
s
m

m
d
m
m
i

Research papers

A novel Dual Fractional-Order Extended Kalman Filter for the improved
estimation of battery state of charge
Pablo Rodríguez-Iturriaga a,∗, Jorge Alonso-del-Valle b, Salvador Rodríguez-Bolívar a,
David Anseán b, Juan Carlos Viera b, Juan Antonio López-Villanueva a

a Department of Electronics and Computer Technology, Faculty of Sciences, Granada, 18071, Andalusia, Spain
b Department of Electrical Engineering, Polytechnic School of Engineering, Gijon, 33204, Asturias, Spain

A R T I C L E I N F O A B S T R A C T

Fractional-order models are gaining increasing relevance in battery modeling in light of the experimental
measurements from Electrochemical Impedance Spectroscopy (EIS) tests, unequivocally indicating the presence
of equivalent circuit components with an impedance of non-integer order. To attain their discrete state-space
representation, the approach based on the Grünwald–Letnikov (GL) definition of the fractional derivative has
been widely used, albeit its applicability beyond driving cycles remains open to discussion. In this article,
we present a novel Dual Fractional-Order Extended Kalman Filter (DFOEKF) for the simultaneous estimation
of State of Charge (SOC) and all fractional parameters, based on the multiple-RC approximation instead. We
discuss the parameter identification of fractional-order elements on a NMC811/Si-Gr cell from both frequency
and time-domain data, highlighting the importance of EIS measurements for the search of appropriate time-
domain values. We validate the performance of this method experimentally at different operation stages, as
well as its robustness to incorrect initializations, obtaining a SOC root-mean-square (RMS) error of 0.28% and a
voltage RMS error of 15.2 mV in 20 complete charge–discharge cycles. The greatly accurate estimation results
both within and outside the driving cycle stage make this method an interesting alternative for the fractional
modeling of LIBs in online applications.
1. Introduction

After continuous improvement over the last forty-five years [1],
rechargeable lithium-ion batteries (LIBs) have become the leading tech-
nology in the electrochemical energy storage market, from portable
electronics to applications in renewable energies and electric vehi-
cles [2,3]. Their preeminence is expected to continue and even increase
due to their potential decreasing costs following manufacturing up-
scale [4]. Therefore, the study and development of accurate battery
models proves to be essential for the implementation of Battery Man-
agement Systems (BMSs) [5]. Three main categories are usually con-
idered regarding battery models: physics-based models, data-driven
odels and equivalent circuit models (ECMs) [6,7]. The former attempt

to reflect the physical and electrochemical processes that take place
during cell operation [8–10]. Nevertheless, the computational require-

ents may be inappropriate for online applications, and the precise
etermination of physical parameters from non-destructive measure-
ents still remains a challenging problem [11]. Conversely, data-driven
odels replace the battery with a black-box model that reproduces

ts behavior and is able to retain complex features at a moderate

computational cost [12]. However, the accuracy of the model largely
depends on the training dataset, which must be sufficiently extensive
and representative. This may lead to an extremely time-consuming
training process, which can possibly hinder their usage in practical
applications [13].

On the other hand, ECMs remain the most popular choice for BMSs
because of their low computational load and simple parameterization,
along with the facility to implement battery estimation and noise
correction algorithms [14–16]. In spite of this, many authors have
pointed out their lack of meaningful physical insight, as well as their
inability to model battery behavior accurately under different operating
conditions [17]. For this reason, there have been numerous research ef-
forts to develop physics-informed ECMs that account for the underlying
physical processes occurring inside the cell in different manners [6,18],
while maintaining a reduced computational cost in order to keep them
suitable for online applications. Given that diffusion and charge transfer
processes take place during battery operation, fractional calculus has
recently gained popularity as an alternative tool for battery modeling,
in the same way as in other physical and biological phenomena
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[19–21], since fractional-order differential equations have been found
to model spatially distributed relaxation processes accurately.

Regarding battery modeling, this entails the introduction of circuit
elements whose electrical impedance depends on frequency according
to a non-integer power law, such as constant-phase elements (CPEs).
The parallel connection of a resistor and a CPE is known as a ZARC
element [22], which naturally replaces the parallel-RC network that is
ubiquitous in ECMs for battery monitoring systems. This is experimen-
tally justified as well by the unequivocal non-integer behavior observed
in Electrochemical Impedance Spectroscopy (EIS) tests, in which the
frequency response of the battery cell is measured and characterized in
a Nyquist plot [23–25]. The resistive behavior of the current collectors,
the electrodes and the electrolyte is represented by an ohmic resistance,
whose value is easily retrieved at the intersection of the curve with
the real axis. At medium frequencies, one or several depressed semi-
circles are prominent, which are usually modeled by ZARC elements
and attributed to charge transfer reactions at the electrode–electrolyte
interfaces [26,27]. At low frequencies, a constant-slope tail appears,
which is ascribed to diffusion processes in the electrodes and commonly
represented by a CPE [28].

In order to apply fractional calculus to battery monitoring systems,
a state-space representation of the fractional-order elements must be
attainable and manageable, so as to implement some type of Kalman
Filter (KF) to carry out the estimation of state-of-charge (SOC) as well as
minimize the influence of process and measurement noises. However,
fractional models involve non-integer order derivatives, which can
make it challenging to obtain a practical discrete state-space formu-
lation. A method that has become increasingly popular in the battery
modeling literature in recent years relies on the Grünwald–Letnikov
(GL) discretization of the fractional-order differential equation [29],
thus allowing for the application of data filtering techniques. Numerous
works in the past years have employed the GL definition to develop
state-space representations of battery models consisting of an ohmic
resistor 𝑅0 and one or several ZARC elements, and made use of several
variants of KFs to perform SOC estimations [30–32] or combined
state-parameter estimations [33–36] in driving cycle experiments. This
approach requires the definition of a memory of length 𝐿𝑚, a moving
time window during which the influence of past data is still considered
relevant for the computation of the fractional derivative. For this
purpose, the short-memory principle presented by Podlubny [29] is
applied, therefore neglecting the influence of older samples in favor
of more recent data. The error 𝜖 introduced in the fractional derivative
by the short-memory principle is quantified as in Eq. (1):

𝜖 ≤
𝑀𝐿−𝛼

𝑚
|𝛤 (1 − 𝛼)|

(1)

where 𝛼 is the fractional order, 𝐿𝑚 is the memory length and 𝑀 is
the upper bound of the original function. Thus, given a desired degree
of accuracy in the fractional derivative, the memory length 𝐿𝑚 can be
computed easily. Nevertheless, there is a caveat that is often overlooked
in previous works that make use of the short-memory principle. A
reduced error in the calculation of the fractional derivative can lead
to an unbounded error in the output variable if the system input has
been held constant for a longer period than the memory length 𝐿𝑚,
due to the fact that the approximate derivative has already converged
to zero while the exact fractional derivative is still nonzero. Conse-
quently, the short-memory principle would only be applied accurately
if the duration of the input signals were sufficiently shorter than the
memory length 𝐿𝑚, with frequent fluctuations that cancel out long-term
effects. There are several driving cycles and testing protocols that meet
these conditions; however, in a real-world scenario, the input current
profile cannot be known beforehand. On this account, memory lengths
ranging from 10 [34] to 700 [31] have been reported in recent battery
literature, revealing that there is not a consistent method to determine
this value, or whether it should be variable depending on past and
2

current operation. Despite the fact that previous works present accurate
estimation results during the driving cycle stage, we consider that these
aspects have not been addressed or justified rigorously. For the reasons
above, a state-space representation of a fractional-order model that is
able to reproduce battery behavior accurately regardless of the current
profile is highly desirable.

