemos propuesto como duales a nuestras geometrı́as AdS. En cada caso, la

dualidad propuesta ha sido verificada comparando la carga central de la teorı́a de

campo y la carga central holográfica, mostrando una coincidencia precisa entre

ambas cantidades. Hemos complementado nuestro análisis con la construcción de

ejemplos concretos en las clases obtenidas, con una discusión de la conexión con

las clasificaciones existentes, y con la identificación de una interesante relación,

que permite reproducir la carga central holográfica con el sector RR de las teorı́as.
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9 CONCLUSIONS

Los Capı́tulos 1, 2 y 3 han sido dedicados a bosquejar los principales conceptos

utilizados en este trabajo, tanto conceptos geométricos como conceptos teóricos de

campo. En el Capı́tulo 4, hemos proporcionado un resumen de los artı́culos que

componen esta tesis.

En el Capı́tulo 5 hemos presentado nuestras geometrı́as ‘semilla’. Aquı́, usando

las técnicas Killing spinor, hemos construido cuatro nuevas clases AdS3⇥S2 pre-

servando pequeña N = (0, 4) supersimetrı́a en supergravedad tipo II. Dos de

ellas están en tipo IIA masiva y tienen estructura SU(2) en el espacio interno

M5 =M4⇥I; la clase I tiene M4 =CY2 y la clase II tiene una variedad Kähler

de cuatro dimensiones. Las otras dos soluciones están en tipo IIB, tienen estructura

identidad en M5 y se distinguen por tener o no D7-branas. Nos hemos enfocado en

la clase I en tipo IIA masiva, en un subconjunto con una CY2 compacta. Hemos

propuesto teorı́as bidimensionales de campos de quiver duales para estas solu-

ciones, basadas en las configuraciones de Hanany-Witten las cuales son implı́cadas

por las cargas de las soluciones. Para comprobar la dualidad propuesta hemos

comparado la carga central de la teorı́a de campo y la carga central holográfica en-

contrando concordancia entre ambas cantidades, estos resultados son presentados

en la Sección 5.3. Además, hemos encontrado que la solución obtenida a través

de SU(2)-NATD sobre la solución AdS3⇥S3⇥CY2 encaja en esta clase, y hemos

proporcionado terminaciones explı́citas para este fondo que permiten definir con-

sistentemente una CFT dual.

En el Capı́tulo 6, hemos tomado el caso sin masa de las geometrı́as anteri-

ores y elevado a la teorı́a M, obteniendo una nueva clase de geometrı́as deform-

adas del tipo AdS3⇥S3/Zk⇥CY2⇥I. Hemos mostrado que estas soluciones son

duales a SCFT dos dimensionales con pequeña N = (0, 4) supersimetrı́a que de-

scriben cuerdas autoduales en (1,0) CFTs seis dimensionales. Hemos obtenido

también otra familia de nuevas soluciones en la teorı́a M a través de continuaciones

analı́ticas, dando lugar a una nueva clase donde el modding actúa ahora sobre el

factor AdS3.

La reducción en AdS3 de las soluciones AdS3/Zk⇥S3 ha conducido a una

nueva clase de soluciones AdS2 en supergravedad tipo IIA sin masa con cuatro su-

percargas de Poincaré. Hemos mostrado que estas soluciones se pueden extender

al caso masivo notando que están relacionadas, vı́a continuaciones analı́ticas, con
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las soluciones ‘semilla’. Su mecánica cuántica superconforme se ha estudiado de-

tenidamente en la Sección 7.1, donde hemos identificado la intersección de brana
1
8
-BPS subyacente. Esto ha permitido interpretar la CFT dual como una descripción

de defectos unidimensionales que consisten en vértices bariónicos, D4-D0, en sis-

temas cinco dimensionales, D4’-D8. En presencia de los defectos, las branas D4’

y D8, de la teorı́a cinco dimensional, se convierten en branas de sabor, y las branas

D0 y D4 desempeñan ahora el papel de branas de color. En consecuencia, hemos

visto que, la SCQM que vive en estos sistemas se da en términos de un conjunto

de quiver desconectados con grupos de gauge asociados a las D0- y D4-branas

acopladas a las branas de sabor D4’ y D8.

Además hemos mostrado que, realizando SL(2,R)-NATD sobre la solución

AdS3⇥S3⇥CY2 en tipo IIB, una solución explı́cita de la clase dada en la Sección

7.1 es obtenida. Cabe mencionar que esta ha sido la primera vez que se aplicó

NATD con respecto a un grupo de isometrı́a no compacto como técnica de gen-

eración de soluciones en supergravedad. Un cuidadoso análisis de este ejemplo ha

sido presentado en la Sección 7.2 con una terminación precisa de la solución y una

propuesta concreta de su mecánica cuántica. Ha sido mostrado que esta solución

está conectada a través de continuaciones analı́ticas, con la solución AdS3⇥S2⇥CY2⇥I,

obtenida en [81] y estudiada en la Sección 5.4.

