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A R T I C L E I N F O A B S T R A C T

Online temperature estimates are essential to the thermal monitoring and control of battery cells for battery
management systems (BMSs). Due to hardware limitations, there has been a surge in interest in sensorless
approaches for both surface and core temperatures. On this account, several methods have been proposed
in the literature for the coestimation of state of charge (SOC) and temperature via RC-based electrical and
thermal models and Extended Kalman Filters (EKFs). However, the stability and reliability of these schemes
over the complete cell lifetime, when the effects of battery aging become apparent, have not been addressed
thoroughly. In this article, a dual state-parameter estimation is carried out on an enhanced equivalent circuit
model to coestimate the SOC and SOH on a commercial nickel-rich, silicon–graphite cell throughout its entire
lifetime. A thermal model has been characterized based on the previous electrical model for the estimation
of surface and core temperature of the cell. The continuous updating and correction of electrical parameters
prove to be critical for temperature estimations to remain accurate in the long run, yielding a root mean square
error (RMSE) in surface temperature below 1.2 ◦C for as long as 800 cycles.
1. Introduction

Lithium-ion batteries (LIBs) currently power most electronic de-
vices, and are a key enabling technology in applications ranging from
renewable energies to electric vehicles [1,2]. Aiming to increase the
erformance of LIBs, several approaches are currently ongoing, with
he introduction of silicon into the anodic materials being one of the
ost promising innovations [3]. State-of-the-art commercial 18650

atteries containing a blend of silicon and graphite (Si–Gr) in the
egative electrode and a mixture of nickel-rich materials (i.e., NMC811,
CA) on the positive electrode may increase the energy density by
5% when compared to standard 18650 cells without silicon [4–7].

Thanks to this remarkable energy density improvement, Si–Gr batter-
ies are expected to be deployed in consumer electronics and next-
generation electric vehicles (EVs) [8–10]. As with the introduction
of any novel battery technology, several questions remain unresolved
in cell chemistries containing silicon regarding battery performance
and reliability over prolonged operation cycling [11–13], which make
estimations of the long-term behavior of cells with battery technology
even more challenging [14].

On the other hand, temperature is one of the main factors that
influence the safety and performance of LIBs [15], as well as their rate
of degradation and remaining useful life (RUL) [16]. The increasing
prevalence of LIBs in EVs has led to a greater need for faster charging
and discharging schemes, which can cause cell temperatures to rise
considerably [17]. Consequently, the thermal monitoring of lithium-
ion cells, especially in larger battery packs, is an essential function of
a battery management system (BMS). However, physically measuring
the surface temperature of individual cells would entail a substantial
instrumentation cost, as well as additional difficulties with hardware
and wiring [18]. For this reason, several procedures have been pro-
posed in order to determine the temperature of battery cells without
the need for a dedicated sensor. Plenty of these methods are based on
information extracted from Electrochemical Impedance Spectroscopy
(EIS) tests. McCarthy et al. [19] presented a comprehensive review on
the applications of EIS measurements, including internal temperature
estimations. This was recognized as a promising line of research since
the need for physical sensors is no longer present and temperature
estimations may be acquired faster than with existing methods [20].
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Nevertheless, some inconsistencies were pointed out in [19] regarding
what features should be searched for and at which frequencies or
frequency range, as well as the method to establish the correlation
between the identified features and the estimated internal temperature.

Conversely, the core and surface temperatures of a cell may also
be approximated without sensors by means of thermal modeling and
the estimation of the heat generation rate from current and voltage
measurements. Several control-oriented thermal models for cylindri-
cal lithium ion batteries were presented in [21], which range from
lumped to PDE-based thermal models, and it was concluded that a
2RC equivalent circuit model constitutes a reasonable compromise
between accuracy and computational cost. An alternative to thermal
RC-networks is obtained by reducing the 1-D heat equation to a system
of ordinary differential equations (ODEs) in order to achieve a state-
space representation that retains a physical description of the process.
However, the applicability of these procedures throughout the lifetime
of the cell is commonly not considered; as a result, their accuracy is
not guaranteed in the long term if the heat generation term is not
updated accordingly. As a matter of fact, Ludwig et al. [22] recently
demonstrated that degradation and the resistance growth associated
with aging greatly affect the accuracy of temperature estimations,
and improved their previous pulse-based sensorless method [23] by
compensating these effects with offset correction and accurate state of
charge (SOC) estimations. Nonetheless, this empirical method requires
precise SOC and capacity measurements, as well as a priori knowledge
of the long-term behavior of the battery cell, which may hinder its
online application. This proves that, if the temperature is estimated via
thermal modeling, a battery model that is able to account for capacity
loss as well as the change in electrical parameters that affect the heat
generation rate is essential to the long-term accuracy and reliability of
the temperature estimations.

Electrical battery models can be broadly divided into three cat-
egories [24,25]: electrochemical models, semi-empirical models and
data-driven approaches. As computational burden remains a limiting
factor in online monitoring algorithms, semi-empirical models, and in
particular equivalent circuit models (ECMs) are notably widespread. In
addition, ECMs are practical in BMSs due to the simplicity of their im-
plementation and their reduced computational requirements [26]. Still,
standard ECMs present shortcomings regarding the reproduction of
nonlinear behavior of LIBs as well as with their validation under broad
operating conditions and degradation stages [27]. To circumvent these
issues, there has been a recent surge in interest in extended, physics-
informed ECMs that account for electrochemical processes such as
solid-phase diffusion [28], nonlinear capacity effects [29], charge trans-
fer processes [26,30] and double-layer capacitance at the electrode–
electrolyte interface via fractional-order elements [31–33]. On the
other hand, extended Kalman filters (EKFs) remain the most popular
alternative for online estimation and monitoring [34]. Given the afore-
mentioned issues, simultaneous parameter identification via Recursive
Least Squares (RLS) algorithms [35–37], as well as state-parameter
estimations via joint extended Kalman Filters [38], adaptive extended
Kalman Filters [39] and dual-extended Kalman filters (DEKFs) [40–
42] have been employed for continuous parameter updating. This way,
long-term parameter variations due to the effects of cell degradation,
which may be too complex to be included in a simple ECM, are
estimated.

Nevertheless, making use of a DEKF in order to estimate cell capac-
ity as a model parameter poses serious stability concerns after several
cycles, as shown in [41]. This is due to the fact that battery degradation
is a much slower process than voltage dynamics, so updating cell
capacity every iteration of the algorithm introduces extraneous noise in
the system that deteriorates both state and parameter estimations [43],
compromising overall filter stability. For the reasons above, it becomes
clear that a different approach is needed in order to estimate battery
2

remaining capacity. Several empirical degradation models have been
proposed [44–46], although they are chemistry dependent and not suit-
able for online estimation. For this purpose, straightforward capacity
estimates as a direct measurement of the quotient 𝛥𝑄∕𝛥𝑆𝑂𝐶 have also
been presented [47], although this method requires extremely accurate
SOC estimations. In order to reduce the influence of noisy measure-
ments, RLS algorithms are often employed. A forgetting factor [48]
may easily be added into the algorithm with the purpose of increasing
the weight of recent measurements, so that capacity estimations reflect
actual cell degradation in long-term operation.