Another alternative relies on approximating the behavior of
fractional-order circuit elements by that of a combination of integer-
order elements, such as resistor and capacitor networks in different
configurations, for which several methods have been proposed in the
literature. Oustaloup et al. [37] presented a procedure to synthesize the
transfer function of the CPE by a recursive distribution of zeros and
poles within a specified frequency range. Tsirimokou [38] reviewed
several methods to determine rational approximations to fractional-
order transfer functions and used the continued fraction expansion
to calculate the parameter values of different circuit topologies. A
related approach approximates the impedance of the fractional-order
element by the serial connection of parallel RC branches. Farmann
et al. [39] replaced the ZARC by three and five serially-connected
RC elements, achieving a higher degree of accuracy with the five-
element network. Kim et al. [40] also considered three RC elements.
Heil and Jossen [22] proposed two methods to approximate the ZARC
by multiple RC circuits: the first one consisting of an infinite number
of serially connected RC elements that can be related to the ZARC by
explicit equations, and the second one with only three series-connected
RC circuits that requires solving a numerical minimization problem
to obtain the parameter values. Authors that approximate the ZARC
element by an integer-order circuit usually provide a table with the
corresponding parameters for a discrete set of values of the fractional
exponent 𝛼. Nevertheless, a model valid for any continuously varying
order is necessary for the implementation of a Dual Fractional-Order
Extended Kalman Filter (DFOEKF) for the simultaneous estimation of
SOC and fractional parameters, making use of integer-order elements
and avoiding the aforementioned issues regarding the memory length
in the GL-based approach. We presented and discussed such a model
in [41].

The main contribution of this article is the development of a novel
DFOEKF for the dual estimation of SOC and fractional parameters based
on the multiple-RC approximation of the ZARC element, which pro-
duces a more adequate time-domain voltage response. The fractional
parameters have been identified on a novel NMC811/Si-Gr cell via both
EIS tests and time-domain measurements, and the differences between
both approaches as well as their suitability for this application are dis-
cussed. We have validated our novel DFOEKF procedure experimentally
for 20 complete cycles including Dynamic Stress Tests (DST), rests and
charging periods, also proving its robustness to incorrect parameter ini-
tializations. This method yields accurate estimation results throughout
the different stages of cell operation, thus circumventing the issues that
arise from the definition of a memory length when applying the GL
definition of the fractional-order derivative.

Consequently, this paper is organized as follows: the theoretical
analysis of different approximations of the ZARC element is presented
in Section 2, whereas the experimental schemes are described in Sec-
tion 3. The identification of fractional parameters from frequency-
domain and time-domain data is carried out in Section 4. The novel
DFOEKF method is presented and validated in Section 5, and some
concluding remarks are provided in the final section.

2. Theoretical analysis

In this section, the frequency-domain and time-domain behaviors of
the ZARC element are presented, and different approximations for its

time-domain response are analyzed and compared.
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2.1. Qualitative description of the behavior of the ZARC element in fre-
quency and time domains

The ZARC element is composed of a constant-phase element (CPE)
connected in parallel with a resistor R. The impedance of the CPE in
the Laplace domain is expressed in Eq. (2):

𝑍𝐶𝑃𝐸 (𝑠) =
1

𝑄𝑠𝛼
(2)

Therefore, the impedance of the ZARC element is presented in
q. (3):

𝑍𝐴𝑅𝐶 (𝑠) =
𝑍𝐶𝑃𝐸𝑅

𝑍𝐶𝑃𝐸 + 𝑅
= 𝑅

1 + 𝑅𝑄𝑠𝛼
(3)

In order to avoid fractional dimensions in parameter 𝑄, it is useful
o define a time constant as 𝜏 ≡ (𝑅𝑄)1∕𝛼 so that the final impedance is
xpressed in Eq. (4):

𝑍𝐴𝑅𝐶 (𝑠) =
𝑅

1 + (𝜏𝑠)𝛼
(4)

The frequency response of the ZARC element can be analyzed by
ubstituting 𝑠 = 𝑗𝜔, where 𝑗 =

√

−1, thus obtaining Eq. (5):

𝑍𝑍𝐴𝑅𝐶 (𝑗𝜔) =
𝑅

1 + (𝑗𝜔𝜏)𝛼
= 𝑅

1 + (𝜔𝜏)𝛼
[

cos
(

𝛼𝜋
2

)

+ 𝑗 sin
(

𝛼𝜋
2

)] (5)

The impedance of the ZARC element can be split into its real and
imaginary components as in Eq. (6):

𝑅𝑒(𝑍𝑍𝐴𝑅𝐶 (𝑗𝜔)) =
𝑅
[

1+(𝜔𝜏)𝛼 cos
(

𝛼𝜋
2

)]

1+2(𝜔𝜏)𝛼 cos
(

𝛼𝜋
2

)

+(𝜔𝜏)2𝛼

𝐼𝑚(𝑍𝑍𝐴𝑅𝐶 (𝑗𝜔)) = −
𝑅(𝜔𝜏)𝛼 sin

(

𝛼𝜋
2

)

1+2(𝜔𝜏)𝛼 cos
(

𝛼𝜋
2

)

+(𝜔𝜏)2𝛼

(6)

The Nyquist diagram of the ZARC element, usually plotted with a
negative imaginary part, features a depressed semicircle that intersects
the real axis at 0 and 𝑅, which correspond to 𝜔 → ∞ and 𝜔 = 0
respectively. The maximum value of the negative imaginary part is
reached at 𝜔 = 1∕𝜏 and is determined by the fractional exponent 𝛼,
as expressed in Eqs. (7) and (8):

𝑅𝑒(𝑍𝑍𝐴𝑅𝐶 (𝑗𝜔))
|

|

|𝜔=1∕𝜏
= 𝑅

2
(7)

− 𝐼𝑚(𝑍𝑍𝐴𝑅𝐶 (𝑗𝜔))
|

|

|𝜔=1∕𝜏
= 𝑅

2

sin
(

𝛼𝜋
2

)

1 + cos
(

𝛼𝜋
2

) = 𝑅
2
tan

(𝛼𝜋
4

)

(8)

The time-domain voltage response of the ZARC element when the
nput current is a unit step can be determined via the inverse Laplace
ransform as in Eq. (9):

𝑉𝑍𝐴𝑅𝐶 (𝑠) = 𝐼(𝑠)𝑍𝑍𝐴𝑅𝐶 (𝑠) =
𝑅

𝑠(1+(𝜏𝑠)𝛼 )

𝑣𝑍𝐴𝑅𝐶 (𝑡) = −1 [𝑉𝑍𝐴𝑅𝐶 (𝑠)
]

= 𝑅
(

1 − 𝐸𝛼

[

−
(

𝑡
𝜏

)𝛼])
(9)

here 𝐸𝛼 is the one-parameter Mittag-Leffler function, defined in
q. (10):

𝛼(𝑥) =
∞
∑

𝑛=0

𝑥𝑛

𝛤 (𝑛𝛼 + 1)
(10)

The voltage response of the ZARC element to an arbitrary current
function can be computed in Eq. (11) as in [41]:

𝑣(𝑡) = 𝑅∫

𝑡

0
𝑖(𝑢) 𝑑

𝑑𝑢
𝐸𝛼

[

−
( 𝑡 − 𝑢

𝜏

)𝛼]
𝑑𝑢, (11)

here 𝑢 is a dummy variable. Therefore, if the current profile is approx-
mated by a piecewise constant function, the exact voltage response of
he ZARC element can be computed as in Eq. (12):

𝑍𝐴𝑅𝐶 (𝑡) = 𝑅
𝑘
∑

𝐼𝑚

[(

1 − 𝐸𝛼

[

−
(

𝑡 − 𝑡𝑚
)𝛼])

𝐻(𝑡 − 𝑡𝑚) −
3

𝑚=1 𝜏
Table 1
Parameter expressions as a function of 𝛼 for the 5 RC approximation.
[41].