El Capı́tulo 8 ha sido dedicado al estudio de tres nuevos pares AdS2/SCQM

en supergravedad tipo IIB. Las tres familias de soluciones AdS2 se han obten-

ido a través de ATD y NATD. El Tipo A y el Tipo B tienen la misma forma,

AdS2⇥S2⇥CY2 ⇥ ⌃2, con ⌃2 una superficie de Riemann 2d con la topologı́a de

un anillo. Las soluciones Tipo A surgen actuando con ATD sobre la fibra de Hopf

del subespacio AdS3 de las soluciones AdS3⇥S2 en tipo IIA masiva. A su vez,

las soluciones Tipo B surgen actuando con ATD sobre la fibra de Hopf del S3 en

las soluciones AdS2⇥S3 en tipo IIA masiva. Hemos visto que ambas soluciones

también están relacionadas a través de continuaciones analı́ticas y que comparten

la misma configuración de brana D1-D3-D5-D7-NS5-F1. A pesar de sus carac-

terı́sticas similares, tienen diferentes interpretaciones en su SQCM, debido a sus

diferentes orı́genes. Las SCQMs duales a las soluciones Tipo A surgen como una

compactificación (DLC) de las soluciones 2d CFT duales a las AdS3⇥S2. A su vez,
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9 CONCLUSIONS

las soluciones de Tipo B son duales a los vértices bariónicos D1-D5 que backre-

acted dentro de las N = 2 QFT en 4d que viven en las branas D3-D7. También

hemos comentado algunas caracterı́sticas de estos fondos, como la existencia de

una interesante conexión entre la carga central holográfica y el sector RR de las

soluciones. La tercera solución en tipo IIB se ha obtenido aplicando SL(2,R)-

NATD sobre las soluciones ‘semilla’. Esta nueva familia tiene la misma forma que

las geometrı́as Tipo A y Tipo B anteriores, pero en este caso ⌃2 tiene la topologı́a

de una franja infinita. El estudio detallado de esta solución y su terminación es

objeto para un trabajo futuro.

En la Sección 8.2, hemos mostrado que las soluciones en tipo IIB extienden la

clasificación de [47, 48] al incluir fuentes de branas, D3- y D7-branas.

Este trabajo tiene interesantes caminos abiertos que merecen una mayor in-

vestigación. Por ejemplo, las soluciones AdS en bajas dimensiones son partic-

ularmente relevantes para el desarrollo del programa de conteo microscópico de

agujeros negros y, por otro lado, estas teorı́as pueden estudiarse como branas de-

fecto que terminan en una configuración de brana dada y producen las geometrı́as

AdS de menor dimensión.

En el espı́ritu de [41, 102, 103], encontrar una interpretación de nuestras solu-

ciones en el contexto de 4d y 5d agujeros negros es claramente una dirección que

debe investigarse. Serı́a interesante entender la libertad existente al elegir h4, h8

y sus implicaciones para los agujeros negros. Deberı́a ser importante aclarar la

relación entre el number of vacua y la entropı́a de estos agujeros negros.

En particular, serı́a interesante seguir explotando la técnica de G-structures para

explorar las soluciones N = (0, 2) AdS2 y AdS3 que han sido poco estudiadas y,

además, proponer sus duales CFT con las herramientas mostradas en este trabajo.

Valdrı́a la pena seguir usando SL(2,R)-NATD para construir nuevas soluciones

con factor AdS2 y explorar sus SCQMs duales. En los ejemplos anteriores en los

que se ha utilizado NATD –con respecto a un grupo de isometrı́a SU(2) de acción

libre– la configuración para diseñar la teorı́a de campo estaba determinada por Dp-

branas extendidas entre NS5-branas, mientras que SL(2,R)-NATD parece generar
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cuerdas fundamentales estiradas entre las diferentes Dp-branas. Con este razo-
namiento, las SCQMs podrı́an estar surgiendo como defectos de lı́neas de Wilson
o vértices de barionicos dentro de teorı́as conformes de dimensiones superiores.
En este sentido, el primer candidato a estudiar son las soluciones Tipo C obteni-
das usando SL(2,R)-NATD sobre el subespacio AdS3 de nuestras geometrı́as ‘se-
milla’, a las que les falta una descripción CFT.

Serı́a interesante ver si una relación similar entre la carga central holográfica
y los productos de los flujos de Ramond-Ramond se mantiene para otras clases
de soluciones, especialmente para espacios AdS de mayor dimensión. Este estu-
dio serı́a claramente beneficioso porque coincide con la noción de que los prob-
lemas de extremización en teorı́a cuántica de campos se realizan en supergravedad
a través de la extremización de ciertas cantidades geométricas. En consecuencia,
la relevancia es doble, primero, el funcional se construye en términos de formas
eléctricas/magnéticas precisas determinadas por el sector Ramond-Ramond de la
solución, mientras que la carga central holográfica generalmente se calcula con el
sector NSNS de la solución. En este sentido, serı́a interesante comprender el signi-
ficado geométrico de estas formas y ver si están conectadas a las estructuras SU(2).
Y segundo, el principio extremal generaliza aquellos en la literatura existente me-
diante la inclusión de fuentes y fronteras. Por lo tanto, es interesante extender estos
resultados a otras geometrı́as que también contienen fuentes.

Además, un problema abierto obvio es discutir los CFTs duales de las solu-
ciones referidas como clase II, donde el CY2 es reemplazado por una variedad 4d
de Kähler, y los CFTs duales a las soluciones AdS3⇥S2⇥M5 en tipo IIB. Además,
serı́a interesante estudiar la integrabilidad (o no) de los fondos presentados en esta
tesis. Serı́a bueno explorar otras pruebas y encontrar predicciones de nuestra dual-
idad propuesta. En particular, serı́a interesante aplicar técnicas de cálculo exacto,
como en [41], a las nuevas clases de soluciones, ya que esto proporcionarı́a una
comprensión más profunda del régimen IR de las diferentes teorı́as
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