In this article, we carry out a dual state-parameter estimation on
an improved, physics-informed equivalent circuit model for the sen-
sorless estimation of surface and core temperature on a commercial
NMC811/Si–Gr cell throughout its cycle life. Dual state-parameter es-
timation for the electrical model [36,37], along with online capacity
estimation, constitute an interesting alternative for updating electrical
parameters and improving SOC estimations for long-term operation.
For this purpose, both electrical and thermal models have been pa-
rameterized, and the performance of the proposed method is validated
with experimental data of 800 cycles with a 2C discharge followed by
a C/2 charge, which allow for a considerable temperature increment as
well as a characterization of full the transient response of the thermal
model. Our results show that this method enables the thermal model
to remain valid in the long run, permitting the accurate estimation
of the temperature increment in individual cells for their thermal
monitoring and management. To the best of our knowledge, this is the
first work that presents an online method for the estimation of the cell
surface and core temperature throughout its lifetime with a restrained
computational cost.

Consequently, this paper is organized as follows: the specification
of the investigated cell, the experimental setup and the conducted
tests are described in Section 2. The equivalent circuit model as well
as the procedure to carry out dual state-parameter estimation are
introduced in Section 3. In Section 4, the algorithm for SOH estimation
is presented along with guidelines on when it should be employed.
A two-state thermal model based on the proposed equivalent circuit
model is characterized and analyzed in Section 5, while simulation
results and comparisons between estimations and measurements are
shown in Section 6. Finally, some concluding remarks are provided in
the last section.

2. Experimental

For this study, commercial INR18650-35E cells from Samsung-SDI
were acquired from an online vendor. According to the manufacturer,
these cells exhibit a standard discharge capacity greater or equal than
3.4 Ah when discharged at 1C within the voltage limits (4.2 V charge,
2.65 V cut-off). The tests were carried out on a multichannel, high-
precision series Arbin LBT20084 battery system with 24-bit and 18-bit
resolution for voltage and current measurements, respectively. A Mem-
mert environmental chamber was used to maintain the tested cell at a
constant ambient temperature of 23 ◦C. The temperatures in both the
climate chamber and the cell case were measured with T-type copper–
constantan thermocouples with a standard tolerance of 1 ◦C and logged
into the Arbin system. A general perspective of the battery tester along
with the associated climatic chamber is shown in Fig. 1-(a), whereas
a detail of the analyzed cell with its corresponding thermocouple and
battery holder may be observed in Fig. 1-(b).

The testing strategy comprises four blocks (I–IV) [49], each block
providing specific experimental results on the tested cell. In Block I,
testing equipment preparation and accuracy verification is carried out.
In Block II, the tested cell quality is evaluated. Block III comprises
the Reference Performance Tests (RPTs), carried out to determine the
thermodynamic, electrical and thermal characteristics of the cell under
test. Block IV is the repetitive duty cycle scheme, and consisted of
a series of continuous full charge and discharge cycles. The charging

was performed at a constant current (CC) stage at C/2 (1.7 A) until
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Fig. 1. (a) Arbin LBT20084 battery system and environmental chamber (b) Cell under test in the Arbin battery holder inside the climatic chamber, with its thermocouple attached
ith adhesive putty.
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he cell reaches 4.2 V, followed by a constant voltage (CV) stage until
he current declines to C/50 (68 mA). The discharge was carried out
t 2C (6.8 A) CC until the 2.65 V cut-off voltage was reached. This
harge/discharge sequence was performed continuously for 100 cycles,
fter which the RPTs (i.e., Block II) were performed again. The testing
equence (i.e., Block II and III) was repeated until the cell reached the
nd-of-cycling at 800 cycles. At that point, a final RPT was carried out
nd the cell testing was terminated. Due to the importance of the RPT
cheme (i.e., Block III) to develop battery models and the identification
f cell parameters, a more detailed description of the RPTs is provided
elow.

The RPTs quantitatively assess battery performance using standard
esting equipment, providing as much information as possible without
eing intrusive. To develop the physics-informed equivalent circuit
odel presented in this work, three key testing schemes are performed
uring the RPTs, namely, (i) Thermodynamic testing, (ii) Internal resis-
ance testing and (iii) Thermal testing. All testing was performed within
he cell voltage limits (i.e., 4.2 V to 2.65 V).

1. Thermodynamic testing includes a set of two stabilization cycles
at C/2 CC-CV charge and C/5 CC discharge, followed by the
thermodynamic cycling with two cycles at C/25 CC, and a final
C/50 CC cycle sampled at 1 mV. The thermodynamic cycling
also comprises a two-hour rest-period between charge and dis-
charge. This set of testing allows for the determination of the
pseudo-OCV curve to decipher the OCV-SOC relationship.

2. Internal resistance testing includes a set of two stabilization
cycles C/2 CC-CV charge and C/5 CC discharge, followed by
a specific set of dynamic pulses. This methodology exhibits
the electrochemical processes involved in a cell, deriving the
contributions from the ohmic, charge transfer and polarization
resistance [50–52]. The dynamic pulses were carried out at the
following SOCs: 5%, 20%, 50%, 80% and 95%, both in charge
and discharge. The peak pulse was rated to ±C/2 with a duration
of 120 s, and a sampling rate of 0.5 mV or 1 ms (whichever is
first) to acquire all representative data to construct the model.
The current and voltage profiles of this testing scheme are shown
in Fig. 2.
3

3. Thermal testing consists of six high-rate discharge cycles fol-
lowed by a resting period to determine the thermal properties of
the cell. The test consists of a C/2 CC-CV charge, followed by a
maximum discharge rate at 2C CC and a temperature relaxation
period of 2-hour rest. The data sampling rate is set to 1 s.

3. SOC estimation

As presented in Section 1, SOC estimation algorithms require an
lectrical model that is able to reproduce voltage dynamics as a func-
ion of a current input. Equivalent circuit models are widely employed
n such algorithms due to their reduced computational cost and simple
mplementation. Nevertheless, they provide little insight into the actual
lectrochemical behavior and their parameters should either include
OC and temperature dependencies or be updated continuously for the
odel to be applicable in a wide range of operating conditions. Dual

tate-parameter estimation allows accounting for these dependencies as
ell as parameter variation and drift that occur in long-term operation.

.1. Equivalent circuit model

Farmann et al. [26] presented seven equivalent circuit models to
eproduce dynamic battery behavior, ranging from simplest to most
omplex. The equivalent circuit model used in this study is model 4 of
aid work (shown in Fig. 3), which is the most comprehensive model
including the current dependence of the charge-transfer resistance)
hat does not contain fractional-order elements, whose analysis and
ime-domain implementation is beyond the scope of this paper.