Parameter Expression

𝑟1(𝛼) = 𝑟5(𝛼) 0.186(1 − 𝛼)1.1

𝑟2(𝛼) = 𝑟4(𝛼) (0.25 + 0.57𝛼2)(1 − 𝛼)0.72

𝑟3(𝛼) 1 − 2
(

𝑟1 + 𝑟2
)

𝑡1(𝛼) = 1/𝑡5(𝛼)
0.045𝛼7.32

0.04+𝛼4.47

𝑡2(𝛼) = 1/𝑡4(𝛼)
0.407𝛼4

0.071+𝛼2.38

𝑡3(𝛼) 1

Table 2
Parameter expressions as a function of 𝛼 for the 7 RC approximation.
[41].

Parameter Expression

𝑟1(𝛼) = 𝑟7(𝛼) 0.14(1 − 𝛼)2

𝑟2(𝛼) = 𝑟6(𝛼) 0.22(1 − 𝛼) − 0.08(1 − 𝛼)3

𝑟3(𝛼) = 𝑟5(𝛼)
(

0.12 + 0.057𝑒3.4𝛼
)

(1 − 𝛼)
𝑟4(𝛼) 1 − 2

(

𝑟1 + 𝑟2 + 𝑟3
)

𝑡1(𝛼) = 1/𝑡7(𝛼) 1.4 ⋅ 10−8𝑒19𝛼(1.6−𝛼)

𝑡2(𝛼) = 1/𝑡6(𝛼)
0.078𝛼5.63

0.026+𝛼3.67

𝑡3(𝛼) = 1/𝑡5(𝛼)
0.56𝛼2.27

0.4+𝛼1.3

𝑡4(𝛼) 1

(

1 − 𝐸𝛼

[

−
(

𝑡 − 𝑡𝑚−1
𝜏

)𝛼])

𝐻(𝑡 − 𝑡𝑚−1)
]

(12)

here 𝐻 is the Heaviside unit step function.

.2. Time-domain approximations of the ZARC element

The exact calculation of the ZARC voltage response with Eq. (12)
equires the repeated computation of the Mittag-Leffler function, which
s iterative in nature itself. This results in a heavy computational load,
hus making it not easily applicable in real-time monitoring algorithms.
onsequently, several time-domain implementations have been pro-
osed in order to accurately approximate the voltage response of the
ARC element in the time domain.

• Multiple-RC approximation. This approach relies on approximat-
ing the frequency response of the ZARC element by that of a set of
series-connected parallel RC branches. Taking the fractional order
𝛼, the resistance 𝑅𝑍𝐴𝑅𝐶 and the time constant 𝜏𝑍𝐴𝑅𝐶 as the three
input parameters of the ZARC model, the parameter values are
directly calculated as 𝑅𝑖 = 𝑅𝑍𝐴𝑅𝐶 ⋅ 𝑟𝑖(𝛼) and 𝜏𝑖 = 𝜏𝑍𝐴𝑅𝐶 ⋅ 𝑡𝑖(𝛼) for
both the five-element and seven-element networks according to
Tables 1 and 2 [41]:
Once the equivalent RC parameter values have been calculated,
the state-space representation of a set of series-connected parallel
RC branches is shown in Eq. (13):

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘 − 1), 𝑦(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘)

𝑥(𝑘) =
[

𝑖1(𝑘) 𝑖2(𝑘) … 𝑖𝑛(𝑘)
]𝑇

(13)

where the state vector 𝑥 contains the currents through each
resistor, the input 𝑢 is the total current and the output 𝑦 is the
total voltage drop in the network. The state-space representation
matrices are expressed in Eq. (14):

𝐴 = 𝑑𝑖𝑎𝑔
[

exp
(

− 𝛥𝑡
𝜏1

)

exp
(

− 𝛥𝑡
𝜏2

)

… exp
(

− 𝛥𝑡
𝜏𝑛

)]

𝐵 =
[

1 − exp
(

− 𝛥𝑡
𝜏1

)

1 − exp
(

− 𝛥𝑡
𝜏2

)

… 1 − exp
(

− 𝛥𝑡
𝜏𝑛

)]𝑇

𝐶 =
[

𝑅1 𝑅2 … 𝑅𝑛
]

, 𝐷 = 0

(14)

where 𝛥𝑡 is the sampling time.
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• Oustaloup approximation. This method first approximates the
frequency response of a constant-phase element of order 𝛼 in a
certain frequency range [𝜔𝑙 , 𝜔ℎ] by a product of 𝑛 zeroes and poles
as in Eq. (15):

𝑍𝐶𝑃𝐸 (𝑠) =
1

(

𝑠
𝜔𝑐

)𝛼 ≈
(

𝜔𝑐
𝜔𝑙

)𝛼 𝑁
∏

ℎ=−𝑁

1 + 𝑠
𝜔𝑧,ℎ

1 + 𝑠
𝜔𝑝,ℎ

≡ 𝑍𝑂𝑈 (𝑠) (15)

where 𝜔𝑐 =
√

𝜔𝑙𝜔ℎ and 𝑁 = 𝑛−1
2 . The corresponding zeroes and

poles are calculated in Eq. (16):

𝜔𝑧,ℎ = 𝜔𝑙

(

𝜔ℎ
𝜔𝑙

)

ℎ+ 𝑛+𝛼
2

𝑛
, 𝜔𝑝,ℎ = 𝜔𝑙

(

𝜔ℎ
𝜔𝑙

)

ℎ+ 𝑛−𝛼
2

𝑛
(16)

Adding a parallel resistor 𝑅 yields a biproper transfer function,
which can be further split into the sum of a direct term 𝑅0 and
𝑛 first-order partial fractions as in Eq. (17), where the new poles
are [1∕𝜏1, 1∕𝜏2,… , 1∕𝜏𝑛] and the residues are [𝑅1, 𝑅2,… , 𝑅𝑛]:

𝑍𝑍𝐴𝑅𝐶,𝑂𝑈 (𝑠) = 𝑅0 +
𝑅1

1 + 𝜏1𝑠
+

𝑅2
1 + 𝜏2𝑠

+⋯
𝑅𝑛

1 + 𝜏𝑛𝑠
(17)

This equation leads to a state-space representation similar to that
of Eqs. (13) and (14), with the difference that the feedthrough
matrix 𝐷 is now equal to 𝑅0 in this case. This entails a slight
inaccuracy in the Oustaloup model in relation to the multiple-RC
model as it introduces a direct term from the input to the output
that is not present in the expression for the theoretical voltage
in Eq. (12). This discrepancy translates into a voltage leap when
current is changed along with a small steady-state error when
current has been held constant for a long period of time.
It has to be noted that the accuracy of the approximation depends
heavily both on the number of zeroes and poles 𝑛 and the fre-
quency range [𝜔𝑙 , 𝜔ℎ] considered. From now on, in this article
the operational range will be set to [10−3𝜏, 103𝜏], as it provides
a good compromise between time-domain and frequency-domain
accuracy [41].

