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Abstract—This paper investigates a low-cost implementation
of a UHF-RFID portal enhanced by artificial intelligence to
assess whether a tag is crossing the portal or it is static in the
surrounding. The reference scenario concerns anti-theft systems
in fashion stores, where the use of shielded RFID portals is not
feasible and spurious tag readings must be filtered by alternative
methods. The portal consists of a commercial RFID reader
connected to an array antenna placed at the store entrance
to monitor the tag crossing. Data processing involves Received
Signal Strength Indicator sequences and a comparison among
Support Vector Machine (SVM) and several LSTM (Long Short-
Term Memory) neural networks are investigated to perform
classification. System and algorithm validation are conducted
through an experimental analysis.

Index Terms—RFID portal, UHF-RFID, RFID gate, machine
learning, artificial intelligence, array antenna;

I. INTRODUCTION

In recent years, there has been a growing interest in the
use of new technologies for the Internet of Things (IoT)
world, in areas such as logistics, supply chain management,
manufacturing, and retail [1]. Particularly, the fashion industry
has contemplated the integration of passive UHF (Ultra-High
Frequency) band RFID (Radio Frequency IDentification) tags
into paper clothing labels, mainly to manage inventories much
more accurately than through traditional barcodes [2], [3].
The problems of self-checkout and anti-theft are relevant,
especially in large stores. Both of these objectives can be
handled with RFID portals [4]–[10], [10]–[14], which are
identification points installed at key locations of the store to
identify the crossing tags. They are composed by an RFID
reader and one or more antennas.

Typically it is of interest to recognize the direction of
movement of the tag, and this can be done through multi-
antenna solutions [8] or with particular single-antenna config-
urations for which the phase of the signal response of the tag
is different depending on whether it is entering or leaving
the area [9], [10]. However, not all COTS (Commercial-
off-the-shelf) readers provide the possibility to supply phase
data as usable output, and therefore solutions based on the

signal received power, measured through the Received Signal
Strength Indicator (RSSI) parameter are sometimes preferred.

Since the commercial antennas of UHF-RFID systems have
rather wide beams, the problem of stray readings, i.e., detected
tags not passing under the portal, is prominent [11]. The
signal coming from the static tags in the antenna reading
volume, following the motion of the people nearby, respond
to the reader queries with a perturbed signal, which can be
mistakenly interpreted as a movement indicator. To curb this
phenomenon, the literature first proposed shield-based solu-
tions, e.g., RFID tunnels [12], which, however, are expensive
and bulky. Alternatively, it is possible to discriminate crossing
tags from those that do not through the analysis of RSSI data
sequences [8].

This classification problems can be complex if the working
environment is characterized by a strong multipath, or the
speed of the tags is high. For this reason, the aid of artificial
intelligence [10], [13], [14] can be resorted. Faced with an
energy expense for the installation stage and training of the
network, this solution allows to solve the problem with a
relatively simple hardware architecture.

This article presents a solution based on an RFID reader
connected to an array antenna for an anti-theft system in
retails. The array antenna is exploited for its intrinsic ability to
concentrate the reading zone in a given area of the space, e.g.,
the store entrance. However, the total absence of stray reads
cannot be avoided and mis-classified tags can occur. For this
reason, a Support Vector Machine (SVM) [15] and an LSTM
(Long Short-Term Memory) [16] neural network are used to
process the RSSI data and to discriminate among two classes:
crossing and static tags. The article is divided as follows:
Section II briefly presents the artificial intelligence-based
processing methods that we investigated in order to analyze the
performance of the portal, describes the measurement setup,
the antenna, and the tests performed. Section III presents the
results and, finally, Conclusions are drawn together with future
work perspectives.



Fig. 1. Depiction of a fashion store with an RFID portal installed for anti-theft purposes.

II. CLASSIFICATION ALGORITHMS

Suppose we are in a store where the items are tagged as
depicted in Fig. 1. An RFID reader is connected to an array
antenna positioned to the side of the entrance to monitor
passing tags, orthogonal to the floor. A person picks up an
item without purchasing it and is about to exit the store. As
this person moves through the portal, the reader measures
the change in power of the tag response. In the meantime,
due to multipath caused by the moving person himself, a tag
on a shelf, that was normally undetectable by the antenna,
is detected. So, the power measurements of the tag on the
shelf are also collected by the reader and a discrimination
becomes mandatory. So, the goal is to discriminate the two
classes, i.e., crossing and static tags. As first hypothesis, once
data over time has been collected, they can be aggregated to
build a single feature useful to classification algorithms. This
is the case of the employment of a Support Vector Machine
(SVM). Alternatively, the data sequence can be processed
by a neural network specifically created to elaborate vari-
ables changing over the time, the so called Long Short-Term
Memory (LSTM). After a preliminary stage, we evaluated the
following types of processing with different input features:

– SVM applied to the single variance value calculated over
all RSSI samples;

– LSTM neural network with the whole RSSI sequence as
input;

– LSTM neural network with multiple average RSSI values
gathered with a moving window approach, named as
moving RSSI average;

– LSTM neural network with multiple variance RSSI values
gathered with a moving window approach, named as
moving RSSI variance

– LSTM neural network which processes both the moving
average and the moving variance.

The SVM aims at finding a hyperplane or set of hyperplanes
in a high- or infinite-dimensional space to separate two data
groups. In the case where a single feature, i.e., the variance
of the RSSI, is processed, the SVM searches for the optimal
threshold to separate crossing and static tags.

Indeed, the LSTM neural network is a network capable of
analyzing sequences of data, and has several advantages over
other convolutional neural networks to which it belongs. In
particular, the training process to obtain the optimal parameters
of the network is very robust.

III. EXPERIMENTAL ANALYSIS

A. The array antenna

As already mentioned, we employed an antenna array to
build the RFID portal, depicted in Fig. 2. It is a custom 3× 3
array of circularly polarized (LHCP) patch antennas printed on
a 3.2 mm-thick FR4 substrate (εr = 4.3 and tan(δ) = 0.025),
designed to work in the UHF-RFID ETSI band (865-868
MHz). The array element is a truncated–corner patch antenna,
with a side of 78 mm (Fig. 3). The patch exhibits a half-
power beamwidth (HPBW) of about 120◦, in both principal
planes. A single-port feed has been implemented through a
50 Ω coaxial cable. The spacing between the elements is λ/2.
The array beam is fixed and cannot be steered.

B. Experimental trials

To validate the robustness of the proposed solution, an
experimental setup was built at the facilities of the University
of Oviedo as depicted in Fig. 3. The right-handed coordinate
reference frame is chosen such as the motion of the people is
along the x-direction (Fig. 3).



Fig. 2. 3 × 3 array of circularly polarized (LHCP) patch antennas used for
the measurements.

Fig. 3. Measurement setup at the University of Oviedo.

The RFID array was mounted at z = 1.15 m from the
ground. An operator equipped with a Dogbone inlay RFID
tag with MZ-6 chip (-22.1 dBm sensitivity) performed a total
of 282 portal crossings. Tag trajectories are straight with
different speeds, and with a distance of around 1 m, 1.5 m,
and 2 m from the antenna (i.e., y = 1 m, y = 1.5 m, and
y = 2 m). Within 162 trials, two RFID tags were placed
hanging from the ceiling close to the antenna at the loca-
tions ptag1 = [xtag1 , ytag1 , ztag1 ]

T = [0.90, 0.75, 1.50]T m
and ptag2 = [xtag2 , ytag2 , ztag2 ]

T = [2.15, 1.20, 1.50]T m,
respectively. When the person crossed the gate, the responses
of the three tags, i.e., the crossing tag and the two static tags,
were gathered by the reader by collecting the RSSI changes
with an Impinj Speedway R420 UHF-RFID reader, set with
a transmitting power of 20 dBm at f0 = 865.7 MHz. A total
of 282 data sequences from the crossing tag, 162 sequences
from static RFID tag #1, and 162 sequences from static RFID
tag #2 were recorded, by obtaining a dataset of NTot = 606
sequences.

It is noteworthy that, it is usually recommended to hide
the array so as not to be visible to the eyes of a possible
thief. Many solutions foresee the integration in the floor of
the antenna which was not done in this work for practical
matters.

C. Classification performance

The RSSI sequence gathered from a crossing tag and the
RSSI sequence acquired at the same time by a static tag
are depicted in Fig. 4a and Fig. 4b, respectively. Although
apparently the two sequences are different, they cannot be used
as is to distinguish the two tag categories. This motivates the
choice of the input features already described in the previous
paragraph. Specifically, the moving RSSI average and the
moving RSSI variance for all RSSI data acquired in the dataset
are obtained with a window size of L = 50 samples. An
example of the novel features is shown in Fig. 5. As noted,
they have a different shape and thus represent valid candidates
to be the input of an LSTM neural network.