This model differs from a standard 3RC ECM in the fact that it
ccounts for the current dependence of the charge transfer resistance:
he RC-element comprised of 𝑅𝑐𝑡 and 𝐶1 with the fastest time constant
1 is responsible for capturing charge transfer processes occurring at the
lectrode–electrolyte interface [53]. The charge-transfer overpotential
𝜂) is determined by the Butler–Volmer equation:

= 𝑖0

(

exp
(

(1 − 𝛼)
𝐹𝜂

)

− exp
(

−𝛼
𝐹𝜂

))

, (1)

𝑅𝑔𝑇 𝑅𝑔𝑇
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Fig. 2. Current and voltage profiles for the internal resistance test.
Fig. 3. Equivalent circuit model employed in this article.
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where 𝛼 is the electrode charge transfer coefficient, 𝑖0 is the exchange
current density and 𝐹 and 𝑅𝑔 stand for the Faraday constant and the
niversal gas constant, respectively, and 𝑇 is the absolute tempera-
ure. Anodic and cathodic reactions are assumed to be symmetric in
ithium-ion batteries, therefore 𝛼 is estimated to be 0.5. Therefore, the
utler–Volmer equation can be further simplified to:

= 2𝑖0 sinh
(

𝐹𝜂
2𝑅𝑔𝑇

)

(2)

The charge transfer resistance 𝑅𝑐𝑡 is defined as the quotient between
verpotential and current. Consequently, the current dependence of the
harge-transfer resistance can be expressed as follows:

𝑐𝑡(𝑖𝑅𝑐𝑡) = 𝑅𝑐𝑡,0

sinh−1
(

𝑖𝑅𝑐𝑡
2𝑖0

)

𝑖𝑅𝑐𝑡
2𝑖0

= 𝑅𝑐𝑡,0
sinh−1

(

𝐾𝑖𝑅𝑐𝑡
)

𝐾𝑖𝑅𝑐𝑡
, (3)

here 𝑅𝑐𝑡,0 (𝑅1 from now on) is the value of the charge transfer
esistance at zero current and 𝐾 = 1∕2𝑖0 is left as a parameter to
e estimated. The remaining RC-elements with slower time constants
2 and 𝜏3 are associated with slower diffusion processes of lithium
ntercalation and deintercalation in the electrodes [26].

Taking the current dependence into account allows for a more com-
rehensive and physics-informed model [30], while only introducing
ne additional parameter and an explicit functional dependence that
an easily be handled by a Dual Extended Kalman Filter [33]. Further-
ore, it is appropriate to consider parameter 𝐾 in an adaptive manner

ince the exchange current density 𝑖 changes for different temperatures
4

0

nd may decrease significantly over the battery lifetime [54] due to the
nfluence of SEI growth on Butler–Volmer kinetics.

The described equivalent circuit model can be expressed in a state-
pace representation where the input is battery current 𝑢𝑘 (positive for
harging), the output is terminal voltage and the state variables are the
tate of charge and RC resistor currents:

=
[

𝑆𝑂𝐶 𝑖1 𝑖2 𝑖3
]𝑇 (4)

The discrete-time update equations for the state variables are pre-
sented in Eq. (5). Choosing currents instead of voltages as state vari-
ables as well as time constants rather than capacitances produces linear
state equations that depend on only one parameter each. This will result
in a simpler implementation of the Dual Extended Kalman Filter.

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 +
𝛥𝑡
𝑄 𝑢𝑘−1

𝑖1,𝑘 = exp
(

− 𝛥𝑡
𝜏1

)

𝑖1,𝑘−1 +
(

1 − exp
(

− 𝛥𝑡
𝜏1

))

𝑢𝑘−1

𝑖2,𝑘 = exp
(

− 𝛥𝑡
𝜏2

)

𝑖2,𝑘−1 +
(

1 − exp
(

− 𝛥𝑡
𝜏2

))

𝑢𝑘−1

𝑖3,𝑘 = exp
(

− 𝛥𝑡
𝜏3

)

𝑖3,𝑘−1 +
(

1 − exp
(

− 𝛥𝑡
𝜏3

))

𝑢𝑘−1

(5)

The output equation expresses the battery voltage as a function
of the state variables and circuit parameters, reflecting the OCV-SOC
relationship as well as the current dependence of the charge transfer
resistance:

𝑦 = 𝑂𝐶𝑉 (𝑆𝑂𝐶 ) + 𝑅 𝑢 + 𝑅
sinh−1

(

𝐾𝑖1,𝑘
)

+ 𝑅 𝑖 + 𝑅 𝑖 (6)
𝑘 𝑘 0 𝑘 1 𝐾 2 2,𝑘 3 3,𝑘



P. Rodríguez-Iturriaga et al.

3

s
(
o
a
d
e
p
w
E
c
b

w
c
a
m
n
t
d
𝑄
e

D

Fig. 4. Flowchart of a Dual Extended Kalman Filter.
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.2. Dual Extended Kalman Filter

The presented equivalent circuit model and its state-space repre-
entation allow for the implementation of an Extended Kalman Filter
EKF) with the purpose of SOC estimation providing that input and
utput measurements are available. Nonetheless, model parameters
re not constants since there may be undetected SOC or temperature
ependencies as well as internal resistance growth due to cell op-
ration. Therefore, the time-invariant modeling of these parameters
roduces a continuously increasing process error within the filter,
hich poses long-term stability and convergence concerns. The Dual
xtended Kalman Filter (DEKF) consists of two EKFs in a parallel
onfiguration as shown in Fig. 4, for the simultaneous estimation of
oth states and parameters, and its general formulation is [40]:

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘−1, 𝜃𝑘) +𝑤𝑘

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘, 𝜃𝑘) + 𝑣𝑘

𝜃𝑘 = 𝜃𝑘−1 + 𝑟𝑘

𝑑𝑘 = ℎ(𝑥𝑘, 𝑢𝑘, 𝜃𝑘) + 𝑒𝑘,

(7)

here 𝑥𝑘 is the state vector, 𝑢𝑘 is the model input, 𝜃𝑘 is the vector
ontaining the parameters to be estimated and 𝑦𝑘 is the model output. 𝑓
nd ℎ are non-linear functions that update the current state and output,
eanwhile 𝑤𝑘 and 𝑣𝑘 are the zero-mean process and measurement
oises of covariance 𝑄𝑥

𝑘 and 𝑅𝑥
𝑘, respectively. Given that model parame-

ers are assumed to change in a much slower fashion compared to state
ynamics, their fluctuations are attributed to noise 𝑟𝑘 with covariance
𝜃
𝑘. The parameter output equation 𝑑𝑘 is the same as the state output
quation, with noise 𝑒𝑘 of covariance 𝑅𝜃

𝑘.