• Grünwald–Letnikov approximation. This method, rather than ap-
proximating the frequency response of the ZARC element, relies
on discretizing the underlying fractional-order differential equa-
tion for the current through the ZARC resistor, shown in Eq. (18):

𝐷𝛼𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑡) = − 1
𝜏𝛼

𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑡) +
1
𝜏𝛼

𝐼(𝑡) (18)

where 𝐼(𝑡) is the input current.
This is achieved by introducing the Grünwald–Letnikov (GL) def-
inition of the fractional derivative with a fixed memory length
𝐿𝑚 [29], as in Eq. (19):

𝐷𝛼𝑥(𝑘 + 1) = 1
𝑇 𝛼
𝑠

𝐿𝑚
∑

𝑗=0
(−1)𝑗

(

𝛼
𝑗

)

𝑥(𝑘 + 1 − 𝑗) (19)

which renders the state Eq. (20) when substituted into Eq. (18):

𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘 + 1) =
(

𝛼 −
𝑇 𝛼
𝑠
𝜏𝛼

)

𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘)+

𝐿𝑚
∑

𝑗=2
(−1)𝑗+1

(

𝛼
𝑗

)

𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘 + 1 − 𝑗)
(20)

If a vector containing previous values of 𝑖𝑅,𝑍𝐴𝑅𝐶 is considered as a
state vector, Eq. (20) can be expressed more compactly in matrix
form as in Eq. (21) [33]:
4

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 𝑦(𝑘) = 𝐶𝑥(𝑘) +𝐷𝑢(𝑘) (21)
where

𝑥(𝑘) =
[

𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘) 𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘 − 1) … 𝑖𝑅,𝑍𝐴𝑅𝐶 (𝑘 − 𝐿 + 1)
]𝑇

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛼 − 𝑇 𝛼
𝑠
𝜏𝛼 𝑊2 𝑊3 … 𝑊𝐿𝑚

1 0 0 … 0
0 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 … 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 𝛼
𝑠
𝜏𝛼
0
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐶 =
[

𝑅 0 0 … 0
]

, 𝐷 = 0,𝑊𝑗 =
(𝛼
𝑗

)

(22)

2.3. Accuracy comparison between the time-domain approximations

In order to elucidate which method provides the most accurate
approximation of the voltage response of the ZARC element, each
one has to be compared to the exact result. Agudelo et al. [42] re-
cently presented a comparison of three time-domain implementations
of fractional impedance models for several arbitrary values of the input
parameters 𝑅𝑍𝐴𝑅𝐶 , 𝜏𝑍𝐴𝑅𝐶 and 𝛼; however, here a more systematic
approach is taken by employing a normalized resistance and a wider
range of both 𝜏𝑍𝐴𝑅𝐶 and 𝛼, covering most typical values of the frac-
tional order exponent 𝛼 and time constant 𝜏𝑍𝐴𝑅𝐶 . For this purpose,
a current profile characteristic of battery operation, consisting of one
normalized DST cycle (assuming a constant operating battery voltage)
and one constant-current charging period, is simulated for 0.5 < 𝛼 < 0.9
and for 𝜏𝑍𝐴𝑅𝐶 = 20 s, 𝜏𝑍𝐴𝑅𝐶 = 100 s and 𝜏𝑍𝐴𝑅𝐶 = 500 s with a unit
resistance and a sampling time 𝑇𝑠 = 1 s, as shown in Fig. 1.

The relative RMS error between the exact voltage response and each
approximation is computed. Simulation results for the 5RC and 7RC
approximations for the multiple-RC and Oustaloup methods are shown
in Figs. 2 and 3, whereas errors for the GL approach are depicted in
Fig. 4.

The overall satisfactory operation of the first two methods can be
observed in Figs. 2 and 3, with relative errors below the 5% threshold
in almost all cases and greater accuracy as 𝛼 increases. However, it has
to be pointed out that the multiple-RC method yields a slightly smaller
voltage error and ensures a more consistent performance regardless of
the value of the time constant 𝜏𝑍𝐴𝑅𝐶 . Furthermore, the accuracy of both
approximations improves roughly by a factor of two when the number
of RC elements is increased from 5 to 7.

Finally, the relative error between the exact voltage and the one
obtained with the GL method for memory lengths 𝐿𝑚 = 50 and 𝐿𝑚 =
500 is displayed in Fig. 4. It can be easily ascertained that this is
the least effective of the three approaches for the fractional modeling
of LIBs since its accuracy depends heavily on the value of the time
constant 𝜏𝑍𝐴𝑅𝐶 due to the effect of the limited memory length. Even
at the best-case scenario for the longest memory and the smallest time
constant (𝜏𝑍𝐴𝑅𝐶 = 20 s and 𝐿𝑚 = 500), the RMS error is still higher than
that of both earlier approximations for 5 RC elements. This shows that
the number of states in the GL approach should be at least two orders of
magnitude higher than in the multiple-RC and Oustaloup methods for
a similar degree of accuracy if the complete operation of the battery is
taken into account.

A qualitative example of this behavior can be observed in Fig. 5.
Throughout the DST discharge cycle there are quick changes in current,
which allow the GL approximation to remain as accurate as the other
two. However, during rest periods and constant-current phases the
shortcomings of the GL approach become apparent as the limited
memory length causes the voltage to converge to its steady-state value
in an excessively fast manner. This issue may not seem critical when it
comes to rests as the steady-state value is zero and the only difference
is the rate at which it is reached. Nevertheless, in constant-current
charging phases the steady-state value is not zero (for example, it is
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Fig. 1. Normalized input current and exact voltage response for 𝛼 = 0.65 and 𝜏𝑍𝐴𝑅𝐶 = 100 s.
Fig. 2. RMS error comparison for a 5RC approximation between (a) Multiple-RC approach, and (b) Oustaloup approach.
p
c
a

s
(
a
w

in Fig. 5), which leads to a substantial steady-state error that may
esult in prolonged incorrect state-of-charge estimations. This raises
valid concern whether or not the GL approximation is appropriate

or online battery monitoring given that rests and constant-current
harges make up the majority of the total operation time. This could
lso have a knock-on effect on online state-of-health (SOH) estimations
f the remaining capacity is estimated directly or indirectly from the
uotient 𝛥𝑄∕𝛥𝑆𝑂𝐶 [43,44]. Additionally, the higher computational
nd memory requirements for the GL approach might be an issue for
n on-board implementation.

Both the multiple-RC and the Oustaloup approaches yield reason-
bly satisfactory results, with the proposed multiple-RC being slightly
ore accurate. Therefore, in the rest of this article, only the multiple-
C approach with seven RC elements will be further used.

. Experimental

The experimental tests were conducted on a high-energy silicon–
raphite, nickel rich commercial cell manufactured by Samsung-SDI
5

(INR18650-35E). According to the manufacturer, this type of cell ex-
hibits a standard discharge capacity greater or equal than 3350 mAh
when discharged at C/2 within the voltage limits (i.e., 4.2 V charge,
2.65 V cut-off). The experimental cycling testing was carried out on
a multichannel, high-precision series Arbin LBT battery tester. For
the EIS experiments, a Gamry Reference 3000™ high-performance
otentiostat/galvanostat was employed. A Memmert environmental
hamber was used throughout the experimental procedures to maintain
constant ambient temperature of 23 ◦C.

The battery testing strategy is based on the established testing
chemes developed at the United States Advanced Battery Consortium
USABC) [45] and on the best practices for battery testing developed
t the Hawaii Natural Energy Institute (HNEI) [46]. The tests began
ith the conditioning procedures following the USABC guidelines [45],

with and added thermodynamic C/25 cycling following HNEI recom-
mendations [46]. This set of testing allows for the determination of the
pseudo Open Circuit Voltage (OCV) curve to decipher the OCV-SOC
relationship.
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Fig. 3. RMS error comparison for a 7RC approximation between (a) Multiple-RC approach, and (b) Oustaloup approach.

Fig. 4. RMS error comparison between (a) 𝐿𝑚 = 50 (b) 𝐿𝑚 = 500 for the GL approach.

Fig. 5. Normalized voltage responses for 𝛼 = 0.65, 𝜏𝑍𝐴𝑅𝐶 = 100 s, with 7 RC elements for the Oustaloup and multiple-RC approximations and 𝐿𝑚 = 100 for the GL approximation.
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Thereafter, a Reference Performance Test (RPT) was performed.
RPTs quantitatively assess battery performance using standard test-
ing equipment, providing as much information as possible without
being intrusive. In particular, this RPT started with a set of charge
and discharge cycles at different discharge rates, while maintaining
the charging procedure. The charging method followed the standard
scheme at constant current–constant voltage (CC–CV) at C/2 (1.7 A)
to 4.2 V until the current decreased to C/50 (67 mA), while the
discharging rates were 1C, C/2 and C/5, respectively. Following this
set of charge/discharge cycles, a thermodynamic cycle at C/25 was
carried out. To conclude the RPT, the EIS experiments were performed
in a frequency range from 10 mHz to 10 kHz at the following states of
charge: 5%, 20%, 50%, 80% and 95%.