Moreover, the LSTM network can also take multiple se-
quences as inputs, so both the sequences of moving RSSI
average and moving RSSI variance can be jointly used in the
LSTM. We divided the dataset consisting of 606 sequences
into two subsets defined as Training Set and Test Set. The con-
struction of these sets involves randomly selecting sequences
that belong to either set so that both classes, i.e. crossing and
static tags are represented. We varied the size of the Training
Set by selecting the 50%, 60%, 70%, 80%, and 90% of the all
available sequences. The size of the training set is therefore
Ntr = 303, Ntr = 363, Ntr = 424, Ntr = 484, Ntr = 545.
It follows that the test set size is Ntest = NTot − Ntr is
Ntest = 303, Ntest = 243, Ntest = 182, Ntest = 122,
Ntest = 61.

Fig. 6a depicts the values of the training accuracy for the
five analysed processing, namely SVM (circular blue mark-
ers), LSTM-RSSI (squared red markers), LSTM-Moving RSSI
Average (triangular green markers), LSTM-Moving RSSI
Variance (reverse triangular black markers), LSTM-Moving
RSSI Average and Variance (diamond magenta markers). As
expected, after fitting the SVM or after training the LSTM
network, the classification accuracy on the training set de-
creases slightly as the size of the training set increases, while
the accuracy on the test set increases. Processing sequences
of RSSI, their moving average, or the moving RSSI average
jointly with the moving RSSI variance does not produce
good classification performance. The reason for this is that
the data sequences are not significantly different between
crossing and static tags and thus it is difficult, even for an
artificial intelligence-based method, to perform classification.
Moreover, this fact makes us understand how even through a
deterministic algorithm it would be complex to discriminate
the two classes. The use of the variance processed by a SVM
and the moving RSSI variance processed by a LSTM instead
allows to obtain good results, testifying that the RSSI variance
is a good feature for classification. The SVM is the algorithm
that has allowed to obtain values of 100% or close to 100%
for all training set sizes. Table I and Table II resume all the
obtained results.

IV. CONCLUSION AND FUTURE WORK

In this paper an UHF-RFID portal for anti-theft systems in
fashion stores was investigated. The portal is composed by



(a) (b)
Fig. 4. (a) RSSI data gathered from a crossing tag, and (b) RSSI data gathered from a static tag during the motion of the crossing tag.

(a) (b)
Fig. 5. (a) Moving RSSI average and (b) moving RSSI variance of the RSSI data gathered during the crossing of the moving tag whose RSSI sequence is in
Fig. 4a. The window size is L = 50 samples.

TABLE I
TRAINING ACCURACY WITH RESPECT TO TRAINING SET SIZE FOR ALL THE FIVE ANALYSED PROCESSING.

Training set / Dataset % Ntr SVM LSTM-RSSI LSTM-Mov. Avg. LSTM-Mov. Var. LSTM-Mov. Avg. and Var.
50% 303 99.99% 58.73% 59.55% 96.70% 56.47%
60% 363 99.99% 57.02% 58.02% 96.42% 55.10%
70% 424 99.99% 55.19% 57.64% 95.81% 55.24%
80% 484 99.98% 54.81% 55.66% 95.33% 53.76%
90% 545 99.97% 52.55% 53.80% 94.75% 52.74%

TABLE II
TEST ACCURACY WITH RESPECT TO TRAINING SET SIZE FOR ALL THE FIVE ANALYSED PROCESSING.

Training set / Dataset % Ntest SVM LSTM-RSSI LSTM-Mov. Avg. LSTM-Mov. Var. LSTM-Mov. Avg. and Var.
50% 303 99.98% 52.81% 44.55% 96.30% 48.47%
60% 243 99.98% 53.02% 48.02% 95.42% 49.10%
70% 182 99.98% 54.19% 50.64% 95.18% 50.24%
80% 122 100% 53.81% 52.81% 95.12% 51.76%
90% 61 100% 51.81% 51.81% 94.75% 52.31%

a commercial RFID reader and an array antenna placed at
the entrance of the store. RSSI data of crossing and static
tags are gathered and processed both through a SVM and a
LSTM neural network algorithms. An experimental analysis
have been conducted in an indoor environment, and it has been
demonstrated that by processing the variance of the measured
RSSI through a LSTM, a classification accuracy around 95%
can be reached, whereas when processing the data through a
SVM, more than 99% of accuracy is achieved. In the future, a
larger dataset combined with a more in-depth analysis of input
features will be considered to obtain more robust classification

approaches.
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(a) (b)
Fig. 6. a) Training accuracy and b) Test accuracy of the five analysed cases with respect to the size of the training set with respect to the entire dataset.
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