Following state and parameter initialization, the operation of the
EKF can be summarized in four steps:

1. Parameter EKF estimation. The updated a priori parameter
estimate is equal to the previous a posteriori parameter estimate,
along with an increase in uncertainty owing to process noise 𝑟𝑘,
which is captured in the state error covariance matrix 𝑃−

𝜃,𝑘:

�̂�−𝑘 = �̂�+𝑘−1
− + 𝜃

(8)
5

𝑃𝜃,𝑘 = 𝑃𝜃,𝑘−1 +𝑄𝑘
r

2. State EKF estimation. The state and output estimates are up-
dated according to nonlinear functions 𝑓 and ℎ. State uncer-
tainty increases due to the presence of process noise of covari-
ance 𝑄𝑥

𝑘:

�̂�−𝑘 = 𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�
−
𝑘 )

𝑃−
𝑥,𝑘 = 𝐹 𝑥

𝑘−1𝑃
+
𝑥,𝑘−1

(

𝐹 𝑥
𝑘−1

)𝑇 +𝑄𝑥
𝑘

�̂�𝑘 = ℎ(�̂�−𝑘 , 𝑢𝑘, �̂�
−
𝑘 ),

(9)

where

𝐹 𝑥
𝑘−1 =

𝜕𝑓 (𝑥𝑘−1, 𝑢𝑘−1, �̂�−𝑘 )
𝜕𝑥𝑘−1

|

|

|

|𝑥𝑘=�̂�+𝑘−1

(10)

3. State EKF correction. State observer gain 𝐿𝑥
𝑘 is calculated and

state estimate is corrected by the innovation term, reducing the
corresponding uncertainty.

𝐿𝑥
𝑘 = 𝑃−

𝑥,𝑘
(

𝐻𝑥
𝑘
)𝑇

(

𝐻𝑥
𝑘𝑃

−
𝑥,𝑘

(

𝐻𝑥
𝑘
)𝑇 + 𝑅𝑥

𝑘

)

�̂�+𝑘 = �̂�−𝑘 + 𝐿𝑥
𝑘
(

𝑦𝑘 − �̂�𝑘
)

𝑃+
𝑥,𝑘 =

(

𝐼 − 𝐿𝑥
𝑘𝐻

𝑥
𝑘
)𝑇 𝑃−

𝑥,𝑘
(

𝐼 − 𝐿𝑥
𝑘𝐻

𝑥
𝑘
)

+ 𝐿𝑥
𝑘𝑅

𝑥
𝑘
(

𝐿𝑥
𝑘
)𝑇 ,

(11)

where

𝐻𝑥
𝑘 =

𝜕ℎ(𝑥𝑘, 𝑢𝑘, �̂�−𝑘 )
𝜕𝑥𝑘

|

|

|

|𝑥𝑘=�̂�−𝑘

(12)

4. Parameter EKF correction. Parameter observer gain 𝐿𝜃
𝑘 is cal-

culated and parameter estimate is corrected by the innovation
term, reducing the corresponding uncertainty.

𝐿𝜃
𝑘 = 𝑃−

𝜃,𝑘
(

𝐻𝜃
𝑘
)𝑇

(

𝐻𝜃
𝑘𝑃

−
𝜃,𝑘

(

𝐻𝜃
𝑘
)𝑇 + 𝑅𝜃

𝑘

)

�̂�+𝑘 = �̂�−𝑘 + 𝐿𝜃
𝑘
(

𝑑𝑘 − 𝑑𝑘
)

𝑃+
𝜃,𝑘 =

(

𝐼 − 𝐿𝜃
𝑘𝐻

𝜃
𝑘
)𝑇 𝑃−

𝜃,𝑘
(

𝐼 − 𝐿𝜃
𝑘𝐻

𝜃
𝑘
)

+ 𝐿𝜃
𝑘𝑅

𝜃
𝑘
(

𝐿𝜃
𝑘
)𝑇 ,

(13)

where

𝐻𝜃
𝑘 =

𝑑ℎ(�̂�+𝑘 , 𝑢𝑘, 𝜃𝑘)
𝑑𝜃𝑘

|

|

|

|𝜃𝑘=�̂�−𝑘

(14)

The corrected error covariance matrices are expressed in Joseph
orm to improve the numerical stability of the algorithm [40]. It
as to be pointed out that the calculation of matrix 𝐻𝜃

𝑘 requires the
omputation of the total differential of the model output equation with

espect to parameters. For this reason, the total derivative has to be
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decomposed into partial derivatives as follows:

𝐻𝜃
𝑘 =

𝑑ℎ(�̂�𝑘, 𝑢𝑘, 𝜃𝑘)
𝑑𝜃𝑘

|

|

|

|𝜃𝑘=�̂�−𝑘

=
𝜕ℎ(�̂�𝑘, 𝑢𝑘, �̂�−𝑘 )

𝜕�̂�−𝑘
+

𝜕ℎ(�̂�−𝑘 , 𝑢𝑘, �̂�
−
𝑘 )

𝜕�̂�−𝑘

𝑑�̂�−𝑘
𝑑𝜃−𝑘

(15)

𝑑�̂�−𝑘
𝑑𝜃−𝑘

=
𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�

−
𝑘 )

𝜕�̂�−𝑘
+

𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�
−
𝑘 )

𝜕�̂�+𝑘−1

𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

(16)

𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

=
𝑑�̂�−𝑘−1
𝑑𝜃+𝑘−1

− 𝐿𝑥
𝑘−1

𝑑ℎ(�̂�−𝑘−1, 𝑢𝑘−1, �̂�
+
𝑘−1)

𝑑�̂�+𝑘−1
(17)

For this purpose,
𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

is initialized to zero and the three total-
erivatives are updated recursively.

Regarding the equivalent circuit model presented in Section 3.1, the
arameter vector to be estimated contains the resistors, time constants
nd the current dependence constant 𝐾:

=
[

𝑅0 𝑅1 𝑅2 𝑅3 𝜏1 𝜏2 𝜏3 𝐾
]𝑇 (18)

According to the state and output Eqs. (5) and (6), Jacobian ma-
rices required in Eqs. (10), (12), (15) and (16) are the following:

𝑥
𝑘−1 = 𝑑𝑖𝑎𝑔

[

1 exp
(

− 𝛥𝑡
𝜏−1,𝑘

)

exp
(

− 𝛥𝑡
𝜏−2,𝑘

)

exp
(

− 𝛥𝑡
𝜏−3,𝑘

)]

(19)

𝐻𝑥
𝑘 =

[

𝜕𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

|

|

|
̂𝑆𝑂𝐶−

𝑘

�̂�−
1,𝑘

√

1+(�̂�−
𝑘 )2(𝑖−1,𝑘)

2
�̂�−
2,𝑘 �̂�−

3,𝑘

]

(20)

𝜕ℎ(�̂�𝑘, 𝑢𝑘, �̂�−𝑘 )

𝜕�̂�−𝑘
=
[

𝑖𝑘
sinh−1(�̂�−

𝑘 𝑖−1,𝑘)

�̂�−
𝑘

𝑖−2,𝑘 𝑖−3,𝑘

0 0 0 �̂�−
1,𝑘

�̂�−
𝑘 𝑖−1,𝑘

√

1+(�̂�−
𝑘 )2(𝑖−1,𝑘 )

2
−sinh−1(�̂�−

𝑘 𝑖−1,𝑘)

(�̂�−
𝑘 )2

⎤

⎥

⎥

⎦

(21)

𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�
−
𝑘 )