Once the RPTs were completed, the continuous Duty Cycling Scheme
(DCS) was carried out. The DCS testing consisted of a set of standard
charge (CC–CV) at C/2 to 4.2 V, followed by DST profiles as defined by
the USABC manual [45]. The DST is a variable-power discharge regime
developed by the USABC to simulate the expected demands of an EV
battery. The DST schedule was scaled to 700 W/kg, surpassing the long-
term USABC power goal of 400 W/kg. The resulting maximum C-rates
during the DST charge and discharge pulses were approximately 2.6
A (0.75C) and 12 A (3.5C), respectively, with an average rate corre-
sponding to a C/2 discharge. The average energy throughput per full
discharge was approximately 10 Wh. The DST schedule was repeated
every 360 s until the cell reached its discharge cut-off voltage of 2.65
V, after which the cell was set to rest for 2 h. The standard CC–CV
charge-DST discharge cycling procedure was performed continuously
for 20 cycles in succession.

4. Identification of ZARC parameters

In this section, the identification of fractional parameters is carried
out from experimental frequency-domain and time-domain data, and
the differences between both approaches as well as their suitability and
applications are discussed.

4.1. Frequency-domain identification

In order to identify fractional parameters from frequency-domain
data, it has to be pointed out that in most experimental EIS mea-
surements, the leftmost depressed semicircle is usually prominent; the
constant-slope behavior at lower frequencies is not as easily identifiable
nonetheless. Moreover, the fact that batteries present a bounded DC
impedance is an additional reason to use a multiple-ZARC equivalent
circuit model to fit EIS data, as shown in Fig. 6.

In order to fit our experimental data, we will use the equivalent
ircuit model depicted in Fig. 7, comprised of one series resistor 𝑅0
nd 3 ZARC elements.

The parameterization was carried out with Particle Swarm Opti-
ization (PSO), which is a widespread population-based optimization

lgorithm often employed for the concurrent identification of multiple
arameters [47]. It is a well-documented algorithm, summarized as
ollows: a collection of individuals (particles) moves in steps through-
ut a bounded n-dimensional search area, where n is the number of
arameters to be optimized. At each step, the algorithm evaluates the
bjective function at each particle. The new velocity of each particle
s updated according to the cost function, the individual best location
nd the global best location. If the upper and lower bounds define
region with one global minimum, the population will eventually

oalesce around this location.
In this case, the cost function is the weighted squared distance in the

yquist plot between the experimental and the estimated impedances
𝑒𝑥𝑝 and 𝑍𝑒𝑠𝑡 at every frequency point, expressed in Eq. (23):

𝐶 =
𝑁
∑

𝑤𝑘

[

(

𝐼𝑚(𝑍𝑒𝑠𝑡(𝑗𝜔𝑘)) − 𝐼𝑚(𝑍𝑒𝑥𝑝(𝑗𝜔𝑘))
)2
7

𝑘=1
a

Table 3
Summary of identified ZARC parameters from EIS measurements.

Parameters SOC = 5% SOC = 20% SOC = 50% SOC = 80% SOC = 95%

𝑅0(𝛺) 0.023 0.02313 0.0231 0.02313 0.02324
𝑅1(𝛺) 0.0118 0.0064 0.0053 0.0056 0.0061
𝜏1(𝑠) 0.0038 0.0013 0.0011 0.0011 0.0014
𝛼1 0.5273 0.7302 0.7682 0.7416 0.7080
𝑅2(𝛺) 0.0072 0.0057 0.0074 0.0050 0.0069
𝜏2(𝑠) 1.9146 1.5780 1.9051 1.2407 1.9501
𝛼2 0.6722 0.7136 0.7150 0.6844 0.6140
𝑅3(𝛺) 0.1987 0.0751 0.0788 0.0592 0.0678
𝜏3(𝑠) 195.65 148.04 132.04 161.57 167.02
𝛼3 0.8507 0.8216 0.8152 0.7207 0.7439

+
(

𝑅𝑒(𝑍𝑒𝑠𝑡(𝑗𝜔𝑘)) − 𝑅𝑒(𝑍𝑒𝑥𝑝(𝑗𝜔𝑘))
)2
]

(23)

Weights 𝑤𝑘 are introduced so as to penalize errors at lower frequen-
cies in a harsher way, since a precise parameterization of the frequency
response in this range is critical to accurately reproduce cell behavior at
longer timescales. Experimental and fitted data are shown in Figs. 8 and
, along with the lower and upper frequency limits and the frequency
f the valley that is characteristic of EIS plots. It has to be noted that
he minor discrepancies between experimental and fitted points in the
igh frequency limit are not caused by a modeling error, but they are
ue to parasitic inductive elements that make the experimental curve
ntersect the real axis at a much lower frequency than the theoretical
imit 𝜔 → ∞ [24].

Fitted parameters for the five analyzed SOCs are shown in Table 3.

.2. Time-domain identification

Several methods for the time-domain identification of fractional
mpedance parameters have been proposed based on the GL defini-
ion of the fractional derivative. For this purpose, a characteristic
urrent profile is introduced as an input and the voltage response
s recorded. Afterwards, said voltage response is adjusted to that of
n equivalent circuit model, and the identified parameters are those
hich minimize the voltage error along the duration of the experiment.
olomon et al. [32] used both PSO and QPSO (Quantum Particle Swarm
ptimization) in order to determine four equivalent circuit parameters

or the entire SOC range from driving cycle data. Hu et al. [34]
mployed a hybrid GA-PSO (Genetic Algorithm-Particle Swarm Opti-
ization) to simultaneously identify the equivalent circuit parameters

nd the polynomial coefficients of the OCV-SOC relationship, whereas
e et al. [31] employed an adaptive GA-based method. Despite the
cceptable agreement between the experimental and the simulated
esponses to the respective current profiles, the ZARC resistance values
re greater than 1 Ω in [34] and less than 1 mΩ in [31], whereas the
btained fractional-order exponents are extremely close to 1 in [48],
hich poses a question about the validity of these parameters in a
ifferent setting.

This emphasizes the relevance of EIS tests for informed time-domain
arameter identification as they provide illustrative values that can be
seful to narrow down the search space for the optimization algorithm,
ince some error minima may result in parameter values that are not
hysically meaningful. On this account, Mawonou et al. [33] used the
esults from frequency domain identification from EIS tests to initialize
RLS algorithm with a forgetting factor for a faster convergence of

he time-domain identification from both current pulse excitations and
riving cycle data. In our case, 24 DST cycles were carried out in suc-
ession in order to cover a full discharge from the high to the low cutoff
oltages. To this end, the amplitude spectrum of 24 consecutive ideal
nd normalized DST profiles assuming a constant operating battery
oltage is computed and shown in Fig. 10.

It is observed that frequency components greater than 0.1 Hz have

n amplitude less than 0.1. This means that time constants below
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Fig. 6. Qualitative examples of ZARC identification in EIS measurements. Red circles show the contribution of each ZARC element to the total impedance. Note that each Z
element has been displaced in the X direction for convenience.
Fig. 7. Equivalent circuit model.
Fig. 8. EIS experimental measurements and fitted values for SOC = 5%, SOC = 20% and SOC = 50%.
8
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Fig. 9. EIS experimental measurements and fitted values for SOC = 80% and SOC = 95%.
Fig. 10. Ideal amplitude spectrum of the repeated DST current profile.
.59 s will be difficult to identify from the voltage response to this
urrent profile. In particular, this implies that the two ZARC elements
n Fig. 7 with faster time constants 𝜏1, 𝜏2 will not be detected properly.

Therefore, an equivalent circuit model with a voltage source with the
OCV-SOC relationship determined in Section 3 and an impedance con-
sisting of a series resistor and a ZARC element will be employed in this
section and four parameters (𝑅0, 𝑅𝑍𝐴𝑅𝐶 , 𝜏𝑍𝐴𝑅𝐶 , 𝛼) will be identified
from time-domain measurements. Carrying out this analysis prior to
the time-domain identification proves to be essential for an informed
parameterization, since an unrestricted optimization procedure from
only time-domain measurements may lead to overfitting. For instance,
issues such as identifying two ZARC elements with similar time con-
stants [30,31,34] or even three ZARC elements from driving cycle
data [49] can be easily avoided.
9

Standard Particle Swarm Optimization is employed again, with the
cost function being the RMS error between the measured voltage and
the simulated voltage according to the state-space representation in
Eqs. (13) and (14). Parameter values for ZARC 3 in Table 3 were
used as guidelines to set the upper and lower boundaries for the
search space. The convenience of the expressions in Table 2 becomes
apparent as they provide the parameter values for the multiple-RC
approximation directly, without the need for repeating the pole-zero
decomposition procedure and residue calculation in every iteration of
the minimization algorithm. The identified parameters are: 𝑅0 = 0.0250
Ω, 𝑅𝑍𝐴𝑅𝐶 = 0.0627 Ω, 𝜏𝑍𝐴𝑅𝐶 = 247.25 s, 𝛼 = 0.5038, with an RMS error
of 11.9 mV. The accurate match between the measured and simulated
voltage, along with the current input, are shown in Fig. 11.

Both time-domain responses are shown in Fig. 12 for a complete

DST cycle with an RMS error of 11.9 mV for the time-domain identified
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Fig. 11. Experimental and simulated voltage with the parameter values identified from time-domain measurements. It has to be noted that as the battery discharges and its
operational voltage decreases, the current must increase to meet the constant power demand.
Fig. 12. Experimental and simulated voltage with the parameter values identified from time-domain measurements and EIS measurements. Detail of a single DST cycle.
parameters and 39.3 mV for the frequency-domain identified param-
eters. It is noted that while the former closely matches the measured
voltage, the latter presents an additional voltage drop due to the higher
resistance identified in EIS tests. This could be due to the non-linear
current dependence of charge-transfer processes, which may cause
resistance values identified at lower currents to be greater than those
identified at higher current rates. Therefore, further research on the
development of more complex ECMs is warranted in order to account
for the nonlinear behavior of lithium-ion batteries.

This goes to show that frequency-domain parameters, although a
guideline for the time-domain identification procedure, may not be the
best option for time-domain simulation and monitoring given the non-
linearity of battery voltage response with the input current amplitude
10
if the current dependence of charge-transfer processes is not explicitly
taken into account in the equivalent circuit model [50,51].

5. Dual estimation of SOC and fractional parameters

Similarly, several methods for the online estimation of SOC and
equivalent circuit parameter values based on fractional models have
been proposed based on the GL definition of the fractional derivative.
The interest in detecting and estimating changes in the equivalent cir-
cuit elements is justified by the variations in parameter values observed
in EIS tests at different states of charge and stages of degradation. Hu
et al. [34] employed a fractional-order Dual Extended Kalman Filter to
coestimate battery capacity 𝑄 and series resistance 𝑅0, although it was
intended as a method to correct the erroneous initialization of these
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parameters rather than a procedure for long-term estimation. Mawonou
et al. [33] combined an Extended Kalman Filter for SOC estimation with
a Recursive Least Squares algorithm with a forgetting factor to estimate
the series resistance 𝑅0 and the ZARC resistance and time constant
𝑅𝑍𝐴𝑅𝐶 , 𝜏𝑍𝐴𝑅𝐶 . Yu et al. [36] presented a CPSO-based algorithm for
online parameter identification, and showed that the convergence time
as well as the identification results depend heavily on the memory
length and the tuning parameters.

However, as shown in Section 2, the GL approximation is not the
most appropriate for accurate battery fractional modeling outside the
driving cycle stage; therefore, the validity of these methods is not guar-
anteed in prolonged operation containing rests and constant-current
charging periods. For this reason, a novel method for the long-term
simultaneous estimation of battery SOC and all fractional parameters
based on the multiple-RC approximation presented in Section 2 is
escribed next.

.1. Proposed DFOEKF

In this section, the proposed method will be presented assuming an
quivalent circuit model consisting of a voltage source representing the
CV-SOC relationship determined in Section 3, one series resistor 𝑅0
nd one ZARC element with parameters 𝑅𝑍𝐴𝑅𝐶 , 𝜏𝑍𝐴𝑅𝐶 , 𝛼, although the
ethod could be easily extended for several ZARC elements. The state

nd output equations are the expressed in Eqs. (24) and (25):

𝑥(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘 − 1)

𝑥(𝑘) =
[

𝑆𝑂𝐶(𝑘) 𝑖1(𝑘) 𝑖2(𝑘) … 𝑖7(𝑘)
]𝑇 , 𝑢(𝑘) = 𝑖(𝑘)

𝐴 = 𝑑𝑖𝑎𝑔
[

1 exp
(

− 𝛥𝑡
𝜏1

)

exp
(

− 𝛥𝑡
𝜏2

)

… exp
(

− 𝛥𝑡
𝜏7

)]

𝐵 =
[

𝛥𝑡
𝑄 1 − exp

(

− 𝛥𝑡
𝜏1

)

1 − exp
(

− 𝛥𝑡
𝜏2

)

… 1 − exp
(

− 𝛥𝑡
𝜏7

)]𝑇

(24)

𝑣𝑘 = 𝑂𝐶𝑉 (𝑆𝑂𝐶𝑘) + 𝑅0𝑖𝑘 + 𝑅1𝑖1,𝑘 + 𝑅2𝑖2,𝑘 +⋯ + 𝑅7𝑖7,𝑘 (25)

The Dual Extended Kalman Filter (DEKF) consists of two EKFs in
a parallel configuration for simultaneous estimation of both states and
parameters, whose general formulation is described in Eq. (26):

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘−1, 𝜃𝑘) +𝑤𝑘

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘, 𝜃𝑘) + 𝑣𝑘

𝜃𝑘 = 𝜃𝑘−1 + 𝑟𝑘

𝑑𝑘 = ℎ(𝑥𝑘, 𝑢𝑘, 𝜃𝑘) + 𝑒𝑘

(26)

where 𝑥𝑘 is the state vector, 𝑢𝑘 is the model input, 𝜃𝑘 is the vector
containing the parameters to be estimated and 𝑦𝑘 is the model output. 𝑓
and ℎ are non-linear functions that update the current state and output,
and 𝑤𝑘 and 𝑣𝑘 are the zero-mean process and measurement noises
of covariance 𝑄𝑥

𝑘 and 𝑅𝑥
𝑘, respectively. Given that model parameters

are assumed to change in a much slower fashion compared to state
dynamics, their fluctuations are attributed to noise 𝑟𝑘 with covariance
𝑄𝜃

𝑘. The parameter output equation 𝑑𝑘 is the same as the state output
equation, with noise 𝑒𝑘 of covariance 𝑅𝜃

𝑘.
Following state and parameter initialization, the operation of the

DEKF can be summarized in four steps in Eqs. (27), (28), (30) and (32),
respectively:

1. Parameter EKF estimation.
�̂�−𝑘 = �̂�+𝑘−1

− + 𝜃
(27)
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𝑃𝜃,𝑘 = 𝑃𝜃,𝑘−1 +𝑄𝑘
2. State EKF estimation.
�̂�−𝑘 = 𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�

−
𝑘 )

𝑃−
𝑥,𝑘 = 𝐹 𝑥

𝑘−1𝑃
+
𝑥,𝑘−1

(

𝐹 𝑥
𝑘−1

)𝑇 +𝑄𝑥
𝑘

�̂�𝑘 = ℎ(�̂�−𝑘 , 𝑢𝑘, �̂�
−
𝑘 )