𝜕�̂�−𝑘
=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0
0 0 0 0 𝐴1 0 0 0
0 0 0 0 0 𝐴2 0 0
0 0 0 0 0 0 𝐴3 0

⎤

⎥

⎥

⎥

⎥

⎦

(22)

Where:

𝐴1 =
𝛥𝑡

(𝜏−1,𝑘)
2 exp

(

− 𝛥𝑡
𝜏−1,𝑘

)

(

𝑖+1,𝑘−1 − 𝑢𝑘−1
)

𝐴2 =
𝛥𝑡

(𝜏−2,𝑘)
2 exp

(

− 𝛥𝑡
𝜏−2,𝑘

)

(

𝑖+2,𝑘−1 − 𝑢𝑘−1
)

𝐴3 =
𝛥𝑡

(𝜏−3,𝑘)
2 exp

(

− 𝛥𝑡
𝜏−3,𝑘

)

(

𝑖+3,𝑘−1 − 𝑢𝑘−1
)

(23)

Once the theoretical framework for the DEKF has been established,
the algorithm is initialized by inputting the starting values for both
states and parameters. Given that the cycling scheme begins with a
short rest period, initial SOC is estimated via voltage measurement and
the OCV-SOC relationship; meanwhile initial currents are set to zero:

̂+0 =
[

𝑂𝐶𝑉 −1(𝑣0) 0 0 0
]𝑇 (24)

Therefore, the state estimation error covariance matrix is initialized
s:

̂𝑥
0 = 𝑑𝑖𝑎𝑔

[

10−3 0 0 0
]

(25)

Initial equivalent circuit parameters are obtained from the internal
esistance test carried out during the first RPT (Fig. 2). 𝑅0 is calculated
s the quotient 𝛥𝑉 ∕𝛥𝐼 at the beginning of every peak ±C/2 current
ulse [52]. Next, the voltage transients are employed to obtain the RC
etwork parameters. For this purpose, the initial voltage step is sub-
racted and the remaining transient is fitted to a 3-exponential response
ia a non-linear least squares algorithm. This calculation was carried
ut for the three intermediate SOCs both for charge and discharge,
6

m

ith a resulting 𝑅2 over 0.999 in all cases. Representative values for
each parameter are calculated as the average of all cases. Meanwhile
parameter 𝐾 from the current dependence is initialized to 0.1 [54].

herefore, the initial parameter vector is expressed in Eq. (26):

�̂�+0 =
[

0.0272 0.01525 0.0162 0.0052 22.51 184.2 2064.6 0.1
]𝑇

(26)

On the other hand, the parameter estimation error covariance matrix
is initially set to a diagonal matrix with parameter variances calculated
in the previous step and then manually adjusted. The error covariance
of parameter 𝐾 is estimated to be 0.1.

𝑃 𝜃
0 = 𝑑𝑖𝑎𝑔

[

10−7 10−7 10−7 10−7 0.1 1 10 0.1
]

(27)

In order to ensure the stability and convergence of the state and
parameter filters, tuning the covariance matrices corresponding to
process and measurement noises of both state and parameter filters 𝑄𝑥

0 ,
𝑅𝑥
0 𝑄𝜃

0 and 𝑅𝜃
0 is required. Parameter covariances are set to reduced

values so as to capture long-term variations due to degradation and
not quick changes that could imply overfitting. In this case, covariance
matrices have been initialized to the following values:

𝑄𝑥
𝑘 = 10−6 ⋅ 𝑑𝑖𝑎𝑔

[

0.1 1 1 1
]

𝑄𝜃
𝑘 = 10−10 ⋅ 𝑑𝑖𝑎𝑔

[

1 1 1 1 10 100 1000 10
]

𝑅𝑥
𝑘 = 10−2 𝑅𝜃

𝑘 = 10−2
(28)

4. SOH estimation

As presented in [41] and Section 1, the long-term state of health
estimation by including capacity as a parameter in the DEKF algorithm
entails serious reliability concerns. Moreover, updating capacity every
timestep introduces a fair amount of noise in SOC estimation resulting
in large fluctuations in electrical parameters as well as in capacity
estimates, compromising overall filter stability.

Considering that cell degradation is a slower process than battery
dynamics by several orders of magnitude, we develop an approach
based on [55] to implement the weighted recursive least squares with
fading memory (FMWRLS) for long-term capacity estimation. This algo-
rithm outputs an estimate �̂� such that 𝑦 ≈ �̂�𝑥 using vectors of measured
data 𝑥 and 𝑦, where 𝑥𝑖 is the estimated change in state-of-charge and
𝑦𝑖 is the change in electrical charge in Ah over interval 𝑖 with start and
finish points 𝑡1 and 𝑡2.

𝑥𝑖 = ̂𝑆𝑂𝐶(𝑡2) − ̂𝑆𝑂𝐶(𝑡1)

𝑦𝑖 =
𝑘2
∑

𝑘1

𝑢𝑘𝛥𝑡𝑘,
(29)

where 𝑘1 and 𝑘2 correspond to 𝑡1 and 𝑡2, respectively. SOC corrected
estimations (11) provided by the DEKF described in Section 3.2 contain
enough voltage feedback so that the equation 𝑦 ≈ �̂�𝑥 does not become
an identity. The estimate �̂� minimizes the sum of weighted squared
errors, where the weighting takes into account the uncertainty of each
accumulated charge measurement.

The equations for the recursive implementation of FMWRLS are the
following:

𝑐1,𝑛 = 𝛾𝑐1,𝑛−1 +
𝑥2𝑛
𝜎2𝑦,𝑛

𝑐2,𝑛 = 𝛾𝑐2,𝑛−1 +
𝑥𝑛𝑦𝑛
𝜎2𝑦,𝑛

�̂�𝑛 =
𝑐2,𝑛
𝑐1,𝑛

,

(30)

where 𝛾 is the forgetting factor, which has been set to 0.986. This is
he value that provides the closest match between the estimated re-
aining capacity and the experimental measurements. Fading memory
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of past capacity estimates is included to give a greater weight to recent
estimates, thus allowing �̂� to adjust for actual capacity changes.

Given that a cell with nominal capacity 𝑄𝑛𝑜𝑚 has said capacity over
a state-of-charge range of 1, the algorithm is initialized with these
values for 𝑥0 and 𝑦0. On the other hand, 𝜎2𝑦,𝑛 is the variance of the
𝑛th charge measurement, which is assumed to comprise accumulated
quantization noises and may be estimated as the variance of a uniform
distribution multiplied by the time interval 𝑡2 − 𝑡1 and scaled by the
actor 36002:

2
𝑦,𝑛 =

𝑞2 ⋅ (𝑡2 − 𝑡1)
(12 ⋅ 36002)

, (31)

here 𝑞 is the current sensor effective precision, which in this case has
een determined to be 2 mA.