(28)

where

𝐹 𝑥
𝑘−1 =

𝜕𝑓 (𝑥𝑘−1, 𝑢𝑘−1, �̂�−𝑘 )
𝜕𝑥𝑘−1

|

|

|

|𝑥𝑘=�̂�+𝑘−1

(29)

3. State EKF correction.

𝐿𝑥
𝑘 = 𝑃−

𝑥,𝑘
(

𝐻𝑥
𝑘
)𝑇

(

𝐻𝑥
𝑘𝑃

−
𝑥,𝑘

(

𝐻𝑥
𝑘
)

+ 𝑅𝑥
𝑘

)

�̂�+𝑘 = �̂�−𝑘 + 𝐿𝑥
𝑘
(

𝑦𝑘 − �̂�𝑘
)

𝑃+
𝑥,𝑘 =

(

𝐼 − 𝐿𝑥
𝑘𝐻

𝑥
𝑘
)𝑇 𝑃−

𝑥,𝑘
(

𝐼 − 𝐿𝑥
𝑘𝐻

𝑥
𝑘
)

+ 𝐿𝑥
𝑘𝑅

𝑥
𝑘
(

𝐿𝑥
𝑘
)𝑇

(30)

where

𝐻𝑥
𝑘 =

𝜕ℎ(𝑥𝑘, 𝑢𝑘, �̂�−𝑘 )
𝜕𝑥𝑘

|

|

|

|𝑥𝑘=�̂�−𝑘

(31)

4. Parameter EKF correction.

𝐿𝜃
𝑘 = 𝑃−

𝜃,𝑘
(

𝐻𝜃
𝑘
)𝑇

(

𝐻𝜃
𝑘𝑃

−
𝜃,𝑘

(

𝐻𝜃
𝑘
)

+ 𝑅𝜃
𝑘

)

�̂�+𝑘 = �̂�−𝑘 + 𝐿𝜃
𝑘
(

𝑑𝑘 − 𝑑𝑘
)

𝑃+
𝜃,𝑘 =

(

𝐼 − 𝐿𝜃
𝑘𝐻

𝜃
𝑘
)𝑇 𝑃−

𝜃,𝑘
(

𝐼 − 𝐿𝜃
𝑘𝐻

𝜃
𝑘
)

+ 𝐿𝜃
𝑘𝑅

𝜃
𝑘
(

𝐿𝜃
𝑘
)𝑇

(32)

where

𝐻𝜃
𝑘 =

𝑑ℎ(�̂�𝑘, 𝑢𝑘, 𝜃𝑘)
𝑑𝜃𝑘

|

|

|

|𝜃𝑘=�̂�−𝑘

(33)

The corrected error covariance matrices are expressed in Joseph
orm to improve the numerical stability of the algorithm [52]. It
as to be pointed out that the calculation of matrix 𝐻𝜃

𝑘 requires the
omputation of the total differential of the model output equation with
espect to parameters. For this reason, the total derivative has to be
ecomposed into partial derivatives as in Eqs. (34) and (35):

𝜃
𝑘 =

𝑑ℎ(�̂�𝑘, 𝑢𝑘, 𝜃𝑘)
𝑑𝜃𝑘

|

|

|

|𝜃𝑘=�̂�−𝑘

=
𝜕ℎ(�̂�𝑘, 𝑢𝑘, �̂�−𝑘 )

𝜕�̂�−𝑘
+

𝜕ℎ(�̂�−𝑘 , 𝑢𝑘, �̂�
−
𝑘 )

𝜕�̂�−𝑘

𝑑�̂�−𝑘
𝑑𝜃−𝑘

(34)

𝑑�̂�−𝑘
𝑑𝜃−𝑘

=
𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�

−
𝑘 )

𝜕�̂�−𝑘
+

𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�
−
𝑘 )

𝜕�̂�+𝑘−1

𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

(35)

𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

=
𝑑�̂�−𝑘−1
𝑑𝜃+𝑘−1

− 𝐿𝑥
𝑘−1

𝑑ℎ(�̂�−𝑘−1, 𝑢𝑘−1, �̂�
+
𝑘−1)

𝑑�̂�+𝑘−1
(36)

For this purpose,
𝑑�̂�+𝑘−1
𝑑𝜃−𝑘

is initialized to zero and the three total-
erivatives are updated recursively.

The parameter vector to be estimated contains the series resistor and
he ZARC parameters: 𝜃 =

[

𝑅0 𝑅𝑍𝐴𝑅𝐶 𝜏𝑍𝐴𝑅𝐶 𝛼
]𝑇 . According to

the state (24) and output Eqs. (25), as well as expressions in Table 2,
the Jacobian matrices required in Eqs. (29), (31), (34) and (35) are
those calculated in Eqs. (37), (38), (39) and (40), respectively:

𝐹 𝑥
𝑘−1 = 𝑑𝑖𝑎𝑔

[

1 exp
(

− 𝛥𝑡
𝜏1,𝑘

)

exp
(

− 𝛥𝑡
𝜏2,𝑘

)

… exp
(

− 𝛥𝑡
𝜏7,𝑘

)]

(37)

𝐻𝑥
𝑘 =

[ 𝜕𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

|

|

|𝑆𝑂𝐶= ̂𝑆𝑂𝐶−
𝑘

𝑅1,𝑘 𝑅2,𝑘 … 𝑅7,𝑘
]

(38)

𝜕ℎ(�̂�𝑘, 𝑢𝑘, �̂�−𝑘 )

𝜕�̂�−𝑘
=
[

𝑖𝑘 𝑟1(�̂�−𝑘 )𝑖
−
1,𝑘 + 𝑟2(�̂�−𝑘 )𝑖

−
2,𝑘 +⋯ + 𝑟7(�̂�−𝑘 )𝑖

−
7,𝑘

0 �̂�−
(

𝑟′ (�̂�−)𝑖− + 𝑟′ (�̂�−)𝑖− +⋯ + 𝑟′ (�̂�−)𝑖−
)]

(39)
𝑍𝐴𝑅𝐶,𝑘 1 𝑘 1,𝑘 2 𝑘 2,𝑘 7 𝑘 7,𝑘
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Fig. 13. Experimental and estimated voltage and SOC throughout cycle 1.
Fig. 14. Experimental and estimated voltage and SOC throughout cycle 10.
𝑥

𝜕𝑓 (�̂�+𝑘−1, 𝑢𝑘−1, �̂�
−
𝑘 )

𝜕�̂�−𝑘
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 𝐴1 𝐵1
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(40)

here:

𝐴1 = 𝑡1(�̂�−𝑘 )
𝛥𝑡

(𝜏1,𝑘)2
exp

(

− 𝛥𝑡
𝜏1,𝑘

)(

𝑖+𝑅1,𝑘−1 − 𝑖𝑘−1
)

𝐵1 = 𝜏−𝑍𝐴𝑅𝐶,𝑘𝑡
′
1(�̂�

−
𝑘 )

𝛥𝑡
(𝜏1,𝑘)2

exp
(

− 𝛥𝑡
𝜏1,𝑘

)(

𝑖+𝑅1,𝑘−1 − 𝑖𝑘−1
)

(41)

Once the theoretical framework for the DEKF has been established,
the algorithm is initialized by inputting the starting values for both
12
states and parameters. Since the cycling scheme begins with a short
rest period, initial SOC is estimated via voltage measurement and the
OCV-SOC relationship and initial currents are set to zero in Eq. (42),
whereas the state estimation error covariance matrix is initialized in
Eq. (43).