One crucial issue with SOH estimation is at what operating stage
nd how often new 𝑥 and 𝑦 measurements are made. Frequent measure-
ents result in a lower 𝜎2𝑦 but also a smaller SOC difference, which can
ake the capacity estimate more susceptible to noise, thus destabilizing

he DEKF. In addition to this, carrying out these measurements during
igh-rate or intermittent discharges may lead to unreliable estimations.
or the reasons above, 𝑥 and 𝑦 measurements are only made from
he start to the end of the CC charging period, which allows for a
arge SOC increment as well as a more reliable SOC prediction and

measurement given the constant current. Updating capacity once
very cycle is deemed adequate to reflect actual variations in capacity
ithout introducing excessive noise in the SOC estimation method.
inally, this procedure is also applicable to other testing schemes as
ell as real-life battery operation since CC charging periods from 20%
OC to 80% SOC are guaranteed to occur regularly, therefore providing
sufficiently large SOC increment to ensure its correct behavior. This

lgorithm presents the advantage of providing a closed-form solution
or �̂�, which can easily be computed in a recursive manner. Further-
ore, the forgetting factor 𝛾 allows adjusting the relevance of past and

ecent measurements so that capacity estimates reflect cell degradation.

. Surface and core temperature estimation

As discussed in Section 1, there has been a recent surge in interest
n online temperature estimation via non-intrusive or indirect meth-
ds [22,23], due to the inaccessibility of individual cell measurements
n practical operation. In this section, we employ a thermal model
hat relies on the electrical model described in Section 3 for the heat
eneration term, and only requires ambient temperature measurements
o estimate cell surface and core temperatures. The continuous updating
nd correction of electrical parameters by the DEKF allows this model
o remain valid for long-term operation.

As shown by authors [37,56], entropic heat generation can be
isregarded without exceeding errors of ±1 ◦C, which is within the
olerance error range of T-type thermocouples. Under this condition,
he estimated heat generation rate is determined as the product of cell
urrent and overvoltage from Eq. (6), with corrected parameters and
tates from the DEKF being used for this calculation every timestep.

𝑃𝐽 ,𝑘 = 𝑢𝑘[𝑦𝑘 − 𝑂𝐶𝑉 ( ̂𝑆𝑂𝐶𝑘)] =

= �̂�+
0,𝑘𝑢

2
𝑘 + �̂�+

1,𝑘𝑢𝑘
sinh−1(�̂�+

𝑘 𝑖+1,𝑘)

�̂�+
𝑘

+ �̂�+
2,𝑘𝑢𝑘𝑖

+
2,𝑘 + �̂�+

3,𝑘𝑢𝑘𝑖
+
3,𝑘

(32)

Once the heat generation term has been defined, the thermal model
is introduced. As stated in Section 1, the 1-D heat equation of a cylinder
may be reduced to a system of ODEs by assuming a polynomial temper-
ature profile with the radial spatial variable 𝑟. The approximation with
a fourth-order polynomial was presented and derived in [57], yielding
a state-space representation whose state variables are the averaged
temperature and temperature gradients, whereas its inputs are the
heat generation rate and the ambient temperature and its outputs are
the core and surface temperatures. However, in said work, the heat
generation was calculated directly from experimental measurements
7

of terminal voltage and current, as well direct SOC calculations via
Coulomb counting. Conversely, in this article, it is calculated as the
resistive heat generated according to an adaptive electrical model. We
consider this to be a qualitative advantage since it allows the thermal
model to remain usable in the long term due to the continuous updating
of electrical parameters.

If the changes in the ambient temperature are presumed to happen
in a much slower timescale than the thermal dynamics of the cell,
which is typically true, their effects on temperature increments may be
safely neglected. This is equivalent to assuming that the ambient tem-
perature remains approximately constant throughout the cell thermal
transients, which allows for the reduction of the thermal model and
the consideration of the ambient temperature as a direct term in the
subsequent state-space representation. As a result of this, the transfer
functions from the heat generation rate to the surface and core temper-
atures are equivalent to those where the outputs are the temperature
increment with respect to the environment 𝑇𝐶𝐴(𝑠), 𝑇𝑆𝐴(𝑠) [57]:

𝑇𝐶𝐴(𝑠)
𝑃𝐽 (𝑠)

= 1
ℎ𝐴

𝑠
[

𝑅2

20𝛼𝑡
− ℎ𝑅3

160𝑘𝑡𝛼𝑡

]

+ 1 + ℎ𝑅
2𝑘𝑡

𝑠2
[

𝑅4

960𝛼2𝑡
+ 𝑘𝑡𝑅3

20ℎ𝛼2𝑡

]

+ 𝑠
[

7𝑅4

40𝛼𝑡
+ 𝑘𝑡𝑅

2ℎ𝛼𝑡

]

+ 1
(33)

𝑇𝑆𝐴(𝑠)
𝑃𝐽 (𝑠)

= 1
ℎ𝐴

𝑠 𝑅2

20𝛼𝑡
+ 1

𝑠2
[

𝑅4

960𝛼2𝑡
+ 𝑘𝑡𝑅3

20ℎ𝛼2𝑡

]

+ 𝑠
[

7𝑅4

40𝛼𝑡
+ 𝑘𝑡𝑅

2ℎ𝛼𝑡

]

+ 1
(34)

here ℎ is the convection coefficient, 𝑘𝑡 is the cell average thermal
onductivity, 𝛼𝑡 is the cell average thermal diffusivity, 𝐴 is the cell
ateral surface area and 𝑅 is the cell radius.

An alternative choice would have been to employ a 2RC Cauer
etwork for the thermal model, such as in [58]. However, the resulting
ransfer functions present four free parameters corresponding to two
esistors (𝑅𝐶𝑆 , 𝑅𝑆𝐴) and two capacitors (𝐶𝐶𝐴, 𝐶𝑆𝐴) whose values may

not have a clear physical interpretation. Conversely, since the cell
dimensions are known, the transfer functions in Eqs. (33) and (34)
nly have three fitting physical parameters (ℎ, 𝑘𝑡 and 𝛼𝑡), whose range
f values have been experimentally measured in previous works [18].
urthermore, the transfer function from the heat generation rate to
he surface temperature increment is not exactly equivalent. For these
easons, the reduced order model has been employed in this study.

The parameter values are determined by means of the thermal char-
cterization test described in Section 2. For this purpose, the electrical
odel described in Section 3 is simulated and the heat generation term

s estimated according to Eq. (32), while the modeled surface tempera-
ure increment is adjusted to its experimental value. The identification
esult is shown in Fig. 5.

The identified parameter values are ℎ = 33.18 W∕m2◦C, 𝑘𝑡 =
.64 W∕m◦C and 𝛼𝑡 = 1.59 ⋅ 10−7m2∕s, which are in agreement with
hose obtained in previous works [18]. These parameters are expected
o remain stable during the cell lifetime as long as the environment and
he cell arrangement are maintained [58].

The zero-pole representation of Eqs. (33) and (34) are the following:

𝑇𝐶𝐴(𝑠)
𝑃𝐽 (𝑠)

=
10.11(19.45𝑠 + 1)

(23.16𝑠 + 1)(612𝑠 + 1)
(35)

𝑇𝑆𝐴(𝑠)
𝑃𝐽 (𝑠)

=
8.2(25.47𝑠 + 1)

(23.16𝑠 + 1)(612𝑠 + 1)
(36)

In light of these results, it is observed that a nearly exact zero-
pole cancellation may be carried out. Therefore, a dominant pole
approximation can be done with barely any loss of accuracy. The Bode
plots of both transfer functions and their approximations are shown in
Figs. 6 and 7.