̂+0 =
[

𝑂𝐶𝑉 −1(𝑣0) 0 0 0 0 0 0 0
]𝑇 (42)

𝑃 𝑥
0 = 𝑑𝑖𝑎𝑔

[

10−3 0 0 0 0 0 0 0
]

(43)

Parameters are initialized to the values calculated in the time-
domain identification procedure in Eq. (44), while the parameter es-
timation error covariance matrix is initially set to a diagonal matrix
with the parameter variances shown in Eq. (45):

�̂�+0 =
[

0.025 0.0627 247.25 0.5038
]𝑇 (44)

̂ 𝜃 [ −6 −6 −6]
𝑃0 = 𝑑𝑖𝑎𝑔 10 10 1 10 (45)
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Fig. 15. Experimental and estimated voltage and SOC throughout cycle 20.
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In order to ensure the stability and convergence of the state and
parameter filters, tuning the covariance matrices corresponding to
process and measurement noises of both state and parameter filters 𝑄𝑥

0 ,
𝑅𝑥
0 𝑄𝜃

0 and 𝑅𝜃
0 is required. In this case, covariance matrices have been

initialized as in Eq. (46):

𝑄𝑥
𝑘 = 10−5 ⋅ 𝑑𝑖𝑎𝑔

[

10−5 1 1 1 1 1 1 1
]

𝑅𝑥
𝑘 = 10−4

𝑄𝜃
𝑘 = 𝑑𝑖𝑎𝑔

[

2 ⋅ 10−9 2 ⋅ 10−9 2 ⋅ 10−5 2 ⋅ 10−8
]

𝑅𝜃
𝑘 = 10−2

(46)

5.2. Results

Lastly, the voltage and SOC estimation results obtained by applying
the previously described model and DFOEKF are validated with the
experimental measurements described in Section 3. As discussed in
Sections 1 and 2, the proposed method allows for the estimation of the
voltage evolution during prolonged rests and constant-current charge
periods, as well as the driving cycle stages. Although parameter values
are not expected to change significantly in 20 cycles, estimating them
adaptively is justified given the variations they present at different
SOCs observed in EIS measurements in Section 4.

Figs. 13–15 show the estimation results throughout the 1st, 10th
and 20th complete cycles, respectively. It is observed that this al-
gorithm provides a voltage estimation which is in great agreement
with experimental measurements throughout the driving cycle stage as
well as the rests and constant-current charging periods once the ZARC
parameters have been slightly adjusted. However, there appears to be
a minor deviation during the constant-voltage phase, which marginally
impacts the SOC estimation in said periods. This issue is likely due to
the fact that during the CV stage the input and output of the state-
space model are effectively reversed. Nevertheless, estimation errors in
these phases are generally considered less critical since the cell operates
in tightly controlled conditions, although more accurate simulations
of constant-voltage periods with ECMs will be addressed in future
research.

Root-mean-square error (RMS) and mean-absolute error (MAE) be-
tween estimations and experimental data are 0.28% and 0.18% for
SOC, along with 15.2 mV and 9.4 mV for voltage, respectively. It has to
be pointed out that the proposed method yields very similar estimation
errors to those from recent works that only take into account individual

–33]. Only
13

driving cycle data and considerably smaller time frames [30 i
he recent work by Solomon et al. [32] shows the experimental and
redicted voltage transients during prolonged rests for a memory length
𝑚 = 300, although the voltage evolution during the constant-current
harging stage is not shown. A qualitative difference between this
pproach and the previously cited works is the ability to accurately
odel the voltage response regardless of the operation stage, with
state-vector size often two orders of magnitude smaller than the

equired memory length for the same degree of accuracy. Additionally,
his method allows for the online updating of the fractional order 𝛼, to
ccount for the possible variation of this parameter at different SOCs,
mbient temperatures or aging stages.

As discussed in Section 4, the accurate identification of meaningful
ractional parameters for time-domain applications is not a trivial
rocedure that entails solving a complex minimization problem, often
y means of metaheuristic algorithms. However, these methods are
omputationally expensive and inadequate for online applications, re-
uiring offline implementations. For this reason, a precise time-domain
arameterization of fractional-order elements is not always readily
vailable. Consequently, the ability to recover from an inaccurate ini-
ialization and estimate adequate parameter values is a highly desirable
rait in an online monitoring algorithm. In order to test the capabilities
f the proposed method, two incorrect parameterizations 𝜃1 and 𝜃2,
lternative to 𝜃0 in Eq. (44), are introduced in Eq. (47): the first one
ith a 20% error in both 𝑅𝑍𝐴𝑅𝐶 and 𝛼, while the second one with a
0% error in all parameter values.

𝜃1 =
[

0.025 0.05 250 0.6
]𝑇

𝜃2 =
[

0.038 0.03 375 0.75
]𝑇

(47)

The evolution of the estimated parameters in all three cases is
hown in Fig. 16. The error in 𝑅0 is corrected during the first cycle,
hereas the 𝑅𝑍𝐴𝑅𝐶 converges to their corresponding values within

everal cycles for all three cases. Conversely, 𝛼, and particularly 𝜏𝑍𝐴𝑅𝐶 ,
o so in a slower manner. This shows that the voltage sensitivity to
he equivalent circuit parameters is not identical, with 𝜏𝑍𝐴𝑅𝐶 being
he least critical parameter to identify, especially within an operating
egime with quick changes in current.

The estimation results for the three different initializations are
tated in Table 4. It is noted that the second parameterization only
as a reduced effect on the voltage estimation, whereas the third

nitialization has a greater impact on both estimation errors. This
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Fig. 16. Evolution of the identified parameters throughout the 20 cycles with correct initialization 𝜃0 and incorrect initializations 𝜃1 and 𝜃2.
Table 4
Summary of estimation results for different parameter initializations.

Error Voltage (mV) SOC (%)

Initialization RMS MAE RMS MAE

𝜃0 15.2 9.4 0.28 0.16
𝜃1 15.9 9.5 0.29 0.18
𝜃2 21.6 12.8 0.35 0.22

demonstrates the convenience of considering parameter values in an
adaptive manner.

As with any Dual Kalman Filter, there exists a trade-off between
the state estimation accuracy and the rate of change of the estimated
parameters, given by the parameter covariance matrix. If a larger
variation in the parameter vector is allowed, the state estimation errors
may be decreased at the expense of oscillations in parameter values,
which may not be rigorous from a modeling point of view. For this
reason, the parameter covariance matrix has been set to a reduced
value in order to capture slower variations, which has a direct impact
on how quickly our method is able to recover from an incorrect
parameter initialization. Another limitation of the proposed method
lies on the employed equivalent circuit model. Although fractional-
order ECMs are able to provide a more truthful representation of
distributed diffusion processes with fewer parameters than standard RC
models, they are not as insightful as electrochemical models and fail to
14

account for more complex processes occurring in lithium-ion batteries.
Consequently, analyzing the relationship between time-domain and
frequency-domain parameter values and establishing the correspon-
dence with the characteristic parameters in electrochemical models
remains an open research topic, which warrants the development of
more comprehensive fractional-order equivalent circuit models.

6. Conclusions

In this article, we have proposed a novel Dual Fractional-Order Ex-
tended Kalman Filter for the simultaneous estimation of state of charge
and all fractional parameters based on the multiple-RC approximation
of the ZARC element instead of the Grünwald–Letnikov definition of
the fractional-order derivative. This allows avoiding the issues that
arise from the definition of a memory length when applying the latter
approach. The fractional parameters have been identified on a novel
NMC811/Si-Gr cell via both EIS tests and time-domain measurements,
and the differences between both approaches as well as their suitability
for this application are discussed. We have validated the performance
of this method experimentally in both driving cycles and slowly-varying
operation and its robustness to incorrect initializations, obtaining a
SOC RMS error of 0.28% and a voltage RMS error of 15.2 mV in 20
complete charge–discharge cycles. The accurate estimation results of
the proposed method along with its validity regardless of the opera-
tion stage make it an interesting alternative for its implementation in
battery management systems.
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