The dominant pole approximation makes it possible to use the trans-
fer functions and physically significant thermal parameters mentioned
above to achieve a reduced-order model that allows for a simpler
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Fig. 5. Experimental and identified surface temperature increment during the thermal characterization test.
Fig. 6. Second-order transfer function and first order approximation for the core temperature increment.
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state-space implementation. This is necessary so as to facilitate the
simulation in the time domain with a variable sampling period, which
is a common occurrence in long-term battery operation. Consequently,
the following lumped parameters may be identified in the approximate
model:

𝑅𝑆𝐴 = 8.2 ◦C∕W, 𝑅𝐶𝑆 = 1.91◦C∕W, 𝜏𝑡ℎ = 612 s (37)

Finally, the simplified discrete state-space representation of the
thermal model is as follows:
[

�̂�𝐶𝐴,𝑘
�̂�𝑆𝐴,𝑘

]

=
⎡

⎢

⎢

⎣

exp
(

− 𝛥𝑡
𝜏𝑡ℎ

)

0

0 exp
(

− 𝛥𝑡
𝜏𝑡ℎ

)

⎤

⎥

⎥

⎦

[

�̂�𝐶𝐴,𝑘−1
�̂�𝑆𝐴,𝑘−1

]

+

⎡

⎢

⎢

⎣

(𝑅𝐶𝑆 + 𝑅𝑆𝐴)
(

1 − exp
(

− 𝛥𝑡
𝜏𝑡ℎ

))

0

𝑅𝑆𝐴

(

1 − exp
(

− 𝛥𝑡
𝜏𝑡ℎ

))

0

⎤

⎥

⎥

⎦

[

𝑃𝐽 ,𝑘−1
𝑇𝐴,𝑘−1

]

[

�̂�𝐶,𝑘
]

=
[

1 0
] [

�̂�𝐶𝐴,𝑘
]

+
[

0 1
] [

𝑃𝐽 ,𝑘−1
]

,

(38)
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�̂�𝑆,𝑘 0 1 �̂�𝑆𝐴,𝑘 0 1 𝑇𝐴,𝑘 s
here the model inputs are the estimated heat generation rate and
he ambient, while the outputs are the estimated core and surface
emperatures.

. Results and discussion

In this section, the simulation results obtained by applying the
odels described in Sections 3–5 are validated against experimental

measurements. First, voltage, SOC and temperature estimations are
compared to their corresponding experimental values. Estimation re-
sults are shown in Figs. 8–10 for several cycles at three significant
tages during cell lifetime, namely cycles 198–200, 498–500 and 798–
00. It has to be noted that the time indicated in the 𝑥-axis corresponds
o the number of hours since the start of that particular duty cycling
cheme (i.e., Block IV), as described in the Experimental section.

Root-mean-square error (RMS) and mean-absolute error (MAE) be-
ween predictions and experimental data for every stage of cycling are
ummarized in Table 1. It has to be pointed out that the proposed
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Fig. 7. Second-order transfer function and first order approximation for the surface temperature increment.
Fig. 8. Voltage, SOC and temperature measurements and estimations for cycles 198–200.
ethod gives a MAE below 25.8 mV for cell voltage, 1.82% for cell
OC and 0.88 ◦C for surface temperature.

Regarding temperature estimation, the proposed model accurately
eflects cell thermal behavior: as shown in Figs. 8–10, both temperature
ise and relaxation profiles as well as peaks are correctly matched.
he temperature estimation shows minor disagreements with the ex-
erimental results during the CC charging stage. These temperature
ifferences may be caused by additional sources of heat generation,
uch as entropic heat [59], which may be overshadowed by the 2C

discharges and only become apparent at low current rates. Still, the
estimated temperature on the CV stage is never above 1.5 ◦C, which
is within the accuracy range of the T-type thermocouples employed
in the experimental schemes. That leads to conclude that a more
complex thermal model would not provide significant improvements
9

Table 1
Summary of estimation results.

Error Voltage (mV) SOC (%) Surface temperature (◦C)

Cycle RMS MAE RMS MAE RMS MAE

0–100 25.1 19.0 1.58 1.44 1.08 0.83
100–200 24.2 18.5 1.24 1.15 0.93 0.74
200–300 26.0 19.4 1.38 1.24 1.07 0.75
300–400 26.3 20.3 1.82 1.51 0.99 0.87
400–500 26.6 20.7 0.52 0.41 0.82 0.65
500–600 28.9 21.4 1.07 0.96 0.84 0.67
600–700 31.6 23.4 0.80 0.66 0.86 0.68
700–800 33.9 25.8 1.08 0.83 0.97 0.75



P. Rodríguez-Iturriaga et al.
Fig. 9. Voltage, SOC and temperature measurements and estimations for cycles 498–500.
Fig. 10. Voltage, SOC and temperature measurements and estimations for cycles 798–800.
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regarding the temperature estimation. The great agreement between
estimated and measured temperature also serves to validate the elec-
trical model since the heat generation term relies on the continuous
updating and correction of electrical parameters. The results provided
by the proposed method cannot be compared directly to those from
previous works, such as [58], given that the considered time frames
are notably distinct i.e., a drive cycle and the lifetime of the studied
cell. Furthermore, drive cycles consist of high frequency current signals,
so the complete thermal transient response and relaxation profile may
not be taken into account when carrying out the error analysis. As
10

s

discussed in Section 1, Ludwig et al. [22] recently proposed a sensorless
ethod for online resistance-based temperature estimations with em-
irical expressions for the updating of electrical parameters, yielding
n RMS error below 1.2 ◦C for as long as 200 cycles. Our integrated
pproach provides estimation results with the same degree of accuracy
hroughout 800 cycles without the need for a priori knowledge of the
ong-term behavior of the electrical parameters.

Furthermore, the accurate estimations of surface temperature also
erve to validate the parameterization procedure for the thermal model.
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Fig. 11. Voltage estimation performance for different SOC ranges.

Fig. 12. Measured and estimated cell capacity.

Fig. 13. Estimated resistor values during cycling.
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Fig. 14. Estimated parameter K during cycling.

Given that the identified parameters have a clear physical interpreta-
tion and their values are within previously experimentally determined
ranges [18], the core temperature estimation may be considered to be
representative of the inner temperature distribution. Additionally, the
core temperature is estimated to be 4 ◦C to 6 ◦C above the surface
temperature at the end of the 2C discharge according to this method,
which is in line with previous works in which the internal temperature
is measured experimentally [60,61]. Nevertheless, inserting an internal
temperature sensor into the cell under test is highly invasive procedure,
therefore possibly interfering with the internal structure and arrange-
ment of the cell and, consequently, affecting its behavior as shown by
Chen et al. [61] and Huang. et al. [60] and compromising its long-term
stability and reliability. Moreover, it is not straightforward to determine
which section and material of the cell the sensor is in direct contact
with, so it may not be possible to elucidate whether the measured
temperature is in agreement with the theoretical temperature at 𝑟 = 0.
In summary, we believe the main advantage of the proposed method
to be the ability to accurately estimate the surface temperature of the
cell, as well as provide a representative value of its internal temperature
throughout its lifetime without the need for physical sensors, given that
the assumption of a homogeneous cell temperature may not hold at
moderate to high current rates [62].

The accurate temperature estimations are due to the precise SOC
and voltage estimations. As shown in Figs. 8–10, the DEKF provides
a voltage estimation which is in great agreement with experimental
measurements through both discharges and the constant-current stages
of charging. The largest deviation from the measured values is reached
in the CV stages, because during this stage the voltage becomes the
actual input of the model and the cell current turns into the output.
Nevertheless, estimation errors in these phases are less critical since
the cell operates in thoroughly controlled conditions. Fig. 11 shows the
volution with cycling of the voltage estimation evaluated at different
OC ranges. The voltage estimation steadily loses accuracy as the
umber of cycles increases and the cell ages, showing larger errors in
he lowest and highest SOC range and a better performance over central
OCs. This is an expected result owing to changes in the electrode open
ircuit potential (OCP) curves, and consequently the resulting OCV-SOC
elationship, that have been reported at different degradation stages in
ells containing Ni-rich, blended Si–Gr anodes [14], which mostly affect
he highest and lowest SOC ranges.

Another feature of this work is the SOH estimation. As shown in
ig. 12, estimated capacity via the FMWRLS algorithm closely matches
ctual capacity measured via RPTs at cycle 50 and then every 100
ycles. The capacity estimation results are in great agreement with the
xperimental data, with a maximum relative error of 0.61% showing
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Fig. 15. Measured and estimated surface temperature with and without parameter updating. Top: cycles 198–200. Middle: cycles 498–500. Bottom: cycles 798–800.
Table A.2
Table of abbreviations employed in this article.

Abbreviation Description

LIB Lithium-ion battery
NMC811 Nickel–Manganese–Cobalt
Si–Gr Silicon–Graphite
NCA Nickel–Cobalt–Aluminium
EV Electric Vehicle
RUL Remaining Useful Life
BMS Battery Management System
EIS Electrochemical Impedance Spectroscopy
PDE Partial differential equation
ODE Ordinary differential equation
SOC State Of Charge
SOH State Of Health
ECM Equivalent Circuit Model
EKF Extended Kalman Filter
DEKF Dual Extended Kalman Filter
RLS Recursive Least Squares
FMWRLS Fading Memory Weighted Recursive Least Squares
RPT Reference Performance Test
OCV Open Circuit Voltage
OCP Open Circuit Potential
CC-CV Constant Current - Constant Voltage
RMS Root Mean Square
MAE Mean Absolute Error

accuracy improvements with respect to previous works [48], where
maximum relative errors reached 2%. It has to be noted that the
capacity estimations reflect the nonlinear initial degradation stage, as
well as the following linear trend, for nearly the complete lifetime of
the cell until a final capacity loss of 15.6% is reached. Accurate capacity
estimations prove to be essential to the correct behavior and stability
of the filter.

Next, the evolution of the estimated equivalent circuit parameter
values is shown in Figs. 13 and 14. It has to be noted that most of the
nternal resistance increase is ascribed to 𝑅1. Parameter 𝐾 grows in
ccordance, which was anticipated in [54]. This demonstrates that the
nclusion of the current dependence of the charge transfer resistance,
12
Table B.3
Nomenclature.

Symbol Description (Units)

𝑄,𝑄𝑛𝑜𝑚 Cell capacity, Nominal capacity (Ah)
𝑅𝑐𝑡 Charge-transfer resistance (Ω)
𝑖0 Exchange current (A)
𝛼 Charge transfer coefficient
𝐹 Faraday’s constant (C∕mol)
𝜂 Charge transfer reaction overpotential (V)
𝑅𝑔 Universal gas constant (J∕K mol)
𝑇 Temperature (K)
𝐾 Current dependence parameter (A−1)
𝛾 Forgetting factor
𝑞 Current sensor precision (A)
𝑃𝐽 Heat generation rate (J)
𝑇𝐶𝐴 Core-ambient temperature difference (K)
𝑇𝑆𝐴 Surface-ambient temperature difference (K)
ℎ Heat transfer coefficient (W∕m2K)
𝑅,𝐴 Cell radius and surface area (m, m2)
𝑘𝑡 Cell thermal conductivity (W∕mK)
𝛼𝑡 Cell thermal diffusivity (m2∕s)
𝑅𝑆𝐴 Surface-ambient thermal resistance (K∕W)
𝑅𝐶𝑆 Core-surface thermal resistance (K∕W)
𝜏𝑡ℎ Thermal time constant (s)
𝑇𝐴 Ambient temperature (K)

as well as the online estimation of its parameter, greatly improve the
performance of the model. Time constants are estimated to remain
largely stable during cycling.

Finally, the importance of the online updating of the equivalent cir-
cuit parameters is highlighted in Fig. 15. This shows that the peak error
in the estimated temperature remains stable below 1.5 ◦C throughout
cell lifetime if electrical parameter are updated, whereas it grows from
4 ◦C to 12 ◦C otherwise.

The main drawback of ECMs is usually the lack of the correlation
between the circuit elements and the physical and chemical processes
occurring in the LIB. This can make the interpretation of the identi-
fied parameters ambiguous, thus rendering its analysis unfruitful [63].
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However, it is observed that temperature, voltage, SOC and capacity
estimations closely match experimental measurements. This is indica-
tive of the fact that open circuit voltage, overvoltage and, consequently,
heat generation rate are estimated correctly by the DEKF, and thus
serve its intended purpose of battery monitoring, even if the individual
parameter values do not reflect the internal behavior of the cell.

7. Conclusions

In this article, the lifetime sensorless estimation of surface and
internal temperature has been carried out on a novel NMC811/Si–Gr
battery cell. To attain this range of applicability, a complete electro-
thermal is developed with the goal of estimating the cell surface and
core temperature indirectly when the ambient temperature is available.
For this purpose, a physics-informed equivalent circuit model that takes
into account the current dependence of the charge transfer resistance
has been employed. Parameter values are continuously estimated by
means of a Dual Extended Kalman Filter, allowing the electrical model
to remain valid in the long term; whereas the remaining capacity is
calculated via a Recursive Least Squares algorithm with a forgetting
factor. Next, a physics-based reduced-order thermal model is charac-
terized and its parameters are identified. The continuous updating of
the equivalent circuit parameters allows the heat generation term and
therefore, the temperature estimations, to remain highly accurate with
a maximum RMS error of 1.2 ◦C for as long as 800 complete cycles. The
educed computational cost of the proposed procedure along with its
verall satisfactory performance, as well as the sensorless temperature
easurement, make it a suitable choice for the online monitoring of

attery cells.
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